
CMIS Unified Search

Design Discussion - 17 February, 2009

Attendees:
 Al Brown, IBM
 Paul Goetz, SAP
 Ethan Gur-esh, Microsoft
 Laurent Hasson, IBM
 Gregory Melahn, IBM
 John Newton, Alfresco

Topics:

1. John asked whether one of the use cases we intend to support with this service
would include a use case as he saw recently with a customer that has deployed
TIBCO. They would want to trigger a workflow from a content change and so
would be looking for more of a push than a pull model. It was agreed that at the
face-to-face meeting, this was not one of the use cases we were explicitly
targeting with this service. None the less, if we could support it with this service,
that would still be useful. There were several issues identified with trying to
support that use case with this service (a) performance of the system with
potentially many push operations (b) the related fact that typical user activity that
would cause content changes that were actually interesting to search engines (the
targeted use case) would include bursts of changes to a single content item that
could be skipped or consolidated in a periodic pull model. We decided that a
service to push events really should be a separate service.

2. There was some discussion on how a search engine does an initial crawl of the
repository. One approach would be call the service with no changeToken in
which the repository could answer back all of the items in the repository. We
decided that the way a search crawler would do an initial crawl would be to do a
full query. A changeToken would then be required for incremental crawls from
that point on. This token could either need to be available as a new service or as
something that could be retrieved from the getRepositoryInfo service. We decided
on the latter approach. So, in summary, the way a search crawler would behave to
do a full crawl…

a. call getRepositoryInfo and save changeToken from that service
b. call the Query service with a queryString like “SELECT * FROM

DOCUMENTS)
c. call getContentChanges with the changeToken from Step (a).

3. Ethan pointed out there was an inconsistency in enumCapabilityChanges wrt the
input parameters for getContentChanges

4. The meaning of maxItems was discussed again and it was agreed it would remain
a repository choice on the default value.

5. We need to state how a repository is supposed to treat filing or unfiling operations
on folder contents on whether they are answered as changes. The simplest
approach is to say that a repository MAY treat a filing or unfiling action as a
change to the folder or to the document or both, though those kinds of changes
would typically not cause a search engine to want to re-index the folder or the
document.

6. There was some discussion about only answering the properties of a document
that have actually changed. For example, if only the property customer_number
on a document changed then the entry would only have the document id and the
customer_number in it, and not the rest of the properties. This was not
considered practical in version one since not all repositories could efficiently
answer that information based on the journal or query being used to implement
the service

7. There was some discussion about building in additional filter criteria into the
service and this was also considered not practical for version one.

8. Ethan pointed out that we need to state whether the object identified by the
changeToken that is answered by the getContentChanges service is included in
the set answered on the next getContentChanges service call. We decided that it
should be (i.e. at time t0 with changeToken c0, the service answers changeToken
c1 and set0 which includes x as the last item in the set, and at time t1 with
changeToken c1, the service answers set1 which includes x as the first item in the
set)

9. No one liked nextChangeToken so we will just use the name changeToken for
input and output.

10. Ethan pointed out that using a RuntimeException to signal an expired change
token is overloading that exception, and it would be better to use a new exception
or the ConstraintViolationException. Greg did not want to define too many
exceptions but the consensus was to define a new exception for this case.

11. There was discussion about whether we should not treat relationships and
policies as changes. The consensus was that this should remain a repository
choice but we should make this another repository capability answered by
getRepositoryInfo.

Action Items:

 1. Greg to update the document
 2. Next meeting scheduled for week of 02/23/2009. Greg will send out suggestions
for a specific date time (will try for 2/24).

