9

OASIS (3 SCMIS

Content Management Interoperability
Services — Domain Model Version 0.62c

DRAFT
29 June 2009

Specification URIs:

This Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Previous Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Latest Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Technical Committee:
OASIS CMIS TC

Chair(s):
David Choy
Editor(s):
Ethan Gur-esh
Ryan McVeigh
Al Brown

Related work:
This specification replaces or supersedes:

e Not applicable
This specification is related to:

e Content Repository for Java — JSR 170/283: http://www.jcp.org/en/jsr/detail ?id=283
e Atom Publishing Protocol — APP: http://www.ietf.org/internet-drafts/draft-ietf-atompub-
protocol-15.txt

Declared XML Namespace(s):

namespaces here]

—namespaces here]
Abstract:

The Content Management Interoperability Services (CMIS) standard defines a domain model (in this
document) and set of bindings (ZA\DO: Add links), such as Web Service and REST/Atom that can be
used by applications to work wne or more Content Management repositories/systems.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 1 of 115

http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://www.oasis-open.org/committees/
http://www.jcp.org/en/jsr/detail?id=283
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-15.txt
Ethan Gur-esh
To do once we have finalized namespaces.

Ethan Gur-esh
To do: Add links to REST-ful & SOAP bindings.

The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. It is not intended to prescribe how specific features should be
implemented within those CM systems, nor to exhaustively expose all of the CM system’s capabilities
through the CMIS interfaces. Rather, it is intended to define a generic/universal set of capabilities
provided by a CM system and a set of services for working with those capabilities.

Status:
This document was last revised or approved by the CMIS TC on the above date. The level of
approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/CMIS/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/CMIS/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/CMIS/.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 2 of 115

http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /ipr.php
http://www.oasis-open.org/committees/%5bTC short name%5d /ipr.php
http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /

Notices

Copyright © OASIS® 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

CMIS and the CMIS logo are trademarks of OASIS. They should be used only to refer to the output of the
OASIS CMIS Technical Committee. The OASIS CMIS logo is not intended to imply certification or any
official compliance status.

Everyone who supports CMIS is encouraged to download and use the logo (in adherence to OASIS
trademark and logo usage guidelines) without cost or restriction. Downloading and/or using the OASIS
CMIS logo implies acceptance of the following conditions. It is expected that any person or entity using

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 3 of 115

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

the OASIS CMIS logo does so in an appropriate fashion, the logo is not modified, the design colors and
aspect are retained and space around the logo is sufficient so as to prevent the logo from being
construed as part of another graphic element. The logo remains the property of OASIS.

Questions regarding the use of the OASIS CMIS logo should be directed to communications@oasis-
open.org.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 4 of 115

mailto:communications@oasis-open.org
mailto:communications@oasis-open.org

Table of Contents

)] 2 e OSSPSR 1
D24 BN 18T T2 00 1
Y oL=Tod1 o= 1a 1] T £ USRS 1
TS VBISION: ...ttt 1
LAY (o TU Y =T (o] o AP 1
LIS (=TS Y=Y =1 o] o PPN 1
LT LT o= LI @ o 4] 1071 1= PSSR 1
10 NS R @1 1 S T PSP RRR 1
(01 0= 11 £ () LT PSPPSR PTPPPON 1
[0 2= 1Y/ o 14 T) PR 1
=0 [(o1 (5] LTS PP 1
LT LI 0T o P 1
LYz LAY TV =1 o | o U UUPT PP 1
YN =1 (0 LYo PO SRS PPPRPPPPPPPRS 1
L= =1 (=T IR0 4 PR 1
DeClared XML NaIMESPACE(S): ..o iureteeeiurreeeeitteteeaitteteeaatteeeesasbseeesabeeeeesbeeeeesbbeeeesasbeeeesasbeeeesanbeeeeansbeeeesnnneeeas 1
Y 0153 = Lo TSP 1
] = 1 LU S RSP 2
N TS 3
LI 101 (03 @0] (= | RS 5
1 INEFOAUCTION ... 9
=T 0T T oo | SRUR 9
1.2 NOIMALIVE RETEIEINCESvetiiiiiiiiiiiiiiiiitiieteaeeeeeeteeeeeaeeeeeaerere e eeeetaretetetstessssssestssssstssssssnsssnsssssssnsnsnsnsnsnnns 9
1.3 NON-NOrMative REFEIENCESueiiiiiiie e e e e s s s e e e e e e s e e sneaeae e e e e e annrereees 9

2 [= = 1Y, 0T L= P PPPNS 11
P S (T oTo] (o] Y PSPPSR PP PRSPPI 11
2.1.1 Optional Capabiliti®Sciiiieiiiiiiiiiiee e e e e e s e e e s e s r e e e e e e srarrrraaaaes 11
2.1.2 Related REPOSITOMESuveieeiiiiee ettt ettt ettt e e et bt e e ekt e e e e et e e e e anbr e e e ebbe e e e annees 13
2.1.3 Implementation INfOrMEAtiON...........ueiiiiie e e e e e e e e e e e s snnrreeeaees 14
2.1.4 Repository Access CONtrol REPOITINGueviiiiiiiaaiiiee it e e e e senbeeeeeea s 14

A ©] o] 1T ox PSPPSR PPPPPI 14
A N e (o] o 1] SRR 15

2.3 DOCUMENT ODJECT ...ttt ettt e s abb e e s sab b et e e sabb e e e sabb e e e e s nnneeas 16
A T R o] 1 (=] 1] (== 1 o 17

A o] (o [T G @] [T ox AP PP OUPTRPPPRP 17
2.4.1 File-able ODJECLScccicieiiieie et e e e e e s e e e e e e s st e e e e e e e an e nb e e e e e e ennnnrrrreaaees 17
A o [0 [gl =T = ol 0 YRR 19
R B 1 1SS 20

2.5 RelatioNShiP ODJECT... ... it e e e e e s e et e e e e e e e s e st b e e e e e e e e e sarrraeraeaeaeaaan 20
A o] 1103V @] o] [T o P PP PUOUPTUPPPPT 22
2 A = o 11T 1SS 22
A 0 R =Y o T o AN 1 0T (YU 23

CMIS — Part | 29 June 2009

Copyright © OASIS® 2008. All Rights Reserved. Page 5 of 115

2 A = =Y o 11T o T ST o 23

2.7.3 ReNAItION MELAUALAueeeeiieiieiiit ettt e e e e et e e e e e e e e aab bt e e e e e e e e e sbbeeeaaaaeas 24
2.7.4 Rendition @S @ DOCUMEBNTcoiiiiiiiiiiie ettt e e e e e e e e e s st e e e e e e e e s snba e e e e eeeessnnrneeaaeeas 24

P B o ot <1 I @] oo RSP 24
2.8.1 Discovering and Managing ACLScuuiieiiiiiie ittt ettt ae e 24
2.8.2 ACL SUPPOIEd PEIMIUSSIONSeviviieeieeeieiititie e et e e e s s sttt e e e e e e e s s sntaeae e e e e e e e s sanssnreeeeeaeeesannsnreneeeas 25
2.8.3 ACL, ACE, Principal, and PermiSSIONuuuiiiiiiaiiiiiiiiiie ettt e e eee s 25
2.8.4 BaSIC CMIS PEIMISSIONSuvviiieiitiiiee ittt e e e ettt e e s sttt e e sttt e e e sttt e e s snbe e e e e snbbe e e s anbbee e s asbeeeesnnbeesannres 25
2.8.5 ACL Capabiliti®Scccuiiiiieie e e e e e e e e e e e s e e e e e aaanrraaraaaes 26
S © o] 1=Toi ol Y/ o 1= PSPPSR PPU PRSPPI 34
2.9.1 Object-Type Hierarchy and INNEMANCEcceiiiiiiiiiiiiiiccc e 34
2.9.2 ODJECE-TYPE AHIDULES.....eeeeiie ettt e e ettt e e e e e e e s bbb e e e e e e e e s abbeeeaaaeeas 35
2.9.3 Object-Type Property DEfiNIIONSccuieiiiiiciiiieeee e e e e s e e e e e e s snnrnraeee s 37
2.9.4 CMIS Base Object-Type DefiNItiONS..........cccuiiiiiiie e e e e e e snrrae e e 41
O L= = To] o 1T Vo P PSP P PSPPSRSO 60
2.10.1 VEISION SEIIES ... uveieeiiitiiee e iteie e ettt e e sttt e e e s sttt e e e s sttt e e e asbe e e e e ssbeeeeeanbbeeeeanbbeeesasbeeeeeasbeeessteeeesnees 60

A OB I (=TS YT €] o] o RO 60

B O Y = 1T T Y 4= T = (o) o RSP 60
2.10.4 Services that Modify VEIrSION SEIEScoc.uiiiiiiiieaiiiiie ettt e e e e e snrbeeeeeaeas 61
2.10.5 Versioning Properties on DocUmMENt ODJECESeveiiiiiiiiiiiiie ettt 62
2.10.6 Object Creation and Initial Versioning Stateccccvieiiieee i 63
2.10.7 Version Specific/Independent membership in FOIders..........cccooviiiiiiiiii e 63
2.10.8 Version Specific/Independent membership in Relationshipsccccevvviiciiiieeee v, 63
2.10.9 Versioning Visibility in QUETY SEIVICESceiiiiiiiiiiiiiiiiie ettt aabeeee e e 64
00 I T T o 64
2.11.1 Relational View Projection of the CMIS Data MOdEl............ccooociiiiieiieeei i 65
2.11.2 CMIS-SQL DEFINITION ..ueiiiiiiiiiec ettt e e e e e e et e e e e st ae e e e entae e e e ateeeeenees 67
0 T B =Yo7 1o o PRI 75
N I I O ot o o] 1R PPPTPPPI 75
0 I @ = 1 o = 1o T SRS 75
2.12.1 Completeness Of the ChanQe LOQ.......coiiuiiiiiiiieee et ee e e 75
2.12.2 Change LOG TOKENeiiiiiiiiee ettt et ab e e e et e e e e ie e e e annees 76
A I @ = o Lo Y= o) SRR 76

3 Y=V o L U UT TP 77
3.1 COMMON SEIVICE EIBMENTSviiiiiiiiiiee ittt ettt e st e e s neb e e s snbteesnnneeas 77
0 I A o o] o 1= AV 11 =] £ PR PPPTPPPI 77
N A = To 11T R PP PP PR PPPPRON 77

G e I AN | 01117 o] L= Yo 1T L PRSP 77
3.1.4 Include REIAtIONSNIPSeeiiiiiiiiieee e 78
0 I T @ = T o L= I (T 1SR 78

O I Gl ol =T o 1[0 LTI 78
N A = (= o 1110 o I =T TSR PPRR 82
3.2 REPOSITONY SEIVICESciiiiitieeiie e e e e ettt e e e e e s et e et e e e e e s st et e e eeeeeessaaataaeeeaaeesesasstbaaeeeaeesastsraneeeaesesnnns 82
3.2.1 JEIREPOSITONIESeeeieeitiiee ettt ettt ettt e e e et e e e bt e e e ek bt e e ek b et e e e an b et e e e anbe e e anb e e e e eneee 83
I o [=T o0 T 11] Y/ 1) (o ISR 83
CMIS — Part | 29 June 2009

Copyright © OASIS® 2008. All Rights Reserved. Page 6 of 115

7 o 1= 13/ 1= o 11 o | =T o ISR 84

3.2.4 etTYPEDESCENUANLESeeiiiiiiiiiiiiiiee ettt e e ettt e e e e e e s bbbt e e e e e e s e s aanbbbbeeeaaaeeesnnbeeeaaeens 85
3.2.5 getTYPEDETINITION ...eeiiiiiiiii et 86
IR I N = AV o P i To] TR Y= Vo =SS REERRR 86
R B0 Ao =1 { o] [0 =T I (=T P PO PP PPRP R PPPPPON 86
BRI o [1 D=t =Y oo = | SR 87
TR IR o 11 (4 o110 [£= o [T 87
IR I N 1= o] [0 [= T4 =T =) OSSR 88

IR IS0 (=1 (@] o] [=To 1 = 1 =T o] (SRR 89
3.3.6 JEICNECKEAOULIDOCSeeieiiiiiiieeiitie ettt e et e e et e e e et e e e nnbe e e nenes 89
G @] o] [=Tox =T Y/ oL TR SERRR 90
3.4.1 CrEAtEDOCUMENT ... e aaaaaaaeaaaananaaaaaas 90
K ol (== 1= o] (o [T PRV 91
3.4.3 CreateRelAtiONSNIP........uiiiiiiii e e e a e e e e e e e e e e eanrarreaaaes 92
K Aol (- 1= o] o3 PP PP PTPPPPPPON 93
3.4.5 gEtAIIOWADBIEACLIONSviiiiiii e e e e e e e e e e e e s e st e e e e e e e s e s nnrrraeaaeeas 94
G [| (o] o= 1 [T PR PPPTPTPI 94
3.4.7 getFOlderBYPath........ ..o e e aaees 95
3.4.8 gEICONTENTISITEAIM ... eaaaaaaeaaaaanaaaaaas 95
e o =1 | aT= 0o 11 0] o OO PPV PTP T PPPPPON 96
G O T oo F= L (=] o f0] o 1= =R PRI 96
K B N 0110)Y@ o] 1= o PP PP PP PPPPPON 97
G B2 [=1 (1@ o] = od SRR 97

O O B o [T] (o N (T PRI 98
3.4.14 SEICONTENTSIIEAMeiiiiiiiie ettt e e e e e e e e e e e s e st e e et e e e e e s sn b e e e et e e e e e s snrnreeeeeens 99
3.4.15 delet@CONIENISIIEAMiiiiiiiiie ettt ettt e e e e e s st e e e st b e e e sbaeeessbaeeeesbbeeeeannneeeeans 100
3.5 MUI-TIlING SEIVICESeeiiiiiiiee ettt e et et e e e b e e e s abbe e e e e neee 100
TS A= To [0 (@] o =T o] o] (o = SRR 100
3.5.2 removeObJECtFIOMIFOIURY ... e e aeee e 101
3.6 DISCOVEIY SEIVICES ..eieeiiiiiiiieieete e et e ettt e e e e e e s s st eeeee e e s s s st eereaeeess s ssteaaeeaeeesaansnseeaneeeeeannnsnrnnnneeees 101
BB, L QQUBTY e e a e aa s 101
3.6.2 GEICONIENTCRANGESvviiiiiitiiee ettt e ettt e e et b e e e e st bt e e e sabb e e e e sbbeeeesaneeeean 102
I A=Y = (o] g 1] o IRST=T Vi o =SSR 103
A0 o] 1= o1 @ 11 | P RPPRRRPPPRR 103
3.7.2 CANCEICNECKOULciiiiieiie ittt e e sttt e e sttt e e s bb e e e s abbe e e e s sbbeeeessbeeeeeans 103

G A 1 o] 1= o124 | o RS SUUUPPRPRR 104
3.7.4 getPropertieSOTLAIESIVEISIONueiiiiiiiiie ettt et e e et e e e s sabeee e 105
3.7.5 GELAIIVEISIONS. ...ccii ittt e e e e e s e e e e e e e e e s e e bt e e e e e ae e s s e s tabeeeeeeeeannrrraeeeeees 105
3.7.6 AElBIEAIINVEISIONS. ...ttt e e e e e e s ettt e e e e e e s st et e eeaeee e s s nsesaeeeaeeeseassreneeeeeens 106
3.8 REIAtIONSNIPS SEIVICESuvuiiiiiiieeiieee et s et e e e s e e e e e e s s s e e e ae e e s e asntaaaneeaeeseasnnranneeeees 106
3.8.1 getReIAtIONSNIPS ... e e e e e e e aeaaaa s 106
LS N o] 1oV =T . o PR 107
GRS A= o) o] 1Y/ 2o [sV AP P 107
3.9.2 TEIMOVEPOIICY ...ee ettt ettt et bt e e st bt e e s b bt e e e ekt e e e s anbee e s aabneeeean 107
e IR o 11 7aY o] o] =T | o] T [= SRR 108
CMIS — Part | 29 June 2009

Copyright © OASIS® 2008. All Rights Reserved. Page 7 of 115

T O N O IS YT Y/ o7 =T 108

3.10.1 gEtACLCAPADIIILIESuviieeiiiiee ittt e e e st e e e st e e e e e bae e e e e ntbe e e e e nrtaeeeerbaeeeeans 108
0 B2 o =1 7 X O PR OUPURRPPPRR 108
G0 0 B T o V7N o ISP 109
4 S CRBIMA . 111
2 @010 110 =g o] 0RO 112
A, ACKNOWIEAGEIMENTS ...ttt e e ettt e e e e e s e bbb b et e e e e e e s s nbbbbeeeeaaeeesanreneaaaaeas 113
[T Vo B A\ o T 4= L1 A= = SR 114
O Y 70 a1 5 1151 (] Y25 SR URSPRR 115
CMIS — Part | 29 June 2009

Copyright © OASIS® 2008. All Rights Reserved. Page 8 of 115

1 Introduction

The Content Management Interoperability Services (CMIS) standard defines a domain model (in this
document) and set of bindings (EZA\DO: Add links), such as Web Service and REST/Atom that can be
used by applications to work wne or more Content Management repositories/systems.

The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. It is not intended to prescribe how specific features should be
implemented within those CM systems, nor to exhaustively expose all of the CM system'’s capabilities
through the CMIS interfaces. Rather, it is intended to define a generic/universal set of capabilities
provided by a CM system and a set of services for working with those capabilities.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD", “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[ISO/IEC 9075:1992] Information technology - Database languages — SQL
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

[Reference] [Full reference citation]

1.3 Non-Normative References

[Reference] [Full reference citation]

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 9 of 115

http://www.ietf.org/rfc/rfc2119.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
Ethan Gur-esh
To do: Add links to REST-ful & SOAP bindings.

NOTE: The proper format for a citation to an OASIS Technical Committee’s work
(whether Normative or Non-Normative) is:

OASIS

Stage (Committee Draft 01, Committee Draft 02, Committee Specification 01, etc. or Standard)
Title (italicized or in quotation marks)

Approval Date (Month YYYY)

URI of the actual Authoritative Specification (namespace is not acceptable as the content changes
over time)

For example:

EDXL-HAVE OASIS Standard, “Emergency Data Exchange Language (EDXL)
Hospital AVailability Exchange (HAVE) Version 1.0”, November 2008.
http://docs.oasis-open.org/emergency/edxl-
have/os/emergency_edxl_have-1.0-spec-os.doc

CMIS — Part | 29 June 2009

Copyright © OASIS® 2008. All Rights Reserved. Page 10 of 115

http://docs.oasis-open.org/emergency/edxl-have/os/emergency_edxl_have-1.0-spec-os.doc

2 Data Model

CMIS provides an interface for an application to access a Repository. To do so, CMIS specifies a core
data model that defines the persistent information entities that are managed by the repository, and
specifies a set of basic services that an application can use to access and manipulate these entities. In
accordance with the CMIS objectives, this data model does not cover all the concepts that a full-function
ECM repository typically supports. Specifically, transient entities (such as programming interface objects),
administrative entities (such as user profiles), and extended concepts (such as compound or virtual
document, work flow and business process, event and subscription) are not included.

However, when an application connects to a CMIS service endpoint, the same endpoint MAY provide
access to more than one CMIS repositories. (How an application obtains a CMIS service endpoint is
outside the scope of CMIS. How the application connects to the endpoint is a part of the protocol that the
application uses.) An application SHALL use the CMIS “Get Repositories” service (getRepositories) to
obtain a list of repositories that are available at that endpoint. For each available repository, the
Repository MUST return a Repository Name, a Repository ldentity, and a URI. The Repository Identity
MUST uniquely identify an available repository at this service endpoint. Both the repository name and the
repository identity are opaque to CMIS. Aside from the “Get Repositories” service, all other CMIS services
are single-repository-scoped, and require a Repository Identity as an input parameter. In other words,
except for the “Get Repositories” service, multi-repository and inter-repository operations are not
supported by CMIS.

2.1 Repository

2.1.1 Optional Capabilities

Commercial ECM repositories vary in their designs. Moreover, some repositories are designed for a
specific application domain and may not provide certain capabilities that are not needed for their targeted
domain. Thus, a repository implementation may not necessarily be able to support all CMIS capabilities.
A few CMIS capabilities are therefore “optional” for a repository to be compliant. A repository’s support for
each of these optional capabilities is discoverable using the CMIS “Get Repository Information” service
(getRepositorylnfo). The following is the list of these optional capabilities. All capabilities are “Boolean”
(i.e. the Repository either supports the capability entirely or not at all) unless otherwise noted.

Navigation Capabilities:
capabilityGetDescendants

Ability for an application to enumerate the descendants of a folder via the getDescendants
service.

See section: getDescendants

Object Capabilities:
capabilityContentStreamUpdatability

Indicates the support a repository has for updating a document’s content stream. Valid values
are:

e anytime: The content stream may be updated any time.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 11 of 115

e pwconly: The content stream may be updated only when updating the “Private Working
Copy”.
See Section: Content Stream

capabilityChanges (enumeration)
Indicates what level of changes (if any) the repository exposes via the “change log” service. Valid
values are:

e none: The repository does not expose any information in the change log.

e objectidsonly: The change log can return only the ObjectIDs for changed objects in
the repository and an indication of the type of change, not details of the actual change.

e all: The change log can return the ObjectIDs for changed objects in the repository and
the details of the actual change

See Section: Change Log

capabilityRenditions
Indicates whether or not the repository exposes renditions of document objects.
e none: The repository does not expose renditions at all.
e read: Renditions are prodived by the repository and readable by the client.

Multi-Filing Capabilities:
capabilityMultifiling
Ability for an application to file a document or other file-able object in more than one folder
See Section: Folder Object

capabilityUnfiling
Ability for an application to leave a document or other file-able object not filed in any folder
See Section: Folder Object

capabilityVersionSpecificFiling
Ability for an application to file individual versions (i.e., not all versions) of a document in a folder

See Section: Versioning

Versioning Capabilities:
capabilityPWCUpdateable
Ability for an application to update the “Private Working Copy” of a checked-out document

See Section: Versioning

capabilityPWCSearchable

Ability of the Repository to include the "Private Working Copy" of checked-out documents in
query search scope; otherwise PWC's are not searchable

See Section: Versioning

CMIS — Part | 29 June 2009

Copyright © OASIS® 2008. All Rights Reserved. Page 12 of 115

capabilityAllVersionsSearchable

Ability of the Repository to include non-latest versions of document in query search scope;
otherwise only the latest version of each document is searchable

See Section: Versioning

Query Capabilities:
capabi lityQuery (enumeration)
Indicates the types of queries that the Repository has the ability to fulfill. Query support levels are:
e none: No queries of any kind can be fulfilled.
o metadataonly: Only queries that filter based on object properties can be fulfilled.

o Tulltextonly: Only queries that filter based on the full-text content of documents can be
fulfilled.

e bothseparate: The repository can fulfill queries that filter EITHER on the full-text content
of documents OR on their properties, but NOT if both types of filters are included in the
same query.

e bothcombined: The repository can fulfill queries that filter on both the full-text content of
documents and their properties in the same query.

See Section: Query

capabilityJoin (enumeration)

Indicates the types of SQL JOIN keywords that the Repository can fulfill in queries. Support levels
are:

e none: The repository cannot fulfill any queries that include any JOIN clauses.

e inneronly: The repository can fulfill queries that include an INNER JOIN clause, but
cannot fulfill queries that include other types of JOIN clauses.

e innerandouter: The repository can fulfill queries that include any type of JOIN clause
defined by the CMIS query grammar.

See Section: Query

ACL Capabilities:
capabilityACL (enumCapabilityACL)
Indicates the level of support for ACLs by the repository
e none: The repository does not support ACL services
e discover: The repository supports discovery of ACLs (getACL)

e manage: The repository supports discovery of ACLs AND applying ACLs (getACL and
applyACL services)

See Section: Access Control

2.1.2 Related Repositories

In addition, the “Get Repository Information” service MAY return a list of other repositories that are related
to the current repository. This list SHOULD be a subset of the list of repositories that are returned by the
“Get Repositories” service.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 13 of 115

For each of these repositories, a Repository Name, a Repository Identity, a URI, and a Repository
Relationship Name are returned. The Relationship Name is opaque to CMIS. Suggested/example values
for the “Relationship Name” include:

o ‘“self’ “peer”, “parent”, “child”: For use by systems that support a logical hierarchy of
repositories.

o ‘“replica’, “archive”: For use by systems that support archival and replication.

2.1.3 Implementation Information

The “Get Repository Information” service MUST also return implementation information such as vendor
name, product name, product version, version of CMIS that it supports, the root folder ID, and MAY
include other implementation-specific information. The version of CMIS that the repository supports
MUST be expressed as a Decimal that matches the specification version.

2.1.4 Repository Access Control Reporting

The repository’s access control semantics MUST be returned if the repository support either the
discover or manage options reported by the capabi 1 i tyACL optional capability. See the 2.8.5.2
AllowableActions Mapping section for more information.

2.2 Object

The entities managed by CMIS are modeled as typed Objects. There are four base types of objects:
Document Objects, Folder Objects, Relationship Objects, and Policy Objects.

e A document object represents a standalone information asset. Document objects are the
elementary entities managed by a CMIS repository.

o A folder object represents a logical container for a collection of “file-able” objects, which include
folder objects and document objects. Folder objects are used to organize file-able objects.
Whether or not an object is file-able is specified in its object-type definition.

e A relationship object represents an instance of directional relationship between two objects.

e A policy object represents an administrative policy, which may be “applied” to one or more
“controllablePolicy” objects. Whether or not an object is controllable is specified in its object-type
definition. The support for policy objects is optional, and may be discovered via the “Get Types”
service.

Document objects, folder objects, and policy objects are independent objects, in the sense that each
object can persist independently as a standalone object in the repository. A relationship object, on the
other hand, represents an explicit, application-maintained, instance of relationship between two
independent objects. Therefore, relationship objects are semantically dependent objects. Additional
object-types MAY be defined in a repository as subtypes of these base types. CMIS services are provided
for the discovery of object types that are defined in a repository. However, object-type management
services, such as the creation, modification, and deletion of an object type, are outside the scope of
CMIS.

Every CMIS object has an opaque and immutable Object Identity (ID), which is assigned by the
repository when the object is created. An ID uniquely identifies an object within a repository regardless of
the type of the object. Repositories SHOULD assign IDs that are “permanent” — that is, they remain
unchanged during the lifespan of the identified objects, and they are never reused or reassigned after the
objects are deleted from the repository.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 14 of 115

Every CMIS object has a set of named, but not explicitly ordered, Properties. (However, a Repository
SHOULD always return object properties in a consistent order.) Within an object, each property is
uniquely identified by its name.

In addition, a document object MAY have a Content-Stream, which may be used to hold a raw digital
asset such as an image or a word-processing document. A repository MUST specify, in each object-type
definition, whether document objects of that type MAY, SHALL, or SHALL NOT have a content-stream.

Document or folder objects MAY have one Access Control List (ACL), which — in addition to policies —
controls access to the document or folder. An ACL represents a list of Access Control Entries (ACES).
An ACE in turn represents a permission being granted to a principal (a user, group, or something
similar). Within the ACL of an object, each ACE is uniquely identified by the tuple principal ID and
permission name

Properties and content-streams MAY NOT be shared between objects.

2.2.1 Property

A property MAY hold zero, one, or more typed data value(s). Each property MAY be single-valued or
multi-valued. A single-valued property contains a single data value, whereas a multi-valued property
contains an ordered list of data values of the same type. The ordering of values in a multi-valued property
SHOULD be preserved by the repository.

If a value is not provided for a property, the property is in a “value not set” state. There is no “null” value
for a property. Through protocol binding, a property is either not set, or is set to a particular value or a list
of values.

A multi-valued property is either set or not set in its entirety. An individual value of a multi-valued property
SHALL NOT be in an individual “value not set” state and hold a position in the list of values. An empty list
of values SHALL NOT be allowed.

Every property is typed. The Property-type defines the data type of the data value(s) held by the property.
CMIS specifies the following Property-Types. They include the following data types defined by “XML
Schema Part 2: Datatypes Second Edition” (W3C Recommendation, 28 October 2004,
http://www.w3.org/TR/xmlschema-2/):

e string (xsd:string)

e boolean (xsd:boolean)

e decimal (xsd:decimal)

e Integer (xsd:integer)

e datetime (xsd:dateTime)

e uri (xsd:anyURI)
The Precision for Decimal property-types is specified via its Property Definition.
In addition, the following Property-Types are also specified by CMIS:

e 1d (xsd:string)

o xml (xs:any)

o html (xs:any)

o xhtml (xs:any)

2.2.1.1 ID Property

An ID property holds a system-generated, read-only identitfier, such as an Object ID, an Object Type ID,
a Repository ID, or a Version Series ID. (The ID Property-Type is NOT defined by xsd:id.) The lexical
representation of an ID is an opaque string. As such, an ID cannot be assumed to be interpretable

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 15 of 115

http://tools.ietf.org/html/rfc3986

syntactically or assumed to be to be collate-able with other IDs, and can only be used in its entirety as a
single atomic value. When used in a query predicate, an ID can only participate in an “equal” or a “not
equal” comparison with a string literal or with another ID.

While all CMIS identities share the same Property-Type, they do not necessarily share the same address
space. (So a particular repository implementation MAY use separate address spaces for different kinds of
identity, and may perform different validity checks in a way that is outside the scope of the CMIS
interfaces.)

Unless explicitly specified, ID properties NEED NOT maintain a referential integrity constraint. Therefore,
storing the ID of one object in another object NEED NOT constrain the behavior of either object. A
repository MAY, however, support referential constraint underneath CMIS if the effect on CMIS services
remains consistent with an allowable behavior of the CMIS model. For example, a repository MAY return
an exception when a CMIS service call violates an underlying referential constraint maintained by the
repository. In that case, an error message SHOULD be returned to the application to describe the cause
of exception and suggest a remedial action. The content of such messages is outside the scope of CMIS.

IDs in CMIS for documents usually refer to the specific document version. They can also refer to the
Version Series if obtained from the versionSeriesld property.

2.2.1.2 XML Property
An XML property holds a well-formed Extensible Markup Language (XML) document.

2.2.1.3 HTML Property
An HTML property holds a valid document or fragment of Hypertext Markup Language (HTML) content.
2.2.1.4 XHTML Property

An XHTML property holds a valid document or fragment of Extensible Hypertext Markup Language
(XHTML) content.

2.2.1.5 Property Attributes

Besides name, type, and whether single- or multi-valued, a property has other defining attributes. They
are described in the 2.9 Object-Type section.

2.3 Document Object
Document objects are the elementary information entities managed by the repository.
Depending on its Object-type definition, a Document Object may be:
e Version-able: Can be acted upon via the Versioning Services (for example: checkOut, checkin).
e File-able: Can be filed in zero, one, or more than one folder via the Multi-filing services.
e Query-able: Can be located via the Discovery Services (query).
e Control-able: Can have Policies applied to it (see the “1.1 Policy Object” section.)

e ACLControl-able: Can have an ACL applied to it (see the “Access Control Lists” section).

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 16 of 115

Additionally, whether a Document object SHALL, MAY or SHALL NOT have a content-stream is specified
in its object-type definition.

Note: When a document is versioned, each version of the document is a separate document object. Thus,
for document objects, an object ID actually identifies a specific version of a document.

2.3.1 Content Stream

A content-stream is a binary string. Its maximum length is repository-specific. Each content-stream has a
MIME Media Type, as defined by RFC2045 and RFC2046 and registered with IANA
(http://www.iana.org/assignments/media-types/). A content-stream’s attributes are represented as
properties of the content-stream’s containing document object. There is no MIME-type-specific attribute or
name directly associated with the content-stream outside of the document object.

A content-stream is unnamed. CMIS provides basic CRUD services for content-stream, using the ID of a
content-stream’s containing document object for identification. The “Set Content-Stream” service
(setContentStream) either creates a new content-stream for a document object or replaces an existing
content-stream. The “Get Content-Stream” service (getContentStream) retrieves a content-stream. The
“Delete Content-Stream” service (deleteContentStream) deletes a content-stream from a document
object. In addition, the “CreateDocument” and “Check-in" services MAY also take a content-stream as an
optional input. A content stream MUST be specified if required by the type definition. These are the only
services that operate on content-stream. The “Get Properties” and “Query” services, for example, do not
return a content-stream.

“Set Content-Stream” and “Delete Content-Stream” services are considered modifications to a content-
stream’s containing document object, and will therefore change the object’s LastModificationDate
property upon successful completion. The ability to set or delete a content stream is controlled by the
capabi lityContentStreamUpdateabi ity capability.

2.4 Folder Object

A folder object serves as the anchor for a collection of file-able objects. The folder object has an implicit
hierarchical relationship with each object in its collection, with the anchor folder object being the Parent
object and each object in the collection being a Child object. This implicit relationship has a specific
containment semantics which SHALL be maintained by the repository with implicit referential integrity.
(That is, there will never be a dangling parent-relationship or a dangling child-relationship. Furthermore,
object A is a parent of object B if and only if object B is a child of object A.) This system-maintained
implicit relationship is distinct from an explicit relationship which is instantiated by an application-
maintained Relationship Object. (See the “2.5 Relationship Object” section.)

A folder object does not have a content-stream and is not version-able, although it is query-able and MAY
be controllable and/or ACL controllable.

2.4.1 File-able Objects

A file-able object is one that MAY be “filed” into a folder. That is, it MAY be a child object of a folder
object. The following list defines whether the base CMIS Object Types are file-able:

cmis:Folder
SHALL be file-able

cmis:Document
¢ If the “un-filing” optional capability is not supported by the Repository: SHALL be file-able
o If the “un-filing” optional capability is supported by the Repository: SHOULD be file-able

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 17 of 115

http://www.iana.org/assignments/media-types/

cmis:Relationship
SHALL NOT be file-able

cmis:Policy
MAY be file-able

2.4.1.1 Multi-filing/un-filing of Document and Policy Objects

The following list summarizes the number of parent folders that a Document or Policy Object should have.
If Multi-filing and un-filing capabilities are not supported, there MUST be 1 parent folder.
If Multi-filing is unsupported and un-filiing is supported, there MUST be 0 or 1 parent folders.
If Multi-filing is supported and un-filing is not supported, there MUST be 1 or more parent folders.
If Multi-filing is supported and un-filing is supported, there MUST be 0 or more parent folders.

A fileable object that has multiple parent folders is said to be multi-filed. A fileable object that has no
parent folder is said to be unfiled.

2.4.1.2 Document Version Series and Filing

Since document objects are versionable, a document object’'s membership in a folder collection MAY be
version-specific or version-independent. That is, the folder membership MAY be restricted to that
particular version of the document or MAY apply to all versions of the document. Whether or not a
repository supports version-specific filing is discoverable via the “Get Repository Information” service
(getRepositorylnfo). When the child objects of a folder are retrieved, a specific version of a document is
returned if the repository supports version-specific filing, and the latest version is returned if the repository
does not support version-specific filing. Likewise, this version sensitivity in child-binding also affects the
behavior of parent retrieval for a document object, as well as the scope of the IN_FOLDER() and
IN_TREE() function calls in a query. For non-versionable fileable objects, their membership in a folder
does not have version sensitivity.

2.4.1.3 Filing Restrictions by Object-Type

A folder collection’s membership MAY be restricted by object type. Each folder object has a multi-valued
AllowedChildObjectTypelDs property, which specifies that only objects of these types are allowed to be
its children. (These allowed object types SHOULD all be fileable.) If this property is “not set”, then objects
of any file-able type are allowed to be filed in the Folder. It is repository specific if subtypes of the types
listed in the AllowedChildObjectTypelDs property may be children of the folder.

If a repository does not support type constraint on folder membership, it MAY define this folder property
as read-only, and keep the property value “not set” for all folder objects.

Because of these filing constraints, when a new folder object is created, an existing folder object SHALL
be specified as its parent. When a file-able non-folder object is created, its parent folder SHALL be
specified if the repository does not support the “un-filing” optional capability, and MAY be specified if the
“un-filing” optional capability is supported. The Repository SHALL only allow creation of a file-able object
in a folder if the object’s Object-Type is specified as allowed in that folder as described above.

When a non-file-able object is created, a parent folder SHALL NOT be specified.
When a file-able object is deleted, it is removed from any folder collection in which the object is a

member. In other words, when an object is deleted, all implicit parent-child relationships with the deleted
object as a child cease to exist.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 18 of 115

2.4.2 Folder Hierarchy

CMIS imposes the following constraints on folder objects:

o Every folder object, except for one which is called the Root Folder, MUST have one and only
one parent folder. The Root Folder does not have a parent.

e Acycle in folder containment relationships is not allowed. That is, a folder object cannot have
itself as one of its descendant objects.

e A child object that is a folder object can itself be the parent object of other file-able objects.

With these constraints, the folder objects in a CMIS repository necessarily form a strict hierarchy, with the
Root Folder being the root of the hierarchy.

The child objects of a given folder object, their child objects, and grandchild objects, etc., are called
Descendant objects of the given folder object. Similarly, the parent object of a file-able object, and
recursively the parent of the parent, etc., are called Ancestor objects of that file-able object. A folder
object together with all its descendant objects are collectively called a Tree rooted at that folder object.

A non-folder object does not have any descendant object. Thus, a Folder Graph that consists of all
fileable objects as nodes, and all the implicit folder containment relationships as directed edges from
parent to child, is a directed acyclic graph, possibly with some disconnected (orphan) nodes. It follows
that the tree rooted at any given folder object is also a directed acyclic graph, although a non-folder object
in the tree MAY have ancestors that are not ancestors of the rooted folder.

A Folder Graph

Root Folder

O O

A folder object

O
O Q Q Q A non-folder fileable object

An implicit folder
containment relationship
from parent to child

l

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 19 of 115

Folder objects are handled using the basic CRUD services for objects, and the folder graph is traversed
using the Navigation Services.

The Root Folder is a special folder such that it cannot be created, deleted, or moved using CMIS
services. Otherwise, it behaves like any other folder object.

2.4.3 Paths

A folder hierarchy MAY be represented in a canonical notation such as path. For CMIS, a folder path is
represented by:

e ‘[for the root folder
o all paths start with the root folder.
e aset of the folder names separated by '/’ in order of closest to the root.

o Folder names are specified by the folders cmis: PathName property MUST not include
the ‘I’ separator character.

E.qg., if folder A is under the root, and folder B is under A, then the path would be /A/B.

Paths do not apply to any other objects in CMIS except folders.

2.5 Relationship Object

A relationship object is semantically a dependent object. A relationship object SHALL NOT have a
content-stream, and SHALL NOT be versionable, SHALL NOT be queryable, and SHALL NOT be
fileable, although it MAY be controllable.

A Relationship Object instantiates an explicit, binary, directional, non-invasive, and typed relationship
between a Source Object and a Target Object. The source object and the target object MUST both be
an independent objects, such as a document object, a folder object, or a policy object. Whether a policy
object is allowed to be the source or target object of a relationship object is repository-specific.

The relationship instantiated by a relationship object is explicit since it is explicitly represented by an
object and is explicitly managed by application.

This relationship is non-invasive in the sense that creating or removing this relationship SHALL NOT
modify either the source or the target object. That is, it SHALL NOT require an update capability (or
permission) on either object; SHALL NOT affect the versioning state of either object; and SHALL NOT
change their “Last Modification Date”.

The source object and the target object of a relationship MAY be the same object.
Explicit relationships can be used to create an arbitrary relationship graph among independent objects.

Such a relationship graph is only structural in nature. No inheritance or transitive properties are attached
to a relationship graph.

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 20 of 115

An Explicit Relationship

Source - - - Target
Object | Relationship Object Object

The notion of a source object and a target object of a relationship is used solely to indicate the direction of
the relationship. No semantics or implementation bias is implied by this terminology.

The binding of a relationship object to a source document object or to a target document object MAY be
either version-specific or version-independent. This version sensitivity is repository-specific, and is largely
transparent to CMIS. An independent object MAY participate in any number of explicit relationships, as
the source object for some and as the target object for others. Multiple relationships MAY exist between
the same pair of source and target objects.

Referential integrity, either between the source object and the target object, or between the relationship
object and the source or target object, is not specified. Therefore, creating an explicit relationship
between two objects NEED NOT impose a constraint on any of the three objects, and removing a
relationship or deleting either the source or the target object NEED NOT be restricted by such a
constraint. If the source or the target object of a relationship is deleted, the repository MAY automatically
delete the relationship object.

A repository MAY support referential integrity or other constraints underneath CMIS, either between the
source object and the target object of a relationship, or between a relationship object and its source or
target object, provided that the resulting effect on CMIS services is consistent with an allowable behavior
of CMIS. For example, a repository MAY throw a generic exception when an underlying referential
constraint is violated, and SHOULD return an error message of the cause of the exception. However the
content of such a message is outside the scope of CMIS.

Like all CMIS objects, relationship objects are typed. Typing relationship allows them to be grouped,
identified, and traversed by type id, and for properties to be defined for individual relationship types.

Additionally, a relationship object-type MAY specify that only Objects of a specific Object-Type (or one of
a set of specific Object-Tyeps) can participate as the source object or target object for relationship objects
of that type. If no such constraints are specified , then an independent object of any type MAY be the
source or the target of a relationship object of that type.

Relationship objects are created/retrieved/updated/deleted using the CMIS Object Services
(createRelationship, getProperties, updateProperties, deleteObject).

When a relationship object is created, the source object and the target object MUST already exist.

Relationship Objects are retrieved using the “Relationships” service (getRelationships),which can be used
to return a set of relationship objects in which a given independent object is identified as the source or

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 21 of 115

target object, according to the binding semantics maintained by the repository (i.e., either a version
restricted to relationships of a given type and/or in a particular direction (i.e., where the given object is the
source, the target, or either).

When a relationship object is retrieved, its source object or target object MAY no longer exist, since
referential integrity NEED NOT be maintained by a repository.

When a relationship object is deleted, the source and the target objects are left untouched.

In addition to object CRUD services, a “Get Relationships” service (getRelationships) may be used to
return a set of relationship objects in which a given independent object is identified as the source or the
target object, according to the binding semantics maintained by the repository (i.e., either a version-
specific or a version-independent binding as described above).

2.6 Iicy Object

A policy object represents an administrative policy that can be enforced by a repository, such as an
Access Control List (ACL) or a retention management policy. CMIS 1.0 does not specify what kinds of
administrative policies that are specifically supported, nor attempts to model administrative policy of any
particular kind. Only a base object type is specified for policy objects. Each policy object holds the text of
an administrative policy as a repository-specific string, which is opagque to CMIS and which may be used
to support policies of various kinds. (For CMIS 1.0, the use case is primarily access control.) A repository
may create subtypes of this base type to support different kinds of administrative policies more
specifically. The support for policy objects is optional. If a repository does not support policy objects, the
policy base object type SHOULD NOT be returned by a “Get Types” service call.

Aside from allowing an application to create and maintain policy objects, CMIS allows an application to
“apply” a policy to an object, and to remove an applied policy from an object. An object to which a policy
may be applied is called a controllable object. A policy MAY be applied to multiple controllable objects.
Conversely, a repository MAY allow multiple policies applied to a controllable object. (A repository may,
for example, impose constraints such as only one policy of each kind can be applied to an object.)
Whether or not an object is controllable is specified by the object’s type definition. Applying a policy to an
object is to place the object under the control of that policy (while the object may also be under the control
of other policies at the same time), and removing an applied policy from one of its controlled objects is to
remove the corresponding control from that object. This control may change the state of the object, may
impose certain constraints on service calls operating on this object, or may cause certain management
actions to take place. The effect of this control, when this effect takes place, and how this control interacts
with other controls, are repository-specific. Only directly/explicitly applied policies are covered by CMIS
1.0. Indirectly applying policy to an object, e.g. through inheritance, is outside the scope of CMIS 1.0.

A policy object does not have a content-stream and is not versionable. It may be fileable, queryable, or
controllable. Policy objects are handled using the basic CRUD services for objects. If a policy is updated,
the change may alter the corresponding control on objects that the policy is currently applied to. If a
controlled object is deleted, all the policies applied to that object, if there is any, are removed from that
object. A policy object that is currently applied to one or more controllable objects can not be deleted.
That is, there is an implicit referential constraint from a controlled object to its controlling policy object(s).
Besides the basic CRUD services, the “Apply Policy” (applyPolicy) and the “Remove Policy”
(removePolicy) services may be used to apply a policy object to a controllable object and respectively to
remove an applied policy from one of its controlled objects. In addition, the “Get Applied Policies”
(getAppliedPolicies) service may be used to obtain the policy objects that are currently applied to a
controllable object.

2.7 Renditions

Some ECM repositories provide a facility to retrieve alternative versions of a document. These alternative
versions are known as renditions. This could apply to a preview case which would enable the client to

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 22 of 115

Ethan Gur-esh
This section not updated based on the assumption that it will be getting removed.

preview the content of a document without needing to download the full content. Previews are generally
reduced fidelity representations such as thumbnails. Renditions can take on any general form, such as a
PDF version of a word document.

A document or folder may support zero or more renditions. Renditions are not CMIS object types. They
are bound to a document or folder object like properties.

The server is responsible for determining the number and types of renditions present for a given
document / folder. The server is responsible for the availability of a document / folder rendition. A
rendition may not be immediately available after checkin or document creation. Renditions are specific to
the version of the document and may differ between document versions.

Each rendition consists of a content stream of a given mime-type containing the alternative
representation. Each rendition should have an advisory label to assist identifying the kind of rendition.
Additionally each rendition may provide additional metadata.

2.7.1 Rendition Attributes

A rendition consists of the following attributes:
streamld ID
Identifies the content stream of the rendition.

mimeType String
The mimetype of the rendition content stream.

length Integer
The length of the content stream in bytes.

title String
Human readable information about the rendition.

kind String
A categorization String associated with the rendition.

metadata <RenditionMetadata list>
A list of repository generated metadata about the rendition.

renditionDocumentlid ID
The ObjectID of the rendition document if this rendition is represented as a document by the
repository.

2.7.2 Rendition Kind

A Rendition may be categorized via its kind. The repository is responsible for assigning kinds to
Renditions, including custom kinds. A repository kind does not necessarily identify a single Rendition for
a given Object.

CMIS defined kinds are distinguished from custom kinds by the CMIS-specific prefix CMIS.
CMIS defines the following kind:

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 23 of 115

e CMIS.Thumbnail : A rendition whose purpose is to a provide a preview of the document without
requiring the client to download the full document content stream. Thumbnails are generally
reduced fidelity representations.

2.7.3 Rendition Metadata

Rendition meta-data describes extra characteristics of the Rendition primarily to allow a client to decide
which Rendition to choose in a particular use-case.

CMIS defines the following Rendition (optional) meta-data.

e height : typically used for ‘image’ renditions (expressed as pixels)
e width : typically used for ‘image’ renditions (expressed as pixels)

A repository may introduce custom meta-data for each Rendition. Examples include image resolution
and video time length.

2.7.4 Rendition as a Document

A repository may choose to provide a separate Document (conceptually known as a Rendition Document)
which represents and complements the Rendition. The rendition renditionDocumentld contains the
Object Id of the Rendition Document (if one exists), otherwise renditionDocumentld is null.

The referential integrity of renditionDocumentld should be maintained. If provided, the Object Id
should refer to a Document that exists.

Rendition Documents act like any other Document, therefore may be filed in a Folder, support access
control, related etc. It is repository specific as to whether the Rendition Document can be updated or
deleted. Repositories that support deletion of Rendition Documents should maintain the referential
integrity of renditionDocumentld (e.g. setting its value to null, or removing the Rendition all together),
but how this is achieved is repository specific.

2.8 Access Control

As outlined above for “Policy Object”, policy objects represent administrative policies, usually expressing
access control constraints like “only users with security clearance 2 are allowed to view the documents
with security level HIGH”. Policies are basic CMIS object types.

Access Control Lists (ACLs) are for user scenarios, like “| want to allow user A from my team to work with
the documents within this folder”. Unlike Policies, ACLs are not independent CMIS objects, they are
bound to a document or folder object.

Documents and folders MAY be controllablePolicy (by Policies) or controllableACL (by ACLS) or both.
This implies that a client MUST NOT assume that a document’s or folder’'s ACL can be used to exactly
compute the allowable actions. A client can use getAllowableActions to check if a given user is allowed to
perform a specific operation at a given time.

2.8.1 Discovering and Managing ACLs

ACLs are discoverable for a client via getACL. ACLs can be changed by a client via applyACL. The enum
capabilityACL returned by getRepositorylnfo indicates the level of support: either getACL (“discover™)
only, or both getACL and applyACL (“manage”).

CMIS — Part | 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 24 of 115

2.8.2 ACL Supported Permissions

A repository can support either or both of a set of CMIS defined permissions or its own set of repository
specific permissions.

The getACL service allows the requestor to specify that the result be expressed using only the CMIS
defined permissions. Without this restriction, the response may include, or be solely expressed in
repository specific permissions. The applyACL service permits either CMIS permissions or repository
permissions, or a combination of both, to be used.

For the CMIS permissions a repository's service-permissions mappings are discoverable through
getRepositorylnfo, Service-permissions mappings are not discoverable for the repository permissions.

For full details of each of these features refer to the ACL Capabilities, getACL and applyACL sections.

2.8.3 ACL, ACE, Principal, and Permission

An ACL is a list of Access Control Entries (ACEs) and MAY hold zero or more ACEs.
An ACE holds:

e one Principal: A principal represents a user management object, e.g. a user, group, or role.
It holds:

0 one String with the principalid.
0 Repository-specific information MAY be returned as well.
e one String with the name of the permission.

e aBoolean flag direct, which indicates if the ACE is directly assigned to the object itself. FALSE,
if the ACE is somehow derived from some other ACE or Policy applied to another object.

The ACEs for an ACL MAY be “shared", in that sense that adding or removing an ACE to or from an
ACL for an object MAY have side-effects for the ACLs of other objects.

2.8.4 Basic CMIS Permissions

There are four basic permissions predefined by CMIS:

e cmis:BasicPermission.Read: to be used to express “permission to read”. A Repository
SHOULD express the permission for reading properties AND reading content with this
permission.

e cmis:BasicPermission.Write: to be used to express “permission to write”. SHOULD be used to
express permission to write properties and content of an object. MAY include other basic CMIS
permissions.

e cmis:BasicPermission.Delete: to be u