
CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 1 of 85

Content Management Interoperability
Services – Domain Model Version 0.6
DRAFT

25 February 2009
Specification URIs:
This Version:

http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Previous Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Latest Version:
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .html
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .doc
http://docs.oasis-open.org/[tc-short-name] / [additional path/filename] .pdf

Technical Committee:
OASIS CMIS TC

Chair(s):
David Choy

Editor(s):
Ethan Gur-esh

Related work:
This specification replaces or supercedes:

• Not applicable
This specification is related to:

• Content Repository for Java – JSR 170/283: http://www.jcp.org/en/jsr/detail?id=283
• Atom Publishing Protocol – APP: http://www.ietf.org/internet-drafts/draft-ietf-atompub-

protocol-15.txt
Declared XML Namespace(s):

[list namespaces here]
[list namespaces here]

Abstract:
The Content Management Interoperability Services (CMIS) standard defines a domain model (in this
document) and set of bindings (TODO: Add links), such as Web Service and REST/Atom that can be
used by applications to work with one or more Content Management repositories/systems.

http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .html
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .doc
http://docs.oasis-open.org/%5btc-short-name%5d / %5badditional path/filename%5d .pdf
http://www.oasis-open.org/committees/
http://www.jcp.org/en/jsr/detail?id=283
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-15.txt
Ethan Gur-esh
To do once we have finalized namespaces.

Ethan Gur-esh
To do: Add links to REST-ful & SOAP bindings.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 2 of 85

The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. It is not intended to prescribe how specific features should be
implemented within those CM systems, nor to exhaustively expose all of the CM system’s capabilities
through the CMIS interfaces. Rather, it is intended to define a generic/universal set of capabilities
provided by a CM system and a set of services for working with those capabilities.

Status:

This document was last revised or approved by the CMIS TC on the above date. The level of
approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/CMIS/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/CMIS/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/CMIS/.

http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /ipr.php
http://www.oasis-open.org/committees/%5bTC short name%5d /ipr.php
http://www.oasis-open.org/committees/%5bTC short name%5d /
http://www.oasis-open.org/committees/%5bTC short name%5d /

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 3 of 85

Notices
Copyright © OASIS® 2008. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 4 of 85

Table of Contents
1 Introduction...7

1.1 Terminology ..7
1.2 Normative References ..7
1.3 Non-Normative References ..7

2 Data Model ...9
2.1 Repository...9

2.1.1 Optional Capabilities ...9
2.1.2 Related Repositories ...11
2.1.3 Implementation Information...11

2.2 Object..11
2.2.1 Property ...12

2.3 Document Object and Content Stream...14
2.3.1 Content Stream ...14

2.4 Folder Object ..14
2.4.1 File-able Objects ...15
2.4.2 Folder Hierarchy..16
2.4.3 Folder Paths in CMIS ..17

2.5 Relationship Object...18
2.6 Policy Object ...19
2.7 Object-Type ..20

2.7.1 Object-Type Hierarchy and Inheritance ..21
2.7.2 Object-Type Attributes...21
2.7.3 Object-Type Property Definitions ..24
2.7.4 CMIS Base Object-Type Definitions..28

2.8 Versioning...39
2.8.1 Version Series ...39
2.8.2 Latest Version..39
2.8.3 Major Versions...39
2.8.4 Services that modify Version Series ...40
2.8.5 Versioning Properties on Document Objects ..41
2.8.6 Object Creation and Initial Versioning State ...42
2.8.7 Version Specific/Independent membership in Folders..42
2.8.8 Version Specific/Independent membership in Relationships ..43
2.8.9 Versioning visibility in Query Services ..43

2.9 Query ..44
2.9.1 Relational View Projection of the CMIS Data Model ...44
2.9.2 CMIS-SQL Definition ...46

3 Services ...54
3.1 Common Service Elements ..54

3.1.1 Property Filters ..54
3.1.2 Paging ...54

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 5 of 85

3.1.3 Allowable Actions ...55
3.1.4 Change Tokens ...57
3.1.5 Table of Exceptions...57

3.2 Repository Services..61
3.2.1 getRepositories ...61
3.2.2 getRepositoryInfo ..61
3.2.3 getTypes..62
3.2.4 getTypeDefinition ..63

3.3 Navigation Services ..63
3.3.1 getDescendants ..63
3.3.2 getChildren ..64
3.3.3 getFolderParent...65
3.3.4 getObjectParents...65
3.3.5 getCheckedoutDocs ..66

3.4 Object Services...66
3.4.1 createDocument ..66
3.4.2 createFolder ..67
3.4.3 createRelationship...68
3.4.4 createPolicy ...69
3.4.5 getAllowableActions ..69
3.4.6 getProperties ...70
3.4.7 getContentStream ...70
3.4.8 updateProperties ...70
3.4.9 moveObject ...71
3.4.10 deleteObject ..72
3.4.11 deleteTree ...72
3.4.12 setContentStream ...73
3.4.13 deleteContentStream ..74

3.5 Multi-filing Services...74
3.5.1 addObjectToFolder..74
3.5.2 removeObjectFromFolder ...75

3.6 Discovery Services ...75
3.6.1 query..75

3.7 Versioning Services ..76
3.7.1 checkOut ...76
3.7.2 cancelCheckOut ..76
3.7.3 checkIn ..77
3.7.4 getPropertiesOfLatestVersion ...78
3.7.5 getAllVersions..78
3.7.6 deleteAllVersions...79

3.8 Relationships Services ...79
3.8.1 getRelationships..79

3.9 Policy Services ...80

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 6 of 85

3.9.1 applyPolicy ..80
3.9.2 removePolicy...80
3.9.3 getAppliedPolicies ...81

Conformance..82
A. Acknowledgements ..83
B. Non-Normative Text ...84
C. Revision History..85

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 7 of 85

1 Introduction
The Content Management Interoperability Services (CMIS) standard defines a domain model (in this
document) and set of bindings (TODO: Add links), such as Web Service and REST/Atom that can be
used by applications to work with one or more Content Management repositories/systems.
The CMIS interface is designed to be layered on top of existing Content Management systems and their
existing programmatic interfaces. It is not intended to prescribe how specific features should be
implemented within those CM systems, nor to exhaustively expose all of the CM system’s capabilities
through the CMIS interfaces. Rather, it is intended to define a generic/universal set of capabilities
provided by a CM system and a set of services for working with those capabilities.

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[Reference] [Full reference citation]

1.3 Non-Normative References
[Reference] [Full reference citation]

http://www.ietf.org/rfc/rfc2119.txt
Ethan Gur-esh
To do: Add links to REST-ful & SOAP bindings.

CMIS – Pa
Copyright ©

OASIS
Stage (
Title (it
Approv
URI of
over tim

For exa

ED

NOTE: The proper format for a citation to an OASIS Technical Committee’s work
(whether Normative or Non-Normative) is:

Committee Draft 01, Committee Draft 02, Committee Specification 01, etc. or Standard)
alicized or in quotation marks)
al Date (Month YYYY)
the actual Authoritative Specification (namespace is not acceptable as the content changes
e)

mple:

XL-HAVE OASIS Standard, “Emergency Data Exchange Language (EDXL) Hospital
AVailability Exchange (HAVE) Version 1.0”, November 2008.
http://docs.oasis-open.org/emergency/edxl-have/os/emergency_edxl_have-
rt I 25 February 2009
 OASIS® 2008. All Rights Reserved. Page 8 of 85

1.0-spec-os.doc

http://docs.oasis-open.org/emergency/edxl-have/os/emergency_edxl_have-1.0-spec-os.doc

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 9 of 85

2 Data Model
CMIS provides an interface for an application to access a Repository. To do so, CMIS specifies a core
data model that defines the persistent information entities that are managed by the repository, and
specifies a set of basic services that an application can use to access and manipulate these entities. In
accordance with the CMIS objectives, this data model does not cover all the concepts that a full-function
ECM repository typically supports. Specifically, transient entities (such as programming interface objects),
administrative entities (such as user profiles), and extended concepts (such as compound or virtual
document, work flow and business process, event and subscription) are not included.

However, when an application connects to a CMIS service endpoint, the same endpoint MAY provide
access to more than one CMIS repositories. (How an application obtains a CMIS service endpoint is
outside the scope of CMIS. How the application connects to the endpoint is a part of the protocol that the
application uses.) An application SHALL use the CMIS “Get Repositories” service (getRepositories) to
obtain a list of repositories that are available at that endpoint. For each available repository, the
Repository MUST return a Repository Name, a Repository Identity, and an URI. The Repository
Identity MUST uniquely identify an available repository at this service endpoint. Both the repository name
and the repository identity are opaque to CMIS. Aside from the “Get Repositories” service, all other CMIS
services are single-repository-scoped, and require a Repository Identity as an input parameter. In other
words, except for the “Get Repositories” service, multi-repository and inter-repository operations are not
supported by CMIS.

2.1 Repository

2.1.1 Optional Capabilities

Commercial ECM repositories vary in their designs. Moreover, some repositories are designed for a
specific application domain and may not provide certain capabilities that are not needed for their targeted
domain. Thus, a repository implementation may not necessarily be able to support all CMIS capabilities.
A few CMIS capabilities are therefore “optional” for a repository to be compliant. A repository’s support for
each of these optional capabilities is discoverable using the CMIS “Get Repository Information” service
(getRepositoryInfo). The following is the list of these optional capabilities. All capabilities are “Boolean”
(i.e. the Repository either supports the capability entirely or not at all) unless otherwise noted.

Capability Name Description See section

Multifiling Ability for an application to file a document or
other file-able object in more than one folder

Folder Object

Unfiling Ability for an application to leave a document
or other file-able object not filed in any folder

Folder Object

VersionSpecificFiling Ability for an application to file individual
versions (i.e., not all versions) of a document
in a folder

Versioning

PWCUpdateable Ability for an application to update the “Private
Working Copy” of a checked-out document

Versioning

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 10 of 85

PWCSearchable Ability of the Repository to include the "Private
Working Copy" of checked-out documents in
query search scope; otherwise PWC's are not
searchable

Versioning

AllVersionsSearchable Ability of the Repository to include non-latest
versions of document in query search scope;
otherwise only the latest version of each
document is searchable

Versioning

Query (non-Boolean) Indicates the types of queries that the
Repository has the ability to fulfill. Query
support levels are:

• None: No queries of any kind can be
fulfilled.

• MetadataOnly: Only queries that filter
based on object properties can be
fulfilled.

• FulltextOnly: Only queries that filter
based on the full-text content of
documents can be fulfilled.

• Both: The Repository can fulfill
queries that filter based on object
metadata and/or document full-text
content.

Query

FullText (non-Boolean) Indicates the types of full-text queries that the
Repository has the ability to fulfill. FullText
support levels are:

• None: The Repository cannot fulfill
any queries that filter based on full-text
content of documents.

• FullTextOnly: Only queries that filter
based on the full-text content of
documents can be fulfilled.

• FullTextAndStructured: The
repository can fulfill queries that filter
on both the full-text content of
documents and their properties.

Query

Join (non-Boolean) Indicates the types of SQL JOIN keywords that
the Repository can fulfill in queries. Support
levels are:

• NoJoin: The repository cannot fulfill

Query

Ethan Gur-esh
Schema bug filed: Combine this capability into the previous one, as follows:
Delete “Both”
 Add “MetadataAndFulltextSeparately”
 Add “MetadataAndFulltextConcurrently”

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 11 of 85

any queries that include any JOIN
clauses.

• InnerOnly: The repository can fulfill
queries that include an INNER JOIN
clause, but cannot fulfill queries that
include other types of JOIN clauses.

• InnerAndOuter: The repository can
fulfill queries that include any type of
JOIN clause defined by the CMIS
query grammar.

2.1.2 Related Repositories
In addition, the “Get Repository Information” service MAY return a list of other repositories that are related
to the current repository. This list SHOULD be a subset of the list of repositories that are returned by the
“Get Repositories” service.
For each of these repositories, a Repository Name, a Repository Identity, an URI, and a Repository
Relationship Name are returned. The Relationship Name is opaque to CMIS. Suggested/example values
for the “Relationship Name” include:

• “Parent”, “Child”, “Sibling”: For use by systems that support a logical hierarchy of repositories.
• “Replica”, “Archive”: For use by systems that support archival and replication.

2.1.3 Implementation Information

Furthermore, the “Get Repository Information” service MUST also return implementation information such
as vendor name, product name, product version, version of CMIS that it supports, the root folder ID, and
MAY include other implementation-specific information.
Note: Besides “Get Repository Information”, an application can also get object-type definitions using the
“Get Types” and “Get Type Definition” services (getTypes, getTypeDefinition).

2.2 Object

The entities managed by CMIS are modeled as typed Objects. There are four base types of objects:
Document Objects, Folder Objects, Relationship Objects, and Policy Objects.

• A document object represents a standalone information asset. Document objects are the
elementary entities managed by a CMIS repository.

• A folder object represents a logical container for a collection of “file-able” objects, which include
folder objects and document objects. Folder objects are used to organize file-able objects.
Whether or not an object is file-able is specified in its object-type definition.

• A relationship object represents an instance of directional relationship between two objects.

• A policy object represents an administrative policy, which may be “applied” to one or more
“controllable” objects. Whether or not an object is controllable is specified in its object-type
definition. The support for policy objects is optional, and may be discovered via the “Get Types”
service.

Ethan Gur-esh
TODO: Re-write if/when we remove “Policies”.

Ethan Gur-esh
TODO: Remove if/when we remove policies.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 12 of 85

Document objects, folder objects, and policy objects are independent objects, in the sense that each
object can persist independently as a standalone object in the repository. A relationship object, on the
other hand, represents an explicit, application-maintained, instance of relationship between two
independent objects. Therefore, relationship objects are semantically dependent objects. Additional
object-types MAY be defined in a repository as subtypes of these base types. CMIS services are provided
for the discovery of object types that are defined in a repository. However, object-type management
services, such as the creation, modification, and deletion of an object type, are outside the scope of
CMIS.

Every CMIS object has an opaque and immutable Object Identity (ID), which is assigned by the
repository when the object is created. An ID uniquely identifies an object within a repository regardless of
the type of the object. Repositories SHOULD assign IDs that are “permanent” – that is, they remain
unchanged during the lifespan of the identified objects, and they are never reused or reassigned after the
objects are deleted from the repository.

Besides ID, a repository MAY assign a Uniform Resource Identifier (URI), as defined by RFC3986, to
an object. A URI allows an application to access an object as a web resource using web protocols and
tools. However, such accesses beyond the protocol bindings specified by CMIS are outside the scope of
CMIS. URIs assigned by a repository to objects MAY be permanent.

Every CMIS object has a set of named, but not explicitly ordered, Properties. (However, a Repository
SHOULD always return object properties in a consistent order.) Within an object, each property is
uniquely identified by its name.

In addition, a document object MAY have a Content-Stream, which may be used to hold a raw digital
asset such as an image or a word-processing document. A repository MUST specify, in each object-type
definition, whether document objects of that type MAY, SHALL, or SHALL NOT have a content-stream. A
content-stream is not named. Instead, it has a repository-assigned URI.

Properties and content-streams cannot be shared between objects.

2.2.1 Property

A property MAY hold zero, one, or more typed data value(s). Each property MAY be single-valued or
multi-valued. A single-valued property contains a single data value, whereas a multi-valued property
contains an ordered list of data values of the same type. The ordering of values in a multi-valued property
SHOULD be preserved by the repository.

If a value is not provided for a property, the property is in a “value not set” state. There is no “null” value
for a property. Through protocol binding, a property is either not set, or is set to a particular value or a list
of values.

A multi-valued property is either set or not set in its entirety. An individual value of a multi-valued property
SHALL NOT be in an individual “value not set” state and hold a position in the list of values. An empty list
of values SHALL NOT be allowed.

Every property is typed. The Property-type defines the data type of the data value(s) held by the property.
CMIS specifies the following Property-Types. They include the following data types defined by “XML
Schema Part 2: Datatypes Second Edition” (W3C Recommendation, 28 October 2004,
http://www.w3.org/TR/xmlschema-2/):

• String (xsd:string)

http://tools.ietf.org/html/rfc3986

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 13 of 85

• Decimal (xsd:decimal)
• Integer (xsd:integer)
• Boolean (xsd:boolean)
• DateTime (xsd:dateTime)
• URI (xsd:anyURI)

The Precision for Decimal property-types is specified via its Property Definition.
In addition, the following Property-Types are also specified by CMIS:

• ID (xsd:string)
• XML (xs:any)
• HTML (xs:any)

2.2.1.1 ID Property

An ID property holds a system-generated, read-only identitfier, such as an Object ID, an Object Type ID,
a Repository ID, or a Version Series ID. (The ID Property-Type is NOT defined by xsd:id.) The lexical
representation of an ID is an opaque string. As such, an ID cannot be assumed to be interpretable
syntactically or assumed to be to be collate-able with other IDs, and can only be used in its entirety as a
single atomic value. When used in a query predicate, an ID can only participate in an “equal” or a “not
equal” comparison with a string literal or with another ID.

While all CMIS identities share the same Property-Type, they do not necessarily share the same address
space. (So a particular repository implementation MAY use separate address spaces for different kinds of
identity, and may perform different validity checks in a way that is outside the scope of the CMIS
interfaces.)

Unless explicitly specified, ID properties NEED NOT maintain a referential integrity constraint. Therefore,
storing the ID of one object in another object NEED NOT constrain the behavior of either object. A
repository MAY, however, support referential constraint underneath CMIS if the effect on CMIS services
remains consistent with an allowable behavior of the CMIS model. For example, a repository MAY return
an exception when a CMIS service call violates an underlying referential constraint maintained by the
repository. In that case, an error message SHOULD be returned to the application to describe the cause
of exception and suggest a remedial action. The content of such messages is outside the scope of CMIS.

IDs in CMIS for documents usually refer to the specific document version. They can also refer to the
Version Series if obtained from the versionSeriesId property.

2.2.1.2 XML Property
An XML property holds a valid fragment of Extensible Markup Language (XML) content.

2.2.1.3 HTML Property

An HTML property holds a valid fragment of Hypertext Markup Language (HTML) content.

2.2.1.4 Property Attributes

Besides name, type, and whether single- or multi-valued, a property has other defining attributes. They
are described in the “Object-Type” section.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 14 of 85

2.3 Document Object and Content Stream

Document objects are the elementary information entities managed by the repository.

Depending on its Object-type definition, a Document Object may be:

• Version-able: Can be acted upon via the Versioning Services (for example: checkOut, checkIn).

• File-able: Can be filed in zero, one, or more than one folders via the Multi-filing services.

• Query-able: Can be located via the Discovery Services (query).

• Control-able: Can have Policies applied to it (see the “Policy Object” section.)

Additionally, whether a Document object SHALL, MAY, or SHALL NOT have a content-stream is specified
in its object-type definition.

Note: When a document is versioned, each version of the document is a separate document object. Thus,
for document objects, an object ID actually identifies a specific version of a document.

2.3.1 Content Stream

A content-stream is a binary string. Its maximum length is repository-specific. Each content-stream has a
MIME Media Type, as defined by RFC2045 and RFC2046 and registered with IANA
(http://www.iana.org/assignments/media-types/). A content-stream’s attributes are handled as properties
of the content-stream’s containing document object. There is no MIME-type-specific attribute for a
content-stream.

A content-stream is unnamed. But it has a repository-assigned URI which is distinct from the URI (if there
is one) assigned to the document object that contains the content-stream. The permanency of this URI is
repository-specific.

CMIS provides basic CRUD services for content-stream, using the ID of a content-stream’s containing
document object for identification. The “Set Content-Stream” service (setContentStream) either creates a
new content-stream for a document object or replaces an existing content-stream. The “Get Content-
Stream” service (getContentStream) retrieves a content-stream. The “Delete Content-Stream” service
(deleteContentStream) deletes a content-stream from a document object. In addition, the “Check-in”
service MAY also take a content-stream as an optional input (see the “Versioning” section). These are the
only services that operate on content-stream. The “Get Properties” and “Query” services, for example, do
not return a content-stream.

“Set Content-Stream” and “Delete Content-Stream” services are considered modifications to a content-
stream’s containing document object, and will therefore change the object’s LastModificationDate
property upon successful completion.

2.4 Folder Object

A folder object serves as the anchor for a collection of file-able objects. The folder object has an implicit
hierarchical relationship with each object in its collection, with the anchor folder object being the Parent
object and each object in the collection being a Child object. This implicit relationship has a specific
containment semantics which SHALL be maintained by the repository with implicit referential integrity.
(That is, there will never be a dangling parent-relationship or a dangling child-relationship. Furthermore,

http://www.iana.org/assignments/media-types/
Ethan Gur-esh
TODO: Remove when we remove “Policies”.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 15 of 85

object A is a parent of object B if and only if object B is a child of object A.) This system-maintained
implicit relationship is distinct from an explicit relationship which is instantiated by an application-
maintained Relationship Object. (See the “Relationship Object” section.)

A folder object does not have a content-stream and is not version-able, although it is query-able and MAY
be controllable.

2.4.1 File-able Objects

A file-able object is one that MAY be “filed” into a folder. That is, it MAY be a child object of a folder
object.

The following table defines whether the base CMIS Object Types are file-able:

Base Object-Type File-able?

Folder SHALL be file-able

Document • If the “un-filing” optional capability is not
supported by the Repository: SHALL be file-
able

• If the “un-filing” optional capability is supported
by the Repository: SHOULD be file-able

Relationship SHALL NOT be file-able

Policy MAY be file-able

2.4.1.1 Multi-filing/un-filing of Document and Policy Objects
The following table summarizes the number of parent folders that a Document or Policy Object should
have.

Multi-filing capability
supported?

Un-filing capability
Supported?

Allowed number of
Parent Folders

False False 1

False True 0 or 1

True False 1 or more

True True 0 or more

A fileable object that has multiple parent folders is said to be multi-filed. A fileable object that has no
parent folder is said to be unfiled.

Ethan Gur-esh
Remove when we remove Policies.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 16 of 85

2.4.1.2 Document Version Series and Filing

Since document objects are versionable, a document object’s membership in a folder collection MAY be
version-specific or version-independent. That is, the folder membership MAY be restricted to that
particular version of the document or MAY apply to all versions of the document. Whether or not a
repository supports version-specific filing is discoverable via the “Get Repository Information” service
(getRepositoryInfo). When the child objects of a folder are retrieved, a specific version of a document is
returned if the repository supports version-specific filing, and the latest version is returned if the repository
does not support version-specific filing. Likewise, this version sensitivity in child-binding also affects the
behavior of parent retrieval for a document object, as well as the scope of the IN_FOLDER() and
IN_TREE() function calls in a query. For non-versionable fileable objects, their membership in a folder
does not have version sensitivity.

2.4.1.3 Filing Restrictions by Object-Type
A folder collection’s membership MAY be restricted by object type. Each folder object has a multi-valued
AllowedChildObjectTypeIDs property, which specifies that only objects of these types are allowed to be
its children. (These allowed object types SHOULD all be fileable.) If this property is “not set”, then objects
of any file-able type are allowed to be filed in the Folder.

If a repository does not support type constraint on folder membership, it may define this folder property as
read-only, and keep the property value “not set” for all folder objects.

Because of these filing constraints, when a new folder object is created, an existing folder object SHALL
be specified as its parent. When a file-able non-folder object is created, its parent folder SHALL be
specified if the repository does not support the “un-filing” optional capability, and MAY be specified if the
“un-filing” optional capability is supported. The Repository SHALL only allow creation of a file-able object
in a folder if the object’s Object-Type is specified as allowed in that folder as described above.

When a non-file-able object is created, a parent folder SHALL NOT be specified.

When a file-able object is deleted, it is removed from any folder collection in which the object is a
member. In other words, when an object is deleted, all implicit parent-child relationships with the deleted
object as a child cease to exist.

2.4.2 Folder Hierarchy

CMIS imposes the following constraints on folder objects:

• Every folder object, except for one which is called the Root Folder, MUST have one and only
one parent folder. The Root Folder does not have a parent.

• A cycle in folder containment relationships is not allowed. That is, a folder object cannot have
itself as one of its descendant objects.

• A child object that is a folder object can itself be the parent object of other file-able objects.

With these constraints, the folder objects in a CMIS repository necessarily form a strict hierarchy, with the
Root Folder being the root of the hierarchy.

The child objects of a given folder object, their child objects, and grandchild objects, etc., are called
Descendant objects of the given folder object. Similarly, the parent object of a file-able object, and

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 17 of 85

recursively the parent of the parent, etc., are called Ancestor objects of that file-able object. A folder
object together with all its descendant objects are collectively called a Tree rooted at that folder object.

A non-folder object does not have any descendant object. Thus, a Folder Graph that consists of all
fileable objects as nodes, and all the implicit folder containment relationships as directed edges from
parent to child, is a directed acyclic graph, possibly with some disconnected (orphan) nodes. It follows
that the tree rooted at any given folder object is also a directed acyclic graph, although a non-folder object
in the tree MAY have ancestors that are not ancestors of the rooted folder.

A Folder Graph

A folder object

A non-folder fileable object

An implicit folder
containment relationship
from parent to child

Root Folder

Folder objects are handled using the basic CRUD services for objects, and the folder graph is traversed
using the Navigation Services.

The Root Folder is a special folder such that it can not be created, deleted, or moved using CMIS
services. Otherwise, it behaves like any other folder object.

2.4.3 Folder Paths in CMIS
The CMIS domain model does not include a notion of “path” as a means of addressing/accessing an
object. Objects in CMIS are identified and accessed using their IDs in all CMIS services, and content-
streams MAY be retrieved via a URI.
Individual protocol bindings for CMIS MAY allow for accessing/identifying objects or content-streams via
URIs as is appropriate to the specific protocol. However, as is the case for Object IDs, those URIs NEED
NOT be interpretable syntactically or assumed to be collate-able.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 18 of 85

2.5 Relationship Object

A relationship object is semantically a dependent object. A relationship object SHALL NOT have a
content-stream, and SHALL NOT be versionable, SHALL NOT be queryable, and SHALL NOT be
fileable, although it MAY be controllable.

A Relationship Object instantiates an explicit, binary, directional, non-invasive, and typed relationship
between a Source Object and a Target Object. The source object and the target object MUST both be
an independent objects, such as a document object, a folder object, or a policy object. Whether a policy
object is allowed to be the source or target object of a relationship object is repository-specific.

The relationship instantiated by a relationship object is explicit since it is explicitly represented by an
object and is explicitly managed by application.

This relationship is non-invasive in the sense that creating or removing this relationship SHALL NOT
modify either the source or the target object. That is, it SHALL NOT require an update capability (or
permission) on either object; SHALL NOT affect the versioning state of either object; and SHALL NOT
change their “Last Modification Date”.

The source object and the target object of a relationship MAY be the same object.

Explicit relationships can be used to create an arbitrary relationship graph among independent objects.
Such a relationship graph is only structural in nature. No inheritance or transitive properties are attached
to a relationship graph.

An Explicit Relationship

Source
Object

Target
ObjectRelationship Object

The notion of a source object and a target object of a relationship is used solely to indicate the direction of
the relationship. No semantics or implementation bias is implied by this terminology.

The binding of a relationship object to a source document object or to a target document object MAY be
either version-specific or version-independent. This version sensitivity is repository-specific, and is largely
transparent to CMIS. An independent object MAY participate in any number of explicit relationships, as
the source object for some and as the target object for others. Multiple relationships MAY exist between
the same pair of source and target objects.

Ethan Gur-esh
Delete when we kill policies.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 19 of 85

Referential integrity, either between the source object and the target object, or between the relationship
object and the source or target object, is not specified. Therefore, creating an explicit relationship
between two objects NEED NOT not impose a constraint on any of the three objects, and removing a
relationship or deleting either the source or the target object NEED NOT be restricted by such a
constraint. If the source or the target object of a relationship is deleted, the repository MAY automatically
delete the relationship object.

A repository MAY support referential integrity or other constraints underneath CMIS, either between the
source object and the target object of a relationship, or between a relationship object and its source or
target object, provided that the resulting effect on CMIS services is consistent with an allowable behavior
of CMIS. For example, a repository MAY throw a generic exception when an underlying referential
constraint is violated, and SHOULD return an error message of the cause of the exception. However the
content of such a message is outside the scope of CMIS.

Like all CMIS objects, relationship objects are typed. Typing relationship allows them to be grouped,
identified, and traversed by type name, and for properties to be defined for individual relationship types.

Additionally, a relationship object-type MAY specify that only Objects of a specific Object-Type (or one of
a set of specific Object-Tyeps) can participate as the source object or target object for relationship objects
of that type. If no such constraints are specified , then an independent object of any type MAY be the
source or the target of a relationship object of that type.

Relationship objects are created/retrieved/updated/deleted using the CMIS Object Services
(createRelationship, getProperties, updateProperties, deleteObject).

When a relationship object is created, the source object and the target object MUST already exist.

Relationship Objects are retrieved using the “Relationships” service (getRelationships),which can be used
to return a set of relationship objects in which a given independent object is identified as the source or
target object, according to the binding semantics maintained by the repository (i.e., either a version-
specific or a version-independent binding as described above). This traversal may be selectively
restricted to relationships of a given type and/or in a particular direction (i.e., where the given object is the
source, the target, or either).

When a relationship object is retrieved, its source object or target object MAY no longer exist, since
referential integrity NEED NOT be maintained by a repository.

When a relationship object is deleted, the source and the target objects are left untouched.

In addition to object CRUD services, a “Get Relationships” service (getRelationships) may be used to
return a set of relationship objects in which a given independent object is identified as the source or the
target object, according to the binding semantics maintained by the repository (i.e., either a version-
specific or a version-independent binding as described above).

2.6 Policy Object

A policy object represents an administrative policy that can be enforced by a repository, such as an
Access Control List (ACL) or a retention management policy. CMIS 1.0 does not specify what kinds of
administrative policies that are specifically supported, nor attempts to model administrative policy of any
particular kind. Only a base object type is specified for policy objects. Each policy object holds the text of
an administrative policy as a repository-specific string, which is opaque to CMIS and which may be used
to support policies of various kinds. (For CMIS 1.0, the use case is primarily access control.) A repository
may create subtypes of this base type to support different kinds of administrative policies more

Ethan Gur-esh
This section not updated based on the assumption that it will be getting removed.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 20 of 85

specifically. The support for policy objects is optional. If a repository does not support policy objects, the
policy base object type SHOULD NOT be returned by a “Get Types” service call.

Aside from allowing an application to create and maintain policy objects, CMIS allows an application to
“apply” a policy to an object, and to remove an applied policy from an object. An object to which a policy
may be applied is called a controllable object. A policy MAY be applied to multiple controllable objects.
Conversely, a repository MAY allow multiple policies applied to a controllable object. (A repository may,
for example, impose constraints such as only one policy of each kind can be applied to an object.)
Whether or not an object is controllable is specified by the object’s type definition. Applying a policy to an
object is to place the object under the control of that policy (while the object may also be under the control
of other policies at the same time), and removing an applied policy from one of its controlled objects is to
remove the corresponding control from that object. This control may change the state of the object, may
impose certain constraints on service calls operating on this object, or may cause certain management
actions to take place. The effect of this control, when this effect takes place, and how this control interacts
with other controls, are repository-specific. Only directly/explicitly applied policies are covered by CMIS
1.0. Indirectly applying policy to an object, e.g. through inheritance, is outside the scope of CMIS 1.0.

A policy object does not have a content-stream and is not versionable. It may be fileable, queryable, or
controllable. Policy objects are handled using the basic CRUD services for objects. If a policy is updated,
the change may alter the corresponding control on objects that the policy is currently applied to. If a
controlled object is deleted, all the policies applied to that object, if there is any, are removed from that
object. A policy object that is currently applied to one or more controllable objects can not be deleted.
That is, there is an implicit referential constraint from a controlled object to its controlling policy object(s).
Besides the basic CRUD services, the “Apply Policy” (applyPolicy) and the “Remove Policy”
(removePolicy) services may be used to apply a policy object to a controllable object and respectively to
remove an applied policy from one of its controlled objects. In addition, the “Get Applied Policies”
(getAppliedPolicies) service may be used to obtain the policy objects that are currently applied to a
controllable object.

2.7 Object-Type

An Object-Type defines a fixed and non-hierarchical set of properties (“schema”) that all objects of that
type have. This schema is used by a repository to validate objects and enforce constraints, and is also
used by a user to compose object-type-based (structured) queries. All CMIS objects are strongly typed.
Incidental properties that are not prescribed in an object’s type definition (such as “residual properties” in
JCR, or “dead properties” in WebDAV) are not modeled in CMIS. If a property not specified in an object’s
object-type definition is supplied by application, an exception SHOULD be thrown.

Each object-type is uniquely identified within a repository by a system-assigned and immutable Object-
Type Identity, which is of type ID.

A CMIS repository SHALL expose exactly one collection of Object-Types via the “Repository” services
(getTypes, getTypeDefinition).

While a repository MAY define additional object types beyond the CMIS Base Object-Types, these Object
Types SHALL NOT extend or alter the behavior or semantics of a CMIS service (for example, by adding
new services). A repository MAY attach additional constraints to an object-type underneath CMIS,
provided that the effect visible through the CMIS interface is consistent with the allowable behavior of
CMIS.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 21 of 85

2.7.1 Object-Type Hierarchy and Inheritance

Hierarchy and Inheritance for Object-Types are supported by CMIS in the following manner:

• A CMIS repository SHALL have exactly four base types:

o Document object type

o Folder object type

o Relationship object type

o Policy object type

• Additional root types SHALL NOT exist. Additional object types MAY be defined as sub-types or
descendant types of these four root types.

• A Base Type does not have a parent type.

• A non-base type has one and only one parent type. An object-type’s Parent Type is a part of the
object-type definition.

• An object-type definition includes a set of object-type attributes (e.g. Fileable, Queryable, etc.)
and a property schema that will apply to Objects of that type.

o There is no inheritance of object-type attributes from a parent object-type to its sub-types.

• The properties of a CMIS base type SHALL be inherited by its descendant types.

• A Child-type whose immediate parent is NOT its base type SHOULD inherit all the property
definitions that are specified for its parent type. In addition, it MAY have its own property
definitions.

o If a property is NOT inherited by a subtype, the exhibited behavior for query SHALL be as if the
value of this property is “not set” for all objects of this sub-type.

• The scope of a query on a given object-type is automatically expanded to include all the Descendant
Types of the given object type. Only the properties of the given object type, including inherited ones,
SHALL be used in the query. Properties defined for its descendant types MAY NOT be used in the
query, and CAN NOT be returned by the query.

o If a property of its parent type is not inherited by this type, the property SHALL still appear as
a column in the corresponding virtual table in the relational view, but this column SHALL
contain a SQL NULL value for all objects of this type. (See the “Query” section.)

A repository that does not support Object-type inheritance natively MAY define all additional object types
as immediate sub-types of these Base Object-types. In that case, the type hierarchy is essentially flat.

2.7.2 Object-Type Attributes

2.7.2.1 Attributes common to ALL Object-Type Definitions

All Object-Type Definitions SHALL contain the following attributes:

Name Type Function

Ethan Gur-esh
Delete when we remove policies.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 22 of 85

typeId ID This attribute uniquely identifies this object type in the repository

queryName String Used as a table name in a SQL query. It MAY be in mixed case,
but SHALL uniquely identify this object type within the repository
case-insensitively, and SHALL conform to the syntax rules for
SQL identifiers.

displayName String Used for presentation by application

baseType Enum A value that indicates whether the base type for this Object-Type
is the Document, Folder, Relationship, or Policy base type.

baseTypeQueryName String The queryName of the base type for the Object-Type.

parentId ID The ID of the Object-Types immediate parent type.

It SHALL be “not set” for a base type.

description String Description of this object type, such as the nature of content, or
its intended use. Used for presentation by application.

creatable Boolean Indicates whether new objects of this type MAY be created. If the
value of this attribute is false, the repository MAY contain objects
of this type already, but SHALL NOT allow new objects of this
type to be created.

fileable Boolean Indicates whether or not objects of this type are file-able.

queryable Boolean Indicates whether or not this object type is queryable. A non-
queryable object type is not visible through the relational view
that is used for query, and can not appear in the FROM clause of
a query statement.

includedInSupertypeQuery Boolean Indicates whether this type and its subtypes appear in a query of
this type’s ancestor types.

For example: if Invoice is a sub-type of Document, if this is true
on Invoice then for a query on Document type, instances of
Invoice will be returned if they match.

If this attribute is false, no instances of Invoice will be returned
even if they match the query.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 23 of 85

controllable Boolean Indicates whether or not objects of this type are controllable.
Policy objects can only be applied to controllable objects.

Note: In the above table, the “applicable to sub-types of <base type>” is to be read as follows:

• Yes: This attribute is applicable to sub-types of this base type, although its value will vary
between individual sub-types of the base type.

• No: This attribute SHALL always be returned as “not set” for all sub-types of this base-type.

• TRUE: This Boolean attribute SHALL always be TRUE for all sub-types of this base type.

• FALSE: This Boolean attribute SHALL always be FALSE for all sub-types of this base type.

2.7.2.2 Attributes specific to Document Object-Types
The following Object attributes SHALL only apply to Object-Type definitions whose baseType is the
Document Object-Type, in addition to the common attributes specified above:

Name Type Function

versionable Boolean Indicates whether or not objects of this type are version-able. (See
versioning section.)

contentStreamAllowed Enum A value that indicates whether a content-stream MAY, SHALL, or
SHALL NOT be included in objects of this type. Values:

• notAllowed: A content-stream SHALL NOT be included

• allowed: A content-stream MAY be included

• required: A content-stream SHALL be included (i.e. SHALL
be included when the object is created, and SHALL NOT be
deleted.)

2.7.2.3 Attributes specific to Relationship Object-Types
The following Object attributes SHALL only apply to Object-Type definitions whose baseType is the
Relationship Object-Type, in addition to the common attributes specified above:

Name Type Function

allowedSourceTypes String (mulit-
valued)

A list of object type IDs, indicating that the source object of a
relationship object of this type SHALL only be one of the types
listed.

If this attribute is “not set”, then the source object MAY be of any
type.

allowedTargetTypes String (mulit-
valued)

A list of object type IDs, indicating that the target object of a
relationship object of this type SHALL only be one of the types
listed.

If this attribute is “not set”, then the target object MAY be of any

Ethan Gur-esh
TODO: Remove when we remove policy.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 24 of 85

type.

2.7.3 Object-Type Property Definitions

Besides these object type attributes, an object type definition SHOULD contain inherited property
definitions and zero or more additional property definitions. All the properties of an object, including
inherited properties, SHALL be retrievable through the “get” services, and MAY appear in the SELECT
clause of a query.

2.7.3.1 Property Types

CMIS specifies the following Property-Types. They include the following data types defined by “XML
Schema Part 2: Datatypes Second Edition” (W3C Recommendation, 28 October 2004,
http://www.w3.org/TR/xmlschema-2/):

• String (xsd:string)
• Decimal (xsd:decimal)
• Integer (xsd:integer)
• Boolean (xsd:boolean)
• DateTime (xsd:dateTime)
• URI (xsd:anyURI)

The Precision for Decimal property-types is specified via its Property Definition.
In addition, the following Property-Types are also specified by CMIS:

• ID (xsd:string)
• XML (xs:any)
• HTML (xs:any)

2.7.3.2 Attributes common to ALL Object-Type Property Definitions

All Object-Type Property Definitions SHALL contain the following attributes:

Name Type Function

name string Identifies this property among all properties of this object type,
including inherited properties. This attribute is also used as a column
name in a SQL query.

It MAY be in mixed case, but SHALL uniquely identify this property
case-insensitively, and SHALL conform to the syntax rules for SQL
identifiers.

id string This attribute contains a system-assigned ID which uniquely identifies
this property.

displayName string Used for presentation by application.

description string This is an optional attribute containing a description of the property

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 25 of 85

propertyType Enum This attribute indicates the type of this property. It MUST be one of the
allowed property types. (See the “Property” section.)

cardinality Enum Indicates whether the property can have “zero or one” or “one or more”
values.

Values:

• Single: Property can have zero or one values (if property is not
required), or exactly one value (if property is required)

• Multi: Property can have zero or more values (if property is not
required), or one or more values (if property is required).

Repositories SHOULD preserve the ordering of values in a multi-
valued property. That is, the order in which the values of a multi-
valued property are returned in “get” operations SHOULD be the same
as the order in which they were supplied during previous
“create/update” operation.

updateability Enum Indicates under what circumstances the value of this property MAY be
updated.

Values:

• readOnly: The value of this property SHALL NOT ever be set
directly by an application. It is a system property that is either
maintained or computed by the repository.

o The value of a readOnly property MAY be indirectly
modified by other repository interactions (for example,
calling “updateProperties” on an object will change the
object’s last modified date, even though that property
cannot be directly set via an updateProperties()
service call.)

• readWrite: The property value can be modified using the
updateProperties service.

• Whencheckedout: The property value SHALL only be
update-able using a “private working copy” Object.

o I.e. the update is either made on a “private working
copy” object or made using a “check in” service.

Inherited Boolean Indicates whether the property is inherited from the parent-type or it is
explicitly defined for this object-type.

Required Boolean If true, then the value of this property SHALL never be set to the “not
set” state when an object of this type is created/updated.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 26 of 85

 If a value is not provided, then the default value defined for the
property SHALL be set. If no default value is provided and no default
value is defined, the repository SHALL throw an exception.

queryable Boolean Indicates whether or not the property MAY appear in the WHERE
clause of a CMIS query statement.

This attribute SHALL have a value of FALSE if the Object-type’s
attribute for “Queryable” is set to FALSE.

(Note: “Queryable” has a different meaning for object type and for
property. The former pertains to the FROM clause and the latter
pertains to the WHERE clause.)

Orderable Boolean Indicates whether the property can appear in the ORDER BY clause of
a SQL SELECT statement.

This property SHALL be false for any property whose cardinality is
“multi”.

Choices <PropertyType
list>
(multi-valued)

Indicates an explicit set of values allowed for this property.

If this attribute is “not set”, then any valid value for this property based
on its type may be used.

Each choice is specified in the form of <choice name [, value [, index]]
<[,choice+]>>. The name is used for presentation purpose. The value
will be stored in the property when selected. The index provides
guidance for ordering of names when presented.

Choices MAY be hierarchically presented. In this case, the index
orders siblings in the choice hierarchy; if a choice has no siblings then
the index may be omitted; if a choice has siblings then the index is
required on all siblings.

openChoice Boolean This attribute is only applicable to properties that provide a value for
the “Choices” attribute.

If FALSE, then the data value for the property SHALL only be one of
the values specified in the “Choices” attribute. If TRUE, then values
other than those included in the “Choices” attribute may be set for the
property.

defaultValue <PropertyType> The value that the repository SHALL set for the property if a value is
not provided by an application when the object is created.

If no default value is specified and an application creates an object of
this type without setting a value for the property, the repository SHALL
attempt to store a “value not set” state for the property value. If this
occurs for a property that is defined to be required, then the creation
attempt SHALL throw an exception.

Ethan Gur-esh
Filed bug – readonly properties SHALL never be defined as “required”.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 27 of 85

2.7.3.3 Attributes specific to Integer Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“Integer”, in addition to the common attributes specified above:

Name Type Function

minValue Integer The minimum value allowed for this property.

If an application tries to set the value of this property to a value lower than
minValue, the repository SHALL throw a ConstraintViolation exception.

maxValue integer The maximum value allowed for this property.

If an application tries to set the value of this property to a value lower than
minValue, the repository SHALL throw a ConstraintViolation exception.

2.7.3.4 Attributes specific to Decimal Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“Decimal”, in addition to the common attributes specified above:

Name Type Function

precision Integer This is the precision in bits supported for values of this property. Valid values for
this attribute are:

• 32: 32-bit precision.

• 64: 64-bit precision.

minValue Decimal The minimum value allowed for this property.

If an application tries to set the value of this property to a value lower than
minValue, the repository SHALL throw a ConstraintViolation exception.

maxValue Decimal The maximum value allowed for this property.

If an application tries to set the value of this property to a value lower than
minValue, the repository SHALL throw a ConstraintViolation exception.

Ethan Gur-esh
Filed bug: Schema should include min/maxvalue elements for decimal properties.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 28 of 85

2.7.3.5 Attributes specific to String Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“String”, in addition to the common attributes specified above:

Name Type Function

maxLength integer The maximum length (in characters) allowed for a value of this property.

If an application attempts to set the value of this property to a string larger than the
specified maximum length, the repository SHALL throw a ConstraintViolation
exception.

2.7.3.6 Attributes specific to String Object-Type Property Definitions
The following Object attributes SHALL only apply to Property-Type definitions whose propertyType
“String”, in addition to the common attributes specified above:

Name Type Function

schemaURI URI The location of an XML schema to which the value of this property SHALL conform.

If an application attempts to set the value of this property to an XML value that
does NOT conform to the schema, the repository SHALL throw a
ConstraintViolation exception.

encoding string The encoding that SHALL be used for the property value (e.g. UTF-8, etc.).

If an application attempts to set the value of this property to an XML value that is
NOT encoded in the format specified, the repository SHALL throw a
ConstraintViolation exception.

2.7.4 CMIS Base Object-Type Definitions
This section specifies the Object-Type Definitions for each of the four CMIS base types (Document,
Folder, Relationship, Policy).

2.7.4.1 Document Object-Type Definition

2.7.4.1.1 Document Object-Type Attribute Values
The Document base Object-Type SHALL have the following attribute values.
(Notes:

o A value of <repository-specific> indicates that the value of the property MAY be set to any valid
value for the attribute type.

o Unless explicitly stated otherwise, all values specified in the table SHALL be followed for the
Object-Type definition.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 29 of 85

Attribute Name Value

typeId
<repository-specific>

queryName
Document

displayName
<repository-specific>

baseType
document

baseTypeQueryName
Document

parentId
Not set

description
<repository-specific>

creatable
<repository-specific>

fileable
o If the repository does NOT support the “un-

filing” capability:
o TRUE

o If the repository does support the “un-filing”
capability:

o <repository-specific>, but SHOULD be
TRUE

queryable
SHOULD be TRUE

includedInSupertypeQuery
TRUE

Controllable
<repository-specific>

Versionable
<repository-specific>

contentStreamAllowed
<repository-specific>

2.7.4.1.2 Document Object-Type Property Definitions
The Document base Object-Type SHALL have the following property definitions, and MAY include
additional property definitions.
Notes:

o The “functional summary” column is purely informational (these values do not actually appear in
the Object-Type property definitions).

o The value RS indicates that the value indicates that the value property definition attribute MAY be
set to any valid value for the attribute type.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 30 of 85

o The value T indicates the Boolean value SHALL be TRUE.
o The value F indicates the Boolean value SHALL be FALSE.
o The value S indicates the value SHALL be “single”.
o The value M indicates the value SHALL be “multi”.
o The value RO indicates the value SHALL be “readOnly”
o The value RW indicates the value SHALL be “readWrite”
o The value WC indicates the value SHALL be “whenCheckedout”
o The value NS indicates the value SHALL be “not set”
o The value NA indicates that this attribute does not exist for a property of the specified

propertyType.

Name Functional summary Id
displayN

am
e

description

propertyType

cardinality

updateability

inherited

required

queryable

orderable

ObjectId Uniquely identifies the
object

RS RS RS ID S RO F F RS RS

Uri URI for accessing the
object.

RS RS RS Uri S RO F F RS RS

ObjectTypeId ID of the object type
for the object.

RS RS RS ID S RO F F RS RS

CreatedBy User who created the
object.

RS RS RS String S RO F F RS RS

CreationDate DateTime when the
object was created.

RS RS RS DateTim
e

S RO F F RS RS

LastModifiedBy User who last
modified the object.

RS RS RS String S RO F F RS RS

LastModificationDate DateTime when the
object was last
modified.

RS RS RS DateTim
e

S RO F F RS RS

ChangeToken Opaque token used
for optimistic locking &
concurrency checking.
(see Change Tokens
section)

RS RS RS String S RO F F RS RS

Name Name of the object. RS RS RS String S RS F RS RS RS

IsImmutable TRUE if the repository
SHALL throw an error
at any attempt to
update or delete the
object.

RS RS RS Boolean S RO F F RS RS

Ethan Gur-esh
Schema bug filed – enumPropertiesDocument does NOT have a value for “name”

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 31 of 85

isLatestVersion See versioning
section.

RS RS RS Boolean S RO F F RS RS

isMajorVersion See versioning
section.

RS RS RS Boolean S RO F F RS RS

VersionLabel See versioning
section.

RS RS RS String RS RO F F RS RS

VersionSeriesId See versioning
section.

RS RS RS ID S RO F F RS RS

IsVersionSeriesCheckedOut See versioning
section.

RS RS RS Boolean S RO F F RS RS

VersionSeriesCheckedOutBy See versioning
section.

RS RS RS String S RO F F RS RS

VersionSeriesCheckedOutId See versioning
section.

RS RS RS ID S RO F F RS RS

CheckinComment See versioning
section.

RS RS RS String S RO F F RS RS

ContentStreamLength Length of the content
stream (in bytes).

RS RS RS Integer S RO F F RS RS

ContentStreamMimeType MIME type of the
Content Stream

RS RS RS String S RO F F RS RS

ContentStreamFilename File name of the
content stream

RS RS RS String S RO F F RS RS

ContentStreamUri URI for accessing the
object.

RS RS RS Uri S RO F F RS RS

2.7.4.2 Folder Object-Type Definition

2.7.4.2.1 Folder Object-Type Attribute Values
The Folder base Object-Type SHALL have the following attribute values.
(Notes:

o A value of <repository-specific> indicates that the value of the property MAY be set to any valid
value for the attribute type.

o Unless explicitly stated otherwise, all values specified in the table SHALL be followed for the
Object-Type definition.

Attribute Name Value

typeId
<repository-specific>

queryName
Folder

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 32 of 85

displayName
<repository-specific>

baseType
folder

baseTypeQueryName
Folder

parentId
Not set

description
<repository-specific>

creatable
<repository-specific>

fileable
TRUE

queryable
SHOULD be TRUE

includedInSupertypeQuery
TRUE

controllable
<repository-specific>

2.7.4.2.2 Folder Object-Type Property Definitions
The Document base Object-Type SHALL have the following property definitions, and MAY include
additional property definitions.
Notes:

o The “functional summary” column is purely informational (these values do not actually appear in
the Object-Type property definitions).

o The value RS indicates that the value indicates that the value property definition attribute MAY be
set to any valid value for the attribute type.

o The value T indicates the Boolean value SHALL be TRUE.
o The value F indicates the Boolean value SHALL be FALSE.
o The value S indicates the value SHALL be “single”.
o The value M indicates the value SHALL be “multi”.
o The value RO indicates the value SHALL be “readOnly”
o The value RW indicates the value SHALL be “readWrite”
o The value WC indicates the value SHALL be “whenCheckedout”
o The value NS indicates the value SHALL be “not set”
o The value NA indicates that this attribute does not exist for a property of the specified

propertyType.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 33 of 85

Name Functional summary Id

displayN
am

e

description

propertyType

cardinality

updateability

inherited

required

queryable

orderable

ObjectId Uniquely identifies the
object

RS RS RS ID S RO F F RS RS

Uri URI for accessing the
object.

RS RS RS Uri S RO F F RS RS

ObjectTypeId ID of the object type
for the object.

RS RS RS ID S RO F F RS RS

CreatedBy User who created the
object.

RS RS RS String S RO F F RS RS

CreationDate DateTime when the
object was created.

RS RS RS DateTim
e

S RO F F RS RS

LastModifiedBy User who last
modified the object.

RS RS RS String S RO F F RS RS

LastModificationDate DateTime when the
object was last
modified.

RS RS RS DateTim
e

S RO F F RS RS

ChangeToken Opaque token used
for optimistic locking &
concurrency checking
(see Change Tokens
section)

RS RS RS String S RO F F RS RS

Name Name of the folder.
For the root folder, the
value of this field
SHALL be
“CMIS_Root_Folder”.

RS RS RS String S RS F RS RS RS

ParentId ID of the parent
Folder of the folder.

RS RS RS ID S RO F F RS RS

AllowedChildObjectTypeIds IDs of the set of
Object Types that can
be created, moved or
filed into this folder.

RS RS RS ID M RS F F RS RS

2.7.4.3 Relationship Object-Type Definition

2.7.4.3.1 Relationship Object-Type Attribute Values
The Relationship base Object-Type SHALL have the following attribute values.

Ethan Gur-esh
Schema bug filed – enumPropertiesFolder does NOT have a value for “name”

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 34 of 85

Notes:
o A value of <repository-specific> indicates that the value of the property MAY be set to any valid

value for the attribute type.
o Unless explicitly stated otherwise, all values specified in the table SHALL be followed for the

Object-Type definition.

Attribute Name Value

typeId
<repository-specific>

queryName
Relationship

displayName
<repository-specific>

baseType
Folder

baseTypeQueryName
Folder

parentId
Not set

description
<repository-specific>

creatable
<repository-specific>

fileable
FALSE

queryable
FALSE

includedInSupertypeQuery
TRUE

controllable
<repository-specific>

allowedSourceTypes
<repository-specific>

allowedTargetTypes
<repository-specific>

2.7.4.3.2 Relationship Object-Type Property Definitions
The Relationship base Object-Type SHALL have the following property definitions, and MAY include
additional property definitions.
Notes:

o The “functional summary” column is purely informational (these values do not actually appear in
the Object-Type property definitions).

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 35 of 85

o The value RS indicates that the value indicates that the value property definition attribute MAY be
set to any valid value for the attribute type.

o The value T indicates the Boolean value SHALL be TRUE.
o The value F indicates the Boolean value SHALL be FALSE.
o The value S indicates the value SHALL be “single”.
o The value M indicates the value SHALL be “multi”.
o The value RO indicates the value SHALL be “readOnly”
o The value RW indicates the value SHALL be “readWrite”
o The value WC indicates the value SHALL be “whenCheckedout”
o The value NS indicates the value SHALL be “not set”
o The value NA indicates that this attribute does not exist for a property of the specified

propertyType.

Name Functional summary Id

displayN
am

e

description

propertyType

cardinality

updateability

inherited

required

queryable

orderable

ObjectId Uniquely identifies the
object

RS RS RS ID S RO F F RS RS

Uri URI for accessing the
object.

RS RS RS Uri S RO F F RS RS

ObjectTypeId ID of the object type
for the object.

RS RS RS ID S RO F F RS RS

CreatedBy User who created the
object.

RS RS RS String S RO F F RS RS

CreationDate DateTime when the
object was created.

RS RS RS DateTim
e

S RO F F RS RS

LastModifiedBy User who last
modified the object.

RS RS RS String S RO F F RS RS

LastModificationDate DateTime when the
object was last
modified.

RS RS RS DateTim
e

S RO F F RS RS

ChangeToken Opaque token used
for optimistic locking &
concurrency checking.
(see Change Tokens
section)

RS RS RS String S RO F F RS RS

SourceId ID of the source
object of the
relationship.

RS RS RS ID S RO F F RS RS

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 36 of 85

TargetId ID of the target object
of the relationship.

RS RS RS ID S RO F F RS RS

2.7.4.4 Policy Object-Type Definition

2.7.4.4.1 Policy Object-Type Attribute Values
The Policy base Object-Type SHALL have the following attribute values.
Notes:

o A value of <repository-specific> indicates that the value of the property MAY be set to any valid
value for the attribute type.

o Unless explicitly stated otherwise, all values specified in the table SHALL be followed for the
Object-Type definition.

Attribute Name Value

typeId
<repository-specific>

queryName
Policy

displayName
<repository-specific>

baseType
Policy

baseTypeQueryName
Policy

parentId
Not set

description
<repository-specific>

creatable
<repository-specific>

fileable
<repository-specific>

queryable
<repository-specific>

includedInSupertypeQuery
TRUE

controllable
<repository-specific>

2.7.4.4.2 Policy Object-Type Property Definitions
The Policy base Object-Type SHALL have the following property definitions, and MAY include additional
property definitions.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 37 of 85

Notes:
o The “functional summary” column is purely informational (these values do not actually appear in

the Object-Type property definitions).
o The value RS indicates that the value indicates that the value property definition attribute MAY be

set to any valid value for the attribute type.
o The value T indicates the Boolean value SHALL be TRUE.
o The value F indicates the Boolean value SHALL be FALSE.
o The value S indicates the value SHALL be “single”.
o The value M indicates the value SHALL be “multi”.
o The value RO indicates the value SHALL be “readOnly”
o The value RW indicates the value SHALL be “readWrite”
o The value WC indicates the value SHALL be “whenCheckedout”
o The value NS indicates the value SHALL be “not set”
o The value NA indicates that this attribute does not exist for a property of the specified

propertyType.

Name Functional summary Id

displayN
am

e

description

propertyType

cardinality

updateability

inherited

required

queryable

orderable

ObjectId Uniquely identifies the
object

RS RS RS ID S RO F F RS RS

Uri URI for accessing the
object.

RS RS RS Uri S RO F F RS RS

ObjectTypeId ID of the object type
for the object.

RS RS RS ID S RO F F RS RS

CreatedBy User who created the
object.

RS RS RS String S RO F F RS RS

CreationDate DateTime when the
object was created.

RS RS RS DateTim
e

S RO F F RS RS

LastModifiedBy User who last
modified the object.

RS RS RS String S RO F F RS RS

LastModificationDate DateTime when the
object was last
modified.

RS RS RS DateTim
e

S RO F F RS RS

ChangeToken Opaque token used
for optimistic locking &
concurrency
checking.(see Change
Tokens section)

RS RS RS String S RO F F RS RS

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 38 of 85

PolicyName Display name for the
Policy.

RS RS RS String S RS F F RS RS

PolicyText User-friendly
description of the
Policy.

RS RS RS String S RS F F RS RS

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 39 of 85

2.8 Versioning
CMIS supports versioning of Document objects. Folder objects, relationship objects, and policy objects
cannot be versioned.
Whether or not a Document object is versionable (i.e. whether or not operations performed on the object
via the Versioning Services SHALL be allowed) is specified by the “versionable” attribute on its Object-
type.
A version of a Document object is an explicit/”deep” copy of the object, preserving its state at a certain
point in time. Each version of a Document object is itself a Document object, i.e. has its own ObjectId,
property values, MAY be acted upon using all CMIS services that act upon Document objects, etc.

2.8.1 Version Series

A version series for a Document object is a transitively closed collection of all Document objects that
have been created from an original Document in the Repository. Each version series has a unique,
system-assigned, and immutable version series ID.

The version series has transitive closure -- that is, if object B is a version of object A, and object C is a
version of object B, then object C is also a version of object A. The objects in a version series can be
conceptually sequenced by their respective LastModificationDate properties.
Additionally, the repository MAY expose a textual VersionLabel that describes to a user the position of
an individual object with respect to the version series. (For example, version 1.0).
Note: A Document object that is NOT versionable will always have a single object in its Version Series. A
versionable Document object MAY have one or more objects in its Version Series.

2.8.2 Latest Version
The version that has the most recent LastModificationDate is called the Latest Version of the series, or
equivalently, the latest version of any Document object in the series.
When the latest version of a version series is deleted, a previous version (if there is one) becomes the
latest version. When the latest major version is deleted, a previous major version (if there is one)
becomes the latest major version.

2.8.2.1 Behavioral constraints on non-Latest Versions
Repositories NEED NOT allow the non-latest versions in a Version Series to be updated, queried, or
searched.

2.8.3 Major Versions
A Document object in a Version Series MAY be designated as a Major Version.
The CMIS specification does not define any semantic/behavioral differences between Major and non-
Major versions in a Version Series. Repositories may enforce/apply additional constraints or semantics for
Major versions, if the effect on CMIS services remains consistent with an allowable behavior of the CMIS
model.
If the Version Series contains one or more Major versions, the one that has the most recent
LastModificationDate is the Latest Major Version of the version series.
(Note that while a Version Series SHALL always have a Latest Version, it NEED NOT have a Latest
Major Version.)

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 40 of 85

When the latest major version is deleted, a previous major version (if there is one) becomes the latest
major version.

2.8.4 Services that modify Version Series

2.8.4.1 Checkout
A new version of a Versionable Document object is created when the checkout service is invoked on a
Document object. A repository MAY allow any Document object in a version series to be checked out, or
MAY only allow the Latest Version to be checked out.
 The effects of invoking the checkout service SHALL be as follows:

• A new Document object , referred to herein as the Private Working Copy (PWC), is created.
o The PWC NEED NOT be visible to users who have permissions to view other Document

objects in the Version Series.
o Until it is checked in (using the checkIn service), the PWC SHALL NOT be considered

the LatestVersion or LatestMajorVersion in the Version Series.
o The property values for the PWC SHALL be identical to the properties of the Document

object on which the checkout service was invoked. The content-stream of the PWC MAY
be identical to the content-stream of the Document object on which the checkout service
was invoked, or MAY be “not set”.

After a successful checkout operation is completed, and until such time when the PWC is deleted (via the
canCheckOut service) or checked-in (via the checkIn) service, the effects on other Documents in the
Version Series SHALL be as follows:

• The repository SHALL throw an exception if the checkout service is invoked on any Document in
the Version Series. (I.e. there can only be one PWC for a version series at a time.)

• The value of the isVersionSeriesCheckedout property SHALL be TRUE.
• The value of the IsVersionSeriesCheckedOutBy property MAY be set to a value indicating which

user created the PWC. (The Repository MAY still show the “not set” value for this property.)
• The value of the VersionSeriesCheckedOutId property MAY be set to the ObjectId of the PWC.

(The Repository MAY still show the “not set” value for this property).
• The repository MAY prevent operations that modify or delete the other Documents in the Version

Series.

2.8.4.2 Updates to the Private Working Copy
If the repository supports the optional “PWCUpdateable” capability, then the repository SHALL allow
authorized users to modify the PWC Object using the Object services (e.g. UpdateProperties).
If the repository does NOT support the “PWCUpdateable” capability, then the PWC object can only be
modified as part of the checkIn service call.

2.8.4.3 Discarding Check out
An authorized user MAY discard the check-out using the cancelCheckOut service on any Document in
the Version Series or by using the deleteObject service on the PWC Object. The effects of discarding a
check-out SHALL be as follows:

• The PWC Object SHALL be deleted.

Ethan Gur-esh
Will need to revisit this once we have ACLs in the spec… maybe PWC visibility should just be expressed via ACLs ?

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 41 of 85

• For all other Documents in the Version Series:
o The value of the isVersionSeriesCheckedout property SHALL be FALSE.
o The value of the IsVersionSeriesCheckedOutBy property SHALL be “not set”.
o The value of the VersionSeriesCheckedOutId property SHALL be “not set”.
o The repository SHALL allow authorized users to invoke the checkout service.

2.8.4.4 Checkin
An authorized user/application MAY “check in” the Private Working Copy object via the checkin service.
The checkin service allows users/applications to provide update property values and a content-stream for
the PWC object.
The effects of the checkin service SHALL be as follows:

• The PWC object SHALL be updated as specified by the inputs to the checkin service. (Note that
for repositories that do NOT support the “PWCUpdateable” property, this is the only way to
update the PWC object.)

• The PWC shall be considered the Latest Version in the Version Series.
• If the inputs to the checkIn service specified that the PWC SHALL be a “major version”, then the

PWC SHALL be considered the Latest Major Version in the Version Series.
• For all Documents in the Version Series:

o The value of the isVersionSeriesCheckedout property SHALL be FALSE.
o The value of the IsVersionSeriesCheckedOutBy property SHALL be “not set”.
o The value of the VersionSeriesCheckedOutId property SHALL be “not set”.
o The repository SHALL allow authorized users to invoke the checkout service.

Note: The Repository MAY change the ID of the PWC upon completion of the checkin service invocation.
Note: A repository MAY automatically create new versions of Document objects without an explicit
invocation of the checkout/checkin services.

2.8.5 Versioning Properties on Document Objects
All Document objects will have the following read-only property values pertaining to versioning:

Name Type Usage

isLatestVersion Boolean
TRUE if the Document object is
the Latest Version in its Version
Series.

FALSE otherwise.

isMajorVersion Boolean
TRUE if the Document object is
the Latest Major Version in its
Version Series.

FALSE otherwise.

VersionLabel String Textual description the position

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 42 of 85

of an individual object with
respect to the version series.
(For example, version 1.0).

VersionSeriesId ID
ID of the Version Series for this
Object.

IsVersionSeriesCheckedOut Boolean
TRUE if there currently exists a
Private Working Copy for this
Version Series.

FALSE otherwise

VersionSeriesCheckedOutBy String
If IsVersionSeriesCheckedOut is
TRUE: then an identifier for the
user who created the Private
Working Copy.

“Not set” otherwise.

VersionSeriesCheckedOutId ID
If IsVersionSeriesCheckedOut is
TRUE: The Identifier for the
Private Working Copy.

“Not set” otherwise.

Note: Changes made via the Versioning Services that affect the values of these properties SHALL NOT
constitute modifications to the Document objects in the Version Series (e.g. SHALL NOT affect the
LastModificationDate, etc.)

2.8.6 Object Creation and Initial Versioning State
A repository MAY create new Document objects in a “Private Working Copy” state when they are created
via the createObject service. This state is logically equivalent to having a Version Series that contains
exactly one object (the PWC) and 0 other documents.
The repository MAY also create new Document objects in a “Major Version” state. This state is logically
equivalent to having a Version Series that contains exactly one Major Version and 0 other documents.
The repository MAY also create new Document objects in a “Non-Major Version” state. This state is
logically equivalent to having a Version Series that contains exactly one Non-Major Version and 0 other
documents.

2.8.7 Version Specific/Independent membership in Folders
Repositories MAY treat membership of a Document object in a folder collection as “version-specific” or
“version-independent”.
Repositories SHALL indicate whether they support version-specific membership in a folder via the
“VersionSpecificFiling” optional capability flag.

If the repository is treating folder collection membership as “version-independent”, then:

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 43 of 85

• Moving or Filing a Document Object into a folder SHALL result in ALL Documents in the Version
Series being moved/filed into the folder.

• The Repository MAY return only the latest-version OR latest major-version Document object in a
version series in the response to Navigation service requests (getChildren, getDescendants),
and NEED NOT return other Document Objects filed in the folder that are in the Version Series.

If the repository is treating folder collection membership as “version-specific”, then moving or Filing a
Document Object into a folder SHALL NOT result in other Documents in the Version Series being
moved/filed.

2.8.8 Version Specific/Independent membership in Relationships
A relationship object MAY have either a version-specific or version-independent binding to its source
and/or target objects. This behavior MAY vary between repositories and between individual relationship
types defined for a Repository.
If a relationship object has a version-independent binding to its source/target object, then:
• The getRelationships service invoked on a Document Object SHALL return the relationship if

Relationship was source/target is set to ANY Document Object in the Version Series.
If a relationship object has a version-specific binding to its source/target object, then:
• The getRelationships service invoked on a Document Object SHALL return the relationship if

Relationship was source/target is set to the ID of the Document Object on which the service was
invoked.

2.8.9 Versioning visibility in Query Services
Repositories MAY include non-latest-versions of Document Objects in results to the Discovery Services
(query).
Repositories SHALL indicate whether they support querying for non-latest-versions via the
“AllVersionsSearchable” optional capability flag.
If “AllVersionsSearchable” is TRUE then the Repository SHALL include in the query results ANY
Document Object in the Version Series that matches the query criteria. (subject to other query constraints
such as security.)
If “AllVersionsSearchable” is FALSE then the Repository SHALL include only the latest version or latest
major version of a Version Series in the query results if the latest or latest major version matches the
query criteria. (subject to other query constraints such as security.)

Additionally, repositories MAY include Private Working Copy objects in results in results to the Discovery
Services (query).
Repositories SHALL indicate whether they support querying for Private Working Copy objects via the
“PWCSearchable” optional capability flag.
If “PWCSearchable” is TRUE then the Repository SHALL include in the query results ANY Private
Working Copy Document Objects that matches the query criteria (subject to other query constraints such
as security.)
If “PWCSearchable” is TRUE then the Repository SHALL NOT include in the query results ANY Private
Working Copy Document Objects that match the query criteria (subject to other query constraints such as
security.)

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 44 of 85

2.9 Query
CMIS provides a type-based query service for discovering objects that match specified criteria, by
defining a read-only projection of the CMIS data model into a Relational View.
Through this relational view, queries may be performed via a simplified SQL SELECT statement. This
query language, called CMIS SQL, is based on a subset of the SQL-92 grammar (ISO/IEC 9075: 1992 –
Database Language SQL), with a few extensions to enhance its filtering capability for the CMIS data
model, such as existential quantification for multi-valued property, full-text search, and folder
membership. Other statements of the SQL language are not adopted by CMIS. The semantics of CMIS
SQL is defined by the SQL-92 standard, plus the extensions, in conjunction with the model mapping
defined by CMIS’s relational view.

Syntax
SQL-92 subset + Extensions for

• Multi-valued property
• Fulltext search
• Folder membership

Object Type, Type Inheritance,
Object, Property, Content Stream,
Versioning

Table (Object Type, Type Inheritance)
Row (Object)
Column (Property)

Relational View

CMIS Data Model

Semantics
SQL-92 + Extensions
+ Relational View mapping

CMIS SQL

2.9.1 Relational View Projection of the CMIS Data Model
The relational view of a CMIS repository consists of a collection of virtual tables that are defined on top of
the CMIS data model. This relational view is used for query purposes only.

In this relational view a Virtual Table is implicitly defined for each queryable Object-Type defined in the
repository. (Non-queryable Object-Types are NOT exposed through this Relational View.)

In each Virtual Table, a Virtual Column is implicitly defined for each property defined in the Object-Type
Definition AND for all properties defined on ANY ancestor-type of the Object-Type but NOT defined in the
Object-Type definition. Virtual Columns for properties defined on ancestor-types of the Object Type but

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 45 of 85

NOT defined in the Object-Type definition SHALL contain the SQL NULL value. Virtual Columns for
properties whose value is “not set” SHALL contain the SQL NULL value.

An object type’s ObjectTypeQueryName attribute is used as the table name for the corresponding virtual
table, and a property’s PropertyName attribute is used as the column name for the corresponding table
column. For this reason, these attributes MUST conform to the syntax rules for SQL identifiers.

The Virtual Column for a multi-valued property SHALL contain a single list value that includes all values of
the property.

2.9.1.1 Object-Type Hierarchy in the Relational View Projection

The Relational View projection of the CMIS Data Model ensures that the Virtual Table for a particular
Object Type is a complete super-set of the Virtual Table for any and all of its ancestor types.

Additionally, an Object-Type definition’s “includedInSupertypeQuery” specifies whether objects of that
Object-Type SHALL be included in the Virtual Table for any of its ancestor types. If the
“includedInSupertypeQuery” attribute of the Object-Type is FALSE, then objects of that Object-Type
SHALL NOT be included in the Virtual Table for any of its ancestor types.

Thus the Virtual Table for an Object Type includes a row not only for each Object of that type, but all
Objects that Object-Type AND all Objects of any of that Object Types’ Descendant Types for which the
“includedInSupertypeQuery” attribute is TRUE.

(So, for example:

• If the Invoice Object-Type is a child Object-type of Document and Invoice’s includeInSupertypeQuery
attribute is TRUE, then queries against the “Document” Virtual Table SHALL include all objects of
Type Document OR Invoice.

• Extending the previous example, if PurchaseOrder is a child Object-Type of Invoice, and
PurchaseOrder’s includeInSupertypeQuery attribute is FALSE, then queries against the “Document”
Virtual Table SHALL include all objects of Type Document OR Invoice, but NOT objects of type
PurchaseOrder.)

But since the Virtual Table will include only columns for properties defined in the Object-Type underlying
the Virtual Table, a row that is a query result representing an Object of a Descendant Type can only
include those columns for properties defined on the Object-Type underlying the Virtual Table. (So,
building on the previous example, a result row for a query against the “Document” virtual table can
include only columns for properties defined on the “Document” Object-Type, even if the Object-Type of
the result row defines additional properties.)

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 46 of 85

B is a subtype of A.
C is a subtype of B. = Inherited property definitions

Objects of
Type A

Objects of
Type B

Objects of
Type C

Search scope
for query on A

Search scope
for query on B

Search scope
for query on C

Relational View

Query Search Scope

2.9.1.2 Content Streams

Content-streams are NOT exposed through this relational view. However, a Repository MAY support full-
text indexing of Content Streams (as SHALL be indicated via the Query Repository-optional capability
flag).
If a Repository supports full-text indexing, then queries can be constructed that leverage the full-text index
of content-streams using the CMIS-SQL contains() predicate function (see next section).

2.9.2 CMIS-SQL Definition
This query language, called CMIS SQL, is based on a subset of the SQL-92 grammar. CMIS-specific
language extensions to SQL-92 are called out explicitly.
The basic structure of a CMIS-SQL query is a SQL statement that SHALL include the following clauses:
• SELECT [columns]: This clause identifies the set of columns that will be included in the query

results for each row.
• FROM [Virtual Table Names]: This clause identifies which Virtual Table(s) the query will run against.

Additionally, a CMIS-SQL query MAY include the following clauses:
• WHERE [conditions]: This clause identifies the constraints that rows SHALL satisfy to be considered

a result for the query.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 47 of 85

• ORDER BY [sort specification]: This clause identifies the order in which the result rows SHALL be
sorted in the result row set.

2.9.2.1 SELECT Clause
The SELECT clause SHALL contain exactly one of the following:

• A comma separated list of one or more column names.
o If an explicit column list is provided: A repository SHALL include in its result row set all of

the columns specified in the SELECT clause.
• * : If this token is specified, then the repository SHALL return columns for ALL single-valued

properties defined in the Object-Types whose Virtual Tables are listed in the FROM clause, and
SHOULD also return all multi-valued properties.

All column names SHALL be valid “name” values for properties that are defined as “queryable” in the
Object-Type(s) whose Virtual Tables are listed in the FROM clause.

2.9.2.2 FROM Clause
The FROM clause identifies which Virtual Table(s) the query will be run against, as described in the
previous section.

The FROM clause SHALL contain only the names of Object-Types whose queryable attribute value is
TRUE.

2.9.2.2.1 Join Support in CMIS SQL
CMIS repositories MAY support the use of SQL JOIN queries, and SHALL indicate their support level
using the Optional Capability attribute “Join”.
• If the Repository’s value for the Join attribute is NoJoin, then no JOIN clauses can be used in

queries.
• If the Repository’s value for the Join attribute is InnerOnly, then only inner JOIN clauses can be used

in queries.
• If the Repository’s value for the Join attribute is InnerAndOuter, then inner and/or outer JOIN

clauses can be used in queries.

Only explicit joins using the “JOIN” keyword is supported. Queries SHALL NOT include implicit joins as
part of the WHERE clause of a CMIS-SQL query.
CMIS queries SHALL only support join operations using the “equality” predicate on single-valued
properties.

2.9.2.3 WHERE Clause
This clause identifies the constraints that rows SHALL satisfy to be considered a result for the query.

All column names SHALL be valid “name” values for properties that are defined as “queryable” in the
Object-Type(s) whose Virtual Tables are listed in the FROM clause.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 48 of 85

2.9.2.3.1 Comparisons permitted in the WHERE clause.

SQL’s simple comparison predicate, IN predicate, and LIKE predicate are supported, for single-valued
properties only (so that SQL’s semantics is preserved). Boolean conjunction (AND), disjunction (OR), and
negation (NOT) of predicates are also supported.

For properties of type “ID”, only the “equal” and “not equal” comparison SHALL be allowed in CMIS-SQL
queries.

2.9.2.3.2 Multi-valued property support (CMIS-SQL Extension)
CMIS-SQL includes several new non-terminals to expose semantics for querying multi-valued properties,
in a way that does not alter the semantics of existing SQL-92 production rules.

2.9.2.3.2.1 Multi-valued column references
BNF grammar structure: <Multi-valued-column reference>, <multi-valued-column name>

• These are non-terminals defined for multi-valued properties whereas SQL-92’s <column
reference> and <column name> are retained for single-valued properties only. This is to preserve
the single-value semantics of a regular “column” in the SQL-92 grammar.

2.9.2.3.2.2 <Quantified comparison predicate>
The SQL-92 production rule for <quantified comparison predicate> is extended to accept a multi-valued
property in place of a <table subquery>.

<Table subquery> is not supported in CMIS-SQL.

The SQL-92 <quantifier> is restricted to ANY only.

The SQL-92 <row value constructor> is restricted to a literal only.

2.9.2.3.2.3 IN/ANY Predicate
BNF grammar structure: <Quantified in predicate>

CMIS-SQL exposes a new IN predicate defined for a multi-valued property. It is modeled after the SQL-
92 IN predicate, but since the entire predicate is different semantically, it has its own production rule in
the BNF grammar below.

The quantifier is restricted to ANY. The predicate SHALL be evaluated to TRUE if at least one of the
property’s values is (or, is not, if NOT is specified) among the given list of literal values. Otherwise the
predicate is evaluated to FALSE.

Query examples:

Example #1:

SELECT *
FROM CAR_REVIEW

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 49 of 85

WHERE (LOWER(MAKE) = ’buick’) OR
 (ANY FEATURES IN (‘NAVIGATION SYSTEM’, ‘SATELLITE RADIO’, ‘MP3’))

(Note: FEATURES is a multi-valued property.)

Example #2:
SELECT Y.CLAIM_NUM, X.PROPERTY_ADDRESS, Y.DAMAGE_ESTIMATES
FROM POLICY AS X JOIN CLAIMS AS Y ON (X.POLICY_NUM = Y.POLICY_NUM)
WHERE (100000 <= ANY Y.DAMAGE_ESTIMATES)

(Note: DAMAGE_ESTIMATES is a multi-valued property.)

2.9.2.3.3 CONTAINS() predicate function (CMIS-SQL Extension)

BNF grammar structure:: CONTAINS ([<qualifier>] , <text search expression>)

Usage: This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a Repository (See previous section.)

Inputs:

<Qualifier>
The optional <qualifier> parameter MAY be used to specify the search scope for the CONTAINS()
function, and the Repository MAY ignore the <qualifier> parameter.

The qualifier parameter SHALL be a valid string.

<Text Search Expression>
The <text search expression> parameter SHALL be a character string literal in quotes, specifying
the full-text search criteria.

Return value:

The predicate returns a Boolean value.

The predicate SHALL return TRUE if the object is considered by the repository as “relevant” with respect
to the given <text search expression> parameter.

The predicate SHALL return FALSE if the object is considered by the repository as not “relevant” with
respect to the given <text search expression> parameter.

Constraints:
At most one CONTAINS() function SHALL be included in a single query statement.

The return value of the CONTAINS() function MAY only be included conjunctively (ANDed) with the
aggregate of all other predicates, if there is any, in the WHERE clause.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 50 of 85

2.9.2.3.4 SCORE() predicate function

BNF grammar structure: SCORE ()

Usage: This is a predicate function that encapsulates the full-text search capability that MAY be provided
by a Repository (See previous section.)

Inputs: No inputs SHALL be provided for this predicate function.

Return value:

The SCORE() predicate function returns a decimal value in the interval [0,1] .

A repository SHALL return the value 0 if the object is considered by the repository as having absolutely
no relevance with respect to the CONTAINS() function specified in the query.

A repository SHALL return the value 0 if the object is considered by the repository as having absolutely
complete relevance with respect to the CONTAINS() function specified in the query.

A repository SHALL return some value in the interval [0,1] based on the degree of relevancy the
repository considers the object to have with respect to the CONTAINS() function specified in the query.

Constraints:

The SCORE() function SHALL only be used in queries that also include a CONTAINS() predicate function

The SCORE() function SHALL only be used in the SELECT clause of a query. It SHALL NOT be used in
the WHERE clause or in the ORDER BY clauses.

An alias column name defined for the SCORE() function call in the SELECT clause (i.e., "SELECT
SCORE() AS column_name …") may be used in the ORDER BY clause.

If SCORE() is included in the SELECT clause and an alias column name is not provided, then a default
column name of SEARCH_SCORE is used for the query output, which will be mapped to a (pseudo)
property name through protocol binding.

2.9.2.3.5 IN_FOLDER() predicate function

BNF grammar structure: IN_FOLDER([<qualifier>] , <folder id>)

Usage: This is a predicate function that tests whether or not a candidate object is a child-object of the
folder object identified by the given <folder id>..

Inputs:

<qualifier>
The value of this optional parameter SHALL be the name of one of the Virtual Tables listed in the
FROM clause for the query.

• If specified, then the predicate SHOULD only be applied to objects in the specified Virtual Table,
but a repository MAY ignore the value of the parameter.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 51 of 85

• If not specified, then the predicate SHALL apply to all Virtual Tables listed in the FROM clause.

<folder id>

The value of this parameter SHALL be the ID of a folder object in the repository.

Return value:
The predicate function SHALL return TRUE if the object is a child-object of the folder specified by <folder
id>.
The predicate function SHALL return FALSE if the object is a NOT a child-object of the folder specified by
<folder id>.

2.9.2.3.6 IN_TREE() predicate function

BNF grammar structure: IN_TREE([<qualifier>] , <folder id>)

Usage: This is a predicate function that tests whether or not a candidate object is a descendant-object of
the folder object identified by the given <folder id>.

Inputs:

<qualifier>
The value of this optional parameter SHALL be the name of one of the Virtual Tables listed in the
FROM clause for the query.

• If specified, then the predicate SHOULD only be applied to objects in the specified Virtual Table,
but a repository MAY ignore the value of the parameter.

• If not specified, then the predicate SHALL apply to all Virtual Tables listed in the FROM clause.

<folder id>

The value of this parameter SHALL be the ID of a folder object in the repository.

Return value:
The predicate function SHALL return TRUE if the object is a descendant-object of the folder specified by
<folder id>.
The predicate function SHALL return FALSE if the object is a NOT a descendant -object of the folder
specified by <folder id>.

2.9.2.4 ORDER BY Clause
This clause SHALL contain a comma separated list of one or more column names.
All column names referenced in this clause SHALL be valid “name” values for properties defined as
orderable in the Object Type(s) whose Virtual Tables are listed in the FROM clause.

2.9.2.5 BNF Grammar
This BNF grammar is a “subset” of the SQL-92 grammar (ISO/IEC 9075: 1992 – Database Language
SQL), except for the production alternatives that are shown in red bold italic face. Specifically, except for

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 52 of 85

these extensions, the following production rules are derived from the SQL-92 grammar. Therefore, all the
clauses and statements generated by this grammar without the red tokens are valid SQL-92 clauses and
statements. The non-terminals used in this grammar are also borrowed from the SQL-92 grammar without
altering their semantics. Accordingly, the non-terminal <column name> is used for single-valued
properties only so that the semantics of SQL can be preserved and borrowed. This approach not only
facilitates comparison of the two query languages, and simplifies the translation of a CMIS query to a
SQL query for a RDBMS-based implementation, but also allows future expansion of CMIS SQL to cover a
larger subset of SQL with minimum conflict. The CMIS extensions are introduced primarily to support
multi-valued properties and full-text search, and to test folder membership. Multi-valued properties are
handled separately from single-valued properties, using separate non-terminals and separate production
rules to prevent the extensions from corrupting SQL-92 semantics.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 53 of 85

<CMIS 1.0 query statement> ::= <simple table> [<order by clause>]
<simple table> ::= SELECT <select list> <from clause> [<where clause>]
<select list> ::= “*”

| <select sublist> [{ “,” <select sublist> }…]
<select sublist> ::= <value expression> [[AS] <column name>]

| <qualifier> “.*”
| <multi-valued-column reference>

<value expression> ::= <column reference> | <string value function> | <numeric value function>
<column reference> ::= [<qualifier> “.”] <column name>
<multi-valued-column reference> ::= [<qualifier> “.”] <multi-valued-column name>
<string value function> ::= { UPPER | LOWER } “(“ <column reference> “)”
<numeric value function> ::= SCORE()
<qualifier> ::= <table name> | <correlation name>
<from clause> ::= FROM <table reference>
<table reference> ::= <table name> [[AS] <correlation name>]
 | <joined table>
<joined table> ::= “(“ <joined table> “)”
 | <table reference> [<join type>] JOIN <table reference> [<join specification>]
<join type> ::= INNER | LEFT [OUTER]
<join specification> ::= ON “(“ <column reference> “=” <column reference> “)”
<where clause> ::= WHERE <search condition>
<search condition> ::= <boolean term> | <search condition> OR <boolean term>
<boolean term> ::= <boolean factor> | <boolean term> AND <boolean factor>
<boolean factor> ::= [NOT] <boolean test>
<boolean test> ::= <predicate> | “(“ <search condition> “)”
<predicate> ::= <comparison predicate> | <in predicate> | <like predicate> | <null predicate>

| <quantified comparison predicate> | <quantified in predicate>
| <text search predicate> | <folder predicate>

<comparison predicate> ::= <value expression> <comp op> <literal>
<comp op> ::= “=” | “<>” | “<” | “>” | “<=” | “>=”
<literal> ::= <signed numeric literal> | <character string literal>
<in predicate> ::= <column reference> [NOT] IN “(“ <in value list> “)”
<in value list> ::= <literal> { “,” <literal> }…
<like predicate> ::= <column reference> [NOT] LIKE <character string literal>
<null predicate> ::= { <column reference> | <multi-valued-column reference> } IS [NOT] NULL
<quantified comparison predicate> ::= <literal> <comp op> ANY <multi-valued-column reference>
<quantified in predicate> ::= ANY <multi-valued-column reference> [NOT] IN “(“ <in value list> “)”
<text search predicate> ::= CONTAINS “(“ [<qualifier>] “,” <text search expression> “)”
<folder predicate> ::= { IN_FOLDER | IN_TREE } “(“ [<qualifier>] “,” <folder id> “)”
<order by clause> ::= ORDER BY <sort specification> [{ “,” <sort specification> }…]
<sort specification> ::= <column name> [ASC | DESC]
<correlation name> ::= <identifier>
<table name> ::= <identifier> !! This MUST be the name of an object type.
<column name> ::= <identifier> !! This MUST be the name of a single-valued property,
 or an alias for a scalar output value.
<multi-valued-column name> ::= <identifier> !! This MUST be the name of a multi-valued property.
<folder id> ::= <character string literal> !! This MUST be the object identity of a folder object.
<text search expression> ::= <character string literal> !! This is full-text search criteria. The syntax is
 implementation-specific.
<identifier> ::= !! As defined by SQL-92 grammar.
<signed numeric literal> ::= !! As defined by SQL-92 grammar.
<character string literal> ::= !! As defined by SQL-92 grammar.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 54 of 85

3 Services
Part I of the CMIS specification defines a set of services that are described in a protocol/binding-agnostic
fashion.
Every protocol binding of the CMIS specification SHALL implement all of the methods described in this
section. However, the details of how each service & method is implemented will be described in those
protocol binding specifications.

3.1 Common Service Elements
The following elements are common across many of the CMIS services.

3.1.1 Property Filters
All of the methods that allow for the retrieval of properties for CMIS Objects have a “Property Filter” as an
optional parameter, which allows the caller to specify a subset of properties for Objects that SHALL be
returned by the repository in the output of the method.
Valid values for this parameter are:

• Not set: The set of properties to be returned SHALL be determined by the repository.
• “[name1], [name2], …”: The properties explicitly listed SHALL be returned.

o Note: The [name] tokens in the above expression SHALL be valid “Name” values as
defined in the Object-types for the Objects whose properties are being returned.

o Note: The
• * : All properties SHALL be returned for all objects.

A repository MAY return additional properties for objects in the method output that are not specified in the
Property Filter.

3.1.2 Paging
All of the methods that allow for the retrieval of a collection of CMIS objects support paging of their result
sets, via the following pattern:
Input Parameters:

• (optional) Integer maxItems: This is the maximum number of items that the repository SHALL
return in in its response.

• (optional) Integer skipCount: This is the number of potential results that the repository SHALL
skip/page over before returning any results.

Output Parameters:
• Boolean hasMoreItems: TRUE if the Repository contains additional items in the result set of the

method that were not returned based on the values of the input parameters. FALSE otherwise.

If the caller of a method does not specify a value for maxItems, then the Repository MAY select an
appropriate number of items to return, and SHALL use the hasMoreItems output parameter to indicate if
any additional results were not returned.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 55 of 85

3.1.3 Allowable Actions
CMIS provides a service method (getAllowableActions) that allows a caller to discover the set of
applications that can currently be performed on a particular object.
The set of allowable actions on an object MAY reflect not only the behavior allowed by the CMIS domain
model, but also constraints imposed by the repository or any management policy in effect on the item
(such as locking, access control, litigation hold, or other lifecycle constraints.) The modeling/discovery of
all management policies is outside the scope of CMIS.
Many of the methods that allow for the retrieval of a collection of CMIS objects support also retrieving the
set of allowable actions for each object, via the following pattern:
Input Parameters:

• Boolean includeAllowableActions: If TRUE, then the Repository SHALL return the available
actions for each object in the result set.

Output Parameters:
• <Array> AllowableActions: A collection listing, for each object, the set of allowable actions.

The set of allowable actions for an object is represented as a set of Boolean values, as follows:

Boolean Name Base Object Types for which it MAY
be TRUE

Allowed Action (method)

canDelete Document/Folder/Relationship/Policy Can delete this object
(deleteAllVersions)

canUpdateProperties Document/Folder/Relationship/Policy Can update the properties of this
object (updateProperties)

canGetProperties Document/Folder/Relationship/Policy Can read the properties of this
object (getProperties)

canGetRelationships Document/Folder/Policy Can get the relationship in which
this object is a source/target
(getRelationships)

canGetParents Document/Folder/Policy Can get the parent folders of the
object. (getObjectParents)

canGetFolderParent Folder Can get the parent/ancestor
folder(s) of the folder
(getFolderParent)

canGetDescendants Folder Can get the descendants of the

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 56 of 85

folder (getDescendants)

canMove Document/Folder/Policy Can move the object (moveObject)

canDeleteVersion Document Can delete this Document object in
the Version Series (deleteObject)

canDeleteContent Document Can delete the content stream for
the Document object
(deleteContentStream)

canCheckout Document Can check out the Document object
(checkOut)

canCancelCheckout Document Can cancel the check out the
Document object (cancelCheckOut)

canCheckin Document Can check in the Document object
(checkIn)

canSetContent Document Can set the content stream for the
Document object
(setContentStream)

canGetAllVersions Document Can get the version series for the
Document object (getAllVersions)

canAddToFolder Document/Policy Can file the document in a folder
(addObjectToFolder)

canRemoveFromFolder Document/Policy Can unfile the document in a folder
(removeObjectFromFolder)

canViewContent Document Can get the content stream for the
Document object
(getContentStream)

canAddPolicy Document/Folder Can apply a policy to the Object
(applyPolicy)

canGetAppliedPolicies Document/Folder Can get the list of Policies applied
to the Object (getAppliedPolicies)

canRemovePolicy Document/Folder Can remove a policy from the
Object (removePolicy)

canGetChildren Folder Can get the children of the folder
(getChildren)

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 57 of 85

canCreateDocument Folder Can create a Document Object in
the folder (createDocument)

canCreateFolder Folder Can create a Folder Object in the
folder (createFolder)

canCreateRelationship Document/Folder Can create a Relationship in which
this Object is a source/target
(createRelationship)

canCreatePolicy Folder Can create a Policy Object in the
folder (createPolicy)

canDeleteTree Folder Can delete the Folder and all of its
descendant objects (deleteTree)

3.1.4 Change Tokens
The CMIS base object type definitions include an opaque string “ChangeToken” property that a
Repository MAY use for optimistic locking and/or concurrency checking to ensure that user updates do
not conflict.
If a Repository provides values for the ChangeToken property for an Object, then all invocations of the
“update” methods on that object (updateProperties, setContentStream, deleteContentStream) SHALL
provide the value of the changeToken property as an input parameter, and the Repository SHALL throw
an updateConflictException if the value specified for the changeToken does NOT match the
changeToken value for the object being updated.

3.1.5 Table of Exceptions
The following tables list the complete set of exceptions that MAY be returned by a repository in response
to a CMIS service method call.

3.1.5.1 General Exceptions
The following exceptions MAY be returned by a repository in response to ANY CMIS service method call.

The “Cause” field indicates the circumstances under which a repository SHOULD return a particular
exception.

Name Cause

invalidArgumentException One or more of the input parameters to the service method is
missing or invalid.

objectNotFoundException The service call has specified an object that does not exist in the
Repository.

operationNotSupportedException The service method invoked requires an optional capability not
supported by the repository.

Ethan Gur-esh
Filed spec bug – currently only updateProperties requires the changeToken http://tools.oasis-open.org/issues/browse/CMIS-118

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 58 of 85

permissionDeniedException The caller of the service method does not have sufficient
permissions to perform the operation.

runtimeException Any other cause not expressible by another CMIS exception.

3.1.5.2 Specific Exceptions
The following exceptions MAY be returned by a repositiory in response to one or more CMIS service
methods calls.
The table lists the general intent of the exception, as well as a list of the methods which MAY cause the
exception to be thrown.

Name Intent Methods that MAY throw this
exception

constraintViolationException The operation violates a
Repository- or Object-level
constraint defined in the CMIS
domain model.

Repository Service:
• getObjectParents

Object Service:
• createDocument
• createFolder
• createRelationship
• createPolicy
• updateProperties
• moveObject
• deleteObject
• setContentStream
• deleteContentStream

Multi-filing Services:
• addObjectToFolder

Versioning Services:
• checkOut
• cancelCheckOut
• checkIn

Policy Services:
• applyPolicy
• removePolicy

contentAlreadyExistsException The operation attempts to set the Object Services:

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 59 of 85

content stream for a Document
that already has a content
stream without explicitly
specifying the “overwrite”
parmeter.

• setContentStream

filterNotValidException The property filter input to the
operation is not valid.

Repository Service:
• getDescendants
• getChildren
• getFolderParent
• getObjectParents
• getCheckedoutDocs

Object Service:
• getProperties

Versioning Services:
• getPropertiesOfLatestVersion
• getAllVersions

Policy Services:
• getAppliedPolicies

folderNotValidException The operation is attempting to
create an object in an “unfiled”
state in a repository that does
not support the “Unfiling”
optional capability.

notInFolderException

storageException The repository is not able to
store the object that the user is
creating/updating due to an
internal storage problem.

Object Services:
• createDocument
• createFolder
• createRelationship
• createPolicy
• updateProperties
• moveObject
• setContentStream
• deleteContentStream

Versioning Services:
• checkout
• checkIn

Ethan Gur-esh
Filed spec bug to get this killed: CMIS-125

Ethan Gur-esh
Spec bug filed - - CMIS 116

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 60 of 85

streamNotSupportedException The operation is attempting to
get or set a contentStream for a
Document whose Object Type
specifies that a content stream is
not allowed for Document’s of
that type.

Object Services:
• createDocument
• getContentStream
• setContentStream

Versioning Services:
• checkIn

typeNotFoundException

updateConflictException The operation is attempting to
update an object that is no
longer current (as determined by
the repository).

Object Services:
• updateProperties
• moveObject
• deleteObject
• deleteTree
• setContentStream
• deleteContentStream

Versioning Services:
• checkout
• cancelCheckOut
• checkIn

versioningException The operation is attempting to
perform an action on a non-
current version of a Document
that cannot be performed on a
non-current version.

Object Services:
• updateProperties
• moveObject
• setContentStream
• deleteContentStream

Versioning Services:
• checkOut
• cancelCheckOut
• checkIn

Ethan Gur-esh
Spec bug filed – CMIS 116

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 61 of 85

3.2 Repository Services
The Repository Services (getRepositories, getRepositoryInfo, GetTypes, getTypeDefinition) are used to
discover information about the repository, including information about the repository, the object-types
defined for the repository, and other “related” CMIS repositories.

3.2.1 getRepositories
Description Returns a list of CMIS repositories available from this CMIS service

endpoint.

Inputs None

Outputs • A list of repository information, with the following information for each
entry:

o ID repositoryId: The identifier for the Repository.
o String repositoryName: A display name for the Repository.
o URI repositoryURI: A URI which can be used to access the

Repository.

Exception Conditions • General exceptions.

Notes

3.2.2 getRepositoryInfo
Description Returns information about the CMIS repository and the optional capabilities

it supports.

Inputs • ID repositoryId: The identifier for the Repository.

Outputs • ID repositoryId: The identifier for the Repository.
o Note: This SHALL be the same identifier as the input to the

method.
• String repositoryName: A display name for the Repository.
• String repositoryRelationship: A string that MAY describe how this

repository relates to other repositories. (See “Related Repositories”
section.)

• String repositoryDescription: A display description for the Repository.
• String vendorName: A display name for the vendor of the Repository’s

underlying application.
• String productName: A display name for the Repository’s underlying

application.
• String productVersion: A display name for the version number of the

Repository’s underlying application.
• ID rootFolderId: The ID of the Root Folder Object for the Repository.
• Boolean capabilityMultifiling: TRUE if the repository supports the

optional “multifiling” capability.
• Boolean capabilityUnfiling: TRUE if the repository supports the

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 62 of 85

optional “unfiling” capability.
• Boolean capabilityVersionSpecificFiling: TRUE if the repository

supports the optional “version-specific filiing” capability.
• Boolean capabilityPWCUpdateable: TRUE if the repository supports

the optional “PWCUpdateable” capability.
• Boolean capabilityPWCSearchable: TRUE if the repository supports

the optional “PWCSearchable” capability.
• Boolean capabilityAllVersionsSearchable: TRUE if the repository

supports the optional “AllVersionsSearchable” capability.
• Enum capabilityQuery: Specifies what level of query support the

repository provides. (See optional capabilities section for list of valid
values)

• Enum capabilityFullText: Specifies what level of full-text support the
repository provides. (See optional capabilities section for list of valid
values)

• Enum capabilityJoin: Specifies what types of SQL joins the repository
can fulfill in query requests. (See optional capabilities section for list of
valid values)

• String cmisVersionsSupported: String that indicates what versions of
the CMIS specification the repository can support.

• XML repositorySpecificInformation: MAY be used by the Repository
to return additional XML.

Exception Conditions • General exceptions.

Notes

3.2.3 getTypes
Description Returns the list of Object-Types defined for the Repository.

Inputs • string repositoryId: The identifier for the Repository.
• (optional) string typeId: The typeID of an Object-Type specified in the

Repository.
o If specified, then the Repository SHALL return only the

specified Object-Type AND all of its descendant types.
o If not specified, then the Repository SHALL return all Object-

Types.
• (optional) Boolean returnPropertyDefinitions: If TRUE, then the

Repository SHALL return the property definitions for each Object-Type
returned.

o If False (default), the Repository SHALL return only the
attributes for each Object-Type.

• (optional) Integer maxItems: See Paging section.
• (optional) Integer skipCount: See Paging section.

Outputs • <Array> Object-Types: The list of Object-Types defined for the

Ethan Gur-esh
See earlier comment about schema bug filed for combining these into one value.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 63 of 85

Repository.
• Boolean hasMoreItems: See Paging section.

Exception Conditions • General exceptions.

Notes • If this service is called with an invalid value for typeId, the repository
SHALL throw invalidArgumentException.

3.2.4 getTypeDefinition
Description Gets the definition of the specified Object-Type.

Inputs • string repositoryId: The identifier for the Repository.
• string typeId: The typeID of an Object-Type specified in the

Repository.

Outputs • <Array> typeAttributeCollection: Type attributes of an object type
definition. See the “Object Type” section for a complete list of type
attributes.

• <Array> propertyDefinition: A list of property definitions. See the “Object
Type” section for a complete list of property definitions.

Exception Conditions • General exceptions.

Notes •

3.3 Navigation Services
The Navigation Services (getDescendants, getChildren, getFolderParent, getObjectParents,
getCheckedoutDocuments), are used to traverse the folder hierarchy in a CMIS Repository, and to
locate Documents that are checked out.

3.3.1 getDescendants
Description Gets the set of descendant objects contained in the specified folder or any

of its child-folders.

Inputs • ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier for the folder.
• (optional) Enum type: An enumeration specifying that the result set

SHALL be restricted to objects with the following baseTypes:
o Documents: Only objects whose baseType is “Document”
o Folders: Only objects whose baseType is “Folder”
o Policies: Only objects who baseType is “Policy”.
o Any (default): Return all objects, regardless of baseType.

• (optional) Integer depth: The number of levels of depth in the folder
hierarchy from which to return results. Valid values are:

o 1 (default): Return only objects that are children of the folder.
o <Integer value greater than 1>: Return only objects that are

children of the folder and descendants up to <value> levels

Ethan Gur-esh
TODO: Kill me when we remove policies.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 64 of 85

deep.
o -1: Return ALL descendant objects at all depth levels in the

CMIS hierarchy.
• (optional) String filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• Boolean includeRelationships:

Outputs • <Array> Objects: A list of the descendant objects for the specified
folder.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes • This method does NOT support paging as defined in the paging section.
• The order in which results are returned SHALL be determined by the

repository.
• If the Repository supports the optional “VersionSpecificFiling” capability,

then the repository SHALL return the document versions filed in the
specified folder or its descendant folders.

o Otherwise, the latest version of the documents SHALL be
returned.

3.3.2 getChildren
Description Gets the list of child objects contained in the specified folder.

Inputs • ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier for the folder.
• (optional) Enum type: An enumeration specifying that the result set

SHALL be restricted to objects with the following baseTypes:
o Documents: Only objects whose baseType is “Document”
o Folders: Only objects whose baseType is “Folder”
o Policies: Only objects who baseType is “Policy”.
o Any (default): Return all objects, regardless of baseType.

• (optional) String filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• Boolean includeRelationships:
• (optional) Integer maxItems: See Paging section.
• (optional) Integer skipCount: See Paging section.

Outputs • <Array> Objects: A list of the child-objects for the specified folder.
• Boolean hasMoreItems: See Paging section.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

Ethan Gur-esh
Spec bug filed to get this removed from the schema. CMIS-117

Ethan Gur-esh
TODO: Kill me when we remove policies.

Ethan Gur-esh
Spec bug filed to get this removed from the schema. CMIS-117

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 65 of 85

if this property filter input parameter is not valid.

Notes • If the Repository supports the optional “VersionSpecificFiling” capability,
then the repository SHALL return the document versions filed in the
specified folder.

o Otherwise, the latest version of the documents SHALL be
returned.

3.3.3 getFolderParent
Description Gets the parent folder object (and optionally all ancestor folder objects) for

the specified folder object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier for the folder.
• (optional) String filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• Boolean includeRelationships:
• Boolean returnToRoot: If TRUE, then the repository SHALL return all

folder objects that are ancestors of the specified folder. If FALSE, the
repository SHALL return only the parent folder of the specified folder.

Outputs • <Array> Objects: A list of the parent or ancestor folders of the
specified folder.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes • If returnToRoot is set to TRUE, then the result list SHALL be ordered in
reverse order of ancestry (i.e. where the parent folder of the specified
folder is returned first, its parent folder returned second, etc.)

• Repositories SHOULD always include the “ObjectId” and “ParentId”
properties for all objects returned.

• If this service method is invoked on the root folder of the Repository,
then the Repository shall return an empty result set.

3.3.4 getObjectParents
Description Gets the parent folder(s) for the specified non-folder, fileable object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object.
• (optional) String filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• Boolean includeRelationships:

Outputs • <Array> Objects: A list of the parent folder(s) of the specified objects.

Exception Conditions • General exceptions.

Ethan Gur-esh
Spec bug filed to get this removed from the schema. CMIS-117

Ethan Gur-esh
Spec bug filed to get this removed from the schema. CMIS-117

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 66 of 85

• ConstraintViolationException: The Repository SHALL throw this
exception if this method is invoked on an object who Object-Type
Defintion specifies that it is not fileable.

• FilterNotValidException: The Repository SHALL throw this exception
if this property filter input parameter is not valid.

Notes

3.3.5 getCheckedoutDocs
Description Gets the list of documents that are checked out that the user has access to.

Inputs • ID repositoryId: The identifier for the Repository.
• (optional) ID folderID: The identifier for a folder in the repository from

which documents should be returned.
o If specified, the Repository SHALL only return checked out

documents that are child-objects of the specified folder.
o If not specified, the Repository SHALL return checked out

documents from anywhere in the repository hierarchy.
• (optional) String filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• Boolean includeRelationships:
• (optional) Integer maxItems: See Paging section.
• (optional) Integer skipCount: See Paging section.

Outputs • <Array> Objects: A list of the parent folder(s) of the specified objects.
• Boolean hasMoreItems: See Paging section.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes •

3.4 Object Services
CMIS provides ID-based CRUD (Create, Retrieve, Update, Delete), operations on objects in a Repository.

3.4.1 createDocument
Description Creates a document object of the specified type in the (optionally) specified

location.

Inputs • ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Document object

being created.
• <Array> properties: The property values that SHALL be applied to the

newly-created Document Object.
• (Optional) ID folderId: If specified, the identifier for the folder that

Ethan Gur-esh
Spec bug filed to get this removed from the schema. CMIS-117

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 67 of 85

SHALL be the parent folder for the newly-created Document Object.
o This parameter MUST be specified if the Repository does NOT

support the optional “unfiling” capability.
• (Optional) <contentStream> contentStream: The Content Stream

that SHALL be stored for the newly-created Document Object.
• (Optional) Enum versioningState: An enumeration specifying what

the versioing state of the newly-created object SHALL be. Valid values
are:

o checkedout: The document SHALL be created in the checked-
out state.

o major: The document SHALL be created as a major version
o minor (default): The document SHALL be created as a minor

version.

Outputs • ID objectId: The ID of the newly-created document.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The typeID is not an Object-Type whose baseType is

“Document”.
o The typeID is NOT in the list of AllowedChildObjectTypeIds of

the parent-folder specified by folderId.
o The value of any of the properties violates the

min/max/required/length constraints specified in the property
definition in the Object-Type.

o The Object-Type definition specified by the typeId parameter’s
“contentStreamAllowed” attribute is set to “required” and no
contentStream input parameter is provided.

o The Object-Type definition specified by the typeId parameter’s
“versionable” attribute is set to “false” and a value for the
versioningState input parameter is provided.

• storageException: See “specific exceptions” section.
• streamNotSupportedException: The Repository SHALL throw this

exception if the Object-Type definition specified by the typeId
parameter’s “contentStreamAllowed” attribute is set to “not allowed” and
a contentStream input parameter is provided.

Notes

3.4.2 createFolder
Description Creates a folder object of the specified type in the specified location.

Inputs • ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Folder object being

created.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 68 of 85

• <Array> properties: The property values that SHALL be applied to the
newly-created Folder Object.

• ID folderId: The identifier for the folder that SHALL be the parent folder
for the newly-created Folder Object.

Outputs • ID objectId: The ID of the newly-created folder.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The typeID is not an Object-Type whose baseType is “Folder”.
o The value of any of the properties violates the

min/max/required/length constraints specified in the property
definition in the Object-Type.

o The typeID is NOT in the list of AllowedChildObjectTypeIds of
the parent-folder specified by folderId.

• storageException: See “specific exceptions” section.

Notes

3.4.3 createRelationship
Description Creates a relationship object of the specified type

Inputs • ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Relationship object

being created.
• <Array> properties: The property values that SHALL be applied to the

newly-created Relationship Object.
• ID sourceObjectId: The ID of the source object for the newly-created

Relationship.
• ID targetObjectId: The ID of the taret object for the newly-created

Relationship.

Outputs • ID objectId: The ID of the newly-created relationship.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The typeID is not an Object-Type whose baseType is

“Relationship”.
o The value of any of the properties violates the

min/max/required/length constraints specified in the property
definition in the Object-Type.

o The sourceObjectId’s ObjectType is not in the list of
“allowedSourceTypes” specified by the Object-Type definition
specified by typeId.

o The targetObjectId’s ObjectType is not in the list of

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 69 of 85

“allowedTargetTypes” specified by the Object-Type definition
specified by typeId.

• storageException: See “specific exceptions” section.

Notes

3.4.4 createPolicy
Description Creates a policy object of the specified type

Inputs • ID repositoryId: The identifier for the Repository.
• ID typeId: The identifier for the Object-Type of the Policy object being

created.
• <Array> properties: The property values that SHALL be applied to the

newly-created Policy Object.
• (optional) ID folderId: If specified, the identifier for the folder that

SHALL be the parent folder for the newly-created Policy Object.
o This parameter SHALL be specified if the Repository does NOT

support the optional “unfiling” capability.

Outputs • ID objectId: The ID of the newly-created Policy Object.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The typeID is not an Object-Type whose baseType is “Policy”.
o The value of any of the properties violates the

min/max/required/length constraints specified in the property
definition in the Object-Type.

o The typeID is NOT in the list of AllowedChildObjectTypeIds of
the parent-folder specified by folderId.

• storageException: See “specific exceptions” section.

Notes

3.4.5 getAllowableActions
Description Gets the list of allowable actions for an Object (see “Allowable Actions”

section).

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object

Outputs • <Array> AllowableActions: see “Allowable Actions” section

Exception Conditions • General exceptions.

Notes

Ethan Gur-esh
Kill me when we kill policies.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 70 of 85

3.4.6 getProperties
Description Gets a subset of the properties for an Object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object
• (optional) Enum returnVersion:
• (optional) String Filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• Boolean includeRelationships:

Outputs • <Array> Properties: The list of properties for the object.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes

3.4.7 getContentStream
Description

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier for the object

Outputs • <ContentStream> ContentStream: The content stream for the object..

Exception Conditions • General exceptions.
• streamNotSupportedException: The Repository SHALL throw this

exception if the Object-Type definition specified by the objectId
parameter’s “contentStreamAllowed” attribute is set to “not allowed”.

Notes • Each CMIS protocol binding SHALL provide a way for fetching a sub-
range within a content stream, in a manner appropriate to that protocol.

3.4.8 updateProperties

Description Updates properties of the specified object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object to be updated.
• (optional) String changeToken: See “Change Tokens” section.
• <Array> properties: The updated property values that SHALL be

Ethan Gur-esh
See http://tools.oasis-open.org/issues/browse/CMIS-119

Ethan Gur-esh
SEE CMIS-117.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 71 of 85

applied to the Object.

Outputs • ID objectId: The ID of the updated object.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The value of any of the properties violates the

min/max/required/length constraints specified in the property
definition in the Object-Type.

• storageException: See “specific exceptions” section.
• updateConflictException: See “specific exceptions” section.
• versioningException: The Repository SHALL throw this exception if

ANY of the following conditions are met:
o The object is not checked out and ANY of the properties being

updated are defined in their Object-Type definition have an
attribute value of updateability Whencheckedout.

o Additionally, the repository MAY throw this exception if the
object is a non-current Document Version.

Notes • A Repository MAY automatically create new Document versions as part
of an update properties operation. Therefore, the ObjectId output NEED
NOT be identical to the ObjectId input.

• If this method is invoked on an object and any of the properties defined
for the Object-Type are NOT included in the input to the method,
repositories SHALL perform the update operation as if those properties
had been included and set to their original values.

3.4.9 moveObject
Description Moves the specified file-able object from one folder to another.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object to be moved.
• (optional) String changeToken: See “Change Tokens” section.
• ID targetFolderId: The folder into which the object is to be moved.
• (optional) ID sourceFolderId: The folder from which the object is to be

moved.
o This parameter SHALL be specified if the Repository supports

the optional “unfiling” capability.

Outputs None.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The typeID is NOT in the list of AllowedChildObjectTypeIds of

the parent-folder specified by targetFolderId.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 72 of 85

• storageException: See “specific exceptions” section.
• updateConflictException: See “specific exceptions” section.
• versioningException: The repository MAY throw this exception if the

object is a non-current Document Version.

Notes None.

3.4.10 deleteObject
Description Deletes the specified object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object to be deleted.
• (optional) String changeToken: See “Change Tokens” section.

Outputs None.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The method is invoked on a Folder object that contains one or

more objects.
• updateConflictException: See “specific exceptions” section.

Notes • Invoking this service method on an object SHALL not delete the entire
version series for a Document Object. To delete an entire version
series, use the deleteAllVersions() service.

3.4.11 deleteTree
Description Deletes the specified folder object and all of its child- and descendant-

objects.

Inputs • ID repositoryId: The identifier for the Repository.
• ID folderId: The identifier of the object to be deleted.
• (optional) String changeToken: See “Change Tokens” section.
• (optional) Enum unfileNonfolderObject: An enumeration specifying

how the repository SHALL process file-able child- or descendant-
objects. Valid values are:

o unfile: Unfile all fileable objects.
o deletesinglefiled: Delete all fileable non-folder objects whose

only parent-folders are in the current folder tree. Unfile all other
fileable non-folder objects from the current folder tree.

o delete (default): Delete all fileable objects.
• (optional) boolean continueOnFailure: If TRUE, then the repository

SHALL continue attempting to perform this operation even if deletion of

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 73 of 85

a child- or descendant-object in the specified folder cannot be deleted.
o If FALSE, then the repository SHALL abort this method when it

fails to delete a single child- or descendant-object.

Outputs • <Array> ID failedToDelete: A list of identifiers of objects in the folder
tree that were not deleted.

Exception Conditions • General exceptions.
• updateConflictException: See “specific exceptions” section.

Notes • A Repository MAY attempt to delete child- and descendant-objects of
the specified folder in any order.

• Any child- or descendant-object that the Repository cannot delete
SHALL persist in a valid state in the CMIS domain model.

3.4.12 setContentStream
Description Sets the content stream for the specified Document object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID documentID: The identifier for the Document object.
• (optional) String changeToken: See “Change Tokens” section.
• Boolean overwriteFlag: If TRUE, then the Repository SHALL replace

the existing content stream for the object (if any) with the input
contentStream.

o If FALSE, then the Repository SHALL only set the input
contentStream for the object if the object currently does not
have a content-stream.

• <contentStream> contentStream: The Content Stream that SHALL be
stored for the newly-created Document Object.

Outputs • ID documentId: The ID of the document.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The Object’s Object-Type definition “contentStreamAllowed”

attribute is set to “notAllowed”.
• contentAlreadyExistsException: The Repository SHALL throw this

exception if the input parameter overwriteFlag is FALSE and the Object
already has a content-stream.

• storageException: See “specific exceptions” section.
• streamNotSupportedException: The Repository SHALL throw this

exception if the Object-Type definition specified by the typeId
parameter’s “contentStreamAllowed” attribute is set to “not allowed”.

• updateConflictException: See “specific exceptions” section.
• versioningException: The repository MAY throw this exception if the

object is a non-current Document Version.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 74 of 85

Notes • A Repository MAY automatically create new Document versions as part
of this service method. Therefore, the DocumentId output NEED NOT
be identical to the DocumentId input.

3.4.13 deleteContentStream
Description Deletes the content stream for the specified Document object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier for the Document object.
• (optional) String changeToken: See “Change Tokens” section.

Outputs • ID documentId: The ID of the Document object.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The Object’s Object-Type definition “contentStreamAllowed”

attribute is set to “required”.
• storageException: See “specific exceptions” section.
• updateConflictException: See “specific exceptions” section.
• versioningException: The repository MAY throw this exception if the

object is a non-current Document Version.

Notes • A Repository MAY automatically create new Document versions as part
of this service method. Therefore, the DocumentId output NEED NOT
be identical to the DocumentId input.

3.5 Multi-filing Services
The Multi-filing services (addObjectToFolder, removeObjectFromFolder) are supported only if the
repository supports the multifiling or unfiling optional capabilities. The Multi-filing Services are used to
file/un-file objects into/from folders.
This service is NOT used to create or delete objects in the repository.

3.5.1 addObjectToFolder
Description Adds an existing fileable non-folder object to a folder.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.
• ID folderId: The folder into which the object is to be filed.

Outputs None.

Exception Conditions • General exceptions.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 75 of 85

• ConstraintViolationException: The Repository SHALL throw this
exception if ANY of the following conditions are met:

o The typeID is NOT in the list of AllowedChildObjectTypeIds of
the parent-folder specified by folderId.

Notes None.

3.5.2 removeObjectFromFolder
Description Removes an existing fileable non-folder object from a folder.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.
• (Optional) ID folderId: The folder from which the object is to be

removed.
o If no value is specified, then the Repository SHALL remove the

object from all folders in which it is currently filed.

Outputs None.

Exception Conditions • General exceptions.

Notes None.

3.6 Discovery Services
The Discovery Services (query) are used to search for query-able objects within the Repository.

3.6.1 query
Description Executes a CMIS-SQL query statement against the contents of the

Repository.

Inputs • ID repositoryId: The identifier for the Repository.
• String statement: CMIS-SQL query to be executed. (See “Query”

section.)
• Boolean SearchAllVersions:
• (optional) Integer maxItems: See Paging section.
• (optional) Integer skipCount: See Paging section.
• Boolean includeAllowableActions: See “Allowable Actions” section.

Outputs • <Array> Object QueryResults: The set of results for the query. (See
“Query” section.)

• Boolean hasMoreItems: See Paging section.

Exception Conditions • General exceptions.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 76 of 85

Notes None.

3.7 Versioning Services
The Versioning services (checkOut, cancelCheckOut, getPropertiesOfLatestVersion, getAllVersions,
deleteAllVersions) are used to navigate or update a Document Version Series.

3.7.1 checkOut

Description Create a private working copy of the object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier of the object.
• (optional) String changeToken: See “Change Tokens” section.

Outputs • ID documentId: The identifier for the “Private Working Copy” object.
• Boolean contentCopied: TRUE if the content-stream of the Private

Working Copy is a copy of the contentStream of the Document that was
checked out.

o FALSE if the content-stream of the Private Working Copy is
“not set”.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The Document’s Object-Type definition’s versionable attribute

is FALSE.
• storageException: See “specific exceptions” section.
• updateConflictException: See “specific exceptions” section.
• versioningException: The repository MAY throw this exception if the

object is a non-current Document Version.

Notes None.

3.7.2 cancelCheckOut
Description Reverses the effect of a check-out. Removes the private working copy of

the checked-out document object, allowing other documents in the version
series to be checked out again.

Inputs • ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier of the object.
• (optional) String changeToken: See “Change Tokens” section.

Outputs None.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 77 of 85

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The Document’s Object-Type definition’s versionable attribute

is FALSE.
• updateConflictException: See “specific exceptions” section.
• versioningException: The repository MAY throw this exception if the

object is a non-current Document Version.

Notes None.

3.7.3 checkIn

Description Checks-in the Private Working Copy object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID documentId: The identifier of the object.
• (optional) String changeToken: See “Change Tokens” section.
• Boolean Major: TRUE if the checked-in Document Object SHALL be a

major version.
o FALSE if the checked-in Document Object SHALL NOT be a

major version.
• (Optional) <Array> properties: The property values that SHALL be

applied to the checked-in Document Object.
• (Optional) <contentStream> contentStream: The Content Stream

that SHALL be stored for the checked-in Document Object.
• (Optional) String checkinComment: See “Versioning Properties on

Document Objects” section.

Outputs • ID documentId: The ID of the checked-in document.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The Document’s Object-Type definition’s versionable attribute

is FALSE.
• storageException: See “specific exceptions” section.
• streamNotSupportedException: The Repository SHALL throw this

exception if the Object-Type definition specified by the typeId
parameter’s “contentStreamAllowed” attribute is set to “not allowed” and
a contentStream input parameter is provided.

• updateConflictException: See “specific exceptions” section.
• versioningException: The repository MAY throw this exception if the

object is a non-current Document Version.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 78 of 85

Notes For repositories that do NOT support the optional “PWCUpdateable”
capability, the properties and contentStream input parameters to this
method is the ONLY way to set those values for a Private Working Copy
object.

3.7.4 getPropertiesOfLatestVersion

Description Get a subset of the properties for the latest Document Object in the Version
Series.

Inputs • ID repositoryId: The identifier for the Repository.
• ID versionSeriesId: The identifier for the Version Series.
• Boolean MajorVersion: If TRUE, then the Repository SHALL return

the properties for the latest major version object in the Version Series.
o If FALSE, the Repository SHALL return the properties for the

latest (major or non-major) version object in the Version Series.
• (optional) String Filter: See “Property Filters” section.

Outputs • <Array> Properties: The list of properties for the object.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes If the input parameter MajorVersion is TRUE and the Version Series
contains no major versions, then the Repository SHALL throw
objectNotFoundException.

3.7.5 getAllVersions
Description Returns the list of all Document Objects in the specified Version Series,

sorted by CREATION_DATE descending.

Inputs • ID repositoryId: The identifier for the Repository.
• ID versionSeriesId: The identifier for the Version Series.
• (optional) String filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• Boolean includeRelationships:

Outputs • <Array> Objects: A list of Document Objects in the specified Version
Series.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes • If the input parameter MajorVersion is TRUE and the Version Series

Ethan Gur-esh
See CMIS-117.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 79 of 85

contains no major versions, then the Repository SHALL throw
objectNotFoundException.

• The result set for this operation SHALL include the Private Working
Copy, subject to caller’s access privileges.

3.7.6 deleteAllVersions

Description Deletes all Document Objects in the specified Version Series, including the
Private Working Copy.

Inputs • ID repositoryId: The identifier for the Repository.
• ID versionSeriesId: The identifier of the Version Series to be deleted.

Outputs None.

Exception Conditions • General exceptions.

Notes None.

3.8 Relationships Services
The Relationship Services (getRelationships) are used to retrieve the dependent Relationship objects
associated with an independent object.

3.8.1 getRelationships
Description Gets the subset of relationships associated with an independent object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.
• Enum direction: An enumeration specifying whether the Repository

SHALL return relationships where the specified Object is the source of
the relationship, the target of the relationship, or both. Valid values are:

o source: The Repository SHALL return only relationship objects
where the specified object is the source object.

o target: The Repository SHALL return only relationship objects
where the specified object is the target object.

o both: The Repository SHALL return relationship objects where
the specified object is either the source or the target object.

• (optional) ID typeId: If specified, then the Repository SHALL return
only relationships whose Object-Type is of the type specified (and
possibly its descendant-types – see next parameter.)

o If not specified, then the repository SHALL return Relationship
objects of all types.

• (optional): Boolean includeSubRelationshipTypes: If TRUE, then
the Repository SHALL return all relationships whose Object-Types are
descendant-types of typeId.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 80 of 85

o If FALSE (default), then the Repository SHALL only return
relationships whose Object-Type is typeId.

• (optional) String Filter: See “Property Filters” section.
• Boolean includeAllowableActions: See “Allowable Actions” section.
• (optional) Integer maxItems: See Paging section.
• (optional) Integer skipCount: See Paging section.

Outputs • <Array> Objects: A list of the relationship objects.
• Boolean hasMoreItems: See Paging section.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes None.

3.9 Policy Services
The Policy Services (applyPolicy, removePolicy, getAppliedPolicies) are used to apply or remove a policy
object to a controllable object.

3.9.1 applyPolicy

Description Applies a specified policy to an object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID policyId: The identifier for the Policy to be applied.
• ID objectId: The identifier of the object.

Outputs None.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The specified object’s Object-Type definition’s attribute for

controllable is FALSE.

Notes None.

3.9.2 removePolicy
Description Removes a specified policy from an object.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 81 of 85

Inputs • ID repositoryId: The identifier for the Repository.
• ID policyId: The identifier for the Policy to be removed.
• ID objectId: The identifier of the object.

Outputs None.

Exception Conditions • General exceptions.
• ConstraintViolationException: The Repository SHALL throw this

exception if ANY of the following conditions are met:
o The specified object’s Object-Type definition’s attribute for

controllable is FALSE.

Notes None.

3.9.3 getAppliedPolicies
Description Gets the list of policies currently applied to the specified object.

Inputs • ID repositoryId: The identifier for the Repository.
• ID objectId: The identifier of the object.
• (optional) String filter: See “Property Filters” section.

Outputs <Array> Objects: A list of Policy Objects.

Exception Conditions • General exceptions.
• FilterNotValidException: The Repository SHALL throw this exception

if this property filter input parameter is not valid.

Notes None.

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 82 of 85

Conformance
The last numbered section in the specification must be the Conformance section. Conformance
Statements/Clauses go here.

Ethan Gur-esh
Need to ask TC – what goes in this section?

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 83 of 85

A. Acknowledgements
The following individuals have participated in the creation of this specification and are gratefully
acknowledged:
Participants:

[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 84 of 85

B. Non-Normative Text

CMIS – Part I 25 February 2009
Copyright © OASIS® 2008. All Rights Reserved. Page 85 of 85

C. Revision History

Revision Date Editor Changes Made

0.6 3/8/2009 Ethan Gur-esh • Re-wrote spec text into normative style.
• Re-factored spec sections for clarity.
• Fixed several spec bugs tracked in JIRA.

