
CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 1 of 115

Content Management Interoperability
Services – Domain Model Version 0.62c
DRAFT

29 June 2009
Specification URIs:
This Version:

http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Previous Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Latest Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Technical Committee:
OASIS CMIS TC

Chair(s):
David Choy

Editor(s):
Ethan Gur-esh
Ryan McVeigh
Al Brown

Related work:
This specification replaces or supersedes:

• Not applicable
This specification is related to:

• Content Repository for Java – JSR 170/283: http://www.jcp.org/en/jsr/detail?id=283
• Atom Publishing Protocol – APP: http://www.ietf.org/internet-drafts/draft-ietf-atompub-

protocol-15.txt
Declared XML Namespace(s):

[list namespaces here]
[list namespaces here]

Abstract:
The Content Management Interoperability Services (CMIS) standard defines a domain model (in this
document) and set of bindings (TODO: Add links), such as Web Service and REST/Atom that can be
used by applications to work with one or more Content Management repositories/systems.

http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://www.oasis-open.org/committees/
http://www.jcp.org/en/jsr/detail?id=283
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-15.txt
Ethan Gur-esh
To do once we have finalized namespaces.

Ethan Gur-esh
To do: Add links to REST-ful & SOAP bindings.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 2 of 115

The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. It is not intended to prescribe how specific features should be
implemented within those CM systems, nor to exhaustively expose all of the CM system’s capabilities
through the CMIS interfaces. Rather, it is intended to define a generic/universal set of capabilities
provided by a CM system and a set of services for working with those capabilities.

Status:

This document was last revised or approved by the CMIS TC on the above date. The level of
approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/CMIS/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/CMIS/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/CMIS/.

http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /ipr.php
http://www.oasis-open.org/committees/%5bTC short name%5d /ipr.php
http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 3 of 115

Notices
Copyright © OASIS® 2008. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.
CMIS and the CMIS logo are trademarks of OASIS. They should be used only to refer to the output of the
OASIS CMIS Technical Committee. The OASIS CMIS logo is not intended to imply certification or any
official compliance status.
Everyone who supports CMIS is encouraged to download and use the logo (in adherence to OASIS
trademark and logo usage guidelines) without cost or restriction. Downloading and/or using the OASIS
CMIS logo implies acceptance of the following conditions. It is expected that any person or entity using

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 4 of 115

the OASIS CMIS logo does so in an appropriate fashion, the logo is not modified, the design colors and
aspect are retained and space around the logo is sufficient so as to prevent the logo from being
construed as part of another graphic element. The logo remains the property of OASIS.
Questions regarding the use of the OASIS CMIS logo should be directed to communications@oasis-
open.org.

mailto:communications@oasis-open.org
mailto:communications@oasis-open.org

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 5 of 115

Table of Contents
DRAFT ..1
29 June 2009 ..1
Specification URIs:..1
This Version: ...1
Previous Version: ..1
Latest Version: ..1
Technical Committee: ...1
OASIS CMIS TC ...1
Chair(s):...1
David Choy..1
Editor(s):..1
Ethan Gur-esh...1
Ryan McVeigh...1
Al Brown..1
Related work: ..1
Declared XML Namespace(s): ..1
Abstract: ..1
Status: ...2
Notices ..3
Table of Contents..5
1 Introduction...9

1.1 Terminology ..9
1.2 Normative References ..9
1.3 Non-Normative References ..9

2 Data Model ...11
2.1 Repository...11

2.1.1 Optional Capabilities ...11
2.1.2 Related Repositories ...13
2.1.3 Implementation Information...14
2.1.4 Repository Access Control Reporting ...14

2.2 Object..14
2.2.1 Property ...15

2.3 Document Object ..16
2.3.1 Content Stream ...17

2.4 Folder Object ..17
2.4.1 File-able Objects ...17
2.4.2 Folder Hierarchy..19
2.4.3 Paths ...20

2.5 Relationship Object...20
2.6 Policy Object ...22
2.7 Renditions...22

2.7.1 Rendition Attributes ...23

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 6 of 115

2.7.2 Rendition Kind ...23
2.7.3 Rendition Metadata ...24
2.7.4 Rendition as a Document ..24

2.8 Access Control..24
2.8.1 Discovering and Managing ACLs..24
2.8.2 ACL Supported Permissions ...25
2.8.3 ACL, ACE, Principal, and Permission ...25
2.8.4 Basic CMIS Permissions ...25
2.8.5 ACL Capabilities..26

2.9 Object-Type ..34
2.9.1 Object-Type Hierarchy and Inheritance ..34
2.9.2 Object-Type Attributes...35
2.9.3 Object-Type Property Definitions ..37
2.9.4 CMIS Base Object-Type Definitions..41

2.10 Versioning...60
2.10.1 Version Series ...60
2.10.2 Latest Version ...60
2.10.3 Major Versions ..60
2.10.4 Services that modify Version Series ...61
2.10.5 Versioning Properties on Document Objects ..62
2.10.6 Object Creation and Initial Versioning State ...63
2.10.7 Version Specific/Independent membership in Folders..63
2.10.8 Version Specific/Independent membership in Relationships ..63
2.10.9 Versioning visibility in Query Services ..64

2.11 Query ..64
2.11.1 Relational View Projection of the CMIS Data Model...65
2.11.2 CMIS-SQL Definition ...67
2.11.3 Escaping..75
2.11.4 Exceptions...75

2.12 Change Log ..75
2.12.1 Completeness of the Change Log...75
2.12.2 Change Log Token..76
2.12.3 Change Event..76

3 Services..77
3.1 Common Service Elements ..77

3.1.1 Property Filters ..77
3.1.2 Paging ...77
3.1.3 Allowable Actions ..77
3.1.4 Include Relationships ..78
3.1.5 Change Tokens ...78
3.1.6 Exceptions...78
3.1.7 Rendition Filter ..82

3.2 Repository Services..82
3.2.1 getRepositories ...83
3.2.2 getRepositoryInfo ..83

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 7 of 115

3.2.3 getTypeChildren ..84
3.2.4 getTypeDescendants ..85
3.2.5 getTypeDefinition ..86

3.3 Navigation Services ..86
3.3.1 getFolderTree..86
3.3.2 getDescendants ..87
3.3.3 getChildren ..87
3.3.4 getFolderParent...88
3.3.5 getObjectParents...89
3.3.6 getCheckedOutDocs ...89

3.4 Object Services...90
3.4.1 createDocument ..90
3.4.2 createFolder ..91
3.4.3 createRelationship...92
3.4.4 createPolicy ...93
3.4.5 getAllowableActions ..94
3.4.6 getProperties ...94
3.4.7 getFolderByPath..95
3.4.8 getContentStream ...95
3.4.9 getRenditions...96
3.4.10 updateProperties ...96
3.4.11 moveObject ...97
3.4.12 deleteObject ..97
3.4.13 deleteTree ...98
3.4.14 setContentStream ...99
3.4.15 deleteContentStream ..100

3.5 Multi-filing Services...100
3.5.1 addObjectToFolder..100
3.5.2 removeObjectFromFolder ...101

3.6 Discovery Services ...101
3.6.1 Query...101
3.6.2 getContentChanges ..102

3.7 Versioning Services ..103
3.7.1 checkOut ...103
3.7.2 cancelCheckOut ..103
3.7.3 checkIn ..104
3.7.4 getPropertiesOfLatestVersion ...105
3.7.5 getAllVersions..105
3.7.6 deleteAllVersions...106

3.8 Relationships Services ...106
3.8.1 getRelationships..106

3.9 Policy Services ...107
3.9.1 applyPolicy ..107
3.9.2 removePolicy...107
3.9.3 getAppliedPolicies ...108

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 8 of 115

3.10 ACL Services ..108
3.10.1 getACLCapabilities..108
3.10.2 getACL...108
3.10.3 applyACL...109

4 Schema ..111
Conformance..112
A. Acknowledgements ..113
B. Non-Normative Text ...114
C. Revision History..115

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 9 of 115

1 Introduction
The Content Management Interoperability Services (CMIS) standard defines a domain model (in this
document) and set of bindings (TODO: Add links), such as Web Service and REST/Atom that can be
used by applications to work with one or more Content Management repositories/systems.
The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. It is not intended to prescribe how specific features should be
implemented within those CM systems, nor to exhaustively expose all of the CM system’s capabilities
through the CMIS interfaces. Rather, it is intended to define a generic/universal set of capabilities
provided by a CM system and a set of services for working with those capabilities.

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[ISO/IEC 9075:1992] Information technology - Database languages – SQL

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
[Reference] [Full reference citation]

1.3 Non-Normative References
[Reference] [Full reference citation]

http://www.ietf.org/rfc/rfc2119.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
Ethan Gur-esh
To do: Add links to REST-ful & SOAP bindings.

CMIS – Pa
Copyright ©

OASIS
Stage (
Title (it
Approv
URI of
over tim

For exa

ED

NOTE: The proper format for a citation to an OASIS Technical Committee’s work
(whether Normative or Non-Normative) is:

Committee Draft 01, Committee Draft 02, Committee Specification 01, etc. or Standard)
alicized or in quotation marks)
al Date (Month YYYY)
the actual Authoritative Specification (namespace is not acceptable as the content changes
e)

mple:

XL-HAVE OASIS Standard, “Emergency Data Exchange Language (EDXL)
Hospital AVailability Exchange (HAVE) Version 1.0”, November 2008.
http://docs.oasis-open.org/emergency/edxl-
rt I 29 June 2009
 OASIS® 2008. All Rights Reserved. Page 10 of 115

have/os/emergency_edxl_have-1.0-spec-os.doc

http://docs.oasis-open.org/emergency/edxl-have/os/emergency_edxl_have-1.0-spec-os.doc

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 11 of 115

2 Data Model
CMIS provides an interface for an application to access a Repository. To do so, CMIS specifies a core
data model that defines the persistent information entities that are managed by the repository, and
specifies a set of basic services that an application can use to access and manipulate these entities. In
accordance with the CMIS objectives, this data model does not cover all the concepts that a full-function
ECM repository typically supports. Specifically, transient entities (such as programming interface objects),
administrative entities (such as user profiles), and extended concepts (such as compound or virtual
document, work flow and business process, event and subscription) are not included.

However, when an application connects to a CMIS service endpoint, the same endpoint MAY provide
access to more than one CMIS repositories. (How an application obtains a CMIS service endpoint is
outside the scope of CMIS. How the application connects to the endpoint is a part of the protocol that the
application uses.) An application SHALL use the CMIS “Get Repositories” service (getRepositories) to
obtain a list of repositories that are available at that endpoint. For each available repository, the
Repository MUST return a Repository Name, a Repository Identity, and a URI. The Repository Identity
MUST uniquely identify an available repository at this service endpoint. Both the repository name and the
repository identity are opaque to CMIS. Aside from the “Get Repositories” service, all other CMIS services
are single-repository-scoped, and require a Repository Identity as an input parameter. In other words,
except for the “Get Repositories” service, multi-repository and inter-repository operations are not
supported by CMIS.

2.1 Repository

2.1.1 Optional Capabilities

Commercial ECM repositories vary in their designs. Moreover, some repositories are designed for a
specific application domain and may not provide certain capabilities that are not needed for their targeted
domain. Thus, a repository implementation may not necessarily be able to support all CMIS capabilities.
A few CMIS capabilities are therefore “optional” for a repository to be compliant. A repository’s support for
each of these optional capabilities is discoverable using the CMIS “Get Repository Information” service
(getRepositoryInfo). The following is the list of these optional capabilities. All capabilities are “Boolean”
(i.e. the Repository either supports the capability entirely or not at all) unless otherwise noted.

Navigation Capabilities:
capabilityGetDescendants

Ability for an application to enumerate the descendants of a folder via the getDescendants
service.
See section: getDescendants

Object Capabilities:
capabilityContentStreamUpdatability

Indicates the support a repository has for updating a document’s content stream. Valid values
are:

• anytime: The content stream may be updated any time.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 12 of 115

• pwconly: The content stream may be updated only when updating the “Private Working
Copy”.

See Section: Content Stream

capabilityChanges (enumeration)
 Indicates what level of changes (if any) the repository exposes via the “change log” service. Valid
values are:

• none: The repository does not expose any information in the change log.

• objectidsonly: The change log can return only the ObjectIDs for changed objects in
the repository and an indication of the type of change, not details of the actual change.

• all: The change log can return the ObjectIDs for changed objects in the repository and
the details of the actual change

See Section: Change Log

capabilityRenditions

 Indicates whether or not the repository exposes renditions of document objects.
• none: The repository does not expose renditions at all.

• read: Renditions are prodived by the repository and readable by the client.

Multi-Filing Capabilities:
capabilityMultifiling

Ability for an application to file a document or other file-able object in more than one folder
See Section: Folder Object

capabilityUnfiling

Ability for an application to leave a document or other file-able object not filed in any folder
See Section: Folder Object

capabilityVersionSpecificFiling

Ability for an application to file individual versions (i.e., not all versions) of a document in a folder
See Section: Versioning

Versioning Capabilities:
capabilityPWCUpdateable

Ability for an application to update the “Private Working Copy” of a checked-out document
See Section: Versioning

capabilityPWCSearchable

 Ability of the Repository to include the "Private Working Copy" of checked-out documents in
query search scope; otherwise PWC's are not searchable
See Section: Versioning

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 13 of 115

capabilityAllVersionsSearchable

 Ability of the Repository to include non-latest versions of document in query search scope;
otherwise only the latest version of each document is searchable
See Section: Versioning

Query Capabilities:
capabilityQuery (enumeration)

Indicates the types of queries that the Repository has the ability to fulfill. Query support levels are:
• none: No queries of any kind can be fulfilled.

• metadataonly: Only queries that filter based on object properties can be fulfilled.

• fulltextonly: Only queries that filter based on the full-text content of documents can be
fulfilled.

• bothseparate: The repository can fulfill queries that filter EITHER on the full-text content
of documents OR on their properties, but NOT if both types of filters are included in the
same query.

• bothcombined: The repository can fulfill queries that filter on both the full-text content of
documents and their properties in the same query.

See Section: Query

capabilityJoin (enumeration)
 Indicates the types of SQL JOIN keywords that the Repository can fulfill in queries. Support levels

are:
• none: The repository cannot fulfill any queries that include any JOIN clauses.
• inneronly: The repository can fulfill queries that include an INNER JOIN clause, but

cannot fulfill queries that include other types of JOIN clauses.
• innerandouter: The repository can fulfill queries that include any type of JOIN clause

defined by the CMIS query grammar.
See Section: Query

ACL Capabilities:

capabilityACL (enumCapabilityACL)
Indicates the level of support for ACLs by the repository

• none: The repository does not support ACL services

• discover: The repository supports discovery of ACLs (getACL)

• manage: The repository supports discovery of ACLs AND applying ACLs (getACL and
applyACL services)

See Section: Access Control

2.1.2 Related Repositories
In addition, the “Get Repository Information” service MAY return a list of other repositories that are related
to the current repository. This list SHOULD be a subset of the list of repositories that are returned by the
“Get Repositories” service.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 14 of 115

For each of these repositories, a Repository Name, a Repository Identity, a URI, and a Repository
Relationship Name are returned. The Relationship Name is opaque to CMIS. Suggested/example values
for the “Relationship Name” include:

• “self”, “peer“, “parent”, “child”: For use by systems that support a logical hierarchy of
repositories.

• “replica”, “archive”: For use by systems that support archival and replication.

2.1.3 Implementation Information
The “Get Repository Information” service MUST also return implementation information such as vendor
name, product name, product version, version of CMIS that it supports, the root folder ID, and MAY
include other implementation-specific information. The version of CMIS that the repository supports
MUST be expressed as a Decimal that matches the specification version.

2.1.4 Repository Access Control Reporting
The repository’s access control semantics MUST be returned if the repository support either the
discover or manage options reported by the capabilityACL optional capability. See the 2.8.5.2
AllowableActions Mapping section for more information.

2.2 Object

The entities managed by CMIS are modeled as typed Objects. There are four base types of objects:
Document Objects, Folder Objects, Relationship Objects, and Policy Objects.

• A document object represents a standalone information asset. Document objects are the
elementary entities managed by a CMIS repository.

• A folder object represents a logical container for a collection of “file-able” objects, which include
folder objects and document objects. Folder objects are used to organize file-able objects.
Whether or not an object is file-able is specified in its object-type definition.

• A relationship object represents an instance of directional relationship between two objects.

• A policy object represents an administrative policy, which may be “applied” to one or more
“controllablePolicy” objects. Whether or not an object is controllable is specified in its object-type
definition. The support for policy objects is optional, and may be discovered via the “Get Types”
service.

Document objects, folder objects, and policy objects are independent objects, in the sense that each
object can persist independently as a standalone object in the repository. A relationship object, on the
other hand, represents an explicit, application-maintained, instance of relationship between two
independent objects. Therefore, relationship objects are semantically dependent objects. Additional
object-types MAY be defined in a repository as subtypes of these base types. CMIS services are provided
for the discovery of object types that are defined in a repository. However, object-type management
services, such as the creation, modification, and deletion of an object type, are outside the scope of
CMIS.

Every CMIS object has an opaque and immutable Object Identity (ID), which is assigned by the
repository when the object is created. An ID uniquely identifies an object within a repository regardless of
the type of the object. Repositories SHOULD assign IDs that are “permanent” – that is, they remain
unchanged during the lifespan of the identified objects, and they are never reused or reassigned after the
objects are deleted from the repository.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 15 of 115

Every CMIS object has a set of named, but not explicitly ordered, Properties. (However, a Repository
SHOULD always return object properties in a consistent order.) Within an object, each property is
uniquely identified by its name.

In addition, a document object MAY have a Content-Stream, which may be used to hold a raw digital
asset such as an image or a word-processing document. A repository MUST specify, in each object-type
definition, whether document objects of that type MAY, SHALL, or SHALL NOT have a content-stream.

Document or folder objects MAY have one Access Control List (ACL), which – in addition to policies –
controls access to the document or folder. An ACL represents a list of Access Control Entries (ACEs).
An ACE in turn represents a permission being granted to a principal (a user, group, or something
similar). Within the ACL of an object, each ACE is uniquely identified by the tuple principal ID and
permission name

Properties and content-streams MAY NOT be shared between objects.

2.2.1 Property

A property MAY hold zero, one, or more typed data value(s). Each property MAY be single-valued or
multi-valued. A single-valued property contains a single data value, whereas a multi-valued property
contains an ordered list of data values of the same type. The ordering of values in a multi-valued property
SHOULD be preserved by the repository.

If a value is not provided for a property, the property is in a “value not set” state. There is no “null” value
for a property. Through protocol binding, a property is either not set, or is set to a particular value or a list
of values.

A multi-valued property is either set or not set in its entirety. An individual value of a multi-valued property
SHALL NOT be in an individual “value not set” state and hold a position in the list of values. An empty list
of values SHALL NOT be allowed.

Every property is typed. The Property-type defines the data type of the data value(s) held by the property.
CMIS specifies the following Property-Types. They include the following data types defined by “XML
Schema Part 2: Datatypes Second Edition” (W3C Recommendation, 28 October 2004,
http://www.w3.org/TR/xmlschema-2/):

• string (xsd:string)
• boolean (xsd:boolean)
• decimal (xsd:decimal)
• integer (xsd:integer)
• datetime (xsd:dateTime)
• uri (xsd:anyURI)

The Precision for Decimal property-types is specified via its Property Definition.
In addition, the following Property-Types are also specified by CMIS:

• id (xsd:string)
• xml (xs:any)
• html (xs:any)
• xhtml (xs:any)

2.2.1.1 ID Property

An ID property holds a system-generated, read-only identitfier, such as an Object ID, an Object Type ID,
a Repository ID, or a Version Series ID. (The ID Property-Type is NOT defined by xsd:id.) The lexical
representation of an ID is an opaque string. As such, an ID cannot be assumed to be interpretable

http://tools.ietf.org/html/rfc3986

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 16 of 115

syntactically or assumed to be to be collate-able with other IDs, and can only be used in its entirety as a
single atomic value. When used in a query predicate, an ID can only participate in an “equal” or a “not
equal” comparison with a string literal or with another ID.

While all CMIS identities share the same Property-Type, they do not necessarily share the same address
space. (So a particular repository implementation MAY use separate address spaces for different kinds of
identity, and may perform different validity checks in a way that is outside the scope of the CMIS
interfaces.)

Unless explicitly specified, ID properties NEED NOT maintain a referential integrity constraint. Therefore,
storing the ID of one object in another object NEED NOT constrain the behavior of either object. A
repository MAY, however, support referential constraint underneath CMIS if the effect on CMIS services
remains consistent with an allowable behavior of the CMIS model. For example, a repository MAY return
an exception when a CMIS service call violates an underlying referential constraint maintained by the
repository. In that case, an error message SHOULD be returned to the application to describe the cause
of exception and suggest a remedial action. The content of such messages is outside the scope of CMIS.

IDs in CMIS for documents usually refer to the specific document version. They can also refer to the
Version Series if obtained from the versionSeriesId property.

2.2.1.2 XML Property
An XML property holds a well-formed Extensible Markup Language (XML) document.

2.2.1.3 HTML Property

An HTML property holds a valid document or fragment of Hypertext Markup Language (HTML) content.

2.2.1.4 XHTML Property

An XHTML property holds a valid document or fragment of Extensible Hypertext Markup Language
(XHTML) content.

2.2.1.5 Property Attributes
Besides name, type, and whether single- or multi-valued, a property has other defining attributes. They
are described in the 2.9 Object-Type section.

2.3 Document Object

Document objects are the elementary information entities managed by the repository.

Depending on its Object-type definition, a Document Object may be:

• Version-able: Can be acted upon via the Versioning Services (for example: checkOut, checkIn).

• File-able: Can be filed in zero, one, or more than one folder via the Multi-filing services.

• Query-able: Can be located via the Discovery Services (query).

• Control-able: Can have Policies applied to it (see the “1.1 Policy Object” section.)

• ACLControl-able: Can have an ACL applied to it (see the “Access Control Lists” section).

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 17 of 115

Additionally, whether a Document object SHALL, MAY or SHALL NOT have a content-stream is specified
in its object-type definition.

Note: When a document is versioned, each version of the document is a separate document object. Thus,
for document objects, an object ID actually identifies a specific version of a document.

2.3.1 Content Stream

A content-stream is a binary string. Its maximum length is repository-specific. Each content-stream has a
MIME Media Type, as defined by RFC2045 and RFC2046 and registered with IANA
(http://www.iana.org/assignments/media-types/). A content-stream’s attributes are represented as
properties of the content-stream’s containing document object. There is no MIME-type-specific attribute or
name directly associated with the content-stream outside of the document object.

A content-stream is unnamed. CMIS provides basic CRUD services for content-stream, using the ID of a
content-stream’s containing document object for identification. The “Set Content-Stream” service
(setContentStream) either creates a new content-stream for a document object or replaces an existing
content-stream. The “Get Content-Stream” service (getContentStream) retrieves a content-stream. The
“Delete Content-Stream” service (deleteContentStream) deletes a content-stream from a document
object. In addition, the “CreateDocument” and “Check-in” services MAY also take a content-stream as an
optional input. A content stream MUST be specified if required by the type definition. These are the only
services that operate on content-stream. The “Get Properties” and “Query” services, for example, do not
return a content-stream.

“Set Content-Stream” and “Delete Content-Stream” services are considered modifications to a content-
stream’s containing document object, and will therefore change the object’s LastModificationDate
property upon successful completion. The ability to set or delete a content stream is controlled by the
capabilityContentStreamUpdateability capability.

2.4 Folder Object

A folder object serves as the anchor for a collection of file-able objects. The folder object has an implicit
hierarchical relationship with each object in its collection, with the anchor folder object being the Parent
object and each object in the collection being a Child object. This implicit relationship has a specific
containment semantics which SHALL be maintained by the repository with implicit referential integrity.
(That is, there will never be a dangling parent-relationship or a dangling child-relationship. Furthermore,
object A is a parent of object B if and only if object B is a child of object A.) This system-maintained
implicit relationship is distinct from an explicit relationship which is instantiated by an application-
maintained Relationship Object. (See the “2.5 Relationship Object” section.)

A folder object does not have a content-stream and is not version-able, although it is query-able and MAY
be controllable and/or ACL controllable.

2.4.1 File-able Objects

A file-able object is one that MAY be “filed” into a folder. That is, it MAY be a child object of a folder
object. The following list defines whether the base CMIS Object Types are file-able:

cmis:Folder
SHALL be file-able

cmis:Document

• If the “un-filing” optional capability is not supported by the Repository: SHALL be file-able
• If the “un-filing” optional capability is supported by the Repository: SHOULD be file-able

http://www.iana.org/assignments/media-types/

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 18 of 115

cmis:Relationship

SHALL NOT be file-able

cmis:Policy

MAY be file-able

2.4.1.1 Multi-filing/un-filing of Document and Policy Objects
The following list summarizes the number of parent folders that a Document or Policy Object should have.

If Multi-filing and un-filing capabilities are not supported, there MUST be 1 parent folder.
If Multi-filing is unsupported and un-filiing is supported, there MUST be 0 or 1 parent folders.
If Multi-filing is supported and un-filing is not supported, there MUST be 1 or more parent folders.
If Multi-filing is supported and un-filing is supported, there MUST be 0 or more parent folders.

A fileable object that has multiple parent folders is said to be multi-filed. A fileable object that has no
parent folder is said to be unfiled.

2.4.1.2 Document Version Series and Filing

Since document objects are versionable, a document object’s membership in a folder collection MAY be
version-specific or version-independent. That is, the folder membership MAY be restricted to that
particular version of the document or MAY apply to all versions of the document. Whether or not a
repository supports version-specific filing is discoverable via the “Get Repository Information” service
(getRepositoryInfo). When the child objects of a folder are retrieved, a specific version of a document is
returned if the repository supports version-specific filing, and the latest version is returned if the repository
does not support version-specific filing. Likewise, this version sensitivity in child-binding also affects the
behavior of parent retrieval for a document object, as well as the scope of the IN_FOLDER() and
IN_TREE() function calls in a query. For non-versionable fileable objects, their membership in a folder
does not have version sensitivity.

2.4.1.3 Filing Restrictions by Object-Type
A folder collection’s membership MAY be restricted by object type. Each folder object has a multi-valued
AllowedChildObjectTypeIDs property, which specifies that only objects of these types are allowed to be
its children. (These allowed object types SHOULD all be fileable.) If this property is “not set”, then objects
of any file-able type are allowed to be filed in the Folder. It is repository specific if subtypes of the types
listed in the AllowedChildObjectTypeIDs property may be children of the folder.

If a repository does not support type constraint on folder membership, it MAY define this folder property
as read-only, and keep the property value “not set” for all folder objects.

Because of these filing constraints, when a new folder object is created, an existing folder object SHALL
be specified as its parent. When a file-able non-folder object is created, its parent folder SHALL be
specified if the repository does not support the “un-filing” optional capability, and MAY be specified if the
“un-filing” optional capability is supported. The Repository SHALL only allow creation of a file-able object
in a folder if the object’s Object-Type is specified as allowed in that folder as described above.

When a non-file-able object is created, a parent folder SHALL NOT be specified.

When a file-able object is deleted, it is removed from any folder collection in which the object is a
member. In other words, when an object is deleted, all implicit parent-child relationships with the deleted
object as a child cease to exist.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 19 of 115

2.4.2 Folder Hierarchy

CMIS imposes the following constraints on folder objects:

• Every folder object, except for one which is called the Root Folder, MUST have one and only
one parent folder. The Root Folder does not have a parent.

• A cycle in folder containment relationships is not allowed. That is, a folder object cannot have
itself as one of its descendant objects.

• A child object that is a folder object can itself be the parent object of other file-able objects.

With these constraints, the folder objects in a CMIS repository necessarily form a strict hierarchy, with the
Root Folder being the root of the hierarchy.

The child objects of a given folder object, their child objects, and grandchild objects, etc., are called
Descendant objects of the given folder object. Similarly, the parent object of a file-able object, and
recursively the parent of the parent, etc., are called Ancestor objects of that file-able object. A folder
object together with all its descendant objects are collectively called a Tree rooted at that folder object.

A non-folder object does not have any descendant object. Thus, a Folder Graph that consists of all
fileable objects as nodes, and all the implicit folder containment relationships as directed edges from
parent to child, is a directed acyclic graph, possibly with some disconnected (orphan) nodes. It follows
that the tree rooted at any given folder object is also a directed acyclic graph, although a non-folder object
in the tree MAY have ancestors that are not ancestors of the rooted folder.

A Folder Graph

A folder object

A non-folder fileable object

An implicit folder
containment relationship
from parent to child

Root Folder

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 20 of 115

Folder objects are handled using the basic CRUD services for objects, and the folder graph is traversed
using the Navigation Services.

The Root Folder is a special folder such that it cannot be created, deleted, or moved using CMIS
services. Otherwise, it behaves like any other folder object.

2.4.3 Paths
A folder hierarchy MAY be represented in a canonical notation such as path. For CMIS, a folder path is
represented by:

• ‘/’ for the root folder
• all paths start with the root folder.
• a set of the folder names separated by ‘/’ in order of closest to the root.

o Folder names are specified by the folders cmis: PathName property MUST not include
the ‘/’ separator character.

E.g., if folder A is under the root, and folder B is under A, then the path would be /A/B.

Paths do not apply to any other objects in CMIS except folders.

2.5 Relationship Object

A relationship object is semantically a dependent object. A relationship object SHALL NOT have a
content-stream, and SHALL NOT be versionable, SHALL NOT be queryable, and SHALL NOT be
fileable, although it MAY be controllable.

A Relationship Object instantiates an explicit, binary, directional, non-invasive, and typed relationship
between a Source Object and a Target Object. The source object and the target object MUST both be
an independent objects, such as a document object, a folder object, or a policy object. Whether a policy
object is allowed to be the source or target object of a relationship object is repository-specific.

The relationship instantiated by a relationship object is explicit since it is explicitly represented by an
object and is explicitly managed by application.

This relationship is non-invasive in the sense that creating or removing this relationship SHALL NOT
modify either the source or the target object. That is, it SHALL NOT require an update capability (or
permission) on either object; SHALL NOT affect the versioning state of either object; and SHALL NOT
change their “Last Modification Date”.

The source object and the target object of a relationship MAY be the same object.

Explicit relationships can be used to create an arbitrary relationship graph among independent objects.
Such a relationship graph is only structural in nature. No inheritance or transitive properties are attached
to a relationship graph.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 21 of 115

An Explicit Relationship

Source
Object

Target
ObjectRelationship Object

The notion of a source object and a target object of a relationship is used solely to indicate the direction of
the relationship. No semantics or implementation bias is implied by this terminology.

The binding of a relationship object to a source document object or to a target document object MAY be
either version-specific or version-independent. This version sensitivity is repository-specific, and is largely
transparent to CMIS. An independent object MAY participate in any number of explicit relationships, as
the source object for some and as the target object for others. Multiple relationships MAY exist between
the same pair of source and target objects.

Referential integrity, either between the source object and the target object, or between the relationship
object and the source or target object, is not specified. Therefore, creating an explicit relationship
between two objects NEED NOT impose a constraint on any of the three objects, and removing a
relationship or deleting either the source or the target object NEED NOT be restricted by such a
constraint. If the source or the target object of a relationship is deleted, the repository MAY automatically
delete the relationship object.

A repository MAY support referential integrity or other constraints underneath CMIS, either between the
source object and the target object of a relationship, or between a relationship object and its source or
target object, provided that the resulting effect on CMIS services is consistent with an allowable behavior
of CMIS. For example, a repository MAY throw a generic exception when an underlying referential
constraint is violated, and SHOULD return an error message of the cause of the exception. However the
content of such a message is outside the scope of CMIS.

Like all CMIS objects, relationship objects are typed. Typing relationship allows them to be grouped,
identified, and traversed by type id, and for properties to be defined for individual relationship types.

Additionally, a relationship object-type MAY specify that only Objects of a specific Object-Type (or one of
a set of specific Object-Tyeps) can participate as the source object or target object for relationship objects
of that type. If no such constraints are specified , then an independent object of any type MAY be the
source or the target of a relationship object of that type.

Relationship objects are created/retrieved/updated/deleted using the CMIS Object Services
(createRelationship, getProperties, updateProperties, deleteObject).

When a relationship object is created, the source object and the target object MUST already exist.

Relationship Objects are retrieved using the “Relationships” service (getRelationships),which can be used
to return a set of relationship objects in which a given independent object is identified as the source or

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 22 of 115

target object, according to the binding semantics maintained by the repository (i.e., either a version
restricted to relationships of a given type and/or in a particular direction (i.e., where the given object is the
source, the target, or either).

When a relationship object is retrieved, its source object or target object MAY no longer exist, since
referential integrity NEED NOT be maintained by a repository.

When a relationship object is deleted, the source and the target objects are left untouched.

In addition to object CRUD services, a “Get Relationships” service (getRelationships) may be used to
return a set of relationship objects in which a given independent object is identified as the source or the
target object, according to the binding semantics maintained by the repository (i.e., either a version-
specific or a version-independent binding as described above).

2.6 Policy Object

A policy object represents an administrative policy that can be enforced by a repository, such as an
Access Control List (ACL) or a retention management policy. CMIS 1.0 does not specify what kinds of
administrative policies that are specifically supported, nor attempts to model administrative policy of any
particular kind. Only a base object type is specified for policy objects. Each policy object holds the text of
an administrative policy as a repository-specific string, which is opaque to CMIS and which may be used
to support policies of various kinds. (For CMIS 1.0, the use case is primarily access control.) A repository
may create subtypes of this base type to support different kinds of administrative policies more
specifically. The support for policy objects is optional. If a repository does not support policy objects, the
policy base object type SHOULD NOT be returned by a “Get Types” service call.

Aside from allowing an application to create and maintain policy objects, CMIS allows an application to
“apply” a policy to an object, and to remove an applied policy from an object. An object to which a policy
may be applied is called a controllable object. A policy MAY be applied to multiple controllable objects.
Conversely, a repository MAY allow multiple policies applied to a controllable object. (A repository may,
for example, impose constraints such as only one policy of each kind can be applied to an object.)
Whether or not an object is controllable is specified by the object’s type definition. Applying a policy to an
object is to place the object under the control of that policy (while the object may also be under the control
of other policies at the same time), and removing an applied policy from one of its controlled objects is to
remove the corresponding control from that object. This control may change the state of the object, may
impose certain constraints on service calls operating on this object, or may cause certain management
actions to take place. The effect of this control, when this effect takes place, and how this control interacts
with other controls, are repository-specific. Only directly/explicitly applied policies are covered by CMIS
1.0. Indirectly applying policy to an object, e.g. through inheritance, is outside the scope of CMIS 1.0.

A policy object does not have a content-stream and is not versionable. It may be fileable, queryable, or
controllable. Policy objects are handled using the basic CRUD services for objects. If a policy is updated,
the change may alter the corresponding control on objects that the policy is currently applied to. If a
controlled object is deleted, all the policies applied to that object, if there is any, are removed from that
object. A policy object that is currently applied to one or more controllable objects can not be deleted.
That is, there is an implicit referential constraint from a controlled object to its controlling policy object(s).
Besides the basic CRUD services, the “Apply Policy” (applyPolicy) and the “Remove Policy”
(removePolicy) services may be used to apply a policy object to a controllable object and respectively to
remove an applied policy from one of its controlled objects. In addition, the “Get Applied Policies”
(getAppliedPolicies) service may be used to obtain the policy objects that are currently applied to a
controllable object.

2.7 Renditions
Some ECM repositories provide a facility to retrieve alternative versions of a document. These alternative
versions are known as renditions. This could apply to a preview case which would enable the client to

Ethan Gur-esh
This section not updated based on the assumption that it will be getting removed.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 23 of 115

preview the content of a document without needing to download the full content. Previews are generally
reduced fidelity representations such as thumbnails. Renditions can take on any general form, such as a
PDF version of a word document.
A document or folder may support zero or more renditions. Renditions are not CMIS object types. They
are bound to a document or folder object like properties.
The server is responsible for determining the number and types of renditions present for a given
document / folder. The server is responsible for the availability of a document / folder rendition. A
rendition may not be immediately available after checkin or document creation. Renditions are specific to
the version of the document and may differ between document versions.
Each rendition consists of a content stream of a given mime-type containing the alternative
representation. Each rendition should have an advisory label to assist identifying the kind of rendition.
Additionally each rendition may provide additional metadata.

2.7.1 Rendition Attributes
A rendition consists of the following attributes:

streamId ID
Identifies the content stream of the rendition.

mimeType String
The mimetype of the rendition content stream.

length Integer

The length of the content stream in bytes.

title String

Human readable information about the rendition.

kind String
A categorization String associated with the rendition.

metadata <RenditionMetadata list>

A list of repository generated metadata about the rendition.

renditionDocumentId ID
The ObjectID of the rendition document if this rendition is represented as a document by the
repository.

2.7.2 Rendition Kind
A Rendition may be categorized via its kind. The repository is responsible for assigning kinds to
Renditions, including custom kinds. A repository kind does not necessarily identify a single Rendition for
a given Object.
CMIS defined kinds are distinguished from custom kinds by the CMIS-specific prefix CMIS.
CMIS defines the following kind:

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 24 of 115

• CMIS.Thumbnail : A rendition whose purpose is to a provide a preview of the document without
requiring the client to download the full document content stream. Thumbnails are generally
reduced fidelity representations.

2.7.3 Rendition Metadata
Rendition meta-data describes extra characteristics of the Rendition primarily to allow a client to decide
which Rendition to choose in a particular use-case.
CMIS defines the following Rendition (optional) meta-data.

• height : typically used for ‘image’ renditions (expressed as pixels)

• width : typically used for ‘image’ renditions (expressed as pixels)

A repository may introduce custom meta-data for each Rendition. Examples include image resolution
and video time length.

2.7.4 Rendition as a Document
A repository may choose to provide a separate Document (conceptually known as a Rendition Document)
which represents and complements the Rendition. The rendition renditionDocumentId contains the
Object Id of the Rendition Document (if one exists), otherwise renditionDocumentId is null.
The referential integrity of renditionDocumentId should be maintained. If provided, the Object Id
should refer to a Document that exists.
Rendition Documents act like any other Document, therefore may be filed in a Folder, support access
control, related etc. It is repository specific as to whether the Rendition Document can be updated or
deleted. Repositories that support deletion of Rendition Documents should maintain the referential
integrity of renditionDocumentId (e.g. setting its value to null, or removing the Rendition all together),
but how this is achieved is repository specific.

2.8 Access Control

As outlined above for “Policy Object”, policy objects represent administrative policies, usually expressing
access control constraints like “only users with security clearance 2 are allowed to view the documents
with security level HIGH”. Policies are basic CMIS object types.

Access Control Lists (ACLs) are for user scenarios, like “I want to allow user A from my team to work with
the documents within this folder”. Unlike Policies, ACLs are not independent CMIS objects, they are
bound to a document or folder object.

Documents and folders MAY be controllablePolicy (by Policies) or controllableACL (by ACLs) or both.
This implies that a client MUST NOT assume that a document’s or folder’s ACL can be used to exactly
compute the allowable actions. A client can use getAllowableActions to check if a given user is allowed to
perform a specific operation at a given time.

2.8.1 Discovering and Managing ACLs
ACLs are discoverable for a client via getACL. ACLs can be changed by a client via applyACL. The enum
capabilityACL returned by getRepositoryInfo indicates the level of support: either getACL (“discover”)
only, or both getACL and applyACL (“manage”).

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 25 of 115

2.8.2 ACL Supported Permissions

A repository can support either or both of a set of CMIS defined permissions or its own set of repository
specific permissions.

The getACL service allows the requestor to specify that the result be expressed using only the CMIS
defined permissions. Without this restriction, the response may include, or be solely expressed in
repository specific permissions. The applyACL service permits either CMIS permissions or repository
permissions, or a combination of both, to be used.

For the CMIS permissions a repository's service-permissions mappings are discoverable through
getRepositoryInfo, Service-permissions mappings are not discoverable for the repository permissions.
For full details of each of these features refer to the ACL Capabilities, getACL and applyACL sections.

2.8.3 ACL, ACE, Principal, and Permission
An ACL is a list of Access Control Entries (ACEs) and MAY hold zero or more ACEs.
An ACE holds:

• one Principal: A principal represents a user management object, e.g. a user, group, or role.
It holds:

o one String with the principalid.

o Repository-specific information MAY be returned as well.

• one String with the name of the permission.

• a Boolean flag direct, which indicates if the ACE is directly assigned to the object itself. FALSE,
if the ACE is somehow derived from some other ACE or Policy applied to another object.

The ACEs for an ACL MAY be “shared“, in that sense that adding or removing an ACE to or from an
ACL for an object MAY have side-effects for the ACLs of other objects.

2.8.4 Basic CMIS Permissions
There are four basic permissions predefined by CMIS:

• cmis:BasicPermission.Read: to be used to express “permission to read”. A Repository
SHOULD express the permission for reading properties AND reading content with this
permission.

• cmis:BasicPermission.Write: to be used to express “permission to write”. SHOULD be used to
express permission to write properties and content of an object. MAY include other basic CMIS
permissions.

• cmis:BasicPermission.Delete: to be used to express “permission to delete”. SHOULD be used
to express permission to delete, deleteTree, and deleteContent of an object, MAY include other
basic CMIS permissions.

• cmis:BasicPermission.All: SHOULD be used to express all the permissions of a repository.
SHOULD include all other basic CMIS permissions.

How these basic permissions can be mapped to the allowable actions is repository specific. However, the
actual repository semantics for the basic permissions with regard to allowable actions can be discovered
by the mappings parameter returned by getRepositoryInfo (see below).
Repositories MAY extend this set with repository-specific permissions

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 26 of 115

2.8.5 ACL Capabilities
Whether a repository supports ACLs at all, may be discovered via capabilityACL returned by
getRepositoryInfo (see Optional Capabilities). If capabilityACL is none, ACLs are not supported by the
repository.
If capabilityACL is discover or manage, additional information about the repositories permission model
and how changes to ACL are handled, can be discovered via the getRepositoryInfo service:

• Enum supportedPermissions: specifies which types of permissions are supported.
o basic: indicates that the CMIS Basic permissions are supported.
o repository: Indicates that repository specific permissions are supported.
o both: indicates that both CMIS basic permissions and repository specific permissions are

supported.
• <Array> Enum ACLPropagation: specifies, how non-direct ACEs can be handled by the

repository using the following values (see applyACL):
o object-only indicates, that the repository is able to apply ACEs to a document or folder,

without changing the ACLs of other objects. I.E. the repository is able to “break” the
dependency for non-direct ACEs when requested by the client.

o propagate: indicates that the ACEs is to be applied to the given object and all “inheriting”
objects – i.e. with the intended side effect that all objects which somehow share the
provided security constraints should be changed accordingly.

o repository-determined indicates, that the repository has its own mechanism of
computing how changing an ACL for an object influences the non-direct ACEs of other
objects.

• <Array> PermissionDefinition repositoryPermissions: is a list with names and descriptions of
the supported repository specific permissions, if allowedPermissions is repository or both.

• <Array> PermissionMapping mappings: contains a list with mappings for the basic CMIS
permissions to allowed actions (see getAllowableActions) .

2.8.5.1 Repository-Specific Permissions

The list of permission definitions returned by getRepositoryInfo lists the repository-specific permissions a
repository supports.
A PermissionDefinition holds:

• String permission: the (technical) name of the permission (unique within the list of permission
definitions).

• (Optional) String description: an optional description of the permission, that should be used as
the permission’s name to be presented to the user.

The list of permission definitions MUST contain all the repository-specific permissions the repository
supports

2.8.5.2 AllowableActions Mapping

The permission mapping returned by getRepositoryInfo provides a map of basic CMIS permissions to
CMIS objects in order to grant or enable a specific CMIS action on getAllowableActions. The set of
allowable actions for an object is represented as a set of Boolean values. This section defines both the
AllowableActions and PermissionsMapping together.
A PermissionMapping holds only these two values. The operation and operand are implicitly defined by
the action and are not part of the PermissionMapping.).

Alison Macmillan
Minor point: I'd prefer this to be something like "repository-controlled" rather than "dont-care", as don't care reads as a client preference, rather than a repository feature.

Alison Macmillan
Remove this paragraph, because ACL capabilities and getACL sections describe the behaviour and do not want to duplicate.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 27 of 115

• String key: a unique name representing the allowable action plus one of the operands for this
action that the mapping applies to. The “key” is built by using the name of the allowable action
(see getAllowableActions) and the name of the operand (without the ID or prefix, see Services
section).

• String permission: the name of the permission that needs to be applied to the parameter as
indicated by the “key”.

Repositories SHOULD use the following mapping. Repositories MAY require stronger permissions. An
AllowableAction may be listed more than once if there are multiple operands it applies to. For each
Allowable Action the following information is given:

Base Object: The base object types for which the allowable action MAY be TRUE.
Action: The description and name of action the AllowableAction enables.
Operand: The object the permission applies to.
Key: The permission mapping key.
Permission: The permission value.

Navigation Services:
canGetDescendants

Base Object: cmis:Folder
Action: Can get the descendants of the folder (getDescendants)
Operand: cmis:Folder
Key: canGetDescendants.Folder
Permission: Read

canGetChildren
Base Object: cmis:Folder
Action: Can get the children of the folder (getChildren)
Operand: cmis:Folder
Key: canGetChildren.Folder
Permission: Read

canGetFolderParent
Base Object: cmis:Folder
Action: Can get the parent/ancestor folder(s) of the folder (getFolderParent)
Operand: cmis:Folder
Key: canGetFolderParent.Folder
Permission: Read

canGetObjectParents Object
Base Object: cmis:Document, cmisFolder, cmisPolicy
Action: Can get the parent folders of the object. (getObjectParents)
Operand Object
Key: canGetObjectParents.Object
Permission: Read

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 28 of 115

Object Services:
canCreateDocument

Base Object: cmis:Folder
Action: Can create a cmis:Document Object in the folder (createDocument)
Operand: Type
Key: canCreateDocument.Type
Permission: Write

canCreateDocument
Base Object: cmis:Folder
Action: Can create a cmis:Document Object in the folder (createDocument)
Operand: Folder
Key: canCreateDocument.Folder
Permission: Read

canCreateFolder
Base Object: Type
Action: Can create a cmis:Folder Object in the folder (createFolder)
Operand: createFolder
Key: canCreateFolder.Type
Permission: Write

canCreateFolder
Base Object: cmis:Folder
Action: Can create a cmis:Folder Object in the folder (createFolder)
Operand: createFolder
Key: canCreateFolder.Folder
Permission: Read

canCreateRelationship
Base Object: cmis:Document, cmis:Folder
Action: Can create a Relationship in which this Object is a source/target

(createRelationship)
Operand: Type
Key: canCreateRelationship.Type
Permission: Write

canCreateRelationship
Base Object: cmis:Document, cmis:Folder
Action: Can create a Relationship in which this Object is a source/target

(createRelationship)
Operand: Source

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 29 of 115

Key: canCreateRelationship.Source
Permission: Read

canCreateRelationship
Base Object: cmis:Document, cmis:Folder
Action: Can create a Relationship in which this Object is a source/target

(createRelationship)
Operand: Target
Key: canCreateRelationship.Target
Permission: Read

canCreatePolicy
Base Object: cmis:Folder
Action: Can create a Policy Object in the folder (createPolicy)
Operand: Type
Key: canCreatePolicy.Type
Permission: Repository Specific

canGetProperties
Base Object: cmis:Document, cmis:Folder, cmis:Relationship, cmisPolicy
Action: Can read the properties of this object (getProperties)
Operand: Object
Key: canGetProperties.Object
Permission: Read

canGetRenditions
Base Object: cmis:Document
Action: Can retrieve the renditions of this object (getRenditions)
Operand: Object
Key: canGetRenditions.Object
Permission: Read

canGetContentStream
Base Object: cmis:Document
Action: Can get the content stream for the Document object

(getContentStream)
Operand: Object
Key: canGetContentStream.Object
Permission: Read

canUpdateProperties
Base Object: cmis:Document, cmis:Folder, cmis:Relationship, cmisPolicy

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 30 of 115

Action: Can update the properties of this object (updateProperties)
Operand: Object
Key: canUpdateProperties.Object
Permission: Write

canMoveObject
Base Object: cmis:Document, cmis:Folder, cmisPolicy
Action: Can move the object (moveObject)
Operand: Object
Key: canMoveObject.Object
Permission: Write

canMoveObject
Base Object: cmis:Document, cmis:Folder, cmisPolicy
Action: Can move the object (moveObject)
Operand: Target
Key: canMoveObject.Target
Permission: Read

canMoveObject
Base Object: cmis:Document, cmis:Folder, cmisPolicy
Action: Can move the object (moveObject)
Operand: Source
Key: canMoveObject.Source
Permission: Read

canDeleteObject
Base Object: cmis:Document, cmis:Folder, cmis:Relationship, cmisPolicy
Action: Can delete this object (deleteObject)
Operand: Object
Key: canDelete.Object
Permission: Delete

canDeleteObject
Base Object: cmis:Folder
Action: Can delete this object (deleteTree)
Operand: Folder
Key: canDelete.Folder
Permission: Delete

canDeleteObject
Base Object: cmis:Document

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 31 of 115

Action: Can delete this object (deleteAllVersions)
Operand: VersionSeries
Key: canDelete.VersionSeries
Permission: Delete

canSetContentStream
Base Object: cmis:Document
Action: Can set the content stream for the Document object

(setContentStream)
Operand: cmis:Document
Key: canSetContentStream.Document
Permission: Write

canDeleteContentStream
Base Object: cmis:Document
Action: Can delete the content stream for the Document object

(deleteContentStream)
Operand: cmis:Document
Key: canDeleteContentStream.Document
Permission: Delete

Mutli-filing Services:

canAddObjectToFolder
Base Object: cmis:Document, cmis:Policy
Action: Can file the document in a folder (addObjectToFolder)
Operand: Object
Key: canAddObjectToFolder.Object
Permission: Write

canAddObjectToFolder
Base Object: cmis:Document, cmis:Policy
Action: Can file the document in a folder (addObjectToFolder)
Operand: cmis:Folder
Key: canAddObjectToFolder.Folder
Permission: Read

canRemoveObjectFromFolder
Base Object: cmis:Document, cmis:Policy
Action: Can unfile the document in a folder (removeObjectFromFolder)
Operand: Object
Key: canRemoveObjectFromFolder.Object
Permission: Write

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 32 of 115

canRemoveObjectFromFolder

Base Object: cmis:Document, cmis:Policy
Action: Can unfile the document in a folder (removeObjectFromFolder)
Operand: cmis:Folder
Key: canRemoveObjectFromFolder.Folder
Permission: Read

Versioning Services:

canCheckOut
Base Object: cmis:Document
Action: Can check out the Document object (checkOut)
Operand: cmis:Document
Key: canCheckOut.Document
Permission: Write

canCancelCheckOut

Base Object: cmis:Document
Action: Can cancel the check out the Document object (cancelCheckOut)
Operand: cmis:Document
Key: canCancelCheckOut.Document
Permission: Write

canCheckIn

Base Object: cmis:Document
Action: Can check in the Document object (checkIn)
Operand: cmis:Document
Key: canCheckIn.Document
Permission: Write

canGetAllVersions

Base Object: cmis:Document
Action: Can get the version series for the Document object (getAllVersions)
Operand: VersionSeries
Key: canGetAllVersions.VersionSeries
Permission: Read

Relationship Services:

canGetRelationships

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 33 of 115

Base Object: cmis:Document, cmis:Folder, cmisPolicy
Action: Can get the relationship in which this object is a source/target

(getRelationships)
Operand: Object
Key: canGetRelationships.Object
Permission: Read

Policy Services:

canApplyPolicy
Base Object: cmis:Document, cmis:Folder
Action: Can apply a policy to the Object (applyPolicy)
Operand: Object
Key: canApplyPolicy.Object
Permission: Repository Specific

canAddPolicy

Base Object: cmis:Document, cmis:Folder
Action: Can apply a policy to the Object (applyPolicy)
Operand: cmis:Policy
Key: canAddPolicy.Policy
Permission: Read

canRemovePolicy

Base Object: cmis:Document, cmis:Folder
Action: Can remove a policy from the Object (removePolicy)
Operand: Object
Key: canRemovePolicy.Object
Permission: Repository Specific

canRemovePolicy

Base Object: cmis:Document, cmis:Folder
Action: Can remove a policy from the Object (removePolicy)
Operand: cmis:Policy
Key: canRemovePolicy.Policy
Permission: Read

canGetAppliedPolicies
Base Object: cmis:Document, cmis:Folder
Action: Can get the list of Policies applied to the Object

(getAppliedPolicies)
Operand: Object

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 34 of 115

Key: canGetAppliedPolicies.Object
Permission: Read

ACL Services:

canGetACL
Base Object: cmis:Document, cmis:Folder, cmis:Relationship, cmis:Policy
Action: Can get ACL for object (getACL)
Operand: Object
Key: canGetACL.Object
Permission: Read

canApplyACL

Base Object: cmis:Document, cmis:Folder, cmis:Relationship, cmis:Policy
Action: Can apply ACL to this object (applyACL)
Operand: Object
Key: canApplyACL.Object
Permission: All

2.9 Object-Type

An Object-Type defines a fixed and non-hierarchical set of properties (“schema”) that all objects of that
type have. This schema is used by a repository to validate objects and enforce constraints, and is also
used by a user to compose object-type-based (structured) queries. All CMIS objects are strongly typed.
Incidental properties that are not prescribed in an object’s type definition (such as “residual properties” in
JCR, or “dead properties” in WebDAV) are not modeled in CMIS. If a property not specified in an object’s
object-type definition is supplied by an application, an exception SHOULD be thrown.

Each object-type is uniquely identified within a repository by a system-assigned and immutable Object-
Type Identity, which is of type ID.

A CMIS repository SHALL expose exactly one collection of Object-Types via the “Repository” services
(getTypes, getTypeDefinition).

While a repository MAY define additional object types beyond the CMIS Base Object-Types, these Object
Types SHALL NOT extend or alter the behavior or semantics of a CMIS service (for example, by adding
new services). A repository MAY attach additional constraints to an object-type underneath CMIS,
provided that the effect visible through the CMIS interface is consistent with the allowable behavior of
CMIS.

2.9.1 Object-Type Hierarchy and Inheritance

Hierarchy and Inheritance for Object-Types are supported by CMIS in the following manner:

• A CMIS repository SHALL have exactly four base types:

o cmis:Document object type

o cmis:Folder object type

o cmis:Relationship object type

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 35 of 115

o cmis:Policy object type

• Additional root types SHALL NOT exist. Additional object types MAY be defined as sub-types or
descendant types of these four root types.

• A Base Type does not have a parent type.

• A non-base type has one and only one parent type. An object-type’s Parent Type is a part of the
object-type definition.

• An object-type definition includes a set of object-type attributes (e.g. Fileable, Queryable, etc.)
and a property schema that will apply to Objects of that type.

o There is no inheritance of object-type attributes from a parent object-type to its sub-types.

• The properties of a CMIS base type SHALL be inherited by its descendant types.

• A Child-type whose immediate parent is NOT its base type SHOULD inherit all the property
definitions that are specified for its parent type. In addition, it MAY have its own property
definitions.

o If a property is NOT inherited by a subtype, the exhibited behavior for query SHALL be as if
the value of this property is “not set” for all objects of this sub-type.

• The scope of a query on a given object-type is automatically expanded to include all the
Descendant Types of the given object type with the attribute includedInSuperTypeQuery
equals TRUE. This was added for synthetic types as well as to support different type hierarchies
that are not necessarily the same as CMIS. Only the properties of the given object type, including
inherited ones, SHALL be used in the query. Properties defined for its descendant types MAY
NOT be used in the query, and CAN NOT be returned by the query.

o If a property of its parent type is not inherited by this type, the property SHALL still appear as
a column in the corresponding virtual table in the relational view, but this column SHALL
contain a SQL NULL value for all objects of this type. (See the “2.11 Query” section.)

A repository that does not support Object-type inheritance natively MAY define all additional object types
as immediate sub-types of these Base Object-types. In that case, the type hierarchy is essentially flat.

2.9.2 Object-Type Attributes

2.9.2.1 Attributes common to ALL Object-Type Definitions

All Object-Type Definitions SHALL contain the following attributes:
id ID

This opaque attribute uniquely identifies this object type in the repository.

localName String
This attribute represents the underlying repository’s name for the object type. This field is opaque
and has no uniqueness constraint imposed by this specification.

localNamespace String

This optional attribute allows repositories to represent an internal namespace for represents the
underlying repository’s name for the object type.

queryName String

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 36 of 115

Used for query operations on object types. This is an opaque String with limitations. The string
should not contain whitespace, the period (.) character or the open “(“ or close “)” parenthesis
characters.

displayName String

Used for presentation by application

baseTypeId Enum

A value that indicates whether the base type for this Object-Type is the Document, Folder,
Relationship, or Policy base type.

parentId ID

The ID of the Object-Type’s immediate parent type.
It SHALL be “not set” for a base type.

description String
Description of this object type, such as the nature of content, or its intended use. Used for
presentation by application.

creatable Boolean
Indicates whether new objects of this type MAY be created. If the value of this attribute is FALSE,
the repository MAY contain objects of this type already, but SHALL NOT allow new objects of this
type to be created.

fileable Boolean
Indicates whether or not objects of this type are file-able.

queryable Boolean
Indicates whether or not this object type is queryable. A non-queryable object type is not visible
through the relational view that is used for query, and can not appear in the FROM clause of a
query statement.

controllablePolicy Boolean
Indicates whether or not objects of this type are controllable via policies. Policy objects can only
be applied to controllablePolicy objects.

fulltextIndexed Boolean
Indicates whether objects of this type are full-text indexed for querying via the CONTAINS() query
predicate.

includedInSupertypeQuery Boolean
Indicates whether this type and its subtypes appear in a query of this type’s ancestor types.

For example: if Invoice is a sub-type of Document, if this is TRUE on Invoice then for a query on
Document type, instances of Invoice will be returned if they match.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 37 of 115

If this attribute is FALSE, no instances of Invoice will be returned even if they match the query.

controllableACL Boolean

This attribute indicates whether or not objects of this type are controllable by ACL’s. Only objects
that are controllableACL can have an ACL (see Access Control Lists).

2.9.2.2 Attributes specific to Document Object-Types
The following Object attributes SHALL only apply to Object-Type definitions whose baseType is the
cmis:Document Object-Type, in addition to the common attributes specified above:

versionable Boolean
Indicates whether or not objects of this type are version-able. (See 2.10 Versioning section.)

contentStreamAllowed Enum

 A value that indicates whether a content-stream MAY, SHALL, or SHALL NOT be included in
objects of this type. Values:

• notallowed: A content-stream SHALL NOT be included

• allowed: A content-stream MAY be included

• required: A content-stream SHALL be included (i.e. SHALL be included when the object
is created, and SHALL NOT be deleted.)

2.9.2.3 Attributes specific to Relationship Object-Types
The following Object attributes SHALL only apply to Object-Type definitions whose baseType is the
cmis:Relationship Object-Type, in addition to the common attributes specified above:

allowedSourceTypes String (mulit-valued)
 A list of object type IDs, indicating that the source object of a relationship object of this type
SHALL only be one of the types listed.
If this attribute is “not set”, then the source object MAY be of any type.

allowedTargetTypes String (mulit-valued)

A list of object type IDs, indicating that the target object of a relationship object of this type SHALL
only be one of the types listed.
If this attribute is “not set”, then the target object MAY be of any type.

2.9.3 Object-Type Property Definitions

Besides these object type attributes, an object type definition SHOULD contain inherited property
definitions and zero or more additional property definitions. All the properties of an object, including
inherited properties, SHALL be retrievable through the “get” services, and MAY appear in the SELECT
clause of a query.

2.9.3.1 Property Types
Property types are defined in section 2.2.1 Property.

Ryan McVeigh
I removed this text to avoid duplication with the section mentioned by the updated text.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 38 of 115

2.9.3.2 Attributes common to ALL Object-Type Property Definitions

All Object-Type Property Definitions SHALL contain the following attributes:
id ID

This opaque attribute uniquely identifies the property in the repository.

localName String

This attribute represents the underlying repository’s name for the object type. This field is opaque
and has no uniqueness constraint imposed by this specification.

localNamespace String

This optional attribute allows repositories to represent an internal namespace for represents the
underlying repository’s name for the object type.

queryName String

Used for query operations on properties. This is an opaque String with limitations. The string
should not contain whitespace, the period (.) character or the open “(“ or close “)” parenthesis
characters.

displayName String (optional)
Used for presentation by application.

description String

This is an optional attribute containing a description of the property

propertyType Enum

 This attribute indicates the type of this property. It MUST be one of the allowed property types.
(See the “2.2.1 Property” section.)

cardinality Enum

Indicates whether the property can have “zero or one” or “zero or more” values.
Values:

• single: Property can have zero or one values (if property is not required), or exactly one
value (if property is required)

• multi: Property can have zero or more values (if property is not required), or one or more
values (if property is required).

Repositories SHOULD preserve the ordering of values in a multi-valued property. That is, the
order in which the values of a multi-valued property are returned in “get” operations SHOULD be
the same as the order in which they were supplied during previous “create/update” operation.

updatability Enum

Indicates under what circumstances the value of this property MAY be updated.
Values:

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 39 of 115

• readonly: The value of this property SHALL NOT ever be set directly by an application. It
is a system property that is either maintained or computed by the repository.
o The value of a readOnly property MAY be indirectly modified by other repository

interactions (for example, calling “updateProperties” on an object will change the
object’s last modified date, even though that property cannot be directly set via an
updateProperties() service call.)

• readwrite: The property value can be modified using the updateProperties service.
• whencheckedout: The property value SHALL only be update-able using a “private

working copy” Object.
o I.e. the update is either made on a “private working copy” object or made using a

“check in” service.

inherited Boolean

 Indicates whether the property is inherited from the parent-type or it is explicitly defined for this
object-type.

required Boolean

 If TRUE, then the value of this property SHALL never be set to the “not set” state when an object
of this type is created/updated.
If a value is not provided, then the default value defined for the property SHALL be set. If no
default value is provided and no default value is defined, the repository SHALL throw an
exception.
 A property definition SHOULD never state that a property has a “required” value of TRUE and an
updatability value of “readonly”.

queryable Boolean

Indicates whether or not the property MAY appear in a CMIS query statement.
This attribute SHALL have a value of FALSE if the Object-type’s attribute for “Queryable” is set to
FALSE.
 (Note: “Queryable” has a different meaning for object type and for property. The former pertains
to the FROM clause and the latter pertains to the WHERE clause.)

orderable Boolean
Indicates whether the property can appear in the ORDER BY clause of a SQL SELECT
statement.
This property SHALL be FALSE for any property whose cardinality is “multi”.

choices <PropertyChoiceType list> (multi-valued)
Indicates an explicit set of values allowed for this property.
If this attribute is “not set”, then any valid value for this property based on its type may be used.

Each choice is includes a displaName, an optional value and index. The displayName is used for
presentation purpose. The value will be stored in the property when selected. The index
provides guidance for ordering of displayNames when presented.
 Choices MAY be hierarchically presented. In this case, the index orders siblings in the choice
hierarchy; if a choice has no siblings then the index may be omitted; if a choice has siblings then
the index is required on all siblings.

Ethan Gur-esh
Filed bug – readonly properties SHALL never be defined as “required”.

Ryan McVeigh
CMIS-82

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 40 of 115

openChoice Boolean

This attribute is only applicable to properties that provide a value for the “Choices” attribute.
 If FALSE, then the data value for the property SHALL only be one of the values specified in the
“Choices” attribute. If TRUE, then values other than those included in the “Choices” attribute may
be set for the property.

defaultValue <PropertyType>

The value that the repository SHALL set for the property if a value is not provided by an
application when the object is created.
 If no default value is specified and an application creates an object of this type without setting a
value for the property, the repository SHALL attempt to store a “value not set” state for the
property value. If this occurs for a property that is defined to be required, then the creation
attempt SHALL throw an exception.

2.9.3.3 Attributes specific to Integer Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“Integer”, in addition to the common attributes specified above. A repository MAY provide additional
guidance on what values can be accepted. If the following attributes are not present the repository
behavior is undefined and it MAY throw an exception if a runtime constraint is encountered.

minValue Integer
The minimum value allowed for this property.
 If an application tries to set the value of this property to a value lower than minValue, the
repository SHALL throw a ConstraintViolation exception.

maxValue Integer

The maximum value allowed for this property.
 If an application tries to set the value of this property to a value higher than maxValue, the
repository SHALL throw a ConstraintViolation exception.

2.9.3.4 Attributes specific to Decimal Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“Decimal”, in addition to the common attributes specified above. A repository MAY provide additional
guidance on what values can be accepted. If the following attributes are not present the repository
behavior is undefined and it MAY throw an exception if a runtime constraint is encountered.

precision Integer
This is the precision in bits supported for values of this property. Valid values for this attribute are:

• 32: 32-bit precision (“single” as specified in IEEE-754-1985).
• 64: 64-bit precision (“double” as specified in IEEE-754-1985.)

minValue Decimal

The minimum value allowed for this property.
If an application tries to set the value of this property to a value lower than minValue, the
repository SHALL throw a ConstraintViolation exception.

Ethan Gur-esh
What is this, again?

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 41 of 115

maxValue Decimal
The maximum value allowed for this property.
If an application tries to set the value of this property to a value higher than maxValue, the
repository SHALL throw a ConstraintViolation exception.

2.9.3.5 Attributes specific to String Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“String”, in addition to the common attributes specified above. A repository MAY provide additional
guidance on what values can be accepted. If the following attributes are not present the repository
behavior is undefined and it MAY throw an exception if a runtime constraint is encountered.

maxLength Integer
The maximum length (in characters) allowed for a value of this property.
 If an application attempts to set the value of this property to a string larger than the specified
maximum length, the repository SHALL throw a ConstraintViolation exception.

2.9.3.6 Attributes specific to XML Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“Xml”, in addition to the common attributes specified above. A repository MAY provide additional
guidance on what values can be accepted. If the following attributes are not present the repository
behavior is undefined and it MAY throw an exception if a runtime constraint is encountered.

schemaURI URI
The location of an XML schema to which the value of this property SHALL conform.
 If an application attempts to set the value of this property to an XML value that does NOT conform
to the schema, the repository SHALL throw a ConstraintViolation exception.

2.9.4 CMIS Base Object-Type Definitions
This section specifies the Object-Type Definitions for each of the four CMIS base types (2.3 Document,
2.4 Folder, 2.5 Relationship, 1.1 Policy).

2.9.4.1 Document Object-Type Definition

2.9.4.1.1 Attribute Values
The Document base Object-Type SHALL have the following attribute values.
Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid
value for the attribute type.

• Unless explicitly stated otherwise, all values specified in the list SHALL be followed for the Object-
Type definition.

id

Value: cmis:Document

localName

Value: <repository-specific>

localNamespace

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 42 of 115

Value: <repository-specific>

queryName

Value: cmis:Document

displayName

Value: <repository-specific>

baseTypeId

Value: cmis:Document

parentId

Value: Not set

description

Value: <repository-specific>

creatable

Value: <repository-specific>

fileable

Value:
• If the repository does NOT support the “un-filing” capability:

o TRUE
• If the repository does support the “un-filing” capability:

o <repository-specific>, but SHOULD be TRUE

queryable

Value: SHOULD be TRUE

controllablePolicy

Value: <repository-specific>

includedInSupertypeQuery

Value: TRUE

versionable

Value: <repository-specific>

contentStreamAllowed

Value: <repository-specific>

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 43 of 115

controllableACL

 Value: <repository-specific>

2.9.4.1.2 Property Definitions
The Document base Object-Type SHALL have the following property definitions, and MAY include
additional property definitions. Any attributes not specified for the property definition are repository
specific. The repository MUST have the following property definitions on the Document Type:

cmis:Name Name of the object
Inherited: False
Property Type: String
Cardinality: Single

cmis:ObjectId Id of the object

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:BaseTypeId Id of the base object type for the object

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:ObjectTypeId Id of the object’s type

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:CreatedBy User who created the object.

Required: True
Inherited: False

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 44 of 115

Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:CreationDate DateTime when the object was created.

Required: True
Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:LastModifiedBy User who created the object.

Required: True
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:LastModificationDate DateTime when the object was last modified.

Required: True
Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 45 of 115

cmis:ChangeToken Opaque token used for optimistic locking & concurrency
checking. (see 3.1.5 Change Tokens section)

Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:IsImmutable TRUE if the repository SHALL throw an error at any attempt

to update or delete the object.
Inherited: False
Property Type: Boolean
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:IsLatestVersion See 2.10 Versioning section.

Required: True
Inherited: False
Property Type: Boolean
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:IsMajorVersion See 2.10 Versioning section.

Inherited: False
Property Type: Boolean
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:IsLatestMajorVersion See 2.10 Versioning section.

Inherited: False
Property Type: Boolean
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 46 of 115

cmis:VersionLabel See 2.10 Versioning section.

Required: True
Inherited: False
Property Type: String
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:VersionSeriesId See 2.10 Versioning section.

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:IsVersionSeriesCheckedOut See 2.10 Versioning section.

Required: True
Inherited: False
Property Type: Boolean
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:VersionSeriesCheckedOutBy See 2.10 Versioning section.

Required: False
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:VersionSeriesCheckedOutId See 2.10 Versioning section.

Required: False
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 47 of 115

Choices: Not Applicable
Open Choice: Not Applicable

cmis:CheckinComment See 2.10 Versioning section.

Required: False
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

The following properties MAY be NOT SET if the document does not have a content stream:

cmis:ContentStreamLength Length of the content stream (in bytes).

Required: False. This property MUST be Not Set if the object does not
have a content-stream. It is required if the object has a
content stream.

Inherited: False
Property Type: Integer
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:ContentStreamMimeType MIME type of the Content Stream

Required: False. This property MUST be Not Set if the object does not
have a content-stream. It is required if the object has a
content stream.

Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:ContentStreamFileName MIME type of the Content Stream

Required: False. This property MUST be Not Set if the object does not
have a content-stream. It is required if the object has a
content stream.

Inherited: False
Property Type: String
Cardinality: Single

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 48 of 115

Updateability: Repository Specific
Choices: Repository Specific
Open Choice: Repository Specific

cmis:ContentStreamId Id of the stream

Required: False. This property MUST be Not Set if the object does not
have a content-stream. It is required if the object has a
content stream.

Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

2.9.4.2 Folder Object-Type Definition

2.9.4.2.1 Attribute Values
The Folder base Object-Type SHALL have the following attribute values.
Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid
value for the attribute type.

• Unless explicitly stated otherwise, all values specified in the table SHALL be followed for the
Object-Type definition.

id

Value: cmisFolder

localName

Value: <repository-specific>

localNamespace

Value: <repository-specific>

queryName

 Value: cmis:Folder

displayName

 Value: <repository-specific>

baseTypeId

 Value: cmis:Folder

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 49 of 115

parentId

 Value: Not set

description

 Value: <repository-specific>

creatable

 Value: <repository-specific>

fileable

 Value: TRUE

queryable

 Value: SHOULD be TRUE

controllablePolicy

 Value: <repository-specific>

includedInSupertypeQuery

 Value: TRUE

controllableACL

 Value: <repository-specific>

2.9.4.2.2 Property Definitions
The Folder base Object-Type SHALL have the following property definitions, and MAY include additional
property definitions. Any attributes not specified for the Property Definition are repository specific. The
repository MUST have the following property definitions on the Folder Type:

cmis:Name Name of the object
Inherited: False
Property Type: String
Cardinality: Single

cmis:ObjectId Id of the object

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 50 of 115

Open Choice: Not Applicable

cmis:BaseTypeId Id of the base object type for the object

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:ObjectTypeId Id of the object’s type

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:CreatedBy User who created the object.

Required: True
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:CreationDate DateTime when the object was created.

Required: True
Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 51 of 115

cmis:LastModifiedBy User who created the object.
Required: True
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:LastModificationDate DateTime when the object was last modified.

Required: True
Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:ChangeToken Token used for optimistic locking & concurrency checking.

(see 3.1.5 Change Tokens section)
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:ParentId ID of the parent folder of the folder.

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:PathName Name of the path element for this folder. See 2.4.3 Paths

section.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 52 of 115

Required: True
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:AllowedChildObjectTypeIds Id’s of the set of Object Types that can be created, moved or

filed into this folder.
Required: False
Inherited: False
Property Type: ID
Cardinality: Multi
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

2.9.4.3 Relationship Object-Type Definition

2.9.4.3.1 Attribute Values
The Relationship base Object-Type SHALL have the following attribute values.
Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid
value for the attribute type.

• Unless explicitly stated otherwise, all values specified in the table SHALL be followed for the
Object-Type definition.

id

Value: cmis:Relationship

localName

Value: <repository-specific>

localNamespace

Value: <repository-specific>

queryName

 Value: cmis:Relationship

displayName

 Value: <repository-specific>

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 53 of 115

baseTypeId

 Value: cmis:Relationship

parentId

 Value: Not set

description

 Value: <repository-specific>

creatable

 Value: <repository-specific>

fileable

 Value: FALSE

queryable

 Value: FALSE

includedInSupertypeQuery

 Value: TRUE

controllablePolicy

 Value: <repository-specific>

allowedSourceTypes

 Value: <repository-specific>

allowedTargetTypes

 Value: <repository-specific>

controllableACL

 Value: <repository-specific>

2.9.4.3.2 Property Definitions
The Relationship base Object-Type SHALL have the following property definitions, and MAY include
additional property definitions. Any attributes not specified by the Property Definitions are repository
specific. The repository MUST have the following property definitions on the Folder Type:

cmis:Name Name of the object
Inherited: False
Property Type: String
Cardinality: Single

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 54 of 115

cmis:ObjectId Id of the object
Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:BaseTypeId Id of the base object type for the object

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:ObjectTypeId Id of the object’s type

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:CreatedBy User who created the object.

Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:CreationDate DateTime when the object was created.

Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 55 of 115

Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:LastModifiedBy User who created the object.

Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:LastModificationDate DateTime when the object was last modified.

Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:ChangeToken Opaque token used for optimistic locking & concurrency

checking. (see 3.1.5 Change Tokens section)
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:SourceId ID of the source object of the relationship.

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 56 of 115

Queryable: False
Orderable: False

cmis:TargetId ID of the target object of the relationship.

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: False
Orderable: False

2.9.4.4 Policy Object-Type Definition

2.9.4.4.1 Attribute Values
The Policy base Object-Type SHALL have the following attribute values.
Notes:

• A value of <repository-specific> indicates that the value of the property MAY be set to any valid
value for the attribute type.

• Unless explicitly stated otherwise, all values specified in the table SHALL be followed for the
Object-Type definition.

id

Value: cmis:Policy

localName

Value: <repository-specific>

localNamespace

Value: <repository-specific>

queryName

 Value: cmis: Policy

displayName

 Value: <repository-specific>

baseTypeId

 Value: cmis: Policy

parentId

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 57 of 115

 Value: Not set

description

 Value: <repository-specific>

creatable

 Value: <repository-specific>

fileable

 Value: <repository-specific>

queryable

 Value: <repository-specific>

includedInSupertypeQuery

 Value: TRUE

controllablePolicy

 Value: <repository-specific>

controllableACL

 Value: <repository-specific>

2.9.4.4.2 Property Definitions
The Policy base Object-Type SHALL have the following property definitions, and MAY include additional
property definitions. Any attributes not specified by the Property Definitions are repository specific. The
repository MUST have the following property definitions on the Folder Type:

cmis:Name Name of the object

Inherited: False
Property Type: String
Cardinality: Single

cmis:ObjectId Id of the object

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:BaseTypeId Id of the base object type for the object

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 58 of 115

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:ObjectTypeId Id of the object’s type

Required: True
Inherited: False
Property Type: ID
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:CreatedBy User who created the object.

Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:CreationDate DateTime when the object was created.

Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:LastModifiedBy User who created the object.

Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 59 of 115

Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:LastModificationDate DateTime when the object was last modified.

Inherited: False
Property Type: DateTime
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: True
Orderable: True

cmis:ChangeToken Opaque token used for optimistic locking & concurrency

checking. (see 3.1.5 Change Tokens section)
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable

cmis:PolicyText User-friendly description of the policy

Required: True
Inherited: False
Property Type: String
Cardinality: Single
Updateability: Read Only
Choices: Not Applicable
Open Choice: Not Applicable
Queryable: False
Orderable: False

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 60 of 115

2.10 Versioning
CMIS supports versioning of Document objects. Folder objects, relationship objects, and policy objects
cannot be versioned.
Whether or not a Document object is versionable (i.e. whether or not operations performed on the object
via the Versioning Services SHALL be allowed) is specified by the “versionable” attribute on its Object-
type.
A version of a Document object is an explicit/”deep” copy of the object, preserving its state at a certain
point in time. Each version of a Document object is itself a Document object, i.e. has its own ObjectId,
property values, MAY be acted upon using all CMIS services that act upon Document objects, etc.

2.10.1 Version Series
A version series for a Document object is a transitively closed collection of all Document objects that
have been created from an original Document in the Repository. Each version series has a unique,
system-assigned, and immutable version series ID.

The version series has transitive closure -- that is, if object B is a version of object A, and object C is a
version of object B, then object C is also a version of object A. The objects in a version series can be
conceptually sequenced by their respective LastModificationDate properties.
Additionally, the repository MAY expose a textual VersionLabel that describes to a user the position of
an individual object with respect to the version series. (For example, version 1.0).
Note: A Document object that is NOT versionable will always have a single object in its Version Series. A
versionable Document object MAY have one or more objects in its Version Series.

2.10.2 Latest Version
The version that has the most recent LastModificationDate is called the Latest Version of the series, or
equivalently, the latest version of any Document object in the series.
When the latest version of a version series is deleted, a previous version (if there is one) becomes the
latest version. When the latest major version is deleted, a previous major version (if there is one)
becomes the latest major version.

2.10.2.1 Behavioral constraints on non-Latest Versions
Repositories NEED NOT allow the non-latest versions in a Version Series to be updated, queried, or
searched.

2.10.3 Major Versions
A Document object in a Version Series MAY be designated as a Major Version.
The CMIS specification does not define any semantic/behavioral differences between Major and non-
Major versions in a Version Series. Repositories may enforce/apply additional constraints or semantics for
Major versions, if the effect on CMIS services remains consistent with an allowable behavior of the CMIS
model.
If the Version Series contains one or more Major versions, the one that has the most recent
LastModificationDate is the Latest Major Version of the version series.
(Note that while a Version Series SHALL always have a Latest Version, it NEED NOT have a Latest
Major Version.)
When the latest major version is deleted, a previous major version (if there is one) becomes the latest
major version.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 61 of 115

2.10.4 Services that modify Version Series

2.10.4.1 Checkout
A new version of a Versionable Document object is created when the checkout service is invoked on a
Document object. A repository MAY allow any Document object in a version series to be checked out, or
MAY only allow the Latest Version to be checked out.
 The effects of invoking the checkout service SHALL be as follows:

• A new Document object , referred to herein as the Private Working Copy (PWC), is created.
o The PWC NEED NOT be visible to users who have permissions to view other Document

objects in the Version Series.
o Until it is checked in (using the checkIn service), the PWC SHALL NOT be considered the

LatestVersion or LatestMajorVersion in the Version Series.
o The property values for the PWC SHALL be identical to the properties of the Document

object on which the checkout service was invoked. The content-stream of the PWC MAY be
identical to the content-stream of the Document object on which the checkout service was
invoked, or MAY be “not set”.

After a successful checkout operation is completed, and until such time when the PWC is deleted (via the
cancelCheckOut service) or checked-in (via the checkIn) service, the effects on other Documents in the
Version Series SHALL be as follows:

• The repository SHALL throw an exception if the checkout service is invoked on any Document in
the Version Series. (I.e. there can only be one PWC for a version series at a time.)

• The value of the isVersionSeriesCheckedOut property SHALL be TRUE.
• The value of the IsVersionSeriesCheckedOutBy property MAY be set to a value indicating which

user created the PWC. (The Repository MAY still show the “not set” value for this property.)
• The value of the VersionSeriesCheckedOutId property MAY be set to the ObjectId of the PWC.

(The Repository MAY still show the “not set” value for this property).
• The repository MAY prevent operations that modify or delete the other Documents in the Version

Series.

2.10.4.2 Updates to the Private Working Copy
If the repository supports the optional “PWCUpdateable” capability, then the repository SHALL allow
authorized users to modify the PWC Object using the Object services (e.g. UpdateProperties).
If the repository does NOT support the “PWCUpdateable” capability, then the PWC object can only be
modified as part of the checkIn service call.

2.10.4.3 Discarding Check out
An authorized user MAY discard the check-out using the cancelCheckOut service on any Document in
the Version Series or by using the deleteObject service on the PWC Object. The effects of discarding a
check-out SHALL be as follows:

• The PWC Object SHALL be deleted.
• For all other Documents in the Version Series:

o The value of the isVersionSeriesCheckedOut property SHALL be FALSE.
o The value of the IsVersionSeriesCheckedOutBy property SHALL be “not set”.
o The value of the VersionSeriesCheckedOutId property SHALL be “not set”.
o The repository SHALL allow authorized users to invoke the checkout service.

Ethan Gur-esh
Will need to revisit this once we have ACLs in the spec… maybe PWC visibility should just be expressed via ACLs ?

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 62 of 115

2.10.4.4 Checkin
An authorized user/application MAY “check in” the Private Working Copy object via the checkin service.
The checkin service allows users/applications to provide update property values and a content-stream for
the PWC object.
The effects of the checkin service SHALL be as follows:

• The PWC object SHALL be updated as specified by the inputs to the checkin service. (Note that
for repositories that do NOT support the “PWCUpdateable” property, this is the only way to
update the PWC object.)

• The PWC shall be considered the Latest Version in the Version Series.
• If the inputs to the checkIn service specified that the PWC SHALL be a “major version”, then the

PWC SHALL be considered the Latest Major Version in the Version Series.
• For all Documents in the Version Series:

o The value of the isVersionSeriesCheckedOut property SHALL be FALSE.
o The value of the IsVersionSeriesCheckedOutBy property SHALL be “not set”.
o The value of the VersionSeriesCheckedOutId property SHALL be “not set”.
o The repository SHALL allow authorized users to invoke the checkout service.

Note: The Repository MAY change the ID of the PWC upon completion of the checkin service invocation.
Note: A repository MAY automatically create new versions of Document objects without an explicit
invocation of the checkout/checkin services.

2.10.5 Versioning Properties on Document Objects
All Document objects will have the following read-only property values pertaining to versioning:

cmis:IsLatestVersion Boolean

TRUE if the Document object is the Latest Version in its Version Series. FALSE otherwise.

cmis:IsMajorVersion Boolean

TRUE if the Document object is a Major Version in its Version Series. FALSE otherwise.

cmis:IsLatestMajorVersion Boolean

TRUE if the Document object is the Latest Major Version in its Version Series. FALSE otherwise.

cmis:VersionLabel String

Textual description the position of an individual object with respect to the version series. (For
example, version 1.0).

cmis:VersionSeriesId ID

ID of the Version Series for this Object.

cmis:IsVersionSeriesCheckedOut Boolean

TRUE if there currenly exists a Private Working Copy for this Version Series. FALSE otherwise

cmis:VersionSeriesCheckedOutBy String

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 63 of 115

If IsVersionSeriesCheckedOut is TRUE: then an identifier for the user who created the Private
Working Copy. “Not set” otherwise.

cmis:VersionSeriesCheckedOutId ID

If IsVersionSeriesCheckedOut is TRUE: The Identifier for the Private Working Copy. “Not set”
otherwise.

cmis:CheckinComment String

Textual comment associated with the given version.

Note: Changes made via the Versioning Services that affect the values of these properties SHALL NOT
constitute modifications to the Document objects in the Version Series (e.g. SHALL NOT affect the
cmis:LastModificationDate, etc.)

2.10.6 Object Creation and Initial Versioning State
A repository MAY create new Document objects in a “Private Working Copy” state when they are created
via the createObject service. This state is logically equivalent to having a Version Series that contains
exactly one object (the PWC) and 0 other documents.
The repository MAY also create new Document objects in a “Major Version” state. This state is logically
equivalent to having a Version Series that contains exactly one Major Version and 0 other documents.
The repository MAY also create new Document objects in a “Non-Major Version” state. This state is
logically equivalent to having a Version Series that contains exactly one Non-Major Version and 0 other
documents.

2.10.7 Version Specific/Independent membership in Folders
Repositories MAY treat membership of a Document object in a folder collection as “version-specific” or
“version-independent”.
Repositories SHALL indicate whether they support version-specific membership in a folder via the
“VersionSpecificFiling” optional capability flag.
If the repository is treating folder collection membership as “version-independent”, then:

• Moving or Filing a Document Object into a folder SHALL result in ALL Documents in the Version
Series being moved/filed into the folder.

• The Repository MAY return only the latest-version OR latest major-version Document object in a
version series in the response to Navigation service requests (getChildren, getDescendants), and
NEED NOT return other Document Objects filed in the folder that are in the Version Series.

If the repository is treating folder collection membership as “version-specific”, then moving or Filing a
Document Object into a folder SHALL NOT result in other Documents in the Version Series being
moved/filed.

2.10.8 Version Specific/Independent membership in Relationships
A relationship object MAY have either a version-specific or version-independent binding to its source
and/or target objects. This behavior MAY vary between repositories and between individual relationship
types defined for a Repository.
If a relationship object has a version-independent binding to its source/target object, then:

• The getRelationships service invoked on a Document Object SHALL return the relationship if
Relationship was source/target is set to ANY Document Object in the Version Series.

If a relationship object has a version-specific binding to its source/target object, then:

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 64 of 115

• The getRelationships service invoked on a Document Object SHALL return the relationship if
Relationship was source/target is set to the ID of the Document Object on which the service was
invoked.

2.10.9 Versioning visibility in Query Services
Repositories MAY include non-latest-versions of Document Objects in results to the Discovery Services
(query).
Repositories SHALL indicate whether they support querying for non-latest-versions via the
“AllVersionsSearchable” optional capability flag.
If “AllVersionsSearchable” is TRUE then the Repository SHALL include in the query results ANY
Document Object in the Version Series that matches the query criteria. (subject to other query constraints
such as security.)
If “AllVersionsSearchable” is FALSE then the Repository SHALL include only the latest version or latest
major version of a Version Series in the query results if the latest or latest major version matches the
query criteria. (subject to other query constraints such as security.)
Additionally, repositories MAY include Private Working Copy objects in results in results to the Discovery
Services (query).
Repositories SHALL indicate whether they support querying for Private Working Copy objects via the
“PWCSearchable” optional capability flag.
If “PWCSearchable” is TRUE then the Repository SHALL include in the query results ANY Private
Working Copy Document Objects that matches the query criteria (subject to other query constraints such
as security.)
If “PWCSearchable” is TRUE then the Repository SHALL NOT include in the query results ANY Private
Working Copy Document Objects that match the query criteria (subject to other query constraints such as
security.)

2.11 Query
CMIS provides a type-based query service for discovering objects that match specified criteria, by
defining a read-only projection of the CMIS data model into a Relational View.
Through this relational view, queries may be performed via a simplified SQL SELECT statement. This
query language, called CMIS SQL, is based on a subset of the SQL-92 grammar (ISO/IEC 9075: 1992 –
Database Language SQL), with a few extensions to enhance its filtering capability for the CMIS data
model, such as existential quantification for multi-valued property, full-text search, and folder
membership. Other statements of the SQL language are not adopted by CMIS. The semantics of CMIS
SQL is defined by the SQL-92 standard, plus the extensions, in conjunction with the model mapping
defined by CMIS’s relational view.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 65 of 115

Syntax
SQL-92 subset + Extensions for

• Multi-valued property
• Fulltext search
• Folder membership

Object Type, Type Inheritance,
Object, Property, Content Stream,
Versioning

Table (Object Type, Type Inheritance)
Row (Object)
Column (Property)

Relational View

CMIS Data Model

Semantics
SQL-92 + Extensions
+ Relational View mapping

CMIS SQL

2.11.1 Relational View Projection of the CMIS Data Model
The relational view of a CMIS repository consists of a collection of virtual tables that are defined on top of
the CMIS data model. This relational view is used for query purposes only.

In this relational view a Virtual Table is implicitly defined for each queryable Object-Type defined in the
repository. (Non-queryable Object-Types are NOT exposed through this Relational View.)

In each Virtual Table, a Virtual Column is implicitly defined for each property defined in the Object-Type
Definition AND for all properties defined on ANY ancestor-type of the Object-Type but NOT defined in the
Object-Type definition. Virtual Columns for properties defined on ancestor-types of the Object Type but
NOT defined in the Object-Type definition SHALL contain the SQL NULL value. Virtual Columns for
properties whose value is “not set” SHALL contain the SQL NULL value.

An object type’s queryName attribute is used as the table name for the corresponding virtual table, and a
property’s queryName attribute is used as the column name for the corresponding table column. For this
reason, these attributes MUST conform to the syntax rules for SQL identifiers.

The Virtual Column for a multi-valued property SHALL contain a single list value that includes all values of
the property.

2.11.1.1 Object-Type Hierarchy in the Relational View Projection

The Relational View projection of the CMIS Data Model ensures that the Virtual Table for a particular
Object Type is a complete super-set of the Virtual Table for any and all of its ancestor types.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 66 of 115

Additionally, an Object-Type definition’s “includedInSupertypeQuery” specifies whether objects of that
Object-Type SHALL be included in the Virtual Table for any of its ancestor types. If the
“includedInSupertypeQuery” attribute of the Object-Type is FALSE, then objects of that Object-Type
SHALL NOT be included in the Virtual Table for any of its ancestor types.

Thus the Virtual Table for an Object Type includes a row not only for each Object of that type, but all
Objects that Object-Type AND all Objects of any of that Object Types’ Descendant Types for which the
“includedInSupertypeQuery” attribute is TRUE.

(So, for example:

• If the Invoice Object-Type is a child Object-type of Document and Invoice’s
includeInSupertypeQuery attribute is TRUE, then queries against the “Document” Virtual Table
SHALL include all objects of Type Document OR Invoice.

• Extending the previous example, if PurchaseOrder is a child Object-Type of Invoice, and
PurchaseOrder’s includeInSupertypeQuery attribute is FALSE, then queries against the
“Document” Virtual Table SHALL include all objects of Type Document OR Invoice, but NOT
objects of type PurchaseOrder.)

But since the Virtual Table will include only columns for properties defined in the Object-Type underlying
the Virtual Table, a row that is a query result representing an Object of a Descendant Type can only
include those columns for properties defined on the Object-Type underlying the Virtual Table. (So,
building on the previous example, a result row for a query against the “Document” virtual table can
include only columns for properties defined on the “Document” Object-Type, even if the Object-Type of
the result row defines additional properties.)

B is a subtype of A.
C is a subtype of B. = Inherited property definitions

Objects of
Type A

Objects of
Type B

Objects of
Type C

Search scope
for query on A

Search scope
for query on B

Search scope
for query on C

Relational View

Query Search Scope

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 67 of 115

2.11.1.2 Content Streams

Content-streams are NOT exposed through this relational view. However, a Repository MAY support full-
text indexing of Content Streams (as SHALL be indicated via the Query Repository-optional capability
flag).
If a Repository supports full-text indexing, then queries can be constructed that leverage the full-text index
of content-streams using the CMIS-SQL contains() predicate function (see next section).

2.11.2 CMIS-SQL Definition
This query language, called CMIS SQL, is based on a subset of the SQL-92 grammar. CMIS-specific
language extensions to SQL-92 are called out explicitly.
The basic structure of a CMIS-SQL query is a SQL statement that SHALL include the following clauses:

• SELECT [columns]: This clause identifies the set of columns that will be included in the query
results for each row.

• FROM [Virtual Table Names]: This clause identifies which Virtual Table(s) the query will run
against.

Additionally, a CMIS-SQL query MAY include the following clauses:
• WHERE [conditions]: This clause identifies the constraints that rows SHALL satisfy to be

considered a result for the query.
• ORDER BY [sort specification]: This clause identifies the order in which the result rows SHALL

be sorted in the result row set.

2.11.2.1 SELECT Clause
The SELECT clause SHALL contain exactly one of the following:

• A comma separated list of one or more column names.
o If an explicit column list is provided: A repository SHALL include in its result row set all of the

columns specified in the SELECT clause.
• * : If this token is specified, then the repository SHALL return columns for ALL single-valued

properties defined in the Object-Types whose Virtual Tables are listed in the FROM clause, and
SHOULD also return all multi-valued properties.

All column names SHALL be valid “queryName” values for properties that are defined as “queryable” in
the Object-Type(s) whose Virtual Tables are listed in the FROM clause.

2.11.2.2 FROM Clause
The FROM clause identifies which Virtual Table(s) the query will be run against, as described in the
previous section.

The FROM clause SHALL contain only the queryNames of Object-Types whose queryable attribute value
is TRUE.

2.11.2.2.1 Join Support in CMIS SQL
CMIS repositories MAY support the use of SQL JOIN queries, and SHALL indicate their support level
using the Optional Capability attribute “capabilityJoin”.

• If the Repository’s value for the capabilityJoin attribute is none, then no JOIN clauses can be
used in queries.

• If the Repository’s value for the capabilityJoin attribute is inneronly, then only inner JOIN clauses
can be used in queries.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 68 of 115

• If the Repository’s value for the capabilityJoin attribute is innerandouter, then inner and/or outer
JOIN clauses can be used in queries.

Only explicit joins using the “JOIN” keyword is supported. Queries SHALL NOT include implicit joins as
part of the WHERE clause of a CMIS-SQL query.
CMIS queries SHALL only support join operations using the “equality” predicate on single-valued
properties.

2.11.2.3 WHERE Clause
This clause identifies the constraints that rows SHALL satisfy to be considered a result for the query.
All column names SHALL be valid “queryName” or their aliased values for properties that are defined as
“queryable” in the Object-Type(s) whose Virtual Tables are listed in the FROM clause.
Properties are defined to not support a “null” value, therefore the <null predicate> SHALL be interpreted
as testing the not set or set state of the specified property.

2.11.2.3.1 Comparisons permitted in the WHERE clause.

SQL’s simple comparison predicate, IN predicate, and LIKE predicate are supported, for single-valued
properties only (so that SQL’s semantics is preserved). Boolean conjunction (AND), disjunction (OR), and
negation (NOT) of predicates are also supported.

Repositories SHOULD support the comparisons for the property types as described in the list below.
Repositories MAY support additional comparisons and operators. Any additional operators not specified
are repository-specific:

String
Supported Operators: =, <>, [NOT] LIKE
Supported Literal: String

String

Supported Operators: [NOT] IN
Supported Literal: List of Strings

Decimal

Supported Operators: =, <>, <, <=, >, >=
Supported Literal: Decimal

Decimal

Supported Operators: [NOT] IN
Supported Literal: List of Decimal

Integer

Supported Operators: =, <>, <, <=, >, >=
Supported Literal: Integer

Integer

Supported Operators: [NOT] IN

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 69 of 115

Supported Literal: List of Integer

Boolean
Supported Operators: =
Supported Literal: <boolean literal>

DateTime

Supported Operators: =, <>, <*, <=*, >*, >=*
Supported Literal: <datetime literal>
* - comparison is based on chronological before or after date.

DateTime

Supported Operators: [NOT] IN
Supported Literal: List of <datetime literal>’s

ID

Supported Operators: =, <>
Supported Literal: ID (compared as an opaque String)

ID

Supported Operators: [NOT] IN
Supported Literal: List of IDs (compared as an opaque String)

URI

Supported Operators: =, <>
Supported Literal: URI (compared as an opaque String)

URI

Supported Operators: [NOT] IN
Supported Literal: List of URIs (compared as an opaque String)

URI

Supported Operators: [NOT] LIKE
Supported Literal: URI (compared as an opaque String)

Operations on the SCORE() output MUST be treated the same as decimal operations.

When using properties in a join statement, comparison MUST be allowed on properties of the same types
as defined by the table above. Repositories MAY extend this behavior.

The ANY operation argument MUST be one of the properties found in the table above which supports
equality operations

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 70 of 115

2.11.2.3.2 Multi-valued property support (CMIS-SQL Extension)
CMIS-SQL includes several new non-terminals to expose semantics for querying multi-valued properties,
in a way that does not alter the semantics of existing SQL-92 production rules.

2.11.2.3.2.1 Multi-valued column references
BNF grammar structure: <Multi-valued-column reference>, <multi-valued-column name>

• These are non-terminals defined for multi-valued properties whereas SQL-92’s <column
reference> and <column name> are retained for single-valued properties only. This is to preserve
the single-value semantics of a regular “column” in the SQL-92 grammar.

2.11.2.3.2.2 <Quantified comparison predicate>
The SQL-92 production rule for <quantified comparison predicate> is extended to accept a multi-valued
property in place of a <table subquery>. This operation is restricted to equality tests only.

<Table subquery> is not supported in CMIS-SQL.

The SQL-92 <quantifier> is restricted to ANY only.

The SQL-92 <row value constructor> is restricted to a literal only.

Example:
SELECT Y.CLAIM_NUM, X.PROPERTY_ADDRESS, Y.DAMAGE_ESTIMATES
FROM POLICY AS X JOIN CLAIMS AS Y ON (X.POLICY_NUM = Y.POLICY_NUM)
WHERE (100000 = ANY Y.DAMAGE_ESTIMATES)

(Note: DAMAGE_ESTIMATES is a multi-valued Integer property.)

2.11.2.3.2.3 IN/ANY Predicate
BNF grammar structure: <Quantified in predicate>

CMIS-SQL exposes a new IN predicate defined for a multi-valued property. It is modeled after the SQL-
92 IN predicate, but since the entire predicate is different semantically, it has its own production rule in
the BNF grammar below.

The quantifier is restricted to ANY. The predicate SHALL be evaluated to TRUE if at least one of the
property’s values is (or, is not, if NOT is specified) among the given list of literal values. Otherwise the
predicate is evaluated to FALSE.

The ANY operation argument MUST be one of the properties found in the comparison list above which
supports IN operations.

Example:

SELECT *
FROM CAR_REVIEW
WHERE (MAKE = “buick”) OR
 (ANY FEATURES IN (“NAVIGATION SYSTEM”, “SATELLITE RADIO”, ”MP3”))

(Note: FEATURES is a multi-valued String property.)

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 71 of 115

2.11.2.3.3 CONTAINS() predicate function (CMIS-SQL Extension)

BNF grammar structure:: CONTAINS ([<qualifier> ,] <text search expression>)

Usage: This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a Repository (See previous section.)
Inputs:

<Qualifier>
The value of this optional parameter SHALL be the name of one of the Virtual Tables listed in the
FROM clause for the query.
• If specified, then the predicate SHOULD only be applied to objects in the specified Virtual

Table, but a repository MAY ignore the value of the parameter.
• If not specified, applies to the single virtual table. If the query is a join, a server SHOULD

throw an exception if the qualifier is not specified.

<Text Search Expression>
The <text search expression> parameter SHALL be a character string literal in quotes, specifying
the full-text search criteria.

The Text Search Expression may be a set of terms or phrases with an optional ‘-‘ to signal
negation. A phrase is defined as a word or group of words. A group of words must be
surrounded by quotes to be considered a single phrase.

Terms separated by whitespace are AND’ed together.
Terms separated by “OR” are OR’ed together
Implicit “AND” has higher precedence than “OR”
Within a word or phrase, each double quote must also be escaped by a preceding backslash “\”

Return value:
The predicate returns a Boolean value.
The predicate SHALL return TRUE if the object is considered by the repository as “relevant” with
respect to the given <text search expression> parameter.
The predicate SHALL return FALSE if the object is considered by the repository as not “relevant”
with respect to the given <text search expression> parameter.

Constraints:
At most one CONTAINS() function SHALL be included in a single query statement. The
repository MUST throw an exception if more than one CONTAINS() function is found.

The return value of the CONTAINS() function MAY only be included conjunctively (ANDed) with the
aggregate of all other predicates, if there is any, in the WHERE clause.

2.11.2.3.4 SCORE() predicate function
BNF grammar structure: SCORE ()

Usage: This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a Repository (See previous section.)

Inputs: No inputs SHALL be provided for this predicate function.
Return value:

The SCORE() predicate function returns a decimal value in the interval [0,1] .

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 72 of 115

A repository SHALL return the value 0 if the object is considered by the repository as having
absolutely no relevance with respect to the CONTAINS() function specified in the query.
A repository SHALL return the value 1 if the object is considered by the repository as having
absolutely complete relevance with respect to the CONTAINS() function specified in the query.
A repository SHALL return some value in the interval [0,1] based on the degree of relevancy the
repository considers the object to have with respect to the CONTAINS() function specified in the
query.

Constraints:
The SCORE() function SHALL only be used in queries that also include a CONTAINS() predicate
function
The SCORE() function SHALL only be used in the SELECT clause of a query. It SHALL NOT be
used in the WHERE clause or in the ORDER BY clauses.
An alias column name defined for the SCORE() function call in the SELECT clause (i.e.,
"SELECT SCORE() AS column_name …") may be used in the ORDER BY clause.
If SCORE() is included in the SELECT clause and an alias column name is not provided, then a
default column name of SEARCH_SCORE is used for the query output.

2.11.2.3.5 IN_FOLDER() predicate function

BNF grammar structure: IN_FOLDER([<qualifier>,] <folder id>)

Usage: This is a predicate function that tests whether or not a candidate object is a child-object of the
folder object identified by the given <folder id>..
Inputs:

<qualifier>
The value of this optional parameter SHALL be the name of one of the Virtual Tables listed in the
FROM clause for the query.
• If specified, then the predicate SHOULD only be applied to objects in the specified Virtual

Table, but a repository MAY ignore the value of the parameter.
• If not specified, applies to the single virtual table. If the query is a join, a server SHOULD

throw an exception if the qualifier is not specified.

<folder id>

The value of this parameter SHALL be the ID of a folder object in the repository.
Return value:

The predicate function SHALL return TRUE if the object is a child-object of the folder specified by
<folder id>.
The predicate function SHALL return FALSE if the object is a NOT a child-object of the folder
specified by <folder id>.

2.11.2.3.6 IN_TREE() predicate function

BNF grammar structure: IN_TREE([<qualifier>,] <folder id>)

Usage: This is a predicate function that tests whether or not a candidate object is a descendant-object of
the folder object identified by the given <folder id>.
Inputs:

<qualifier>

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 73 of 115

The value of this optional parameter SHALL be the name of one of the Virtual Tables listed in the
FROM clause for the query.
• If specified, then the predicate SHOULD only be applied to objects in the specified Virtual

Table, but a repository MAY ignore the value of the parameter.
• If not specified, applies to the single virtual table. If the query is a join, a server SHOULD

throw an exception if the qualifier is not specified.

<folder id>

The value of this parameter SHALL be the ID of a folder object in the repository.
Return value:

The predicate function SHALL return TRUE if the object is a descendant-object of the folder
specified by <folder id>.
The predicate function SHALL return FALSE if the object is a NOT a descendant -object of the
folder specified by <folder id>.

2.11.2.4 ORDER BY Clause
This clause SHALL contain a comma separated list of one or more column names.
All column names referenced in this clause SHALL be valid “queryName” or their aliased values for
properties defined as orderable in the Object Type(s) whose Virtual Tables are listed in the FROM clause.
Collation rules for the ORDER BY clause are repository specific.

2.11.2.5 BNF Grammar
This BNF grammar is a “subset” of the SQL-92 grammar (ISO/IEC 9075: 1992 – Database Language
SQL), except for the production alternatives that are shown in red bold italic face. Specifically, except for
these extensions, the following production rules are derived from the SQL-92 grammar. Therefore, all the
clauses and statements generated by this grammar without the red tokens are valid SQL-92 clauses and
statements. The non-terminals used in this grammar are also borrowed from the SQL-92 grammar without
altering their semantics. Accordingly, the non-terminal <column name> is used for single-valued
properties only so that the semantics of SQL can be preserved and borrowed. This approach not only
facilitates comparison of the two query languages, and simplifies the translation of a CMIS query to a
SQL query for a RDBMS-based implementation, but also allows future expansion of CMIS SQL to cover a
larger subset of SQL with minimum conflict. The CMIS extensions are introduced primarily to support
multi-valued properties and full-text search, and to test folder membership. Multi-valued properties are
handled separately from single-valued properties, using separate non-terminals and separate production
rules to prevent the extensions from corrupting SQL-92 semantics.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 74 of 115

<CMIS 1.0 query statement> ::= <simple table> [<order by clause>]
<simple table> ::= SELECT <select list> <from clause> [<where clause>]
<select list> ::= “*”

| <select sublist> [{ “,” <select sublist> }…]
<select sublist> ::= <value expression> [[AS] <column name>]

| <qualifier> “.*”
| <multi-valued-column reference>

<value expression> ::= <column reference> | <numeric value function>
<column reference> ::= [<qualifier> “.”] <column name>
<multi-valued-column reference> ::= [<qualifier> “.”] <multi-valued-column name>
<numeric value function> ::= SCORE()
<qualifier> ::= <table name> | <correlation name>
<from clause> ::= FROM <table reference>
<table reference> ::= <table name> [[AS] <correlation name>]
 | <joined table>
<joined table> ::= “(“ <joined table> “)”
 | <table reference> [<join type>] JOIN <table reference> [<join specification>]
<join type> ::= INNER | LEFT [OUTER]
<join specification> ::= ON (<column reference> "=" <column reference>)
<where clause> ::= WHERE <search condition>
<search condition> ::= <boolean term> | <search condition> OR <boolean term>
<boolean term> ::= <boolean factor> | <boolean term> AND <boolean factor>
<boolean factor> ::= [NOT] <boolean test>
<boolean test> ::= <predicate> | “(“ <search condition> “)”
<predicate> ::= <comparison predicate> | <in predicate> | <like predicate> | <null predicate>

| <quantified comparison predicate> | <quantified in predicate>
| <text search predicate> | <folder predicate>

<comparison predicate> ::= <value expression> <comp op> <literal>
<comp op> ::= “=” | “<>” | “<” | “>” | “<=” | “>=”
<literal> ::= <signed numeric literal> | <character string literal> | <datetime literal> | <boolean literal>
<in predicate> ::= <column reference> [NOT] IN “(“ <in value list> “)”
<in value list> ::= <literal> { “,” <literal> }…
<like predicate> ::= <column reference> [NOT] LIKE <character string literal>
<null predicate> ::= { <column reference> | <multi-valued-column reference> } IS [NOT] NULL
<quantified comparison predicate> ::= <literal> “=” ANY <multi-valued-column reference>
<quantified in predicate> ::= ANY <multi-valued-column reference> [NOT] IN “(“ <in value list> “)”
<text search predicate> ::= CONTAINS “(“ [<qualifier> “,”] ‘”’<text search expression> ‘”’ “)”
<folder predicate> ::= { IN_FOLDER | IN_TREE } “(“ [<qualifier> “,”] <folder id> “)”
<order by clause> ::= ORDER BY <sort specification> [{ “,” <sort specification> }…]
<sort specification> ::= <column name> [ASC | DESC]
<correlation name> ::= <identifier>
<table name> ::= <identifier> !! This MUST be the name of an object type.
<column name> ::= <identifier> !! This MUST be the name of a single-valued property,
 or an alias for a scalar output value.
<multi-valued-column name> ::= <identifier> !! This MUST be the name of a multi-valued property.
<folder id> ::= <character string literal> !! This MUST be the object identity of a folder object.
<identifier> ::= !! As defined by SQL-92 grammar.
<signed numeric literal> ::= !! As defined by SQL-92 grammar.
<character string literal> ::= !! As defined by SQL-92 grammar.

!! This is full-text search criteria.
<text search expression> ::= <disjunct> {<space> OR <space> <disjunct>}
<disjunct> ::= <term> {<space> <term>}

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 75 of 115

<term> ::= ['-'] <simple term>
<simple term> ::= <word> | <phrase>
<word> ::= <non space char> {<non space char>}
<phrase> ::= <quote> <word> {<space> <word>} <quote>

<space> ::= <space char> {<space char>}
<non space char> ::= <char> - <space char> /* Any Char except SpaceChar */
<space char> ::= ' '
<char> ::= /* Any character */

<datetime literal> ::= TIMESTAMP <quote> <datetime string> <quote>
<datetime string> ::= YYYY-MM-DDThh:mm:ss.sss[Z | +hh:mm | -hh:mm]
<boolean literal> ::= TRUE | FALSE | true | false
<quote> ::= ‘”’ | “’”

2.11.3 Escaping
Repositories MUST support the escaping of characters using a backslash (\) in the query statement. The
backslash character (\) will be used to escape characters within quoted strings in the query as follows:

• \" will represent a double-quote (") character
• \ \ will represent a backslash (\) character
• Within a LIKE string, \% and _ will represent the literal characters % and _, respectively.
• All other instances of a \ are errors.

2.11.4 Exceptions
When a client submits a query that is inappropriate, either because of incorrect comparisons that are not
allowed or by specifying query functionality that is not supported by the repository, the repository MUST
throw an exception.

If the repository does not support functionality specified by the query statement, the repository MUST
throw a notSupported exception.

2.12 Change Log
CMIS provides a “change log” mechanism to allow applications to easily discover the set of changes that
have occurred to objects stored in the repository since a previous point in time. This change log can then
be used by applications such as search services that maintain an external index of the repository to
efficiently determine how to synchronize their index to the current state of the repository (rather than
having to query for all objects currently in the repository).
Entries recorded in the change log are referred to below as “change events”.
Note that change events in the change log SHALL be returned in ascending order from the time when the
change event occurred.

2.12.1 Completeness of the Change Log
The Change Log mechanism exposed by a repository MAY be able to return an entry for every change
ever made to content in the repository, or may only be able to return an entry for all changes made since
a particular point in time. This “completeness” level of the change log is indicated via the optional
changesIncomplete capability.
However, repositories SHALL ensure that if an application requests the entire contents of the repository’s
change log, that the contents of the change log includes ALL changes made to any object in the

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 76 of 115

repository after the first change listed in the change log. (I.e. repositories MAY truncate events from the
change log on a “first-in first-out” basis, but not in any other order.)

A Repository MAY record events such as filing/unfiling/moving of Documents as change events on the
Documents, their parent Folder(s), or both the Documents and the parent Folders.

2.12.2 Change Log Token
The primary index into the change log of a repository is the “change log token”. The change log token is
an opaque string that uniquely identifies a particular change in the change log.

2.12.2.1 “Latest Change Token” repository information
Repositories that support the changeToken event SHALL expose the latest change token (i.e. the change
token corresponding to the most recent change to any object in the repository) as a property returned by
the getRepositoryInfo service.
This will enable applications to begin “subscribing” to the change log for a repository by discovering what
change log token they should use on a going-forward basis to discover change events to the repository.

2.12.3 Change Event
A change event represents a single action that occurred to an object in the repository that affected the
persisted state of the object.
Minimally, a Repository SHALL expose the following information for each change object:

• ID ObjectId: The ObjectId of the object to which the change occurred
• Enum ChangeType: An enumeration that indicates the type of the change. Valid values are:

o created: The object was created.
o updated: The object was updated.
o deleted: The object was deleted
o security: The access control or security policy for the object were changed.

• <Properties> properties: Additionally, for events of changeType “updated”, the repository MAY
optionally include the new values of properties on the object (if any).

Repositories SHALL indicate whether they include properties for “updated” change events via the optional
enumCapabilityChanges capability.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 77 of 115

3 Services
Part I of the CMIS specification defines a set of services that are described in a protocol/binding-agnostic
fashion.
Every protocol binding of the CMIS specification SHALL implement all of the methods described in this
section. However, the details of how each service & method is implemented will be described in those
protocol binding specifications.

3.1 Common Service Elements
The following elements are common across many of the CMIS services.

3.1.1 Property Filters
All of the methods that allow for the retrieval of properties for CMIS Objects have a “Property Filter” as an
optional parameter, which allows the caller to specify a subset of properties for Objects that SHALL be
returned by the repository in the output of the method.
Valid values for this parameter are:

• Not set: The set of properties to be returned SHALL be determined by the repository.
• “[queryName1], [queryName2], …”: The properties explicitly listed SHALL be returned.

o Note: The [queryName] tokens in the above expression SHALL be valid “queryName” values
as defined in the Object-types for the Objects whose properties are being returned.

• * : All properties SHALL be returned for all objects.
Repositories SHOULD return only the properties specified in the property filter.

3.1.2 Paging
All of the methods that allow for the retrieval of a collection of CMIS objects support paging of their result
sets except where explicitly stated otherwise. The following pattern is used:
Input Parameters:

• (optional) Integer maxItems: This is the maximum number of items that the repository SHALL
return in its response. Default is repository-specific.

• (optional) Integer skipCount: This is the number of potential results that the repository SHALL
skip/page over before returning any results. Defaults to 0.

Output Parameters:
• Boolean hasMoreItems: TRUE if the Repository contains additional items in the result set of

the method that were not returned based on the values of the input parameters. This implies that
the result set has more pages after the response. FALSE otherwise.

If the caller of a method does not specify a value for maxItems, then the Repository MAY select an
appropriate number of items to return, and SHALL use the hasMoreItems output parameter to indicate if
any additional results were not returned.

3.1.3 Allowable Actions
CMIS provides a service method (getAllowableActions) that allows a caller to discover the set of actions
that can currently be performed on a particular object.
The set of allowable actions on an object MAY reflect not only the behavior allowed by the CMIS domain
model, but also constraints imposed by the repository or any management policy in effect on the item

Ryan McVeigh
Such as getDescendants, etc.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 78 of 115

(such as locking, access control, litigation hold, or other lifecycle constraints.) The modeling/discovery of
all management policies is outside the scope of CMIS.
Many of the methods that allow for the retrieval of a collection of CMIS objects support also retrieving the
set of allowable actions for each object, via the following pattern:
Input Parameters:

• Boolean includeAllowableActions: If TRUE, then the Repository SHALL return the
available actions for each object in the result set. Defaults to FALSE.

Output Parameters:
• <Array> AllowableActions: A collection listing, for each object, the set of allowable actions.

See 2.8.5.2 AllowableActions Mapping section.

3.1.4 Include Relationships
Several CMIS services have the ability to return relationships as part of the service response. A common
pattern describing the input is employed as follows:

Enum includeRelationships: Value indicating what relationships in which the objects returned
participate SHALL be returned, if any. Values are:

none: No relationships SHALL be returned.
source: Only relationships in which the objects returned are the source SHALL be returned.
target: Only relationships in which the objects returned are the target SHALL be returned.
both: Relationships in which the objects returned are the source or the target SHALL be
returned.

3.1.5 Change Tokens
The CMIS base object type definitions include an opaque string “ChangeToken” property that a
Repository MAY use for optimistic locking and/or concurrency checking to ensure that user updates do
not conflict.
If a Repository provides values for the ChangeToken property for an Object, then all invocations of the
“update” methods on that object (updateProperties, setContentStream, deleteContentStream) SHALL
provide the value of the changeToken property as an input parameter, and the Repository SHALL throw
an updateConflictException if the value specified for the changeToken does NOT match the
changeToken value for the object being updated.

3.1.6 Exceptions
The following sections list the complete set of exceptions that MAY be returned by a repository in
response to a CMIS service method call.

3.1.6.1 General Exceptions
The following exceptions MAY be returned by a repository in response to ANY CMIS service method call.
The “Cause” field indicates the circumstances under which a repository SHOULD return a particular
exception.

invalidArgument

Cause: One or more of the input parameters to the service method is missing or invalid.

objectNotFound

 Cause: The service call has specified an object that does not exist in the Repository.

Ryan McVeigh
Moved the allowable actions description up to the Access Control discussion in 2.7 since we duplicated this information there.

Ethan Gur-esh
Filed spec bug – currently only updateProperties requires the changeToken http://tools.oasis-open.org/issues/browse/CMIS-118

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 79 of 115

notSupported

Cause: The service method invoked requires an optional capability not supported by the
repository.

permissionDenied

Cause: The caller of the service method does not have sufficient permissions to perform the
operation.

runtime

Cause: Any other cause not expressible by another CMIS exception.

3.1.6.2 Specific Exceptions
The following exceptions MAY be returned by a repositiory in response to one or more CMIS service
methods calls.
For each exception, the general intent is listed as well as a list of the methods which MAY cause the
exception to be thrown.

constraint

Intent: The operation violates a Repository- or Object-level constraint defined in the CMIS
domain model.

Methods:
• Repository Services:

o getObjectParents
• Object Services:

o createDocument
o createFolder
o createRelationship
o createPolicy
o updateProperties
o moveObject
o deleteObject
o setContentStream
o deleteContentStream

• Multi-filing Services:
o addObjectToFolder

• Versioning Services:
o checkOut
o cancelCheckOut
o checkIn

• Policy Services:
o applyPolicy
o removePolicy

• Change Log Services:

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 80 of 115

o getContentChanges

contentAlreadyExists

Intent: The operation attempts to set the content stream for a Document that already has a
content stream without explicitly specifying the “overwrite” parmeter.

Methods:
• Object Services:

o setContentStream

filterNotValid

Intent: The property filter input to the operation is not valid.
Methods:

• Repository Services:
o getDescendants
o getChildren
o getFolderParent
o getObjectParents
o getCheckedOutDocs

• Object Services:
o getProperties
o getRenditions

• Versioning Services:
o getPropertiesOfLatestVersion
o getAllVersions

• Policy Services:
o getAppliedPolicies

folderNotValid

Intent: The operation is attempting to create an object in an “unfiled” state in a repository
that does not support the “Unfiling” optional capability.

Methods:
• Object Services:

o createDocument
• Multi-filing Services:

o removeObjectFromFolder

storage

Intent: The repository is not able to store the object that the user is creating/updating due to
an internal storage problem.

Methods:
• Object Services:

o createDocument

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 81 of 115

o createFolder
o createRelationship
o createPolicy
o updateProperties
o moveObject
o setContentStream
o deleteContentStream

• Versioning Services:
o checkOut
o checkIn

streamNotSupported

Intent: The operation is attempting to get or set a contentStream for a Document whose
Object Type specifies that a content stream is not allowed for Document’s of that
type.

Methods:
• Object Services:

o createDocument
o getContentStream
o setContentStream

• Versioning Services:
o checkIn

updateConflict

Intent: The operation is attempting to update an object that is no longer current (as
determined by the repository).

Methods:
• Object Services:

o updateProperties
o moveObject
o deleteObject
o deleteTree
o setContentStream
o deleteContentStream

• Versioning Services:
o checkOut
o cancelCheckOut
o checkIn

versioning

Intent: The operation is attempting to perform an action on a non-current version of a
Document that cannot be performed on a non-current version.

Methods:

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 82 of 115

• Object Services:
o updateProperties
o moveObject
o setContentStream
o deleteContentStream

• Versioning Services:
o checkOut
o cancelCheckOut
o checkIn

3.1.7 Rendition Filter
CMIS provides a service method (getRenditions) that allows a caller to discover the associated
Renditions of a particular Document / Folder. Other CMIS (read) services allow for the inclusion of
Renditions in their responses.

The Rendition Filter pattern is defined as follows:

<renditionInclusion> ::= <none> | <wildcard> | <termlist>

<termlist> ::= <term> | <term> ',' <termlist>

<term> ::= <kind> | <mimetype>

<mimetype> ::= <type> '/' <subtype>

<type> ::= <text>

<subtype> ::= <text> | <wildcard>

<text> ::= /* any char except whitespace */

<wildcard> ::= '*'

<none> ::= 'CMIS.None'

An inclusion pattern allows:

• Wildcard : include all associated Renditions
• Comma-separated list of Rendition kinds or mimetypes : include only those Renditions

that match one of the specified kinds or mimetypes
• CMIS.None : exclude all associated Renditions (typically the default value)

Examples:

• * (include all Renditions)
• CMIS.Thumbnail (include only Thumbnails)

• Image/* (include all image Renditions)
• application/pdf, application/x-shockwave-flash (include web ready Renditions)
• CMIS.None (exclude all Renditions)

3.2 Repository Services
The Repository Services (getRepositories, getRepositoryInfo, getTypes, getTypeDefinition) are used to
discover information about the repository, including information about the repository, the object-types
defined for the repository, and other “related” CMIS repositories.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 83 of 115

3.2.1 getRepositories
Description: Returns a list of CMIS repositories available from this CMIS service endpoint.

3.2.1.1 Inputs
None.

3.2.1.2 Outputs
A list of repository information, with (at least) the following information for each entry:

• ID repositoryId: The identifier for the Repository.
• String repositoryName: A display name for the Repository.

The cmisRepositoryEntryType schema describes the output of this service.

3.2.1.3 Exceptions Thrown & Conditions
3.1.6.1 General Exceptions

3.2.2 getRepositoryInfo
Description: Returns information about the CMIS repository, the optional capabilities it supports and its
Access Control information if applicable. .

3.2.2.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.

3.2.2.2 Outputs
• ID repositoryId: The identifier for the Repository.

o Note: This SHALL be the same identifier as the input to the method.
• String repositoryName: A display name for the Repository.

• String repositoryRelationship: A string that MAY describe how this repository relates to
other repositories. (See “2.1.2 Related Repositories” section.)

• String repositoryDescription: A display description for the Repository.

• String vendorName: A display name for the vendor of the Repository’s underlying application.

• String productName: A display name for the Repository’s underlying application.

• String productVersion: A display name for the version number of the Repository’s
underlying application.

• ID rootFolderId: The ID of the Root Folder Object for the Repository.

• <List of capabilities>: The set of values for the repository-optional capabilities specified in
section 2.1.1

• String latestChangeLogToken: The change log token corresponding to the most recent
change event for any object in the repository.

• String cmisVersionSupported:A string that indicates what version of the CMIS specification
this repository supports as specified in 2.1.3 Implementation Information.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 84 of 115

• URI thinClientURI: A optional repository-specific URI pointing to the repository’s web
interface.

• Boolean changesIncomplete: Indicates whether or not the repository’s change log can return all
changes ever made to any object in the repository or only changes made after a particular point in
time. Applicable when the repository’s optional capability capabilityChanges is not none.

o If FALSE, then the change log can return all changes ever made to every object.
o If TRUE, then the change log includes all changes made since a particular point in time,

but not all changes ever made.
• Enum supportedPermissions specifies which types of permissions are supported.

o basic: indicates that the CMIS Basic permissions are supported.
o repository: Indicates that repository specific permissions are supported.
o both: indicates that both CMIS basic permissions and repository specific permissions are

supported.
• <Array> Enum ACLPropagation: The list of allowed values for applyACL, which control how

non-direct ACEs are handled by the repository:
o objectonly: indicates that the repository is able to apply ACEs without changing the

ACLs of other objects – i.e. ACEs are applied, potentially “breaking” the “sharing”
dependency for non-direct ACEs.

o propagate: indicates that the repository is able to apply ACEs to a given object and
propagate this change to all “inheriting” objects – i.e. ACEs are applied with the
(intended) side effect to “inheriting” objects (objects that “share” the ACL with the given
object).

o repositorydetermined: indicates that the repository uses its own mechanisms to
handle non-direct ACEs when applying ACLs.

• <Array> Permission repositoryPermissions: The list of repository-specific permissions the
repository supports for managing ACEs (see Access Control Lists).

• <Array> PermissionMapping mappings: The list of mappings for the CMIS Basic permissions
to allowable actions (see Access Control Lists).

• XML repositorySpecificInformation: MAY be used by the Repository to return
additional XML.

The cmisRepositoryInfoType schema describes the markup that will be included in all CMIS protocol
bindings to implement this service.

3.2.2.3 Exceptions Thrown & Conditions
3.1.6.1 General Exceptions

3.2.3 getTypeChildren
Description: Returns the list of Object-Types defined for the Repository under the specified Type.

3.2.3.1 Inputs
Required:

• string repositoryId: The identifier for the Repository.
Optional:

• string typeId: The typeId of an Object-Type specified in the Repository.
o If specified, then the Repository SHALL return only the specified Object-Type AND all of

its child types.

D039877
Should this become optional? Al suggested to leave it as required, since it should not be too difficult for a repository to generate the mapping since it will be pretty much static.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 85 of 115

o If not specified, then the Repository SHALL return all Base Object-Types.
• Boolean includePropertyDefinitions: If TRUE, then the Repository SHALL return the property

definitions for each Object-Type returned.
o If False (default), the Repository SHALL return only the attributes for each Object-Type.

• Integer maxItems: See 3.1.2 Paging section.
• Integer skipCount: See 3.1.2 Paging section.

3.2.3.2 Outputs
• <Array> Object-Types: The list of Object-Types defined for the Repository.
• Boolean hasMoreItems: See 3.1.2 Paging section.

3.2.3.3 Exceptions Thrown & Conditions
3.1.6.1 General Exceptions

3.2.4 getTypeDescendants
Description: Returns the set of descendant Object-Types defined for the Repository under the specified
Type.
Notes:

• This method does NOT support paging as defined in the 3.1.2 Paging section.
• The order in which results are returned SHALL be determined by the repository.

3.2.4.1 Inputs
Required:

• string repositoryId: The identifier for the Repository.
Optional:

• string typeId: The typeId of an Object-Type specified in the Repository.
o If specified, then the Repository SHALL return only the specified Object-Type AND all of

its descendant types.
o If not specified, then the Repository SHALL return all types.

• Integer depth: The number of levels of depth in the type hierarchy from which to return results.
Valid values are:

o 1 (default): Return only types that are children of the type.
o <Integer value greater than 1>: Return only types that are children of the type and

descendants up to <value> levels deep.
o -1: Return ALL descendant types at all depth levels in the CMIS hierarchy.

• Boolean includePropertyDefinitions: If TRUE, then the Repository SHALL return the property
definitions for each Object-Type returned.

o If False (default), the Repository SHALL return only the attributes for each Object-Type.

3.2.4.2 Outputs
• <Array> Object-Types: The list of Object-Types defined for the Repository.

3.2.4.3 Exceptions Thrown & Conditions
3.1.6.1 General Exceptions

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 86 of 115

3.2.5 getTypeDefinition
Description: Gets the definition of the specified Object-Type.Inputs
Required:

• string repositoryId: The identifier for the Repository.
• string typeId: The typeId of an Object-Type specified in the Repository.

3.2.5.1 Outputs
• Object Type including all property definitions.

3.2.5.2 Exceptions Thrown & Conditions
3.1.6.1 General Exceptions

3.3 Navigation Services
The Navigation Services (getDescendants, getChildren, getFolderParent, getObjectParents,
getCheckedoutDocs), are used to traverse the folder hierarchy in a CMIS Repository, and to locate
Documents that are checked out.

3.3.1 getFolderTree
Description: Gets the set of descendant folder objects contained in the specified folder.

Notes:

• This method does NOT support paging as defined in the 3.1.2 Paging section.
• The order in which results are returned SHALL be determined by the repository.

3.3.1.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier for the folder.

Optional:
• Integer depth: The number of levels of depth in the folder hierarchy from which to return results.

Valid values are:
o 1 (default): Return only folders that are children of the folder and their child folders.
o <Integer value greater than 1>: Return only folders that are children of the folder and

descendant folders up to <value> levels deep.
o -1: Return ALL descendant folders at all depth levels in the CMIS hierarchy.

• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.
• Enum includeRelationships: See “3.1.4 Include Relationships” section.
• String filter: See “3.1.1 Property Filters” section.

3.3.1.2 Outputs
• <Array> Objects: A list of the descendant folders for the specified folder.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 87 of 115

3.3.1.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions_General_Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.3.2 getDescendants
Description: Gets the set of descendant objects contained in the specified folder or any of its child-
folders.
Notes:

• This method does NOT support paging as defined in the 3.1.2 Paging section.
• The order in which results are returned SHALL be determined by the repository.
• If the Repository supports the optional capability capabilityVersionSpecificFiling, then

the repository SHALL return the document versions filed in the specified folder or its descendant
folders. Otherwise, thelatest version of the documents SHALL be returned.

• If the Repository supports the optional capability capabilityMutlifiling and the same
document is encountered multiple times in the hierarchy, then the repository SHALL return that
document each time is encountered.

3.3.2.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier for the folder.

Optional:
• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.
• Enum includeRelationships: See “3.1.4 Include Relationships” section.
• Integer depth: The number of levels of depth in the folder hierarchy from which to return results.

Valid values are:
o 2 (default): Return only objects that are children of the folder and their children.
o <Integer value greater than 1>: Return only objects that are children of the folder and

descendants up to <value> levels deep.
o -1: Return ALL descendant objects at all depth levels in the CMIS hierarchy.

• String filter: See “3.1.1 Property Filters” section.

3.3.2.2 Outputs
• <Array> Objects: A list of the descendant objects for the specified folder.

3.3.2.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.3.3 getChildren
Description: Gets the list of child objects contained in the specified folder.
Notes:

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 88 of 115

• If the Repository supports the optional “VersionSpecificFiling” capability, then the repository
SHALL return the document versions filed in the specified folder.

o Otherwise, the latest version of the documents SHALL be returned.

3.3.3.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier for the folder.

Optional:
• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.
• Enum includeRelationships: See “3.1.4 Include Relationships” section.
• String filter: See “3.1.1 Property Filters” section.
• Integer maxItems: See 3.1.2 Paging section..
• Integer skipCount: See 3.1.2 Paging section..

3.3.3.2 Outputs
• <Array> Objects: A list of the child objects for the specified folder.
• Boolean hasMoreItems: See 3.1.2 Paging section..

3.3.3.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.3.4 getFolderParent
Description: Gets the parent folder object for the specified folder object.
Notes:

• Repositories SHOULD always include the “ObjectId” and “ParentId” properties for all objects
returned.

o If this service method is invoked on the root folder of the Repository, then the Repository
shall return an empty result set.

3.3.4.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier for the folder.

Optional:
• String filter: See “3.1.1 Property Filters” section.

3.3.4.2 Outputs
• Object: The parent folder object of the specified folder.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 89 of 115

3.3.4.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.3.5 getObjectParents
Description: Gets the parent folder(s) for the specified non-folder, fileable object.

3.3.5.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the folder.

Optional:
• String filter: See “3.1.1 Property Filters” section.

3.3.5.2 Outputs
• <Array> Objects: A list of the parent folder(s) of the specified objects. Empty for unfiled objects.

3.3.5.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if this method is invoked on an object

who Object-Type Definition specifies that it is not fileable.
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.3.6 getCheckedOutDocs
Description: Gets the list of documents that are checked out that the user has access to.

3.3.6.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
Optional:

• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.
• Enum includeRelationships: See “3.1.4 Include Relationships” section.
• ID folderId: The identifier for a folder in the repository from which documents should be returned.

o If specified, the Repository SHALL only return checked out documents that are child-
objects of the specified folder.

o If not specified, the Repository SHALL return checked out documents from anywhere in
the repository hierarchy.

• String filter: See “3.1.1 Property Filters” section.
• Integer maxItems: See 3.1.2 Paging section..
• Integer skipCount: See 3.1.2 Paging section..

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 90 of 115

3.3.6.2 Outputs
• <Array> Objects: A list of checked out documents.
• Boolean hasMoreItems: See 3.1.2 Paging section..

3.3.6.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.4 Object Services
CMIS provides ID-based CRUD (Create, Retrieve, Update, Delete), operations on objects in a Repository.

3.4.1 createDocument
Description: Creates a document object of the specified type in the (optionally) specified location.

3.4.1.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Document object being created.
• <Array> properties: The property values that SHALL be applied to the newly-created Document

Object.
Optional:

• ID folderId: If specified, the identifier for the folder that SHALL be the parent folder for the newly-
created Document Object.

o This parameter MUST be specified if the Repository does NOT support the optional
“unfiling” capability.

• <contentStream> contentStream: The Content Stream that SHALL be stored for the newly-
created Document Object. The method of passing the contentStream to the server and the
encoding mechanism will be specified by each specific binding. SHALL be required if the type
requires it.

• Enum versioningState: An enumeration specifying what the versioing state of the newly-created
object SHALL be. Valid values are:

o checkedout: The document SHALL be created in the checked-out state.
o major: The document SHALL be created as a major version
o minor (default): The document SHALL be created as a minor version.

• <Array> policies: A list of policy IDs that SHALL be applied to the newly-created Document
object.

• <Array> ACE addACEs: A list of ACEs that SHALL be added to the newly-created Document
object, either using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that SHALL be removed from the newly-created
Document object, either using the ACL from folderId if specified, or being ignored if no folderId is
specified.

3.4.1.2 Outputs
• ID objectId: The ID of the newly-created document.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 91 of 115

3.4.1.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The typeId is not an Object-Type whose baseType is “Document”.
o The typeId is NOT in the list of AllowedChildObjectTypeIds of the parent-folder specified

by folderId.
o The value of any of the properties violates the min/max/required/length constraints

specified in the property definition in the Object-Type.
o The Object-Type definition specified by the typeId parameter’s “contentStreamAllowed”

attribute is set to “required” and no contentStream input parameter is provided.
o The Object-Type definition specified by the typeId parameter’s “versionable” attribute is

set to FALSE and a value for the versioningState input parameter is provided.
o The Object-Type definition specified by the typeId parameter’s “controllablePolicy” is set

to FALSE and at least one policy is provided.
o The Object-Type definition specified by the typeId parameter’s “controllableACL” is set to

FALSE and at least one ACE is provided.
o At least one of the permissions is used in an ACE provided which is not supported by the

repository.
• storage: See “3.1.6.2 Specific Exceptions” section.

• streamNotSupported: The Repository SHALL throw this exception if the Object-Type definition
specified by the typeId parameter’s “contentStreamAllowed” attribute is set to “not allowed” and a
contentStream input parameter is provided.

3.4.2 createFolder
Description: Creates a folder object of the specified type in the specified location.

3.4.2.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Folder object being created.
• <Array> properties: The property values that SHALL be applied to the newly-created Folder

Object.
• ID folderId: The identifier for the folder that SHALL be the parent folder for the newly-created

Folder Object.
Optional:

• <Array> policies: A list of policy IDs that SHALL be applied to the newly-created Document
object.

• <Array> ACE addACEs: A list of ACEs that SHALL be added to the newly-created Document
object, either using the ACL from folderId if specified, or being applied if no folderId is specified.

• <Array> ACE removeACEs: A list of ACEs that SHALL be removed from the newly-created
Document object, either using the ACL from folderId if specified, or being ignored if no folderId is
specified.

3.4.2.2 Outputs
• ID objectId: The ID of the newly-created folder.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 92 of 115

3.4.2.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• ConstraintViolationException: The Repository SHALL throw this exception if ANY of the

following conditions are met:
o The typeId is not an Object-Type whose baseType is “Folder”.
o The value of any of the properties violates the min/max/required/length constraints

specified in the property definition in the Object-Type.
o The typeId is NOT in the list of AllowedChildObjectTypeIds of the parent-folder specified

by folderId.
o The Object-Type definition specified by the typeId parameter’s “controllablePolicy” is set

to FALSE and at least one policy is provided.
o The Object-Type definition specified by the typeId parameter’s “controllableACL” is set to

FALSE and at least one ACE is provided.
o At least one of the permissions is used in an ACE provided which is not supported by the

repository.
• storage: See “3.1.6.2 Specific Exceptions” section.

3.4.3 createRelationship
Description: Creates a relationship object of the specified type

3.4.3.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Relationship object being created.
• <Array> properties: The property values that SHALL be applied to the newly-created

Relationship Object.
• ID sourceObjectId: The ID of the source object for the newly-created Relationship.
• ID targetObjectId: The ID of the taret object for the newly-created Relationship.

Optional:
• <Array> policies: A list of policy IDs that SHALL be applied to the newly-created Document

object.
• <Array> ACE addACEs: A list of ACEs that SHALL be added to the newly-created Document

object, either using the ACL from folderId if specified, or being applied if no folderId is specified.
• <Array> ACE removeACEs: A list of ACEs that SHALL be removed from the newly-created

Document object, either using the ACL from folderId if specified, or being ignored if no folderId is
specified.

3.4.3.2 Outputs
• ID objectId: The ID of the newly-created relationship.

3.4.3.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The typeId is not an Object-Type whose baseType is “Relationship”.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 93 of 115

o The value of any of the properties violates the min/max/required/length constraints
specified in the property definition in the Object-Type.

o The sourceObjectId’s ObjectType is not in the list of “allowedSourceTypes” specified by
the Object-Type definition specified by typeId.

o The targetObjectId’s ObjectType is not in the list of “allowedTargetTypes” specified by the
Object-Type definition specified by typeId.

o The Object-Type definition specified by the typeId parameter’s “controllablePolicy” is set
to FALSE and at least one policy is provided.

o The Object-Type definition specified by the typeId parameter’s “controllableACL” is set to
FALSE and at least one ACE is provided.

o At least one of the permissions is used in an ACE provided which is not supported by the
repository.

• storage: See “3.1.6.2 Specific Exceptions” section.

3.4.4 createPolicy
Description: Creates a policy object of the specified type

3.4.4.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Policy object being created.
• <Array> properties: The property values that SHALL be applied to the newly-created Policy

Object.
Optional:

• ID folderId: If specified, the identifier for the folder that SHALL be the parent folder for the newly-
created Policy Object.
o This parameter SHALL be specified if the Repository does NOT support the optional “unfiling”

capability.
• <Array> policies: A list of policy IDs that SHALL be applied to the newly-created Document

object.
• <Array> ACE addACEs: A list of ACEs that SHALL be added to the newly-created Document

object, either using the ACL from folderId if specified, or being applied if no folderId is specified.
• <Array> ACE removeACEs: A list of ACEs that SHALL be removed from the newly-created

Document object, either using the ACL from folderId if specified, or being ignored if no folderId is
specified.

3.4.4.2 Outputs
• ID objectId: The ID of the newly-created Policy Object.

3.4.4.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The typeId is not an Object-Type whose baseType is “Policy”.
o The value of any of the properties violates the min/max/required/length constraints

specified in the property definition in the Object-Type.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 94 of 115

o The typeId is NOT in the list of AllowedChildObjectTypeIds of the parent-folder specified
by folderId.

o The Object-Type definition specified by the typeId parameter’s “controllablePolicy” is set
to FALSE and at least one policy is provided.

o The Object-Type definition specified by the typeId parameter’s “controllableACL” is set to
FALSE and at least one ACE is provided.

o At least one of the permissions is used in an ACE provided which is not supported by the
repository.

• storage: See “3.1.6.2 Specific Exceptions” section.

3.4.5 getAllowableActions
Description: Gets the list of allowable actions for an Object (see “3.1.3 Allowable Actions” section).

3.4.5.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object

3.4.5.2 Outputs
• <Array> AllowableActions: see “3.1.3 Allowable Actions” section

The cmisAllowableActionsType schema describes the output of this service.

3.4.5.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions

3.4.6 getProperties
Description: Gets the list of properties for an Object.

3.4.6.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object

Optional:
• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.
• Enum includeRelationships: See “3.1.4 Include Relationships” section.
• String filter: See “3.1.1 Property Filters” section.
• Boolean includeACLs: Include the ACL’s associated with the object in the response.

3.4.6.2 Outputs
• <Array> Properties: The list of properties for the object.
• <Array> ACEs: The list of ACEs as returned by getACL for the object, if includeACL was provided

3.4.6.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 95 of 115

• filterNotValid: The Repository SHALL throw this exception if this property filter input
parameter is not valid.

3.4.7 getFolderByPath
Description: Gets the specified Folder object.

3.4.7.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• String folderPath: The path to the folder. See “2.4.3 Paths” section.

Optional:
• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.
• Enum includeRelationships: See “3.1.4 Include Relationships” section.
• String filter: See “3.1.1 Property Filters” section.

3.4.7.2 Outputs
• <Array> Properties: The list of properties for the Folder.

3.4.7.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.4.8 getContentStream
Description: Gets the content stream for the specified Document object
Notes: Each CMIS protocol binding MAY provide a way for fetching a sub-range within a content stream,
in a manner appropriate to that protocol.

3.4.8.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object

Optional:
• ID streamId: The identifier for the content stream. For Documents, if not provided, defaults to the

primary content stream of the Document. For Folder, it must be provided.

3.4.8.2 Outputs
• <ContentStream> ContentStream: The content stream for the object.

3.4.8.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if the Document specified by objectId

does NOT have a content stream.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 96 of 115

3.4.9 getRenditions
Description: Gets the list of associated Renditions for the specified object
Notes: Each CMIS protocol binding MAY provide a way for fetching a sub-range within a content stream,
in a manner appropriate to that protocol.

3.4.9.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object

Optional:
• String renditionFilter: See 3.1.7 Rendition Filter section. If not provided, defaults to ‘*’
• Integer maxItems: See 3.1.2 Paging section
• Integer skipCount: See 3.1.2 Paging section

3.4.9.2 Outputs
• <Array> Renditions: The set of renditions available on this object

3.4.9.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• notSupported: The service method requires functionality that is not supported by the

repository
• filterNotValid : The filter specified is not valid

3.4.10 updateProperties
Description: Updates properties of the specified object.
Notes:

• A Repository MAY automatically create new Document versions as part of an update properties
operation. Therefore, the ObjectId output NEED NOT be identical to the ObjectId input.

• If this method is invoked on an object and any of the properties defined for the Object-Type are
NOT included in the input to the method, repositories SHALL perform the update operation as if
those properties had been included and set to their original values.

3.4.10.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object to be updated.
• <Array> properties: The updated property values that SHALL be applied to the Object.

Optional:
• String changeToken: See “Change Tokens” section.

3.4.10.2 Outputs
• ID objectId: The ID of the updated object.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 97 of 115

3.4.10.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The value of any of the properties violates the min/max/required/length constraints

specified in the property definition in the Object-Type.
• storage: See “3.1.6.2 Specific Exceptions” section.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.

• versioning: The Repository SHALL throw this exception if ANY of the following conditions are
met:

o The object is not checked out and ANY of the properties being updated are defined in
their Object-Type definition have an attribute value of updateability whencheckedout.

o Additionally, the repository MAY throw this exception if the object is a non-current
Document Version.

3.4.11 moveObject
Description: Moves the specified file-able object from one folder to another.

3.4.11.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object to be moved.
• ID targetFolderId: The folder into which the object is to be moved.
• ID sourceFolderId: The folder from which the object is to be moved.

o This parameter SHALL be specified if the Repository supports the optional
“capabilityUnfiling” capability.

3.4.11.2 Outputs
• ID objectId: The identifier of the object to be moved.

3.4.11.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The typeId is NOT in the list of AllowedChildObjectTypeIds of the parent-folder specified

by targetFolderId.
• storage: See “3.1.6.2 Specific Exceptions” section.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.

• versioning: The repository MAY throw this exception if the object is a non-current Document
Version.

3.4.12 deleteObject
Description: Deletes the specified object.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 98 of 115

Notes: Invoking this service method on an object SHALL not delete the entire version series for a
Document Object. To delete an entire version series, use the deleteAllVersions() service.

3.4.12.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object to be deleted.

3.4.12.2 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The method is invoked on a Folder object that contains one or more objects.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.

3.4.13 deleteTree
Description: Deletes the specified folder object and all of its child- and descendant-objects.
Notes:

• A Repository MAY attempt to delete child- and descendant-objects of the specified folder in any
order.

• Any child- or descendant-object that the Repository cannot delete SHALL persist in a valid state
in the CMIS domain model.

• This is not atomic.
• However, if deletesinglefiled is chosen and some objects fail to delete, then single-filed objects

are either deleted or kept, never just unfiled. This is so that a user can call this command again to
recover from the error by using the same tree.

3.4.13.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier of the folder to be deleted.

Optional:
• Enum unfileObjects: An enumeration specifying how the repository SHALL process file-able

child- or descendant-objects. Valid values are:
o unfile: Unfile all fileable objects.
o deletesinglefiled: Delete all fileable non-folder objects whose only parent-folders are in

the current folder tree. Unfile all other fileable non-folder objects from the current folder tree.
o delete (default): Delete all fileable objects.

• boolean continueOnFailure: If TRUE, then the repository SHOULD continue attempting to
perform this operation even if deletion of a child- or descendant-object in the specified folder
cannot be deleted.
o If FALSE (default), then the repository SHOULD abort this method when it fails to delete a

single child- or descendant-object.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 99 of 115

3.4.13.2 Outputs
• <Array> ID failedToDelete: A list of identifiers of objects in the folder tree that were not deleted.

3.4.13.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• updateConflict: See “3.1.6.2 Specific Exceptions” section.

3.4.14 setContentStream
Description: Sets the content stream for the specified Document object.
Notes: A Repository MAY automatically create new Document versions as part of this service method.
Therefore, the DocumentId output NEED NOT be identical to the DocumentId input.

3.4.14.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier for the Document object.
• <contentStream> contentStream: The Content Stream that SHALL be stored for the newly-

created Document Object.
Optional:

• Boolean overwriteFlag: If TRUE (default), then the Repository SHALL replace the existing
content stream for the object (if any) with the input contentStream.
o If FALSE, then the Repository SHALL only set the input contentStream for the object if the

object currently does not have a content-stream.
• String changeToken: See “3.1.5 Change Tokens” section.

3.4.14.2 Outputs
• ID documentId: The ID of the document.

3.4.14.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The Object’s Object-Type definition “contentStreamAllowed” attribute is set to

“notAllowed”.
• contentAlreadyExists: The Repository SHALL throw this exception if the input parameter

overwriteFlag is FALSE and the Object already has a content-stream.
• storage: See “3.1.6.2 Specific Exceptions” section.

• streamNotSupported: The Repository SHALL throw this exception if the Object-Type definition
specified by the typeId parameter’s “contentStreamAllowed” attribute is set to “not allowed”.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.

• versioning: The repository MAY throw this exception if the object is a non-current Document
Version.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 100 of 115

3.4.15 deleteContentStream
Description: Deletes the content stream for the specified Document object.
Notes: A Repository MAY automatically create new Document versions as part of this service method.
Therefore, the DocumentId output NEED NOT be identical to the DocumentId input.

3.4.15.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier for the Document object.

Optional:
• String changeToken: See “3.1.5 Change Tokens” section.

3.4.15.2 Outputs
• ID documentId: The ID of the Document object.

3.4.15.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The Object’s Object-Type definition “contentStreamAllowed” attribute is set to “required”.

• storage: See “3.1.6.2 Specific Exceptions” section.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.

• versioning: The repository MAY throw this exception if the object is a non-current Document
Version.

3.5 Multi-filing Services
The Multi-filing services (addObjectToFolder, removeObjectFromFolder) are supported only if the
repository supports the multifiling or unfiling optional capabilities. The Multi-filing Services are used to
file/un-file objects into/from folders.
This service is NOT used to create or delete objects in the repository.

3.5.1 addObjectToFolder
Description: Adds an existing fileable non-folder object to a folder.

3.5.1.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.
• ID folderId: The folder into which the object is to be filed.

3.5.1.2 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 101 of 115

• constraint: The Repository SHALL throw this exception if ANY of the following conditions are
met:

• The typeId is NOT in the list of AllowedChildObjectTypeIds of the parent-folder specified by
folderId.

3.5.2 removeObjectFromFolder
Description: Removes an existing fileable non-folder object from a folder.

3.5.2.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.

Optional:
• ID folderId: The folder from which the object is to be removed.

o If no value is specified, then the Repository SHALL remove the object from all folders in
which it is currently filed.

3.5.2.2 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions

3.6 Discovery Services
The Discovery Services (query) are used to search for query-able objects within the Repository.

3.6.1 Query
Description: Executes a CMIS-SQL query statement against the contents of the Repository.

3.6.1.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• String statement: CMIS-SQL query to be executed. (See “2.11 Query” section.)

Optional:

• Boolean searchAllVersions:
o If TRUE, then the Repository SHALL include latest and non-latest versions of document

objects in the query search scope.
o If FALSE (default), then the Repository SHALL only include latest versions of documents

in the query search scope.
 If the Repository does not support the optional capabilityAllVersionsSearchable

capability, then this parameter value MUST be set to FALSE.
• Enum includeRelationships: See “3.1.4 Include Relationships” section.

o Note: For query statements where the SELECT clause contains properties from only one
virtual table reference (i.e. referenced object-type), any value for this enum may be used.
If the SELECT clause contains properties from more than one table, then the value of this
parameter SHALL be “none”.

• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 102 of 115

o Note: For query statements where the SELECT clause contains properties from only one
virtual table reference (i.e. referenced object-type), any value for this parameter may be
used. If the SELECT clause contains properties from more than one table, then the value
of this parameter SHALL be “FALSE”.

• Integer maxItems: See 3.1.2 Paging section..
• Integer skipCount: See 3.1.2 Paging section..

3.6.1.2 Outputs
• <Array> Object QueryResults: The set of results for the query. (See “2.11 Query” section.)
• Boolean hasMoreItems: See 3.1.2 Paging section..

3.6.1.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions

3.6.2 getContentChanges
Description: Gets a list of content changes. This service is intended to be used by search crawlers or
other applications that need to efficiently understand what has changed in the repository.
Notes:

• The content stream is NOT returned for any change event.
• The definition of the authority needed to call this service is repository specific.
• The latest change log token for a repository can be acquired via the getRepositoryInfo service.

3.6.2.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
Optional:

• String changeLogToken:
o If specified, then the Repository SHALL return the change event corresponding to the value

of the specified change log token as the first result in the output.
o If not specified, then the Repository SHALL return the first change event recorded in the

change log.
• Boolean includeProperties:

o If TRUE, then the Repository SHALL include the updated property values for “updated”
change events.

o If FALSE (default), then the Repository SHALL NOT include the updated property values for
“updated” change events.

• Integer maxItems: See 3.1.2 Paging section.

3.6.2.2 Outputs
• <Array> changeEvents: A collection of CMIS objects that SHALL include the information as

specified in 2.12.3.
• String lastChangeLogToken: The change token corresponding to the last change event in

changeEvents.
• Boolean hasMoreItems: See 3.1.2 Paging section.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 103 of 115

3.6.2.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if the event corresponding to the

change log token provided as an input parameter is no longer available in the change log. (E.g.
because the change log was truncated).

3.7 Versioning Services
The Versioning services (checkOut, cancelCheckOut, getPropertiesOfLatestVersion, getAllVersions,
deleteAllVersions) are used to navigate or update a Document Version Series.

3.7.1 checkOut
Description: Create a private working copy of the object.

3.7.1.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier of the object.

3.7.1.2 Outputs
• ID documentId: The identifier for the “Private Working Copy” object.

• Boolean contentCopied: TRUE if the content-stream of the Private Working Copy is a copy of
the contentStream of the Document that was checked out.
o FALSE if the content-stream of the Private Working Copy is “not set”.

3.7.1.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The Document’s Object-Type definition’s versionable attribute is FALSE.

• storage: See “3.1.6.2 Specific Exceptions” section.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.
• versioning: The repository MAY throw this exception if the object is a non-current Document

Version.

3.7.2 cancelCheckOut
Description: Reverses the effect of a check-out. Removes the private working copy of the checked-out
document object, allowing other documents in the version series to be checked out again.

3.7.2.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier of the object.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 104 of 115

3.7.2.2 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The Document’s Object-Type definition’s versionable attribute is FALSE.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.
• versioning: The repository MAY throw this exception if the object is a non-current Document

Version.

3.7.3 checkIn
Description: Checks-in the Private Working Copy object.
Notes:

• For repositories that do NOT support the optional “capabilityPWCUpdateable” capability, the
properties and contentStream input parameters MUST be provided on the checkIn method for
updates to happen as part of checkIn.

3.7.3.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier of the object.

Optional:
• Boolean major: TRUE (default) if the checked-in Document Object SHALL be a major version.

o FALSE if the checked-in Document Object SHALL NOT be a major version.
• <Array> properties: The property values that SHALL be applied to the checked-in Document

Object.
• <contentStream> contentStream: The Content Stream that SHALL be stored for the checked-in

Document Object. The method of passing the contentStream to the server and the encoding
mechanism will be specified by each specific binding.

• String checkinComment: See “2.10.5 Versioning Properties on Document Objects” section.

3.7.3.2 Outputs
• ID documentId: The ID of the checked-in document.

3.7.3.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The Document’s Object-Type definition’s versionable attribute is FALSE.

• storage: See “3.1.6.2 Specific Exceptions” section.

• streamNotSupported: The Repository SHALL throw this exception if the Object-Type definition
specified by the typeId parameter’s “contentStreamAllowed” attribute is set to “not allowed” and a
contentStream input parameter is provided.

• updateConflict: See “3.1.6.2 Specific Exceptions” section.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 105 of 115

3.7.4 getPropertiesOfLatestVersion
Description: Get a subset of the properties for the latest Document Object in the Version Series.
Notes:

• If the input parameter major is TRUE and the Version Series contains no major versions, then the
Repository SHALL throw objectNotFoundException.

3.7.4.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID versionSeriesId: The identifier for the Version Series.

Optional:
• Boolean major: If TRUE (default), then the Repository SHALL returnthe properties for the latest

major version object in the Version Series.
o If FALSE, the Repository SHALL return the properties for the latest (major or non-major)

version object in the Version Series.
• String filter: See “3.1.1 Property Filters” section.

3.7.4.2 Outputs
• <Array> Properties: The list of properties for the object.

3.7.4.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.7.5 getAllVersions
Description: Returns the list of all Document Objects in the specified Version Series, sorted by
CREATION_DATE descending.
Notes:

• The result set for this operation SHALL include the Private Working Copy, subject to caller’s
access privileges.

3.7.5.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID versionSeriesId: The identifier for the Version Series.

Optional:
• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.

• Enum includeRelationships: See “3.1.4 Include Relationships” section.
• String filter: See “3.1.1 Property Filters” section.

3.7.5.2 Outputs
• <Array> Objects: A list of Document Objects in the specified Version Series.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 106 of 115

3.7.5.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.7.6 deleteAllVersions
Description: Deletes all Document Objects in the specified Version Series, including the Private Working
Copy.
Notes: If for any reason the repository is unable to delete all versions in the version series, the repository
SHALL leave the version series in a valid state as defined by the CMIS domain model.

3.7.6.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID versionSeriesId: The identifier of the Version Series to be deleted.

3.7.6.2 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions

3.8 Relationships Services
The Relationship Services (getRelationships) are used to retrieve the dependent Relationship objects
associated with an independent object.

3.8.1 getRelationships
Description: Gets all or a subset of relationships associated with an independent object.

3.8.1.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.Boolean includeSubRelationshipTypes: If TRUE, then

the Repository SHALL return all relationships whose Object-Types are descendant-types of
typeId.
o If FALSE, then the Repository SHALL only return relationships whose Object-Type is typeId.

•
Optional:

• Enum relationshipDirection: An enumeration specifying whether the Repository SHALL
return relationships where the specified Object is the source of the relationship, the target of the
relationship, or both. Valid values are:
o source: (default) The Repository SHALL return only relationship objects where the specified

object is the source object.
o target: The Repository SHALL return only relationship objects where the specified object is

the target object.
o either: The Repository SHALL return relationship objects where the specified object is

either the source or the target object.
• Boolean includeAllowableActions: See “3.1.3 Allowable Actions” section.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 107 of 115

• ID typeId: If specified, then the Repository SHALL return only relationships whose Object-Type
is of the type specified (and possibly its descendant-types – see next parameter.)
o If not specified, then the repository SHALL return Relationship objects of all types.

• String filter: See “3.1.1 Property Filters” section.
• Integer maxItems: See 3.1.2 Paging section..
• Integer skipCount: See 3.1.2 Paging section..

3.8.1.2 Outputs
• <Array> Objects: A list of the relationship objects.
• Boolean hasMoreItems: See 3.1.2 Paging section..

3.8.1.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.9 Policy Services
The Policy Services (applyPolicy, removePolicy, getAppliedPolicies) are used to apply or remove a policy
object to a controllablePolicy object.

3.9.1 applyPolicy
Description: Applies a specified policy to an object.

3.9.1.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID policyId: The identifier for the Policy to be applied.
• ID objectId: The identifier of the object.

3.9.1.2 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint : The Repository SHALL throw this exception if the specified object’s Object-Type

definition’s attribute for controllablePolicy is FALSE.

3.9.2 removePolicy
Description: Removes a specified policy from an object.

3.9.2.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID policyId: The identifier for the Policy to be removed.
• ID objectId: The identifier of the object.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 108 of 115

3.9.2.2 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if the specified object’s Object-Type

definition’s attribute for controllablePolicy is FALSE.

3.9.3 getAppliedPolicies
Description: Gets the list of policies currently applied to the specified object.

3.9.3.1 Inputs
Required:

• ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.

Optional:
• String filter: See “3.1.1 Property Filters” section.

3.9.3.2 Outputs
• <Array> Objects: A list of Policy Objects.

3.9.3.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• filterNotValid: The Repository SHALL throw this exception if this property filter input

parameter is not valid.

3.10 ACL Services

3.10.1 getACL
Description: Get the ACL currently applied to the specified document or folder object.

3.10.1.1 Inputs
Required:

• ID repositoryId: The identifier for the repository.
• ID objectId: The identifier for the object
• Boolean includeAllowableActions: See “Allowable Actions” section.

Optional:
• Boolean onlyBasicPermissions: See “Access Control Lists” section. The repository SHOULD

make a best effort to fully express the native security applied to the object
o TRUE: (default value if not provided) indicates that the client requests that the returned

ACL be expressed using only the CMIS Basic permissions.
o FALSE: indicates that the server may respond using either solely CMIS Basic

permissions, or repository specific permissions or some combination of both.

3.10.1.2 Outputs
• <Array> AccessControlEntryType: The list of access control entries of the ACL for the object.

 Optional:

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 109 of 115

• Boolean exact: An indicator that the ACL returned fully describes the permission for this object –
i.e. there are no other security constraints applied to this object. Not provided defaults to FALSE.

3.10.1.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions

3.10.1.4 Notes
This service MUST be supported by a repository, if getRepository returns capabilityACL=discover or
=manage.
How an ACL for the object is computed is up to the repository. A client MUST NOT assume that the ACEs
from the ACL as returned by this service can be applied via applyACL.

3.10.2 applyACL
Description: Adds or removes the given ACEs to or from the ACL of document or folder object.

3.10.2.1 Inputs
Required:

• ID repositoryId: The identifier for the repository.
• ID objectId: The identifier for the object
• <Array> AccessControlEntryType addACEs: The ACEs to be added.
• <Array> AccessControlEntryType removeACEs: The ACEs to be removed.

Optional:
• Enum ACLPropagation: Specifies how ACEs should be handled:

o objectonly: ACEs must be applied without changing the ACLs of other objects.
o propagate: ACEs must be applied by propagate the changes to all “inheriting” objects.
o repositorydetermined: indicates that the client leaves the behavior to the repository.

3.10.2.2 Outputs
• <Array> AccessControlEntryType: The list of access control entries of the resulting ACL for the

object
Optional:

• Boolean exact: An indicator that the ACL returned fully describes the permission for this object –
i.e. there are no other security constraints applied to this object. Not provided defaults to FALSE.

o String changeToken: See “Change Tokens” section.

3.10.2.3 Exceptions Thrown & Conditions
• 3.1.6.1 General Exceptions
• constraint: The Repository SHALL throw this exception if ANY of the following conditions are

met:
o The specified object’s Object-Type definition’s attribute for controllableACL is FALSE.
o The value for ACLPropagation does not match the values as returned via

getACLCapabilities.
o At least one of the specified values for permission in ANY of the ACEs does not match

ANY of the permissionNames as returned by getACLCapability and is not a CMIS Basic
permission

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 110 of 115

3.10.2.4 Notes
This service MUST be supported by a repository, if getRepository returns capabilityACL=manage.
How ACEs are added or removed to or from the object is up to the repository – with respect to the
ACLPropagation provided by the client. For “shared” ACEs (e.g. via inheritance), the repository MAY
merge the ACEs provided with the ACEs of the ACL already applied to the object (i.e. the ACEs provided
MAY not be completely added or removed from the effective ACL for the object).

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 111 of 115

4 Schema
Below is the CMIS-Core schema:

Placeholder for schema to be included for Public Review Draft. See Schema zip
file in the meantime.

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 112 of 115

Conformance
The last numbered section in the specification must be the Conformance section. Conformance
Statements/Clauses go here.

Ethan Gur-esh
Need to ask TC – what goes in this section?

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 113 of 115

A. Acknowledgements
The following individuals have participated in the creation of this specification and are gratefully
acknowledged:
Participants:

[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 114 of 115

B. Non-Normative Text

CMIS – Part I 29 June 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 115 of 115

C. Revision History

Revision Date Editor Changes Made

0.62c 6/29/2009 Ryan
McVeigh

• Fixed several spec bugs tracked in JIRA.
• Cleaned up Document Map / TOC.

0.62b 5/29/2009 Ryan
McVeigh

• Re-factored spec sections for inaccuracies, typos.
• Formatting issues and consistency.
• Revised to match 0.5 for optional vs. required parameters, etc. where the

spec changed without an issue to track the change.

0.62a 5/19/2009 Ethan
Gur-esh

• Re-factored spec to remove tables
• Include CMIS core schema in Part I rather than a separate file.
• Fixed several spec bugs tracked in JIRA.
•

0.6 3/8/2009 Ethan
Gur-esh

• Re-wrote spec text into normative style.
• Re-factored spec sections for clarity.
• Fixed several spec bugs tracked in JIRA.

Issues fixed for this revision:
http://tools.oasis-
open.org/issues/secure/IssueNavigator.jspa?reset=true&pid=10021&fixfor=10009

http://tools.oasis-open.org/issues/secure/IssueNavigator.jspa?reset=true&pid=10021&fixfor=10009
http://tools.oasis-open.org/issues/secure/IssueNavigator.jspa?reset=true&pid=10021&fixfor=10009

