

Version 0.5

Content Management
Interoperability
Services
Appendices – Open Issues, Informative Examples & Important Decisions

© EMC Corporation, IBM Corporation, Microsoft Corporation
8/28/2008

CONTENTS

Contents .. 2

Appendix A: Open Issues ... 3

Part I – Data Model and Services ... 3

Appendix B: Informative Examples .. 5

Versioning Example ... 5

Appendix C: Important Decisions .. 10

Multiple Content Streams for Document Objects ... 10

APPENDIX A: OPEN ISSUES

This section lists the set of spec issues that were still under discussion/consideration at the time this version of the

spec was published.

Issues are categorized by the spec section to which they apply, and each issue includes a proposed timeframe for

resolution. The timeframes are:

 Next minor version: This issue SHOULD be resolved in the next minor version of the CMIS specification.

 CMIS 1.0: This issue SHOULD be resolved in (or before) the release of version 1.0 of the CMIS

specification.

 After CMIS 1.0: This issue SHOULD be considered for a future version of the CMIS specification after the

publication of CMIS 1.0 .

Note that issues may be “resolved” by changes to the specification, or by the CMIS TC voting NOT to modify the

spec.

PART I – DATA MODEL AND SERVICES

Note: The issues included in this section MAY have a cascading impact onto the CMIS bindings listed in Part II of

the specification.

FINAL URI FOR CMIS SCHEMAS

Timeframe: Next minor version

The CMIS specification currently lists “cmis.org” as the domain where the CMIS XML schemas will be available for

use. However, this domain is unavailable.

This URI needs to be updated to refer to the location where the official CMIS XML schemas will reside.

DISCOVERING REPOSITORY LOCATIONS AND CONNECTION SETTINGS

Timeframe: After CMIS 1.0

The CMIS specification currently does NOT explicitly specify how an application should discover:

a) The URL/service endpoint where a CMIS repository can be located, or

b) The connection/authentication modes & settings to use for connecting to the repository

Instead, it is assumed that the application will acquire this knowledge in a way that is out-of-scope for CMIS.

It would potentially be useful to extend the CMIS specification to include an explicitly defined mechanism for

discovering how to connect to a CMIS repository and/or how to infer the location of a CMIS service endpoint from

a well-known URL or directory.

SUPPORT FOR FETCHING AN ARBITRARY COLLECTION OF OBJECTS BY OBJECTID

Timeframe: CMIS 1.0

The CMIS specification currently states that it is repository-specific whether the “ObjectId” property that is

exposed on all four base object types is “queryable” (i.e. can be used in the WHERE clause of a query).

This means that there’s no guarantee that an application will be able to fetch the properties for an arbitrary

collections of objects via their ObjectIds from any repository – only those repositories that have specified that

ObjectIds are queryable.

There are several possible approaches to address this, including:

- Specifying that the “ObjectId” property MUST be queryable for all repositories

- Adding a new service for “getPropertiesForMultipleObjects” that takes as input the IDs for multiple

objects.

APPENDIX B: INFORMATIVE EXAMPLES

The following sections provide informative examples of various elements of the CMIS specification.

VERSIONING EXAMPLE

The following example illustrates how the versioning of Document objects is supported in CMIS, specifically with

respect to the following properties of each Document object:

Property Name Property Type
OBJECT_ID ID
IS_LATEST_VERSION Boolean
IS_MAJOR_VERSION Boolean
IS_LATEST_MAJOR_VERSION Boolean
VERSION_SERIES_IS_CHECKED_OUT Boolean
VERSION_SERIES_CHECKED_OUT_BY String
VERSION_SERIES_CHECKED_OUT_ID ID
CHECKIN_COMMENT String

Note: All ObjectIDs shown in this example scenario are arbitrary and purely for illustrative purposes.

INITIAL STATE OF REPOSITORY/DOCUMENT

In this example, we will consider a repository containing only a single Document object that has been created using

the CMIS createDocument() service with the following parameters:

 versioningState: CheckedInMinor.

As a result, the Document was created, assuming with a repository-assigned ObjectID of 10. Invoking the

getProperties() service on that document would return the following values for these properties:

Property Name Property Value

OBJECT_ID 10

IS_LATEST_VERSION True

IS_MAJOR_VERSION False

IS_LATEST_MAJOR_VERSION False

VERSION_SERIES_IS_CHECKED_OUT False

VERSION_SERIES_CHECKED_OUT_BY Value not set

VERSION_SERIES_CHECKED_OUT_ID Value not set

CHECKIN_COMMENT Value not set

Note: If the versioningState parameter above was instead set to “CheckedInMajor”, then the IS_MAJOR_VERSION

and IS_LATEST_MAJOR_VERSION properties would be “True”, rather than “False”.

USER ACTION #1: CHECKOUT DOCUMENT 10

The user now invokes the checkout() service for Document 10.

The checkout() service will then return the ObjectID of the “Private Working Copy” representing the checked-out

copy of Document 10. In this example, we will assume that the ObjectID of the “Private Working Copy” is 11. As a

result, there are now two Document objects in the Repository.

getAllVersions: Calling getAllVersions() for Document 10 or Document 11 (assuming that the user has sufficient

rights to see both Documents 10 & 11) would return an ordered collection containing both Document 10 &

Document 11.

getProperties: Calling getProperties() for either Document at this point would show the following properties:

getProperties(10):

Property Name Property Value
OBJECT_ID 10
IS_LATEST_VERSION True
IS_MAJOR_VERSION False
IS_LATEST_MAJOR_VERSION False
VERSION_SERIES_IS_CHECKED_OUT True
VERSION_SERIES_CHECKED_OUT_BY (check-out user id)
VERSION_SERIES_CHECKED_OUT_ID 11
CHECKIN_COMMENT Value not set

getProperties(11):

Property Name Property Value
OBJECT_ID 11
IS_LATEST_VERSION False
IS_MAJOR_VERSION False
IS_LATEST_MAJOR_VERSION False
VERSION_SERIES_IS_CHECKED_OUT True
VERSION_SERIES_CHECKED_OUT_BY (check-out user id)
VERSION_SERIES_CHECKED_OUT_ID 11
CHECKIN_COMMENT Value not set

Notes:

 If the user invoking the getProperties() service did not have sufficient rights on Document 11 (where the

meaning of “sufficient rights” is determined by the repository), then the repository could return “Value

not set” for VERSION_SERIES_CHECKED_OUT_ID (but would still return

VERSION_SERIES_IS_CHECKED_OUT == “True”).

 Note that IS_LATEST_VERSION is still “True” for Document 10. By definition this flag indicates that the

Document is the latest “checked-in” version of the Document’s Version Series.

USER ACTION #2: CHECKIN DOCUMENT 11

The user now invokes the checkin() service for Document 11, with the following parameters:

 Major: True

 CheckinComment: “Version 1.0”

The checkin() service will then return the ObjectID of the checked-in version of that Document object, which may

or may not be the same as the ObjectID of the Private Working Copy. In this example, the service returns an

ObjectID of 12 for the checked-in Document, indicating that the Private Working Copy (Document 11) no longer

exists in the Repository.

getAllVersions: Calling getAllVersions() for Document 10 or Document 12 (assuming that the user has sufficient

rights to see both Documents 10 & 12) would return an ordered collection containing both Document 10 &

Document 12.

getProperties: Calling getProperties() for either Document at this point would show the following properties:

getProperties(10):

Property Name Property Value

OBJECT_ID 10

IS_LATEST_VERSION False

IS_MAJOR_VERSION False

IS_LATEST_MAJOR_VERSION False

VERSION_SERIES_IS_CHECKED_OUT False

VERSION_SERIES_CHECKED_OUT_BY Value not set

VERSION_SERIES_CHECKED_OUT_ID Value not set

CHECKIN_COMMENT Value not set

getProperties(12):

Property Name Property Value

OBJECT_ID 12

IS_LATEST_VERSION True

IS_MAJOR_VERSION True

IS_LATEST_MAJOR_VERSION True

VERSION_SERIES_IS_CHECKED_OUT False

VERSION_SERIES_CHECKED_OUT_BY Value not set

VERSION_SERIES_CHECKED_OUT_ID Value not set

CHECKIN_COMMENT “Version 1.0”

USER ACTION #3: CHECKOUT DOCUMENT 10 AGAIN

Note: It is repository-specific whether a user can check out ONLY the latest version of a Document in a Version

Series, or ANY Document in the Version Series. (Repositories can expose whether or not checking out any

particular Document is allowed using the getAllowableActions() service.) For the purposes of this example, we will

assume that the Repository supports checking out ANY Document in the Version Series.

The user now invokes the checkout() service for Document 10, again.

The checkout() service will then return the ObjectID of the “Private Working Copy” representing the checked-out

copy of Document 10. In this example, we will assume that the ObjectID of the “Private Working Copy” is 13. As a

result, there are now three Document objects in the Repository.

getAllVersions: Calling getAllVersions() for Document 10, 12, or 13 (assuming that the user has sufficient rights to

see those Documents) would return an ordered collection containing Documents 10, 12, and 13 (in that order).

getProperties: Calling getProperties() for any of the Documents at this point would show the following properties:

getProperties(10):

Property Name Property Value

OBJECT_ID 10

IS_LATEST_VERSION False

IS_MAJOR_VERSION False

IS_LATEST_MAJOR_VERSION False

VERSION_SERIES_IS_CHECKED_OUT True

VERSION_SERIES_CHECKED_OUT_BY (check-out user id)

VERSION_SERIES_CHECKED_OUT_ID 13

CHECKIN_COMMENT Value not set

getProperties(12):

Property Name Property Value

OBJECT_ID 12

IS_LATEST_VERSION True

IS_MAJOR_VERSION True

IS_LATEST_MAJOR_VERSION True

VERSION_SERIES_IS_CHECKED_OUT True

VERSION_SERIES_CHECKED_OUT_BY (check-out user id)

VERSION_SERIES_CHECKED_OUT_ID 13

CHECKIN_COMMENT “Version 1.0”

getProperties(13):

Property Name Property Value

OBJECT_ID 13

IS_LATEST_VERSION False

IS_MAJOR_VERSION False

IS_LATEST_MAJOR_VERSION False

VERSION_SERIES_IS_CHECKED_OUT True

VERSION_SERIES_CHECKED_OUT_BY (check-out user id)

VERSION_SERIES_CHECKED_OUT_ID 13

CHECKIN_COMMENT Value not set

Note: As indicated in the CMIS Data Model, the Version Series collection is one-dimensional, i.e. NOT a graph. As a

result, there is no indication that Document 13 was created by checking out Document 10 – Document 13 is simply

the current Private Working Copy for the Version Series that includes Documents 10 and 12.

USER ACTION #4: CHECKIN DOCUMENT 13

The user now invokes the checkin() service for Document 13, with the following parameters:

 Major: False

The checkin() service will then return the ObjectID of the checked-in version of that Document object, which may

or may not be the same as the ObjectID of the Private Working Copy. In this example, the service returns an

ObjectID of 14 for the checked-in Document, indicating that the Private Working Copy (Document 13) no longer

exists in the Repository.

getAllVersions: Calling getAllVersions() for Document 10, 12, or 14 (assuming that the user has sufficient rights to

see all the Documents) would return an ordered collection containing Documents 10, 12, and 14 (in that order).

getProperties: Calling getProperties() for any Document at this point would show the following properties:

getProperties(10):

Property Name Property Value

OBJECT_ID 10

IS_LATEST_VERSION False

IS_MAJOR_VERSION False

IS_LATEST_MAJOR_VERSION False

VERSION_SERIES_IS_CHECKED_OUT False

VERSION_SERIES_CHECKED_OUT_BY Value not set

VERSION_SERIES_CHECKED_OUT_ID Value not set

CHECKIN_COMMENT Value not set

getProperties(12):

Property Name Property Value

OBJECT_ID 12

IS_LATEST_VERSION False

IS_MAJOR_VERSION True

IS_LATEST_MAJOR_VERSION True

VERSION_SERIES_IS_CHECKED_OUT False

VERSION_SERIES_CHECKED_OUT_BY Value not set

VERSION_SERIES_CHECKED_OUT_ID Value not set

CHECKIN_COMMENT “Version 1.0”

getProperties(14):

Property Name Property Value

OBJECT_ID 14

IS_LATEST_VERSION True

IS_MAJOR_VERSION False

IS_LATEST_MAJOR_VERSION False

VERSION_SERIES_IS_CHECKED_OUT False

VERSION_SERIES_CHECKED_OUT_BY Value not set

VERSION_SERIES_CHECKED_OUT_ID Value not set

CHECKIN_COMMENT Value not set

APPENDIX C: IMPORTANT DECISIONS

The following sections summarize the rationale for various important decisions made in designing the CMIS

specification. This section is intended to inform both implementers and future specification authors about

decisions made in creating CMIS version 1.0.

MULTIPLE CONTENT STREAMS FOR DOCUMENT OBJECTS

One request that we’ve received as part of the feedback on version 0.1 of the CMIS spec is to include the ability to

have Document objects that can have more than one content stream (i.e. file).

While it’s not necessarily the case that we feel this is a required capability for version 1.0 of the CMIS specification,

it is worth consideration despite the additional complexity it brings.

This addendum describes a high-level proposal for extending the CMIS domain model & services to enable

Document objects that can have 0, 1, or more than one content stream. (Note: This addendum does NOT include

the corresponding changes that would then cascade out to each of the protocol bindings.)

The intent of this addendum is to be input into further investigation/discussion by future authors revising the

specification, so that that group can consider including these changes in future versions of the CMIS specification.

TARGET SCENARIOS & USE CASES

MULTI-PAGE IMAGING/ARCHIVAL APPLICATIONS:

Many business applications produce high volumes of documents per day, often in a print format such as PDF or

PostScript. These documents need to be captured from other business systems, indexed, and stored into archival

repository such that they can be easily retrieved by end users as needed for business functions.

In many cases the documents being imaged/archived are large, and consisting of many pages. Often the optimal

way for a repository to store these documents is with a single overall “document” object representing the object,

that contains multiple “page” files. This allows the application to maintain a single set of semantic metadata that

describes the overall document (e.g. customer ID, archival date, etc.), while allowing users of the images to be able

to retrieve only the pages they need when they need them, rather than having to download a potentially large file

representing the entire document.

CONTENT RENDITIONING/PUBLISHING

In many ECM applications, a customer will want to store multiple formats of a single document as a logical unit

within the repository that stores multiple formats/renditions of the document for use by various audiences. (For

example, a Microsoft Word document for internal users, a PDF rendition for distribution outside the organization,

and an HTML version for use on a web site.)

Again, in these cases the optimal storage model in the repository is to have a single logical “document” that stores

the semantic metadata about the document, along with multiple content streams for each format.

GOALS

 Provide an additive extension to the existing CMIS domain model for repositories that can store multiple

content streams per document.

 This extension will be an optional capability.

 This extension will NOT add complexity to repositories wishing to implement CMIS that support only one

content stream per document or to applications wishing to work with CMIS repositories but will only ever

need to store one content stream per document.

EXTENSIONS TO THE CMIS SPECIFICATION

In order to enable the scenarios described above the following additions to the CMIS domain model are proposed:

DATA MODEL

CHANGES TO “REPOSITORY” OBJECT

We will add a new repository-specific capability flag, called “SupportsAdditionalContentStreams”.

NEW BASE OBJECT “ADDITIONAL CONTENT STREAM”

We will create a new base object called “AdditionalContentStream”. The usage of this object, as its name implies is

to represent an additional content stream (other than the primary content stream) stored as part of a document

object.

The Additional Content Stream object type is by definition not an independent object, meaning:

- It does not have a separate ObjectID from the Document object to which it belongs (more on how it is

identified below)

- It can not be moved between Documents

- The properties of the AdditionalContentStream object cannot be queried outside the scope of the

Document object. (More on how querying for additional content streams via the Document object will

work below).

- It does not have a formal CMIS object type, which could then be inherited/specialized. The schema for an

AdditionalContentStream is always exactly as defined below.

Note: The choice of a user-settable name (rather than a system-generated one) is to avoid having to define a more

formal/extensible object type for the additional content streams (which would be required if we took the “system-

generated” name approach – so that applications could maintain some information about the meaning of each

content stream.) This approach is potentially simpler in that it gives applications a place to store info about what

the stream means, while minimizing the complexity addition to our domain model. Also, it avoids potential

application confusion around figuring out when they want properties on a content stream vs. on a document.

Here are the properties of the AdditionalContentStream object:

Property
Name

Display
Name

Desc. Property
Type

S-/M-
Value

Max
Lngth

Choic
e

Req’d Dfult
Value

Up
d

Qu
ery

Ord

NAME Name RS String S RS RS RS RS RO
*

N* N

URI URI RS URI S RS na RS na RO RS RS
CONTENT_STREA
M_LENGTH

Content
Stream
Length

RS Integer M RS Na RS na RO RS RS

CONTENT_STREA
M_MIME_TYPE

Content
Stream

MIME Type

RS String M RS RS RS RS RO RS RS

RS: Repository-specific
na: Not applicable

*: While the name property of an AdditionalContentStream is not directly update-able or query-able, it is set indirectly
(when the object is created) and queried indirectly (as a projection onto the Document object).

 Name: This property, which is user-settable only when the additional content stream is created, is the string

that will be used to uniquely refer to one of the additional content streams for the Document object.

o The name of each additional content stream is persisted by the repository throughout the content

stream’s lifecycle.

o It is required that the repository ensure that the name of each Additional Content Stream is unique

within the AdditionalContentStreamCollection for that Document.

 URI: The URI to the content stream.

 Length: The length of the content stream.

 MIME Type: The MIME type of the Content Stream.

Note about immutability: It was a deliberate choice NOT to include an “immutable” property on each additional

content stream. The CMIS version 0.2 spec authors suggest that the right design here is to have immutability

controlled at the Document level (i.e. for all content streams atomically) rather than per content stream.

NEW BASE OBJECT: ADDITIONALCONTENTSTREAMCOLLECTION

This is an un-ordered collection of AdditionalContentStream objects. It will be returned as part of operations that

retrieve the additional content streams for a Document object.

CHANGES TO “DOCUMENT” OBJECT

We will add the following additional properties to the Document object. These properties will always be not set for

repositories that do not support the “AdditionalContentStream” capability.

Property
Name

Display
Name

Desc. Property
Type

S-/M-
Value

Max
Lngth

Choic
e

Req’d Dfult
Value

Up
d

Qu
ery

Ord

CONTENT_STREA
M_NAME

Content
Stream
Name

RS String S RS RS RS RS RS RS RS

ADDITIONAL_CO
NTENT_STREAM
_NAMES

Additional
Content
Stream
Names

RS String M RS N N na RO RS RS

ADDITIONAL_CO
NTENT_STREAM
_LENGTHS

Additional
Content
Stream
Lengths

RS Integer M RS Na N na RO RS RS

ADDITIONAL_CO
NTENT_STREAM
_MIME_TYPES

Additional
Content
Stream

MIME Types

RS String M RS RS N na RO RS RS

ADDITIONAL_CO
NTENT_STREAM
_URIS

Additional
Content

Stream URIs

RS URI M RS na Na na RO RS RS

RS: Repository-specific
na: Not applicable

*: While the name property of an AdditionalContentStream is not directly update-able or query-able, it is set indirectly
(when the object is created) and queried indirectly (as a projection onto the Document object).

 Content Stream Name: This is a read-write property that is used to identify the primary content stream for

the Document Object. (I.e. if the Document object includes multiple content streams, then the application will

want to have a name to identify the main content stream.)

o It is repository-specific whether a name is required even when the Document does not include

additional content streams.

 It is recommended that:

 Repositories that support the additional content stream capability always require a

primary content stream name for the primary stream.

 Repositories that do NOT support the capability do not require a primary content

stream name.

 Additional Content Stream Names: This is a read-only system property that provides an ordered list of the

names of the additional content streams currently stored for this Document. It is in effect a projection of all of

the single-valued “name” properties for each “AdditionalContentStream” properties, to facilitate querying.

o It will always be not set if the repository does not support the additional content stream capability.

o The list is not ordered, but it is a requirement that all of the additional content stream multi-valued

properties are ordered consistently for a given request.

 Example:

 if a caller fetches the properties for a given Document with 3 additional content

streams, then the additional content stream whose name is at position 2 within the

“additional content stream names” property should have its corresponding length

at position 2 within the “content stream lengths” property.

 Furthermore, there is no requirement that subsequent requests to get the

properties of the same Document will return the content stream properties in the

same order.

 However, it is NOT required that the order in which the additional content streams are

presented be persistent across requests. (I.e. in the previous example, if a 4
th

 additional

content stream is then added, that additional stream’s properties may appear at any of the 4

positions of the array.)

 Additional Content Stream Lengths: Analogous to the previous “names” property, this read-only system

property provides an ordered list of the lengths of the additional content streams currently stored for this

document.

o It will always be not set if the repository does not support the additional content stream capability.

o As noted above, it is a requirement that all of the additional content stream multi-valued properties

are ordered consistently for a given request.

 Additional Content Stream MIME Types: Analogous to the previous “names” property, this read-only system

property provides an ordered list of the MIME types of the additional content streams currently stored for this

document.

o It will always be not set if the repository does not support the additional content stream capability.

o As noted above, it is a requirement that all of the additional content stream multi-valued properties

are ordered consistently for a given request.

 Additional Content Stream URIs: Analogous to the previous “names” property, this read-only system property

provides an ordered list of the MIME types of the additional content streams currently stored for this

document.

o It will always be not set if the repository does not support the additional content stream capability.

o As noted above, it is a requirement that all of the additional content stream multi-valued properties

are ordered consistently for a given request.

CHANGES TO VERSIONING

AdditionalContentStream objects are not versioned independently of the Document objects to which they belong.

However, AdditionalContentStream objects are implicitly versioned along with the Document objects. (I.e. each

additional content stream is specifically bound to a version of the Document object.)

CHANGES TO QUERY

The changes to the data model identified above require no changes to the existing CMIS query model. But the

following behaviors are worth noting:

- The CONTAINS function is still scoped to the Document object. This means that the function will return true if

ANY of the Document’s primary or additional content streams contain the specified parameters.

- The SCORE function is still scoped to the Document object. That the scalar value returned by the function will

need to incorporate all of the Document’s primary and additional content streams.

- If a consumer wishes to query a CMIS repository to find out whether a given predicate condition is met for any

of the Document’s content streams, they will need to include clauses that check the single-valued “primary

content stream” property as well as the multi-valued “alternate content stream” property.

o Example: For a query trying to find all Documents that have at least one content stream of

MIME_TYPE “MSWORD”:

 SELECT *

FROM DOCUMENT

WHERE ((CONTENT_STREAM_MIME_TYPE = ‘MSWORD’) OR

(ANY ADDITIONAL_CONTENT_STREAM_MIME_TYPES IN (‘MSWORD’)))

- It is a known limitation of this model that a user can NOT issue a query that checks for a correlation of

multiple properties for a single additional content stream. (E.g. find me all Documents that have a content

stream of type MSWORD AND is bigger than 10MB.)

CHANGES TO SERVICES

The following changes will be made to the CMIS services listed below.

REPOSITORY SERVICES

GETREPOSITORYINFO METHOD

Outputs: NEW capability: AdditionalContentStreams

OBJECT SERVICES

GETCONTENTSTREAM METHOD

Inputs: NEW (optional) contentStreamName: The name of the content stream to be returned for the document.

Notes:

- If no contentStreamName is provided, then the primary content stream will be returned.

- If an invalid contentStreamName is provided, then the repository will throw an

InvalidArgumentException.

SETCONTENTSTREAM METHOD

Inputs: NEW (optional) contentStreamName: The name of the content stream to be written.

Notes:

- If no contentStreamName is provided, then the primary content stream will be used.

- If an invalid contentStreamName is provided, then the repository will throw an

InvalidArgumentException.

ADDCONTENTSTREAM METHOD (NEW)

This is an entirely new method, so its full table is below:

Description Creates a new “AdditionalContentStream” for the specified Document object.

Inputs
 ID documented

 String additionalStreamName

 ContentStreamcontentStream

Outputs

Exceptions
 Common Exceptions

 InvalidArgumentException (if the additionalStreamName is already in use for the
specified Document)

 StorageException

 ConstraintViolationException

 AlreadyExistsException

 ObjectNotFoundException

 StreamNotSupportedException

Notes
 This is considered an update of the document.

 As mentioned in the data model, the additionalStreamName must not already be in
use by another content stream for the specified Document.

Questions

DELETECONTENTSTREAM

Inputs: NEW (optional) contentStreamName: The name of the content stream to be deleted.

Notes:

- If no contentStreamName is provided, then the primary content stream will be deleted.

- If an invalid contentStreamName is provided, then the repository will throw an

InvalidArgumentException.

- It is repository specific what happens when the primary content stream for a Document is deleted, but

the Document has additional content streams. (E.g. whether this is allowed, whether one of the

“additional” content streams now becomes the primary or not, etc.)

VERSIONING SERVICES

CHECKOUT

Notes: While it is repository-specific whether or not the content of that Document is copied into the private

working copy, repositories that support additional content streams MUST copy in both the primary and ALL

additional content streams for the Document into the Private Working Copy if they return the “contentCopied”

flag on the “checkout” service.

