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INTRODUCTION

This document’s primary location is the OASIS TC’s Documents area (URL: http://www.0oasis-
open.org/apps/org/workgroup/cmis/download.php/32262/ACL%20Proposal%20v0.83.doc).

This document should be considered as an addendum to the “CMIS Part | — Domain Model v0.61c with ACLs.doc”
document.

While the “CMIS Part | — Domain Model v0.61c with ACLs.doc” contains the normative parts for the ACL proposal,
this document “ACL Proposal v.081.doc” tries to explain the motivation, use cases and a bit of history.

RECAP: SECURITY IN CMIS SPECIFICATION 0.6

Version 0.6 of the CMIS specification draft contains a concept for policy objects (see Section 2.6 Policy Object).
Access to certain aspects of an object can be restricted by a policy.

Policies — like other primary entities of the CMIS specification — are typed, have an object ID and have properties
(see General Concepts below).

A policy is created using the Object Service’s createPolicy method. Input for this method is a description of the
policy (name, type, properties, etc.), output is an ID of the created policy instance. Providing this ID, a policy can
be applied to a controllable object (applyPolicy), removed (removePolicy), or retrieved from an object
(getAppliedPolicies) via the Policy Service.

A controllable object can have zero or more policies applied. Not having a policy applied means that there is no
restriction accessing the object.

ACL DESIGN OBJECTIVES AND ASSUMPTIONS

The basic requirements for ACLs can be grouped by the following three levels:

Level 1 — Unified Search - getRepositoryinfo: capabilityACL = Discover, permissionNames = {
CMIS.BasicPermission.Read }
This requires the ablity to discover who is allowed to read the content and properties of a document or folder.
The scenario is that data from a CMIS repository is to be indexed by an external search engine: In order to filter
relevant results for a given user efficiently, the search engine needs to add index information about “who is
allowed to read the search result”, e.g. by extending the query to something like WHERE .. AND
currentuser IS IN read-acl-entries when searching.

Level 2 — Reporting Permissions = getRepositoryInfo: capabilityACL = Discover, permissionNames = {
CMIS.BasicPermission.Read, ... }
The requirement is to distinguish different permissions, like READ, WRITE or DELETE.
The scenario is that a user is able to figure out which other users she or he can collaborate on a shared
document or folder (e.g. who can read, who can modify, and who can manage the permissions of a document).
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Level 3 — Managing Permissions = getRepositorylnfo: capabilityACL = Manage
Like Level 2, plus the requirement to be able to modify the ACL for a document or folder.
Like for Level 2, the scenario is that a user would like to allow other users (e.g. his or her team) to get access to
a document or folder (e.g. that all the members of a team can collaborate on the same folder).

Thus, we assume that ACLs will be used mainly for collaborative user scenarios, where an end user needs to be able
to control the permissions to be applied to documents or folders at runtime at least to allow content sharing and
collaboration. E.g. “My working drafts for the documentation should only be editable by my co-workers John and
Mary, be visible to my team, but they must not to be seen by someone else outside the team”.

In addition, we assume that at least a minimal set of permissions should be predefined, such that specific
applications can rely on known semantics for this predefined permissions (like for Level 1 the indexing engine relies
on the READ semantics).

Another assumption is that for enterprise level security constraints, Policies are more appropriate than ACLs.
Policies are intended to express security constraints more on an enterprise level and that are shared by several
objects (e.g. “job references in folder EMEA can be read by members of the HR department in the EMEA region
only”). ACLs are intended as an additional mechanism for collaborative scenarios.

E.g. a business application scenario, like attaching scanned images of an invoice to ERP data would rather add a
policy like “Invoices with a total of more than 1Million EURO should not be visible by anyone who’s not a member
of the controlling team and has doesn’t have at least a clearance level 2”, than applying an ACL.

Theoretically, there would be different options on where the put the knowledge about the semantics for
permissions. However, in the discussions it turned out that there shouldn’t be too much semantics within the CMIS
specification. This implies, that — except for the predefined permissions — it will be up to the client (usually the user
then) to “know” about the semantics of an ACL. Thus, the focus for this proposal is on abilities to marshall the
information required to discover and manage ACLs for a user — and only to a minor extend to help applications to
“understand” the ACL (except for the predefined CMIS permissions).

As the ACEs of an ACL define who is allowed to do what, two additional (technical) assumptions:

1. Regarding the who:
We assume that all the systems share a common understanding of the principals to be checked. In an
enterprise or intranet scenario, this is more likely to be the case, as a central LDAP or other kind of directory
service will most probably be available. For extranet/internet scenarios, we assume that more generic
authentication standards will be relevant (in the worst case, the CMIS consumer would have to do the user
mapping by means beyond the scope of CMIS).
=>» We assume that principals are known to both, consumer and provider — thus user/group discovery is not
within the scope of this document.

2. Regarding the what:
We assume that ACLs are applied to folder- and document-like objects only, and that checks against ACLs are
performed for operations on those objects only.
=>» We assume that ACLs are appropriate for the basic object types folder and document (not for relationship,
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policy) as this concept is known from existing file system implementations — other CMIS objects would have to
be secured by policies then.

RELATION TO OTHER STANDARDS

Content Repository for Java — JSR 283

Reference: http://jcp.org/en/jsr/detail?id=283

As we expect that JCR might serve as a local Java API for the CMIS protocol (either for consumers — using JCR to
access a CMIS provider — or for providers — using CMIS to expose a JCR repository, like Apache Chemistry), the ACL
concepts proposed by CMIS should be mappeable to JCR:

Policies can be mapped to the JCR’s AccessControlPolicy objects and handling of policies can be mapped to the
AccessControlManager’s get.../set.../delete... methods (while CMIS’ addPolicy could be mapped to a
getApplicablePolicies on a specific system path, or createing a node with a specific structure (e.g. using XACML)).

ACLs with ACEs for arbitrary permissions are not covered by JCR — they would have to be mapped to JCR policies as
well.

ACLs with ACEs for CMIS-defined permissions should be mappable by taking care that the semantics defined in this
proposal are compliant with the JCR’s standard privileges jcr:read, jcr:setProperties, jer:addChildNodes,
jer:removeChildNodes, jcr:write, jcr:getAccessControlPolicy, jcr:setAccessControlPolicy, and jcr:all. See
Permissions below.

HTTP Extensions for Distributed Authoring — WebDAV

Reference: http://www.ietf.org/rfc/rfc2518.txt, http://www.webdav.org/acl/, and
http://www.webdav.org/specs/rfc3744.html

As we assume that a CMIS provider might also expose its repository via WebDAV, the proposed ACL concept should
be mappeable to WebDAV.

Policies are not covered by WebDAV.

ACLs with ACEs for arbitrary permissions are pretty much the same as specified in WebDAV, using specific privileges
(aka permissions).

ACLs with ACEs for CMIS-defined permissions should use a simplified set of privileges which could then be mapped
as well. See Permissions below.

XACML

Reference: http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacmI#XACML20
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XACML is much more generic and flexible then the proposed ACLs. As outlined above, we consider more generic
security handling being related to Policies and therefore as out of scope for this proposal on ACLs.

Thus — although XACML might become relevant when getting into more details for policies — we won’t take XACML
into account for this proposal on ACLs.
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GENERAL CONCEPTS

To provide an overview about the general concept and to provide a more formal naming, the following sections use
a Java style pseudo code to illustrate the proposal.

The CMIS specification currently defines the following object hierarchy:

Property
CMIS has
Object
Content extands
Stream
0.1
has [ [ ) )
Document Folder Relationship Policy
—
Content- Source J
allowable Queryable has
Target
9 has
Version- Fileable
able
‘ e ’
Controll- |, controlled by /
able applied to

A [CMIS] Object is either a Document, a Folder, a Relationship or a Policy. All of them may have Properties
assigned, while only Documents may have Content [Streams] (i.e. have contentStreamAllowed <> notAllowed) and
are Version-able. Folders and Documents are Query-able and File-able. Relations can reference to a a Source
Object and a Target Object. Documents, Folders, Relationsships and Policies might be Control-able —and may then
be controlled by zero or more Policies. Vice versa, a Policy may be assigned to zero or several control-able Objects.

During the first CMIS TC's F2F Meeting in January 2009 it was decided that ACLs shall be added as a specific
“dependend” object type (like Propertie), thus the propsed changed object hierarchy would then look like:
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ACL- controlled by /
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Only Documents and Folders may be ACLControl-able. An ACLControl-able may then be controlled by one ACL (can
have an ACL assigned).

An ACL in turn is implicitly assigned to its object — an ACL is not a [CMIS] Object on its own, an ACL depends on the
[CMIS] Object it belongs to (like a Property, but in contrast to Policies).

Only Document Objects and Folder Objects may have an ACL assigned — but only if they are “tagged” as being
ACLControl-able.

OVERVIEW OF ACLS

Access Control Lists

An Access Control List (ACL) is just a list of Access Control Entires (ACEs)
public List<AccessControlEntry> AccessControlList;

<xs:complexType name="cmisAccessControlListType"'>
<xs:sequence>
<xs:element name="'permission"
type="‘cmis:cmisAccessControlEntryType" />
<xs:any namespace="‘##other" />
</Xs:sequence>
</xs:complexType>
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Access Control Entries

An Access Control Entry (ACE) specifies a Permission and a Principal., and holds a boolean flag direct, which
indicates if the ACE is applied directly to this object, or derived/inherited from some other object.

public class AccessControlEntry {
public Principal principal;
public Permission permission;
public Boolean direct;

}

<xs:complexType name="cmisAccessControlEntryType">
<XS:sequence>
<xs:element name="principal"
type=""cmis:cmisAccessControlPrincipalType" />
<xs:element name="'permission"
type=""cmis:cmisAccessControlPermissionType" />
<xs:element name="direct" type="'xs:boolean" />
<Xs:any namespace="‘##other" />
</Xs:sequence>
</xs:complexType>

This proposal restricts to positive ACEs. Thus, no negative flag is required.
See also Permissions below for more details on the PermissionDefinition.

Since an ACE is specified by it’s prinicpal’s ID and the permission’s name, “changing” an ACE means either removing
an existing ACE (PrincipallD,PermissionName) or adding a new ACE (PrincipallD,PermissionName).

The boolean direct flag indicates that the ACE is applied to the Document or Folder object itself (direct=TRUE), or is
derived or inherited from another object (direct=FALSE). The direct flag is provided for reporting purposes only — it
is relevant when the ACL is retrieved from the repository, it is not relevant (can be omitted) when a client specifies
an ACE to be applied to an document or folder and will be ignored by the repository.

For more details, see Discovering ACL Capabilities and Applying ACEs below.

Principals

A principal represents either a single user, or a set of users — this can be a group, or some other notion for a “set of
users” like a “role”. As we assume that user management is outside the scope of CMIS and to be handled by the
client and the repository, it might be beneficial if the repository and the client could use the principal as a container
for some additional data. Therefore, a principal might have some additional (optional) attributes:

public class Principal {

public String principalld;

public HashMap<String,String> attributes;
}

<xs:complexType name="cmisAccessControlPrincipalAttributeType'>
<xs:sequence>
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<xs:element name="key" type=''xs:string" />
<xs:element name="value' type="'xs:string" />
</Xs:sequence>
</xs:complexType>

<xs:complexType name="cmisAccessControlPrincipalType'>
<XS:sequence>
<xs:element name="principalld” type='"xs:string" />
<xs:element name="attributes"
type=""cmisAccessControlPrincipalAttributeType"
minOccurs="0" maxOccurs="unbounded™ />
<Xs:any namespace="'##other" />
</Xs:sequence>
</xs:complexType>

The attributes are optional key-value-pairs which can be used to add more information about the principal, e.g.

”n_n

“type”="user” or “datasource”="LDAP”.

Permissions

As outlined in the ACL Design Objectives and Assumptions, the main focus for this proposal is to be able to expose
the permissions a repository supports to clients. Therefore, the permissions are basically strings.

<xs:complexType name="cmisAccessControlPermissionType'>
<XS:sequence>
<xs:element name="permission’” type="xs:string" />
<xs:element name="description' type="'xs:string"
minOccurs="0" />
<Xs:any namespace="'##other" />
</Xs:sequence>
</xs:complexType>

The permission string uniquely identifies the permission in the repositories set of permissions. The description is an
(optional) string containing a “name” for the permission to be displayed to the user.

For some scenarios, a minimal set of “meaningful” permissions might be required by the application:
The absolute minimal permission to discover is Read (see the Level 1 — Unified Search scenario above).

To support Level 3 scenarios (managing permissions) for background applications, we propose that at least the
permissions All, Write, Read should defined by CMIS:

e All: includes all permissions supported by the repository
(corresponding to jcr:all, or DAV:all)

e  Write: when granted, it should permit the following operations: delete the object, write properties and
content of the object, filing or unfiling of the object (plus Read, see below).

(corresponding to jcr:write + jcr:setProperty + jcr:addChildNodes + jcr:removeChildNodes, or DAV:write)

e Read: when granted, it should permit reading of properties and content for the given object.
(corresponding to jcr:read, or DAV:read)

<xs:simpleType name="enumBasicPrivileges'>
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<xs:restriction base=f[:]string">
<xSs:enumeration ue=""CMIS.BasicPermission.Read" />
<xs:enumeration value="CMIS.BasicPermission.Write" />
<xs:enumeration value="CMIS.BasicPermission.All" />
</Xxs:restriction>
</xs:simpleType>

We assume that this are the most basic Permissions to be defined by CMIS. As a repository might add repository
specific permissions, the permissions defined by CMIS should be identified by a CMIS-specific namespace or prefix:
CMiIS.BasicPermission.All, CMIS.BasicPermission.Write, and CMIS.BasicPermission.Read.

E.g. an ACL like {(john: CMIS.BasicPermission.All), (mary: bind), (mary:unbind),
(mary:write)} would define an ACL with one ACE using the CMIS-defined permission All for user “john”, and
two ACEs using repository specific permissions bind and unbind for user “mary”.

Since this proposal restricts to positive ACEs, a Deny permission is not required, as this is the default permission for
a principal not being listed in an ACE.

If no ACL is assigned to an object, all permissions are granted by default (unless overwritten by specific policies) —
this is similar to policies (defaulting to full access for an object if no policies are applied).
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DATA MODEL

See the following sections in “CMIS Part | — Domain Model v0.61c with ACLs.doc”:

2.1.1 — Optional Capabilities (table at line 53) : ACL

2.6.1 — ACL (lines 374-433) : ACL, ACE, setType, Permissions and CMIS-defined Permissions

2.7.2.3 — Attributes specific to Document Object-Types and Folder Object-Types (lines 493-496) : ACLcontrollable
3.2.2 — getRepositorylnfo (table at line 1247) : Enum capabilityACL

3.4.1 — createDocument (table at line 1263) : policies, addACEs and removeACEs

3.4.2 — createFolder (table at line 1265) : policies, addACEs and removeACEs

3.10 — ACL Services (line 1340-1349) : getACLCapabilities, getACL, applyACL

DISCOVERING ACL CAPABILITIES

The Repository Service getRepositoryinfo (section 3.2.2 in the Domain Model, line 1247) returns the enum
capabilityACL which indicates the Level (see ACL Design Objectives and Assumptions) the repository supports for
ACLs.

<xs:simpleType name="enumCapabilityACL">
<xs:restriction base='"'xs:string'>
<xs:enumeration value="none" />
<xs:enumeration value="|=|cover" />
<Xs:enumeration value:"age" />
</xs:restriction>
</xs:simpleType>

If capabilityACL returns something else than none, the ACL Service getACLCapabilities (section 3.10.1 in the
Domain Model, line 1344) returns additional information about the ACL capabilities of the repository:

The multivalued enum setType describes the allowed values the client can use for applyACL (see below, Applying
ACEs).

<xs:simpleType name="enumACLsetType">
<xs:restriction base="xs:string'>
<xs:enumeration value="object-only" />
<xs:enumeration value="dont-care" />
<xs:enumeration value="propagate" />
</xs:restriction>
</xs:simpleType>

The list of permissions is a list with all the permissions supported by the repository (see “Permissions” above).

ACL Proposal 0.83
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The list of mappings is a list of mappings for permission name to allowable actions (see also “Required Permissions
Per Operation” below). It is basically a table, with one entry per actionName. The actionName identifies the
allowable action. The objectPermissionNames specifies the permissions that need to be applied to the “object”
itself in order to allow the action (if the object already exists, or the type if the object is to be created).

<xs:complexType name="cmisPermissionMappingType"''>
<xs:sequence>
<xs:element name="actionName' type=''xs:string" />
<xs:element name="objectPermissionNames" type="'xs:string"
minOccurs=""1" maxOccurs="unbound* />
<xs:element name="relatedOperands"
type=""cmisPermissionMappingRelatedOperandType"
minOccurs="0" />
</Xs:sequence>
</xs:complexType>

The (optional) relatedOperands specifies in an additional table, what permissions need to be applied to other
operands of the action (e.g. source and target for moveObject).

<xs:complexType name="‘cmisPermissionMappingRelatedOperandType''>
<XS:sequence>
<xs:element name="relatedOperandType""
type=""cmisPermissionRelatedOperandType" />
<xs:element name="permissionNames" type='"'xs:string"
minOccurs="1" maxOccurs="unbound" />
</Xs:sequence>
</xs:complexType>

The relatedOperandType specifies the operand the permissions need to be applied to.

<xs:simpleType name="enumPermissionRelatedOperandType'>
<xs:restriction base='"xs:string'>
<xs:enumeration value="folder" />
<xs:enumeration value="policy" />
<xs:enumeration value="source" />
<xs:enumeration value="target"” />
</xs:restriction>
</xs:simpleType>

OBJECT SERVICES

The Object Services createDocument (section 3.4.1 in the Domain Model, line 1263) and createFolder (section 3.4.2
in the Domain Model, line 1265) take three additional optional parameters: A list of policy IDs, a list of ACEs to be
added, and a list of ACEs to be removed.

“Adding” and “removing” refers to the ACL assigned to the parent folder given by folderld. If no folderld is
specified, an empty ACL is assumed — thus, the behavior is equal to adding the ACEs from addACEs and ignoring the
ACEs from removeACEs.

This would allow clients to manage security constraints for newly-created documents and folders.
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ACL SERVICES

As outlined above, the ACL Services are optional capability, and to be supported only if getRepositoryinfo returns
something else than none for capabilityACL.

The ACL Service getACLCapibilities is described above in Discovering ACL Capabilities.

RETRIEVING ACLS

The ACL Service getACL (section 3.10.2 in the Domain Model, line 1346) returns the ACL as a list of ACEs for a given
object ID (and repository ID), see Overview of ACLs for more details.

How the ACL or ACEs are fabricated, e.g. how an inheritance mechanism applies for ACEs, is up to the repository.
Therefore a client MUST NOT assume that inheritance is bound to the folder’s parent-child-relationship.

Furthermore, a client MUST NOT assume that the ACL contains all the information about access control when
policies are supported by a repository. In other words: Even if a given principal is granted a specific permission by
ACE, this might be overwritten by a policy applied to that object. The client has to use getAllowableActions to
determine the effectively allowed actions for a given object and user.

Similar, a client MUST NOT assume that a principal not listed in the ACEs of an ACL for a specific permission will not
be granted access for this specific permission to the given object.

Only if the repository returns TRUE for the (optional) flag exact on getACL, the client can assume that the ACL
provided completely reflects the permissions applied to the object.

For the Level 1 — Unified Search use case, indexing retrieves the ACL via getACL for every object. When searching,
the query is extended to something like WHERE .. AND currentuser 1S IN read-acl-entries. The
result set might then still contain entries, where no access is granted due to applied policies, therefore this
resultset has to be checked by the repository again (e.g. using a SELECT .. WHERE Orderld IS IN (list-of-
serach-result-object-ids)).

This implies, that changing the ACL for a hierarchy (using setType=propagate, see below) might result in many
entries in the change log, or might require reindexing (where the “inheritance dependency” might not be bound to
folders parent-child relations).

The permission names used in the ACEs returned by the repository MUST be contained in the the list of permission
names returned by getACLCapabilties.

. APPLYING ACES

The ACL Service applyACL (section 3.10.3 in the Domain Model, line 1340) takes an optional enum setType, the list
of addACEs to be added to the ACL, and the list of removeACEs to be removed from the ACL. The provided ACEs
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are merged (see below) with the security constraints already applied to the given object, and returns the resulting
ACL as it would be returned by getACL.

The ACL Service applyACL can be used by a client only in case getRepositoryinfo returned capabilityACL = manage.

The “merging” of the ACEs is up to the repository. The only option for a client to provide some information to the
repository about how the “merging” should behave (from a clients perspective) is the enum setType:

e dont-care: is the default value and will be used by the repository, if no value is provided when calling
applyACL by the client. This indicates that the client does not care at all about how the merging is done by
the repository.

-> inheritance/propagation of the resulting security constraints is completely up to the repository.

e object-only: This indicates that the client want the ACEs to be applied only to the given object — without
any side effects for other objects.
-> the repository MUST apply the ACEs to the given object only. It MUST NOT use
inheritance/propagation.

e propagate: This indicates that the client wants the ACEs to be applied to the given object and all
“inheriting” objects —i.e. with the intended side effect that all objects which somehow share the provided
security constraints should be changed accordingly.

- the repository MUST apply the ACEs using its internal “inheritance” mechanisms. How
propagation/inheritance is defined is up to the repository.

However, a client MUST check the repository capabilities as returned in the multivalued enum setType from the
ACL Service getACLcapability. The setType provided by the client to applyACL MUST be contained in this map of
setTypes as returned by getACLCapability.

If one of the ACEs can not be added or removed, the applyACL service should fail in total, and provide the ACEs that
caused the failure in the exception.

If a repository is not capable to deal with changes to inherited ACEs, it SHOULD NOT return a value for setType at
all. Then, clients MUST NOT try to apply ACLs to objects having ACEs with direct = TRUE.

A bit more formally:

In general we assume that the repository supports ACLs (capabilityACL = Manage) , the repository supports the
ACE’s permission (permissions returned by getACLCapabilities contains ACE.Permissions), the repository supports
the requested operation mode for applyACL (setType returned by getACLCapabilities contains the setType
provided for applyACL), and the objects type supports ACLs (objectType.ACLControllable = TRUE).

The following rules apply for applyACL:

An ACE can be added to an ACL if:
exists and direct = TRUE
or exists and getACLCapabilties.setType contains applyACL.setType

An ACE can be removed from an ACL if:
direct = TRUE
or CLCapabiIties.setType contains applyACL.setType
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Author
I would state this simply – an ACE can be removed (subject to repository constraints) if isDirect == TRUE


If a repository does not support inheritance (getACLCapabilties.setType does not contain any value for setType), an
ACE with direct = FALSE can not be deleted.

Rephrasing:

Any “inheritance” mechanism for ACEs is up to the repository — there are no means for the client to determine the
inheritance mechanism (which objects are the legators of the inherited ACEs for a given object). The client has to
be aware that some ACEs are computed by the repository and not “assignable” by means of the client. The direct
flag is used by the repository to indicate that an ACE is applied to an object directly and not computed by some
other means of “inheritance”.

Vice versa, the client is only able to express if either the ACL is meant for this object directly, or if the client does
not care. As a third option, repositories supporting “inheritance” for the folders parent-child relation might provide
a “propagation” along paths to the client.

ACEs passed as input to applyACL are merged with the ACEs of the existing ACL according to the rules above.

EXAMPLES

Example for a repository with support for inheritance via parent-child relation

ACE1
ACE2

=

O folder X X

| ACE1
O folderY ACE?2
| x|ACE3

O documentD

ACE1
ACE?2
ACE3
¥ |ACE4

Adding ACE4 to document D results in a ACE4 with direct = TRUE — setType is not regarded.
Removing ACE4 then again from document D would work in any case, setType is not regarded.

Removing ACE1 from document D, which is inherited from folder X (with direct = FALSE) would work only, if the
repository’s getACLCapability.setType contains object-only and applyACL.setType=object-only.

Example for a repository with policies and additional inheritance (e.g. via versions):
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[ACE1 )
|ACE2

Policy P
O folder X =

|
O folderY

O document D

ACE 1
ACE2
y «|ACE3
O version vV ACE1
ACE2
ACE3
x| ACE4

Lets assume that policy P can be reported as ACE1 and ACE2, then the repository can report this ACEs for the
objects the policy is applied to (X, Y, D). As this ACEs are computed/derived, they have to be reported with direct =
FALSE, and the repository can disallow changing these computed ACEs (by not reporting object-only for
getACLCapability.setType).

Version V might inherit ACE1 to ACE3 from its current version document D.

Again, adding additional ACEs to V or D can be supported by the repository, but changing a non-direct ACEs is
supported only if object-only is contained in getACLCapability.setType.

Examples for the different setTypes (using folder inheritance):

E.g. adding ACES5 to X (ACL provided to applyACEs is ACE1,ACE2,ACES) results in ACE5 being added to X for setType=
object-only; in ACE5 being added to X and inherited to Y and D for setType=propagate; in ACE5 being added to X
and a repository specific behavior for setType=dont-care:

object-only dont-care propagate
x| ACE1 N x| ACE1 x|ACE 1 % |ACE1

ACE?2
O folder X x|ACE 2 x|ACE2 x % |ACE 2
x|ACES x|ACE5 % |ACES
ACE1 ACE1 ?IACETS acE ACE1
O folderY ACE2 | > | |acE2| [?|ACEZalacE2 ACE2
x|ACE3 x|ACE3| [X|ACE3]acEs % |ACE 3
?|ACES5 ACES5

documentD w

O ACE1 ACE1 ?|ACE 2[ACE ACE1
ACE2 2 ACE2| |?|ACE29TacE2 ACE?2
ACE3 ACE3| |?|ACE37lacES3 ACE3
x|ACE4 x|ACE4| |[X|ACE4,]acE4 X |[ACE4
?|ACES ACES

Removing an ACE from folder Y (or folder X) would result in an ACE with direct = TRUE for the given folder only —
without adding ACEs to its descendants, if setType = object-only (or dont-care).
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Removing an ACE from folder Y (or folder X) would result in removal of the ACE from the folder, and if direct =
FALSE also results in removal of this ACE from all of it’s descendants (document D for folder Y, folder Y and
document D for folder X), if setType = propagated (or dont-care).

object-only dont-care propagate
x| ACE 1 x|ACE1] x| ACE 1 % |[ACE 1
«acE2 | ™
QO folder X
ACE 1 ACE1 ?|ACETolace| [ [AcEd]
?|ACE
O fOlderY ACE2 |:> x|ACE 2 dx ACES3 |X|ACE3‘
x|ACE3 x| ACE 3 x|ACE 3y
document D !
O AGE 1 ACE 1 ?|ACEToTACEN | [ [acET]
?|AGE2
ACEZ = ACE2 S AcE 3’ /ACE3 ACE3
ACE3 ACES Iy |ACE4 x|ACE 4
x|ACE4 x| ACE4 x|ACE 47

E.g. removing ACE2 to X (ACL provided to setACL is ACE1) results in ACE2 being removed from X for setType=object-
only; in ACE2 being removed from X and inherently removed from Y and D for setType=propagate; in ACE2 being
removed from X and a repository specific behavior for setType=dont-care.

CHECKING PRIVILEGES

The Object Service getAllowableAction requires more specification (e.g. is currently unclear, what has to be
checked for a moveObject operation).

=>» TBD: a mechanism to define additional operands for the getAllowableAction, e.g. canMove for moveObject
might not only depend on the object but also on the target folder, and optionally depend on the source folder (if
specified).
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REQUIRED PERMISSIONS PER OPERATION

This table needs to be discussed in more detail!

In general: The Permission model descibred below should specify the permissions to be applied in order to allow

the listed “action”. This means: Granting a permission will allow the listed “action”, but does not necessarily result

in an ACE reported by getACL for that permission.

There are two main uses cases for the manging of ACLs:

1. Inacollaborative scenario (see “ACL Design Objectives and Assumptions”), a user “knows” about the

semantics and side-effects when granting permission for a document or folder to another user or group.

For this kind of scenarios, an application would simply present the existing ACL to the user, and allows to

add or remove ACEs (principal + permission names as retrieved via getACLCapabilities) to the user.

The user would then select the required permissions and principals to add a new ACE, or select the

required ACE to remove.

=>» The permissions don’t need to be known by the application.

2. In adevelopment scenario, the developer needs to have some minimal understanding about the

semantics of the permissions (e.g. to understand the READ permission for the Unified Search Indexer).

For this kind of scenarios, the table below should describe the basic semantics in terms of “what

permission needs to be applied to allow “action” xyz for principal abc”.
Additional side-effects might occur, depending on the repository.

actionName

Navigation Services

canGetDescendants
canGetChildren
canGetFolderParent
canGetParents

Object Services

canCreateDocument
canCreateFolder
canCreateRelationship

canCreatePolicy
canGetProperties
canViewContent
canUpdateProperties
canMove

canDeleteVersion
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operation

getDescendants
getChildren
getFolderParent
getObjectParents

createDocument
createFolder
createRelationship

createPolicy
getProperties
getContentStream
updateProperties
moveObject

deleteObject

(main/first)
operand

folder
folder
folder
object

type
type
type

type

object
object
object
object

object

object- relatedOperands
Permission-
Names

Read
Read
Read
Read

Write folder: Write

Write folder: Write

Write source: Write
target: Write

Write

Read

Read

Write

Write target: Write
source: Write

Write
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canDeleteTree
canSetContent
canDeleteContent
Multi-filing Services
canAddToFolder
canRemoveFromFolder
Versioning Services
canCheckout
canCancelCheckout
canCheckin
canGetAllVersions
canDelete
Relationship Services
canGetRelationships
Policy Services
canAddPolicy
canRemovePolicy
canGetAppliedPolicies
ACL Services
canGetACL
canApplyACL

Still under discussion:

For the Unified Search: How to figure out that an ACE like { ALL, ‘mary’ } for document d implies READ access to d?

deleteTree folder Write

setContentStream document Write
deleteContentStream document Write

addObjectToFolder object Write folder: Write
removeObjectFromFolder  object Write folder: Write
checkOut document Write

cancelCheckOut document Write

checkin document Write

getAllVersions versionseries  Read

deleteAllVersions versionseries  Write

getRelationships object Read

applyPolicy object All policy: Read
removePolicy object All policy: Read
getAppliedPolicies object Read

getACL object Read

applyACL object All

Proposal: Extend the information in the getACLCapabilities:

<xs:complexType name="cmisAccessControlPermissionType'>
<xs:sequence>
<xs:element name="permission’ type=''xs:string"” />
<xs:element name="description’” type="'xs:string"

minOccurs=""0" />

<xXS:any namespace="##other" />
<xs:element name="'parent" type="'Xs:string"

minOccurs=""0" />

<xs:element name="abstract" type=""xs:Boolean”

minOccurs=""0" />

</Xxs:sequence>
</xs:complexType>
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