

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 1 of 51

CMDB Federation (CMDBf) 1

Public Interim Draft 2

Version 0.95, 01 August 2007 3

Authors 4

Forest Carlisle, CA 5

Barry Day, Microsoft 6

Scott Donohoo, IBM 7

Pratul Dublish, Microsoft 8

Jacob Eisinger, IBM 9

Greg Goodman, CA 10

Andrew Hately, IBM 11

Mark Johnson, IBM (Editor) 12

Vincent Kowalski, BMC Software (Editor) 13

Yannis Labrou, Fujitsu 14

Kenji Morimoto, Fujitsu 15

David Snelling, Fujitsu 16

William Vambenepe, HP (Editor) 17

Marv Waschke, CA (Editor) 18

Van Wiles, BMC Software 19

Klaus Wurster, HP 20
 21

Copyright Notice 22
© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All 23
Rights Reserved. 24
 25
Permission to copy and display the CMDB Federation Version 0.95 specification, in any medium 26
without fee or royalty is hereby granted, provided that you include the following on ALL copies of 27
the CMDB Federation Version 0.95 specification, or portions thereof, that you make: 28

1. A link or URL to the Specification at one of the Authors’ websites. 29
2. The copyright notice as shown in the Specification. 30

 31
BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft (collectively, the “Authors”) 32
each agree to grant you a royalty-free license, under reasonable, non-discriminatory terms and 33
conditions to their respective patents that they deem necessary to implement the Specification. 34
 35
THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO 36
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT 37
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 38
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE 39
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION 40
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 41
TRADEMARKS OR OTHER RIGHTS. 42
 43

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 2 of 51

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL 44
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR 45
DISTRIBUTION OF THE SPECIFICATION. 46
 47
The name and trademarks of the Authors may NOT be used in any manner, including 48
advertising or publicity pertaining to the Specification or its contents without specific, 49
written prior permission. Title to copyright in the Specification will at all times remain with 50
the Authors. 51
 52
No other rights are granted by implication, estoppel or otherwise. 53

Abstract 54

This specification describes the architecture and interactions for federating data 55
repositories together to behave as a data store that satisfies the role of a 56
Configuration Management Database (CMDB). The federation provides an aggregate 57
view of a resource even though the data and underlying repositories are 58
heterogeneous. A query interface is defined for external clients to access these data. 59

Status 60

This document is an initial draft still under internal review. A feedback agreement is 61
required before the working group can accept feedback. 62

At some future date, the contents may be published under another name or under 63
several new specifications, as shall be agreed by the authors and their respective 64
corporations at that time. 65

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 3 of 51

Table of Contents 66

CMDB Federation (CMDBf).. 1 67

Authors... 1 68

Copyright Notice... 1 69

Abstract .. 2 70

Status... 2 71

Table of Contents .. 3 72

1. Introduction... 5 73

1.1 Objectives .. 6 74

1.1.1 Functions .. 6 75

1.1.2 Target IT Environment .. 7 76

1.1.3 Non-Goals ... 7 77

1.2 Background Terminology... 7 78

1.3 Notational Conventions... 9 79

2. Technological Assumptions .. 9 80

2.1 Underlying Technology ... 9 81

2.1.1 Web Services... 9 82

2.1.2 Database Management Systems ..10 83

2.2 Standards Basis..10 84

3. Architecture ... 10 85

3.1 Roles ..10 86

3.2 Services Overview ..11 87

3.2.1 Federation Modes ..11 88

3.2.2 Usage Profiles ...12 89

3.3 Identity Reconciliation ...12 90

3.4 Data Model Overview...13 91

3.4.1 Managed Data...13 92

3.4.2 Administration Data ...15 93

4. Query Service... 16 94

4.1 Overview ...16 95

4.2 Example ..16 96

4.3 Normative definition..18 97

4.3.1 GraphQuery..18 98

4.3.2 GraphQuery Response..27 99

4.4 GraphQuery Example ..28 100

5. Registration Service ... 31 101

5.1 Overview ...32 102

5.2 Normative definition..33 103

5.2.1 Common data element types...33 104

5.2.2 Register ...33 105

5.2.3 Register Response ...35 106

5.2.4 Deregister ..36 107

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 4 of 51

5.2.5 Deregister Response ..37 108

6. Secure, Reliable, Asynchronous Federation.. 38 109

6.1 Security ..38 110

6.2 Reliability ..38 111

6.3 Asynchrony..38 112

7. Acknowledgements .. 38 113

8. References ... 39 114

Appendix A Detailed UML Class Diagrams... 40 115

Appendix B XML Schema... 41 116

8.1 Query Service WSDL ...49 117

8.2 Registration Service WSDL ...50 118

 119

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 5 of 51

1. Introduction 120

Many organizations are striving to base IT management on a CMDB (Configuration 121
Management Database). A CMDB contains data describing managed resources like 122
computer systems and application software, process artifacts like incident, problem 123
and change records, and the relationships among these entities. The contents of the 124
CMDB should be managed by a configuration management process and serve as the 125
foundation for other IT management processes, such as change management and 126
availability management. 127

CMDB

Configuration
Management

Change
Management

Incident
Management

Availability
Management

Capacity
Management

…

 128
Figure 1 – Role of a CMDB 129

 130

In practice this goal is challenging because the management data are scattered 131
across repositories that are poorly integrated or coordinated. 132

The definition of a CMDB in the context of this specification is based on the definition 133
described in the IT Infrastructure Library** (ITIL**): a database that tracks and 134
records configuration items associated with the IT infrastructure and the 135
relationships between them. Strictly speaking, the ITIL CMDB contains a record of 136
the expected configuration of the IT environment, as authorized and controlled 137
through the change management and configuration management processes. The 138
federated CMDB in this specification extends this base definition to federate any 139
management information that complies with the specification’s patterns, schema, 140
and interfaces, such as the discovered actual state in addition to the expected state. 141
Typically, an administrator will select the data to be included by configuring the tool 142
that implements the CMDB. 143

The federated CMDB described in this specification is a collection of services and data 144
repositories that contain configuration and other data records about resources. The 145
term ‘resource’ includes configuration items (e.g., a computer system, an application, 146
or a router), process artifacts (e.g., an incident record, a change record), and 147
relationships between configuration item(s) and/or process artifact(s). The 148
architecture describes a logical model and does not necessarily reflect a physical 149
manifestation. 150

 151

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 6 of 51

1.1 Objectives 152

1.1.1 Functions 153

The federated CMDB resulting from using this specification will provide a single 154
aggregate view of the data about an IT resource, even if the data is from different 155
heterogeneous data repositories, as shown in Figure 2. Clients, such as IT processes, 156
management applications, and IT staff will use a query service defined in the 157
specification to access aggregated or non-aggregated views. Data repositories will 158
use the services described in the specification to provide the aggregated view. 159

 160

Aggregate View

Resource
Identity

Actual
Config

Expected
Config Asset other

Identity
PropertyIdentity

PropertyIdentifying
Properties

Processes

Management
Applications

IT Staff

 161
Figure 2 – Aggregate View from Federated Data 162

 163

The federated CMDB could support the following scenarios (though which scenarios 164
are supported is entirely left to the discretion of each implementation): 165

• Maintain accurate picture of IT inventory from a combination of asset 166
information (finance) and deployment/configuration 167

• Reflect changes to IT resources, including asset and licensing data, across all 168
repositories/data sources 169

• Compare expected configuration vs. actual configuration 170

• Enable version awareness. Examples: 171

o Coordinate planned configuration changes 172

o Track change history 173

• Relate configuration and asset data to other data/data sources, such as 174
incident, problem, and service levels. Examples: 175

o Integration of change/incident management with monitoring 176
information 177

o SLA incident analysis – use of service desk/incident information in a 178
dependency analysis on both configurations and change records 179

 180

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 7 of 51

1.1.2 Target IT Environment 181

This specification is intended to address requirements in IT environments with the 182
following characteristics 183

• There are strong requirements to consolidate into one or more databases 184
(logical and/or physical) at least some key data from the many management 185
data repositories so that IT processes can be more effective and efficient. 186

• IT organizations that implement a CMDB that federates multiple management 187
data repositories will be diverse in terms of their existing tools, process 188
maturity level, usage patterns, and preferred adoption models. 189

• There are several and possibly many management data repositories (MDRs), 190
each of which may be considered an authoritative source for some set of data. 191

• The authoritative data for a resource may be dispersed across multiple MDRs. 192

• It is often neither practical nor desirable for all management data to be kept 193
in one data repository, though it may be practical and desirable to consolidate 194
various subsets of the data into fewer databases. 195

• Existing management tools will often continue to use their existing data 196
sources. Except over the very long haul, it is not realistic to expect them all to 197
be modified to require and utilize new consolidated databases. 198

 199

1.1.3 Non-Goals 200

The following are outside the scope of the specification. 201

• The mechanisms used by each management data repository to acquire data. 202
For example, the mechanisms could be external instrumentation or 203
proprietary federation and replication function. 204

• The mechanisms and formats used to store data. The specification is 205
concerned only with the exchange of data. A possible implementation is a 206
relational database that stores data in tables. Another possible 207
implementation is a front-end that accesses the data on demand from an 208
external provider, similar to a commonly used CIMOM/provider pattern. 209

• The processes used to maintain the data in the federated CMDB. The goal of 210
the specification is to enable IT processes to manage this data, but not to 211
require or dictate specific processes. 212

• The mechanisms used to change the actual configuration of the IT resources 213
and their relationships. The goal of the specification is to provide means to 214
represent changes after or as they are made, but not to be the agent that 215
makes the change. 216

 217

1.2 Background Terminology 218

This non-normative section defines terms used throughout this specification. For the 219
most part, these terms are adopted from other sources. The terms are defined here 220
to clarify their usage in this specification and, in some cases, to show their 221
relationship to the use of the terms in other sources. In particular, this specification 222
shares concepts with ITIL (Information Technology Infrastructure Library.) ITIL is not 223
a standard and does not provide normative definitions of terms. However, the ITIL 224
v3 glossary is quoted below as representative of the ITIL position. 225

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 8 of 51

 226

Configuration Item (CI) A Configuration Item is a basic tangible or intangible 227
entity in a configuration management solution such as a CMDB. ITIL v3 defines a CI 228
as 229

Any Component that needs to be managed in order to deliver an IT Service. 230
Information about each CI is recorded in a Configuration Record within the 231
Configuration Management System and is maintained throughout its Lifecycle 232
by Configuration Management. CIs are under the control of Change 233
Management. CIs typically include IT Services, hardware, software, buildings, 234
people, and formal documentation such as Process documentation and SLAs. 235

Configuration Management Database (CMDB) ITIL defines a CMDB as 236

A database used to store Configuration Records throughout their Lifecycle. 237
The Configuration Management System maintains one or more CMDBs, and 238
each CMDB stores Attributes of CIs, and Relationships with other CIs. 239

A Configuration Management Database (CMDB) is often implemented using standard 240
database technology and typically persists CI lifecycle data as records (or 241
Configuration Records) in that database. Configuration records are managed 242
according to some data or information model of the IT environment. One of the goals 243
of this specification is to expedite the federated implementation of multiple CMDBs in 244
a single Configuration Management System. 245

Configuration Record ITIL defines a Configuration Record as 246

A Record containing the details of a Configuration Item. Each Configuration 247
Record documents the Lifecycle of a single CI. Configuration Records are 248
stored in a Configuration Management Database. 249

For the purposes of this specification, a CI is a tangible or intangible entity treated in 250
the abstract by this specification, while a Configuration Record contains concrete 251
data pertaining to a CI. More than one Configuration Record may be associated with 252
a given CI. Often Configuration Records will be from different data sources or 253
document different points in the lifecycle of a CI. It is possible for Configuration 254
Records associated with a single CI to contain data that may appear contradictory 255
and require mediation. 256

Federated CMDB A federated CMDB is a combination of multiple management data 257
repositories (MDRs), at least one of which federates the others, into an aggregate 258
view of management data. Note that whereas “federated CMDB” refers to the 259
combination of all the data repositories, “Federating CMDB” is a specific role 260
performed by a data repository that federates other MDRs. 261

Federation The process of combining information from management data 262
repositories (MDRs) into a single representation that can be queried in a consistent 263
manner. Federation is often contrasted with Extract, Transform, and Load (ETL) 264
systems which transfer and store data from one repository to another. This 265
specification does not exclude ETL activities, especially for caching, but the main 266
purpose of the specification is to support systems that minimize or eliminate 267
transferring and storing data from MDRs in federators. 268

Graph A graph is a kind of data structure, specifically an abstract data type, that 269
consists of a set of nodes and a set of edges that establish relationships (connections 270
or links) between the nodes. In this specification the nodes are Items and the edges 271
are Relationships. 272

Identity The federated CMDB contains data pertaining to real world entities. The 273
identity of each of these real world entities is a set of qualities or characteristics that 274

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 9 of 51

distinguish the entity from other entities of the same or different types. This set of 275
qualities may be called the ‘identifying properties’ of the entity. 276

ITIL ITIL stands for Information Technology Infrastructure Library and is a 277
framework of best practices for delivering IT services. Two versions of ITIL are 278
currently in use: version 2 released in 2000 and version 3 released in 2007. Since v3 279
has not yet superseded v2 in practice, both versions have been considered in 280
preparing this specification. A CMDB is a key component in the ITIL best practices. 281

 282

1.3 Notational Conventions 283

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 284
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 285
document are to be interpreted as described in RFC 2119 [RFC 2119]. 286

This specification uses the following syntax to define outlines for messages: 287

• The syntax appears as an XML instance, but values in italics indicate data 288
types instead of literal values. 289

• Characters are appended to elements and attributes to indicate cardinality: 290

o "?" (0 or 1) 291

o "*" (0 or more) 292

o "+" (1 or more) 293

o The absence of any of the above indicates the default (exactly 1) 294

• The character "|" is used to indicate a choice between alternatives. 295

• The characters "(" and ")" are used to indicate that contained items are to be 296
treated as a group with respect to cardinality or choice. 297

• The characters "[" and "]" are used to call out references and property names. 298

• Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or 299
attributes MAY be added at the indicated extension points but MUST NOT 300
contradict the semantics of the parent and/or owner, respectively. By default, 301
if a receiver does not recognize an extension, the receiver SHOULD ignore the 302
extension; exceptions to this processing rule, if any, are clearly indicated 303
below. 304

• XML namespace prefixes are used to indicate the namespace of the element 305
being defined or referenced. 306

 307

2. Technological Assumptions 308

This specification is based on some very specific assumptions with regard to 309
underlying technology and the context of computing standards that exists at the time 310
of its writing. 311

2.1 Underlying Technology 312

2.1.1 Web Services 313

Although the interface specification contained herein is generic, it assumed that 314
implementations will be based on Web Services. Although interfaces based on 315
programming languages such as Java and C# could be derived from this 316
specification, such interfaces are considered out of scope and are not addressed 317
here. 318

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 10 of 51

2.1.2 Database Management Systems 319

In general practice CMDBs are implemented using commercially available database 320
technology. Although this is a specification about how one or more CMDBs federate 321
data using a standard mechanism, no assumptions are made about how that 322
federated data is stored or persisted. What is important are the interfaces; their 323
behavior and the data types they convey. Database technology is clearly a needed 324
component in the implementation of this specification, but its use is considered to be 325
a hidden detail of such implementations. 326

2.2 Standards Basis 327

This specification builds upon the work of other standards in the area Web Services. 328

The specific standards that this specification is based on are as follows. 329

 330

• HTTP/1.1 331

• XML Schema Part 1: Structures 332

• SOAP 1.1 333

• WSDL 1.1 334

• WS-I Basic Profile 1.1 335

 336

 337

3. Architecture 338

The architecture defines four roles, which implement or use two services. In Figure 3 339
the roles are (green) shaded shapes with dotted edges and the services are (yellow) 340
shaded rounded boxes with solid edges. 341

MDR MDR

Federating
CMDB

Client Query
Service

Registration
Service

Query
Service

Query
Service

Management
Tools

IT Resources

CMDB may pull data from
MDR via Query Service

MDR may push
data to CMDB via
Registration Service

MDR acquires data
through unspecified
mechanisms

Administrator

Administrator configures
CMDB and MDRs using
product-specific interfaces

 342
Figure 3 – Roles and Services 343

3.1 Roles 344

MDR (Management Data Repository). An MDR contains data about managed 345
resources (e.g., computer systems, application software, and buildings) and/or 346

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 11 of 51

process artifacts (e.g., incident records and request for change forms), and the 347
relationships between them. In this architecture, managed resources and process 348
artifacts are both called ‘items’. The means by which the MDR acquires data is not 349
specified. Examples include direct from instrumented resources or indirectly through 350
management tools. 351

Federating CMDB. A Federating CMDB federates data from MDRs, and may also 352
contain non-federated data. It provides an aggregate view of an item or relationship, 353
potentially using data from multiple MDRs. A Federating CMDB and all the MDRs 354
together comprise a federated CMDB. 355

It is possible for one Federating CMDB to have its data federated by a second 356
Federating CMDB. In this case, the first Federating CMDB would appear to the 357
second Federating CMDB to be an MDR. The second Federating CMDB would not be 358
aware of any federation performed by the first Federating CMDB. 359

Client. A Client is a consumer of management data, either directly from an MDR or 360
an aggregated view from a Federating CMDB. Examples of clients are IT process 361
workflows, management tools, and IT administrators. Clients only read data; there 362
are no provisions for a client to update data through an interface defined in this 363
architecture. 364

Administrator. An Administrator configures MDRs and Federating CMDBs so they 365
can interact with each other. Administration includes selecting and specifying the 366
data that is federated, describing service endpoints, and describing which data are 367
managed through each endpoint. Administration is done using interfaces that are 368
specific to each tool that acts in the MDR and/or Federating CMDB role. 369

 370

3.2 Services Overview 371

The architecture defines two services. There is an implementer of a service and a 372
client (caller) of a service. 373

Query Service. Both MDRs and Federating CMDBs make data available to Clients via 374
a Query service. Queries may select and return items, relationships, and/or graphs 375
containing items and relationships. 376

Registration Service. An MDR can register data that it has available for federation 377
by a Registration service. A Federating CMDB declares the data types that its 378
Registration service supports. An MDR maps its data to the supported types. 379

3.2.1 Federation Modes 380

There are two modes available to federate data. A Federating CMDB must use one or 381
the other mode and MAY use both. 382

Push Mode. In push mode, the MDR initiates the federation. Typically an 383
administrator configures the MDR by selecting to federate some data types that are 384
supported by both the MDR and the registration service. The MDR notifies the 385
Registration service any time this data is added, updated, or deleted. Depending on 386
the extent of the data types, the registered data may be limited to identification data 387
or it may include many other properties that describe the item or relationship state. 388

Pull Mode. In pull mode, the Federating CMDB initiates the federation. Typically, an 389
administrator configures the Federating CMDB by selecting the MDR data types that 390
will be federated. The Federating CMDB queries MDRs for instances of this data. 391
Depending on the implementation, the Federating CMDB may pass through queries 392
to MDRs without maintaining any state, or it may cache some set of MDR data, such 393
as the data used to identify items and relationships. 394

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 12 of 51

3.2.2 Usage Profiles 395

Table 1 lists the service usage profiles for the roles described in section 3.1 that 396
implement or use the services. 397

 398

Table 1 – Service Usage Profiles 399

Query service Registration service

Role Implementation Client Implementation Client

Federating CMDB
– Push Mode

REQUIRED Optional REQUIRED No support

Federating CMDB
– Pull Mode

REQUIRED REQUIRED No support No support

MDR – Push Mode Optional No support No support REQUIRED

MDR – Pull Mode REQUIRED No support No support No support

Client (external) No support REQUIRED No support No support

 400

 401

3.3 Identity Reconciliation 402

Managed resources are often identified in multiple ways, depending on the 403
management perspective. Examples of management perspectives are a change 404
management process and an availability monitoring tool. Understanding how to 405
identify resources, and reconciling the identifiers across multiple perspectives, is an 406
important capability of a Federating CMDB. The following pattern is used: 407

• Each MDR identifies a resource based on one or more identifying properties of 408
the resource. Identifying properties are physical or logical properties that 409
distinguish unique instances of resources. Examples are MAC addresses, host 410
names, and serial numbers. Often, more than one property will be necessary 411
to uniquely distinguish a resource, especially when information is incomplete. 412
In addition, when two or more MDRs contain data on a single resource, 413
individual MDRs may choose or have available different identifying properties, 414
which they may use in their resource identifier for the item or relationship. 415

• Each MDR knows at least one unique and unambiguous identifier for each 416
item or relationship it contains and/or provides access to via the Query 417
service. 418

• A Federating CMDB attempts to reconcile the item and relationship 419
identification information from each MDR, recognizing when they refer to the 420
same item or relationship. 421

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 13 of 51

Federating
CMDB

MDR

MDR

Resource
Identity

ID

ID

ID

ID Local
Naming

Local
Naming

Identity
PropertyIdentity
PropertyIdentifying
Properties

Determined via
identity reconciliation

logic/rules and/or
manual intervention

represents

input to

Identity
Reconciliation
Logic/Rules

Proprietary to each
implementation

Identity
PropertyIdentity

Property

 422
Figure 4 – Identity Reconciliation 423

The Federating CMDB performs this mapping using any combination of automated 424
analysis and manual input, as shown in Figure 4. In a typical implementation the 425
Federating CMDB analyzes the identifying properties to determine the resource 426
identity. As each item or relationship is registered, the service determines if this item 427
or relationship is already registered or is new. The determination of identity is 428
seldom absolute and often must rely on heuristics because different MDRs typically 429
know about different characteristics of an entity and thus establish different sets of 430
identifying properties which characterize the entities they handle. Further, the 431
determination may change as additional information is discovered and MDRs add, 432
subtract, or change identifying properties as systems evolve. 433

 434

3.4 Data Model Overview 435

3.4.1 Managed Data 436

The architecture defines three elements that wrapper properties that are specific to 437
the type of item or relationship. 438

Item. An item represents a managed resource (e.g., computer systems, application 439
software, and buildings) or a process artifact (e.g., incident record and request for 440
change form). With this definition, ‘item’ is a superset of the ‘configuration item’ 441
term defined in ITIL. Each item has at least one ID that is unique within the scope of 442
the MDR that contains it and that serves as a key. Examples of when an item might 443
have multiple IDs include when an item is reconciled across several MDRs and the 444
Federating CMDB knows it by all of the IDs that have been assigned by different 445
MDRs; when two items are thought to be different but are later reconciled to the 446
same item; when an ID changes for any other reason. Once an ID has been assigned 447
to an item, it can be used in any situation requiring an ID, and will never refer to 448
anything except the original item. 449

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 14 of 51

Given that each MDR has a unique ID within the group of federated repositories, and 450
that each MDR assigns a unique ID within its own scope, the combination of the MDR 451
ID and the MDR-assigned item ID results in an instance ID that is unique within the 452
group of federated repositories. This instance ID serves two purposes: 453

• It is an unambiguous identifier for the representation of the item held by the 454
MDR that assigned the instance ID. 455

• The MDR ID portion of the instance ID identifies the MDR that assigned the 456
instance ID. A client may introspect the instance ID to extract the MDR ID. 457
The client may then use the MDR ID to acquire the query service address for 458
this MDR. For example, the MDR ID might be the key in a registry that 459
contains the service addresses for each MDR. The client may then issue a 460
query to this address to retrieve the representation of the item. 461

When a Federating CMDB federates item data from an MDR, it may respond to 462
queries for the representation of the item. It may reuse the instance ID assigned by 463
the MDR as long as the representation that it returns is the same as the 464
representation that would be returned by the MDR that assigned the instance ID. If 465
the Federating CMDB alters the representation, such as overwriting some property 466
values or associating other records to the same item, it must assign a new instance 467
ID using its own MDR ID. 468

This constraint on reusing IDs is not meant to preclude caching of the MDR data in 469
the Federating CMDB. In particular, it is recognized that because of the distributed 470
configuration of the repositories, and the absence of any requirements that their 471
data are entirely coherent, such as requiring transactional closure across the 472
repositories for any update, at any instant in time a query to the Federating CMDB 473
may return a different representation than the same query to the MDR. 474

Relationship. A relationship represents a connection from a source item to a target 475
item. Examples include software ‘runs on’ operating system, operating system 476
‘installed’ on computer system, incident record ‘affects’ computer system, and 477
service ‘uses’ (another) service. Like an item, each relationship has an ID that is 478
unique within the scope of the MDR that contains it and that serves as a key. And 479
like an item, a reconciled relationship can have more than one such ID. 480

Record. A record contains properties that describe an item or relationship. A record 481
is associated with one item or relationship. A record may contain properties that are 482
useful to identify the item or relationship, or other properties that describe the item 483
or relationship. Several records may be associated to the same item or relationship. 484
Records may differ from other records for various reasons, including types of data 485
(e.g., asset vs. configuration), different sets of properties from different providers, 486
different versions, and expected vs. observed data. A record is similar to a row in a 487
SQL view. It is a projection of properties. The same property may appear in multiple 488
records for the same item or relationship. The record may have no properties, in 489
which case it serves as a marker. Each record has an ID that is unique within the 490
scope of its associated item or relationship ID, and that serves as a key. 491

The data contained in an MDR or Federating CMDB is a graph where the items are 492
nodes and the relationships are links. The graph is not necessarily connected (there 493
may not be a relationship trail from any item to any other item). The query interface 494
described below allows queries to be constructed based on aspects of the graph (e.g. 495
existence of a relationship between two items) and based on properties of the items 496
and relationships (e.g. requirements for a certain value of a given record property or 497
a certain type for the item/relationship). 498

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 15 of 51

 499

Figure 5 –Data & Services Overview 500

 501

 502
 503

3.4.2 Administration Data 504

The architecture defines two elements that describe services. 505

Service Description. A serviceDecription describes an instance of a Query Service 506
or Registration Service. The description includes an ID, descriptive text, the record 507
types it supports and/or requires, and other capabilities that it supports (such as 508
types of query selectors). 509

Administration Information. An administrationInfo element is the anchor for all 510
the service descriptions. The specification does not describe operations for creating, 511
accessing, or altering the descriptions. Each service implementation is expected to 512

Note: The specification, including this figure, indicate that the source
and target of a relationship must be an item. It is expected that
the specification will be extended to also permit the source
and/or target of a relationship to be another relationship.

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 16 of 51

use appropriate available mechanisms, such as creating the definitions in a service 513
registry. 514

 515
 516

4. Query Service 517

4.1 Overview 518

The Query service can be provided by MDRs and Federating CMDBs. It provides a 519
way to access the items and relationships that the provider (MDR or Federating 520
CMDB) has access to, whether this provider actually holds the data or federates the 521
source of the data. The Query service contains a single operation, GraphQuery, that 522
can be used for anything from a simple instance query to a much more complex 523
topological query. 524

A GraphQuery request describes the items and relationships of interest in the form of 525
a graph. Constraints can be applied to the nodes (items) and edges (relationships) in 526
that graph to further refine them. The GraphQuery response contains the items and 527
relationships that, through their combination, compose a graph that satisfies the 528
constraints of the graph in the query. 529

The following example and normative definition of the interface provide a more 530
complete description of the request and response messages for the GraphQuery 531
operation. 532

4.2 Example 533

Let’s assume that an MDR contains two types of items (people and computers) and 534
one type or relationships (a person “uses” a computer). Here is a simple query 535
request to select all computers that are used by a person located in California: 536

 537
(01) <query> 538

 539
(02) <itemTemplate id="user"> 540
(03) <propertyValueSelector namespace="http://example.com/people" 541

 localName="state"> 542
(04) <equal>CA</equal> 543
(05) </propertyValueSelector> 544
(06) <recordTypeSelector namespace="http://example.com/people" 545

 localName="person"/> 546
(07) </itemTemplate> 547

 548
(08) <itemTemplate id="computer"> 549
(09) <recordTypeSelector namespace="http://example.com/computer" 550

 localName="computer"/> 551
(10) </itemTemplate> 552

 553

Note: A normative definition of the XML schema for serviceDescription
and administrationInfo will be added to the specification.

Note: Administrative operations to retrieve instances of
serviceDescription and/or administrationInfo may be added to
the specification.

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 17 of 51

(11) <relationshipTemplate id="usage"> 554
(12) <recordTypeSelector namespace="http://example.com/computer" 555

 localName="uses"/> 556
(13) <source ref="user"/> 557
(14) <target ref="computer"/> 558
(15) </relationshipTemplate> 559

 560
(16) </query> 561

 562

The detailed syntax and semantics of the XML elements are described in details in 563
later sections, but here is in summary what items and relationships get selected by 564
this query: 565

The <itemTemplate> called “user” (line 02) selects all items that: 566

• have a record with a property called “state” (in the 567
http://example.com/people namespace) for which the value is “CA”, 568

• have a record named “person” (defined in the namespace 569
“http://example.com/people”), and 570

• are the source of a relationship that is selected by the 571
<relationshipTemplate> called “usage” (line 11) 572

The <itemTemplate> called “computer” (line 08) selects all items that: 573

• have a record named “computer” (defined in the namespace 574
“http://example.com/computer”), and 575

• are the target of a relationship that is selected by the <relationshipTemplate> 576
called “usage” (line 11) 577

The <relationshipTemplate> called “usage” (line 11) selects all relationships that: 578

• have a record named “uses” (defined in the namespace 579
“http://example.com/computer”), 580

• have a source that is selected by the <itemTemplate> called “user” (line 02), 581
and 582

• have a target that is selected by the <itemTemplate> called “computer” (line 583
08). 584

As a result, if a user item does not “use” a computer, it will not be part of the 585
response, whether the user is located in California or not. 586

Here is a graphical representation of the query: 587

 588

“user” itemTemplate
-State=“CA”
-Type=“person”

“computer” itemTemplate
-Type=“computer”

“usage”
relationshipTemplate

 589
 590

If a user located in California happens to “use” two computers, this is represented in 591
the response by three items (one for the user and one for each computer) and two 592
relationships (going from the user to each of his/her computers). Later section will 593
describe the syntax and semantics of the response message in more details. Here is 594
a graphical representation of this response: 595

 596

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 18 of 51

“user” item
<person>

<name>Joe</name>
<state>CA</state>
<city>Palo Alto</city>

</person>

“computer” item #1
<computer>

<manuf>HP</manuf>
<serial>123456789</serial>

</computer>

“usage”
relationship #1

“computer” item #2
<computer>

<manuf>Dell</manuf>
<serial>987654321</serial>

</computer>

“usage”
relationship #2

 597
In effect, the response contains two graphs, each made of a user, a computer and 598
the relationship between the two, that both meet the constraints of the query graph. 599
In this example, the two graphs in the response happen to overlap (they share the 600
same “user”) but in another example they could be disjoint (e.g. if the second 601
computer was instead “used” by another user also located in California). 602

If the <relationshipTemplate> element (line 11) was not part of the query, the 603
semantics of the query would be very different. The query would return all the items 604
of type “person” that are in California and all the items of type “computer”. It would 605
not return the relationships between users and computers. The existence (or not) of 606
these relationships would have no bearing on what items get selected. 607

4.3 Normative definition 608

4.3.1 GraphQuery 609

As illustrated in the previous example, a GraphQuery request consists of a <query> 610
element containing <itemTemplate> and <relationshipTemplate> elements. 611
Templates (of either kind) can contain selectors. The same selector types are used 612
(with the same meaning) inside <itemTemplate> and <relationshipTemplate> 613
elements. In addition to selectors, <relationshipTemplate> elements also contain a 614
<source> and a <target> element. These elements each point (using the 615
xs:ID/xs:IDREF mechanism) to an <itemTemplate>. 616

Here is the pseudo-schema of the payload of a GraphQuery request: 617
(01) <query> 618
(02) <itemTemplate id="xs:ID" dropDirective="xs:boolean"?> 619
(03) <instanceIdSelector>...</instanceIdSelector> ? 620
(04) <propertyValueSelector ...>...</propertyValueSelector> * 621
(05) <xpath1Selector>...</xpath1Selector> * 622
(06) <recordTypeSelector ... /> * 623
(07) <propertySubsetDirective> 624
(08) <selectedProperty namespace="xs:anyURI" 625
(09) localName="xs:NCName" /> * 626
(10) </propertySubsetDirective> ? 627
(11) ... 628
(12) </itemTemplate> * 629
(13) <relationshipTemplate id="xs:ID" dropDirective="xs:boolean"?> 630
(14) <instanceIdSelector>...</instanceIdSelector> ? 631
(15) <propertyValueSelector>...</propertyValueSelector> * 632

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 19 of 51

(16) <xpath1Selector>...</xpath1Selector> * 633
(17) <recordTypeSelector>...</recordTypeSelector> * 634
(18) <propertySubsetDirective> 635
(19) <selectedProperty namespace="xs:anyURI" localName="xs:NCName"/> * 636
(20) </propertySubsetDirective> ? 637
(21) 638
(22) <source ref="xs:IDREF" minimum="xs:int"? maximum="xs:int"?/> 639
(23) <target ref="xs:IDREF" minimum="xs:int"? maximum="xs:int"?/> 640
(24) ... 641
(25) </relationshipTemplate> * 642
(26) </query> 643

The exact syntax and semantics of each selector element (<instanceIdSelector>, 644
<propertyValueSelector>, <xpath1Selector> and <recordTypeSelector>) will be 645
described in a later section. For now suffice to say that the evaluation of a selector 646
on an item or relationship returns a Boolean. If the value of the Boolean is “true” 647
then the item or relationship is deemed to meet the constraint defined by the 648
selector. 649

The value of the @ref attributes of the <source> and <target> elements must each 650
correspond to the value of the id attribute of an <itemTemplate> element in the 651
query. They indicate which <itemTemplate> elements represent the items that 652
should play the role of source and target, respectively, for the relationships selected 653
by this <relationshipTemplate>. 654

The optional @minimum and @maximum on <source> and <target> are used to 655
specify minimum and maximum cardinality. For example, only finding servlet 656
containers in which at least 10 servlets but not more than 20 are deployed. The 657
precise usage for these attributes is described below. 658

An item is selected by an <itemTemplate> if and only if: 659

• the item meets all the constraints defined by all the selectors in the 660
<itemTemplate> (in effect, there is an implicit AND joining the selectors), 661

• for every <relationshipTemplate> that points to the <itemTemplate> as its 662
source, there is a relationship selected by this <relationshipTemplate> that 663
has the item as its source, and 664

• for every <relationshipTemplate> that points to the <itemTemplate> as its 665
target, there is a relationship selected by this <relationshipTemplate> that 666
has the item as its target. 667

Relationships cannot be selected by an <itemTemplate>. 668

An item can be selected at most once per <itemTemplate>. But the same item can 669
be selected by more than one <itemTemplate> inside a given query. When this is 670
the case, the item appears in the response once for each <itemTemplate> that 671
selects it (and each of these occurrences follows the representation directives, i.e. 672
the “dropped” and “property Subset” directives described below, in the 673
corresponding <itemTemplate>) 674

A relationship is selected by a <relationshipTemplate> if and only if: 675

• the relationship meets all the constraints defined by all the selectors in the 676
<relationshipTemplate> (in effect, there is an implicit AND joining the 677
selectors), 678

• the source item of the relationship is selected by the <itemTemplate> 679
referenced as <source> by the <relationshipTemplate>, and 680

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 20 of 51

• the target item of the relationship is selected by the <itemTemplate> 681
referenced as <target> by the <relationshipTemplate>, and 682

• for each of the “minimum” or “maximum” attributes that appear on either the 683
<source> or <target> element in the <relationshipTemplate>, the 684
corresponding cardinality condition below is met (if the attribute is not 685
present then no cardinality condition applies, which is equivalent to saying 686
that “minimum” defaults to zero and “maximum” defaults to “infinite”): 687

o if n is the value of <source>/@minimum, there are at least n 688
relationships (including the current one) selected by the 689
<relationshipTemplate> that share the same source item, 690

o if n is the value of <source>/@maximum, there are at most n 691
relationships (including the current one) selected by the 692
<relationshipTemplate> that share the same source item, 693

o if n is the value of <target>/@minimum, there are at least n 694
relationships (including the current one) selected by the 695
<relationshipTemplate> that share the same target item, 696

o if n is the value of <target>/@maximum, there are at most n 697
relationships (including the current one) selected by the 698
<relationshipTemplate> that share the same target item. 699

Items cannot be selected by a <relationshipTemplate>. 700

The optional dropDirective attribute and <propertySubsetDirective> element do not 701
influence which items and relationships get selected. They only affect how the items 702
and relationships are represented in the response message. See the “Definition of 703
directives” section below for a description of their effect. 704

4.3.1.1 Definition of selectors 705

Selectors and directives are defined identically whether they are contained inside of 706
an <itemTemplate> or a <relationshipTemplate> element. In this section and the 707
following one, we use the term “instance” to mean either an item or a relationship. 708

 709

<instanceIdSelector> 710

The <instanceIdSelector> element is used to point to a specific instance by its Id. 711
The pseudo-schema of this selector is: 712

(01) <instanceIdSelector> 713
(02) <mdrId>xs:anyURI</mdrId> 714
(03) <localId>xs:anyURI</localId> 715
(04) </instanceIdSelector> 716

There can be at most one <instanceIdSelector> in an <itemTemplate> or a 717
<relationshipTemplate> element. 718

An instance Id is composed of a pair of URIs. The first URI, <mdrId>, is the ID of the 719
MDR that assigned this instance Id to the instance. The second URI, <localId>, is the 720
Id that uniquely identifies the instance within the MDR. The combination of these two 721
URIs identifies the instance in a globally unique way. 722

There is no expectation that these two URIs are able to be de-referenced. 723

More than one instance Id may be attached to one instance. For example, a 724
Federating CMDB may know, for a given reconciled instance, instance Ids provided 725
by each of the MDR that have content about the instance, plus possibly an additional 726
instance Id for the instance assigned by the Federating CMDB itself. 727

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 21 of 51

The selector returns a positive result if one of the known instance Ids for the 728
instance corresponds to the requested value, i.e. if both the <mdrId> and the 729
<localId> match (using string comparison). 730

 731

<propertyValueSelector> 732

Each instance is associated with zero or more records. These records contain 733
properties whose values are accessible through an XML representation of the 734
instance. The <propertyValueSelector> element can only be used on properties that 735
have a type that is a subtype of the xs:anySimpleType type. While the type must be 736
known, it is not required that an XML schema definition of the property be available. 737

Instances may be selected based on property values. The <propertyValueSelector> 738
element is one way to do so for properties that are defined as a simple type (as 739
defined by XML schema). It is not applicable to properties that are defined as a 740
complex type. 741

The pseudo-schema of this selector is: 742
(01) <propertyValueSelector namespace="xs:anyURI" 743
(02) localName="xs:NCName" 744
(03) matchAny="xs:boolean"> 745
(04) <equal caseSensitive="xs:boolean"? negate="xs:boolean"? > 746
(05) xs:anySimpleType 747
(06) </equal> * 748
(07) <less negate="xs:boolean"? >xs:anySimpleType</less> ? 749
(08) <lessOrEqual negate="xs:boolean"? >xs:anySimpleType</lessOrEqual> ? 750
(09) <greater negate="xs:boolean"? >xs:anySimpleType</greater> ? 751
(10) <greaterOrEqual negate="xs:boolean"?> 752
(11) xs:anySimpleType 753
(12) </greaterOrEqual> ? 754
(13) <contains caseSensitive="xs:boolean"? negate="xs:boolean"? > 755
(14) xs:string 756
(15) </stringContains> * 757
(16) <like caseSensitive="xs:boolean"? negate="xs:boolean"? > 758
(17) xs:string 759
(18) </like> * 760
(19) <isNull negate="xs:boolean"? /> ? 761
(20) ... 762
(21) </propertyValueSelector> 763

This selector can appear any number of times in an <itemTemplate> or a 764
<relationshipTemplate>. Its namespace and localName attributes define the QName 765
of the property being tested. The children elements of <propertyValueSelector> are 766
called operators. The matchAny attribute on <propertyValueSelector> defines 767
whether the operators inside that element are logically AND-ed or OR-ed. The default 768
value is false. If the value of the matchAny attribute is false, the selector returns a 769
positive result for an instance if the instance has a record that contains the property 770
identified by the QName and if the value of that property satisfies all the operators in 771
the selector. If the value of the matchAny attribute is true, the selector returns a 772
positive result for an instance if the instance has a record that contains the property 773
identified by the QName and if the value of that property satisfies at least one of the 774
operators in the selector. 775

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 22 of 51

A <propertyValueSelector> is considered to be positive (true) if the operators return 776
a positive (true) result for one or more records associated with the instance. 777

The operators are largely defined in terms of XPath 2.0 [XPath 2.0] comparison 778
operators. This does not require that an XPath 2.0 implementation be used but only 779
that the operators be evaluated in a way that is consistent with the XPath 2.0 780
definitions, as described below. 781

• equal - this operator is defined in terms of the XPath 2.0 value comparison 782
operators “eq”. To evaluate, the left hand operand is the property value from 783
the record and the right hand operand is the value of the selector from the 784
query. The type of the value of the selector must be interpreted to be of the 785
same type as the value from the property in the record. This operator is valid 786
for properties of any simple type. A list of comparison behaviors is available in 787
the XPath 2.0 Appendix B.2 Operator Mappings. 788

• less, lessOrEqual, greater, and greaterOrEqual - these operators are 789
defined in terms of the XPath 2.0 value comparison operators of “lt”, “le”, 790
“gt”, and “ge”, respectively. To evaluate, the left hand operand is the 791
property value from the record and the right hand operand is the value of the 792
selector from the query. The type of the value of the selector must be 793
interpreted to be of the same type as the value from the property in the 794
record. This operator is only valid for properties that are numerals, dates and 795
strings. A list of comparison behaviors is available in the XPath 2.0 Appendix 796
B.2 Operator Mappings. For example, if a property is of type date, the 797
operator <less>2000-01-01T00:00:00</less> returns true if the property 798
value is a date before the year 2000. If the property value was a string then 799
“2000-01-01T00:00:00” would be interpreted as a string and compared with 800
the property value using string comparison. 801

• contains - this operator is mapped to the XPath 2.0 function fn:contains(). It 802
is only valid for properties of type string and used to test if the property value 803
contains the specified string as a substring. The result of the contains 804
operator is as if the fn:contains() function was executed with the first 805
parameter being the property value and the second parameter being the 806
string specified. 807

• like - this operator is similar in functionality to the SQL LIKE clause. The 808
operator works like the equal operator with the inclusion of two special 809
characters: the underscore (“_”) acts as a wild card for any single character 810
and the percent sign (“%”) acts as a wild card for zero or more characters. To 811
escape the wild cards, the backslash(“\”) can be used. For example, 812
<like>Joe_Smith%</like> tests whether the property value starts with the 813
string “Joe_Smith” and would match values such as “Joe_Smith”, 814
“Joe_Smith123” and “Joe_Smith_JR”. It would not match “JoeHSmith123”. A 815
double backslash (“\\”) represents the single backslash string (“\”). 816

• isNull - this operator tests whether the element corresponding to the 817
property is "nilled". It is equivalent to the result of applying the XPath 2.0 818
"fn:nilled" function on the element corresponding to the property. 819

 820

Additional attributes defined: 821

• caseSensitive - equal, contains, and like operators have an optional 822
attribute, caseSensitive, with a default value of true. If the property value of 823
the record is an instance of xs:string and the attribute caseSensitive is false, 824
the string comparison is case-insensitive. More precisely, the result of the 825
comparison is as if the XPath 2.0 function fn:upper-case() was called on both 826

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 23 of 51

the property value and the string value before comparison. If the property 827
value of the record is not an instance of a xs:string, the caseSensitive 828
attribute has no impact on the comparison. 829

• negate - all operators have an optional attribute, negate, with a default value 830
of false. When the negate attribute is true, the result of the comparison is 831
negated. 832

As a summary, the following table shows what operators are supported on the 833
various XSD built-in types. Unless explicitly specified, the caseSensitive attribute is 834
not supported. 835

 836

Built-in Datatypes equal isNull less,

lessOrEqual,
greater,
greaterOrEqual

contains like

"String-related types"
(String, anyURI and
types derived from
string)

Yes, including
optional
caseSensitive
attribute

Yes Yes Yes, including
optional
caseSensitive
attribute

Yes, including
optional
caseSensitive
attribute

”Time-related and
numeric types”
(duration, dateTime,
time, date, gYearMonth,
gYear, gMonthDay,
gDay, gMonth, float,
double, decimals and all
types derived from
decimals)

Yes Yes Yes No No

”Others” (boolean,
QName, NOTATION,
base64Binary, and
hexBinary)

Yes Yes No No No

 837

Multiple instances of a property: 838

If there is more than one property using the same QName, the comparison only has 839
to hold true for one of the property values. For example, if there is a computer with 840
three IP addresses: 841

(01) <comp:ComputerConfig xmlns:comp="http://example.com/computers"> 842
(02) ... 843
(03) <comp:ip>1.2.3.4</comp:ip> 844
(04) <comp:ip>1.2.3.5</comp:ip> 845
(05) <comp:ip>1.2.3.6</comp:ip> 846
(06) ... 847
(07) </comp:ComputerConfig> 848

The following property selector would return a positive result: 849
(01) <propertyValueSelector namespace="http://example.com/computers" 850
(02) localName="ip"> 851
(03) <equal>1.2.3.5</equal> 852
(04) </propertyValueSelector> 853

When the negate attribute is used on a list of properties, the negation is taken after 854
the operator executes. When negating the equal operator, a positive result is 855

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 24 of 51

returned when none of the properties are equal to the given value. For example, on 856
the same computer with three IP addresses: 857

(01) <propertyValueSelector namespace="http://example.com/computers" 858
(02) localName="ip"> 859
(03) <equal negate="true">1.2.3.5</equal> 860
(04) </propertyValueSelector> 861

The property selector would not select the item above because the equality 862
comparison matches one IP address in the list. 863

Similary, <less negate=”true”>12</less> is equivalent to 864
<greaterOrEqual>12</greaterOrEqual> if there is only one instance of the property 865
being tested. But if there is more than one instance of the property, then the first 866
operator is true if all of the instances have a value of more than 12, while the second 867
one is true if at least one of the instances has a value of more than 12. 868

A simple example of using <propertyValueSelector>: 869

In the following example, “Manufacturer” is a property defined in the 870
“http://example.com/Computer” namespace. The selector is testing whether the 871
instance has a record containing this property and where the value of the property is 872
“HP”. 873

(01) <propertyValueSelector namespace="http://example.com/Computer" 874
(02) localName="Manufacturer" > 875
(03) <equal>HP</equal> 876
(04) </propertyValueSelector> 877

A more complex example: 878

The <itemTemplate> below selects any item that has a CPUCount greater than or 879
equal to 2, for which the OSName property contains “Linux” (with that exact mix of 880
upper and lower case) and for which the OSName property also contains either 881
“ubuntu” or “debian” (irrespective of case). 882

(01) <itemTemplate id=”linuxMachine”> 883
(02) <propertyValueSelector namespace="http://example.com/computers" 884
(03) localName="CPUCount"> 885
(04) <greaterOrEqual>2</greaterOrEqual> 886
(05) </propertyValueSelector> 887
(06) <propertyValueSelector namespace="http://example.com/computers" 888
(07) localName="OSName"> 889
(08) <contains>Linux</contains> 890
(09) </propertyValueSelector> 891
(10) <propertyValueSelector namespace="http://example.com/computers" 892
(11) localName="OSName" 893
(12) matchAny="true"> 894
(13) <contains caseSensitive="false">ubuntu</contains> 895
(14) <contains caseSensitive="false">debian</contains> 896
(15) </propertyValueSelector> 897
(16) </itemTemplate> 898

 899

<xpath1Selector> 900

This selector is an alternate mechanism to filter instances based on the content of 901
their records. The pseudo-schema of this selector is: 902

(01) <xpath1Selector> 903

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 25 of 51

(02) <prefixMapping prefix="xs:NCName" value="xs:anyURI"/> * 904
(03) <xpathExpression>xs:string</xpathExpression> 905
(04) </xpath1Selector> 906

This selector can appear any number of times inside an <itemTemplate> or a 907
<relationshipTemplate>. 908

The <xpathExpression> element contains an XPath 1.0 predicate (the part that goes 909
inside [] in XPath 1.0). When testing an instance for this selector, the result is 910
positive if the instance contains a record such that the evaluation of the predicate 911
with the following context returns true: 912

• Context Node: the first child element of the record element 913

• Context Position: 1 914

• Context Size: 1 915

• Variable Binding: none 916

• Function Libraries: core function library 917

• Namespace Declarations: each <prefixMapping> child element of the 918
<xpath1Selector> element defines a namespace declaration for the XPath 919
evaluation. The prefix for this declaration is provided by the 920
<prefixMapping>/@prefix attribute and the namespace URI is provided by the 921
<prefixMapping>/@value attribute. 922

In the following example, “Name” is a property defined in the 923
“http://example.com/people” namespace. The selector is testing whether the 924
instance has a record containing this property and where the value of the property is 925
“Pete the Lab Tech”. 926

 927
(01) <xpath1Selector> 928
(02) <prefixMapping prefix="hr" value="http://example.com/people"/> 929
(03) <xpathExpression>hr:name="Pete The Lab Tech"</xpathExpression> 930
(04) </xpath1Selector> 931

 932

<recordTypeSelector> 933

This selector is used to test whether an instance has a record of a given type. The 934
pseudo-schema of this selector is: 935

(01) <recordTypeSelector namespace="xs:anyURI" localName="xs:NCName"/> 936

One way for an instance to be selected when tested for this selector is if the instance 937
has a record of that type. More specifically, if the instance contains a record element 938
that has, as first child element, an element in the namespace corresponding to the 939
value of the <recordTypeSelector>/@namespace attribute and where the local name 940
of that first child element is the value of the <recordTypeSelector>/@localName 941
attribute. But this is not the only way for an item to match this selector. A match 942
simply requires that the instance has the characteristics of the requested type. That 943
could be achieved by having an element that is an extension of that QName as a 944
record (for example, comp:Linux might be defined as an extension of 945
comp:OperatingSystem). It could also be achieved by having several records of the 946
instance combined give the instance the characteristics of the requested type. 947

 948

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 26 of 51

4.3.1.2 Definition of directives 949

Directives in the query do not influence what instances get selected, but they 950
influence if and how the selected instances get returned in the response. Instances 951
that get selected but not returned play an important role because they influence 952
what other instances get selected. For example, a user may want to retrieve all 953
servlet engines that have at least 30 servlets deployed, but not want to actually 954
retrieve the servlets. The dropDirective attribute can be used to that effect, as 955
described below. 956

 957

dropDirective 958

When the dropDirective attribute is present and set to “true” on a template, the 959
instances selected by this template do not get returned in the response. They are 960
only used to further filter instances that are selected by other templates. If the 961
attribute is not present or if its value is false, the instances get returned. 962

For example, the following simplified query will selected all the servlet engines that 963
have at least 30 servlets deployed, as well as the servlets and the deployment 964
relationships. But it will only return the servlet engines, not the servlets or the 965
“deployedIn” relationships. 966

 967
(01) <query> 968
(02) <itemTemplate id="servletEngine">...</itemTemplate> 969
(03) <itemTemplate id="servlet" 970
(04) dropDirective="true">...</itemTemplate> 971
(05) <relationshipTemplate id="deployedIn" dropDirective="true"> 972
(06) ... 973
(07) <source ref="servlet" minimum="30"/> 974
(08) <target ref="servletEngine"/> 975
(09) </relationshipTemplate> 976
(10) </query> 977

 978

<propertySubsetDirective> 979

If a template contains a <propertySubsetDirective> element, the instances that are 980
selected by this template get returned (unless the template is also marked with 981
dropDirective=”true”) but the records for the instance are pared down. More 982
specifically, only the properties that are listed (via their namespace and local name) 983
inside the <propertySubsetDirective> element get returned. 984

A <propertySubsetDirective> with no child element means that the selected 985
instances still get returned, but without any <record> elements. This is different 986
from using dropDirective, with which the instance doesn’t appear at all in the 987
response. 988

In the following example, only the “name” and “telephone” properties in the 989
http://example.com/models/people namespace get returned for the items that 990
match the “user” <itemTemplate>. 991

 992
(01) <query> 993
(02) <itemTemplate id="servletEngine"> 994
(03) ... 995
(04) <propertySubsetDirective> 996

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 27 of 51

(05) <selectedProperty namespace="http://example.com/models/people" 997
(06) localName="name"/> 998
(07) <selectedProperty namespace="http://example.com/models/people" 999
(08) localName="telephone"/> 1000
(09) </propertySubsetDirective> 1001
(10) </itemTemplate> 1002
(11) </query> 1003

 1004

4.3.2 GraphQuery Response 1005

The pseudo-schema for the query response message is: 1006
(01) <queryResult> 1007
(02) <nodes templateId="xs:ID"> 1008
(03) <item> 1009
(04) <record recordId="xs:anyURI">xs:any</record> * 1010
(05) <instanceId> 1011
(06) <mdrId>xs:anyURI</mdrId> 1012
(07) <localId>xs:anyURI</localId> 1013
(08) </instanceId> + 1014
(09) <additionalRecordType namespace="xs:anyURI" 1015
(10) localName="xs:NCName"/> * 1016
(11) </item> + 1017
(12) </nodes> * 1018
(13) <edges templateId="xs:ID"> 1019
(14) <relationship> 1020
(15) <sourceItem> 1021
(16) <mdrId>xs:anyURI</mdrId> 1022
(17) <localId>xs:anyURI</localId> 1023
(18) </sourceItem> 1024
(19) <targetItem> 1025
(20) <mdrId>xs:anyURI</mdrId> 1026
(21) <localId>xs:anyURI</localId> 1027
(22) </targetItem> 1028
(23) <record recordId="xs:anyURI">xs:any</record> * 1029
(24) <instanceId> 1030
(25) <mdrId>xs:anyURI</mdrId> 1031
(26) <localId>xs:anyURI</localId> 1032
(27) </instanceId> + 1033
(28) <additionalRecordType namespace="xs:anyURI" 1034
(29) localName="xs:NCName"/> * 1035
(30) </relationship> + 1036
(31) </edges> * 1037
(32) </queryResult> 1038

Each time an item matches an <itemTemplate>, an <item> element appears inside 1039
a <nodes> element in the <queryResult>. The templateId attribute of this element 1040
contains the same value as the id attribute of the <itemTemplate> in the original 1041
request. If the item is selected by more than one <itemTemplate>, the <item> will 1042
be contained in the <nodes> for each <itemTemplate> matched by the item (each 1043
one with the appropriate value for its templateId attribute). 1044

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 28 of 51

Similarly, each time a relationship matches a <relationshipTemplate>, a 1045
<relationship> element appears inside an <edges> element in the <queryResult>. 1046
The templateId attribute of this element contains the same value as the id attribute 1047
of the <relationshipTemplate> in the original request. If the relationship is selected 1048
by more than one <relationshipTemplate>, the <relationship> will be contained in 1049
the <edges> for each <relationshipTemplate> matched by the relationship (each 1050
one with the appropriate value for its templateId attribute). 1051

If no item is part of the response, there are no <nodes> elements. If no relationship 1052
is part of the response, there are no <edges> elements. 1053

Items and relationships can contain any number of records. Each is represented by a 1054
<record> element. That element contains a single child element. The children of that 1055
child are the properties associated with the record. 1056

Items and relationship MUST contain at least one <instanceId> element. The 1057
instance Id, through a combination of two URIs (<mdrId> to represent the MDR that 1058
assigned the ID and <localId> to uniquely represent the item or relationship inside 1059
this MDR), uniquely and globally identifies the item or relationship. There can be 1060
more than one <instanceId> element, in the case where the item or relationship has 1061
been reconciled from a more fragmented view. 1062

The <sourceItem> child element of a relationship identifies the item that is the 1063
source of the relationship. The format of this element matches the format of the 1064
<instanceId> element on the item. 1065

The <targetItem> child element of a relationship identifies the item that is the target 1066
of the relationship. The format of this element matches the format of the 1067
<instanceId> element on the item. 1068

 1069

4.4 GraphQuery Example 1070

In this example, the data model contains item records of type ContactInfo and 1071
ComputerConfig and relationship records of type ‘administers’. ComputerConfigs are 1072
related to ContactInfo through the ‘administers’ relationship to allow for modeling 1073
logic such as, "UserA administers ComputerB." 1074

This example queries the graph of the computers which are administrated by Pete 1075
the Lab Tech and returns all items and relationships involved in this graph. The 1076
response shows two computers administrated by one user. 1077

Here the data we assume the query is executed against. 1078

‘User’ data: 1079

name phone employeeNumber

Lab Tech 111-111-1111 109

Joe the Manager 111-111-4567 12

Frank the CEO 111-111-9999 1

 1080

‘Computer’ data: 1081

name primaryMACAddress CPUType assetTag …

LabMachineA 00A4B49D2F41 AMD Athlon 64 XYZ9753

LabMachineB 00A4B49D2F42 AMD Athlon 64 XYZ9876

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 29 of 51

LabMachineC 00A4B49D2H11 Intel Pentium 4 XYZ9900

LabMachineD 00A4B49D2H53 Intel Pentium 4 XYZ9912

 1082

‘Administers’ data: 1083

‘User’ name ‘Computer’ name adminSupportHours

Pete the Lab Tech LabMachineA 24/7

Pete the Lab Tech LabMachineB business hours only

Joe the Manager LabMachineD 24/7

 1084

Example "GraphQuery" involving a relationship traversal 1085
(01) <query> 1086
(02) <itemTemplate id="user"> 1087
(03) <propertyValueSelector namespace="http://example.com/people" 1088
(04) localName="name"> 1089
(05) <equal>Pete the Lab Tech</equal> 1090
(06) </propertyValueSelector> 1091
(07) <recordTypeSelector namespace="http://example.com/people" 1092
(08) localName="ContactInfo"/> 1093
(09) </itemTemplate> 1094
(10) <itemTemplate id="computer"> 1095
(11) <recordTypeSelector namespace="http://example.com/computerModel" 1096
(12) localName="ComputerConfig"/> 1097
(13) </itemTemplate> 1098
(14) <relationshipTemplate id="administers"> 1099
(15) <recordTypeSelector namespace="http://example.com/computerModel" 1100
(16) localName="administers"/> 1101
(17) <source ref="user"/> 1102
(18) <target ref="computer"/> 1103
(19) </relationshipTemplate> 1104
(20) </query> 1105

Example "GraphQuery" response 1106
(01) <queryResult> 1107
(02) <nodes templateId="user"> 1108
(03) <item> 1109
(04) <record xmlns:hr="http://example.com/people" 1110
(05) recordId="http://example.com/33333/Current"> 1111
(06) <hr:ContactInfo> 1112
(07) <hr:name>Pete the Lab Tech</hr:name> 1113
(08) <hr:phone>111-111-1111</hr:phone> 1114
(09) <hr:employeeNumber>33333</hr:employeeNumber> 1115
(10) </hr:ContactInfo> 1116
(11) </record> 1117
(12) <instanceId> 1118
(13) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1119
(14) <localId>http://example.com/PeteTheLabTech</localId> 1120

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 30 of 51

(15) </instanceId> 1121
(16) </item> 1122
(17) </nodes> 1123
(18) <nodes templateId="computer"> 1124
(19) <item> 1125
(20) <record xmlns:comp="http://example.com/computerModel" 1126
(21) recordId="http://example.com/machines/XYZ9753/scanned"> 1127
(22) <comp:ComputerConfig> 1128
(23) <comp:CPUType>AMD Athlon 64</comp:CPUType> 1129
(24) <comp:assetTag>XYZ9753</comp:assetTag> 1130
(25) <comp:primaryMACAddress> 1131
(26) 00A4B49D2F41 1132
(27) </comp:primaryMACAddress> 1133
(28) <comp:name>LabMachineA</comp:name> 1134
(29) ... 1135
(30) </comp:ComputerConfig> 1136
(31) </record> 1137
(32) <instanceId> 1138
(33) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1139
(34) <localId>http://example.com/machines/XYZ9753</localId> 1140
(35) </instanceId> 1141
(36) </item> 1142
(37) <item> 1143
(38) <record xmlns:comp="http://example.com/computerModel" 1144
(39) recordId="http://example.com/machines/XYZ9876/scanned"> 1145
(40) <comp:ComputerConfig> 1146
(41) <comp:CPUType>AMD Athlon 64</comp:CPUType> 1147
(42) <comp:assetTag>XYZ9876</comp:assetTag> 1148
(43) <comp:primaryMACAddress> 1149
(44) 00A4B49D2F42 1150
(45) </comp:primaryMACAddress> 1151
(46) <comp:name>LabMachineB</comp:name> 1152
(47) ... 1153
(48) </comp:ComputerConfig> 1154
(49) </record> 1155
(50) <instanceId> 1156
(51) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1157
(52) <localId>http://example.com/machines/XYZ9876</localId> 1158
(53) </instanceId> 1159
(54) </item> 1160
(55) </nodes> 1161
(56) <edges templateId="administers"> 1162
(57) <relationship> 1163
(58) <sourceItem> 1164
(59) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1165
(60) <localId>http://example.com/PeteTheLabTech</localId> 1166
(61) </sourceItem> 1167
(62) <targetItem> 1168
(63) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1169

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 31 of 51

(64) <localId>http://example.com/machines/XYZ9876</localId> 1170
(65) </targetItem> 1171
(66) <record xmlns:foo="http://example.com/computerModel" 1172
(67) recordId="http://example.com/administers"> 1173
(68) <foo:administers> 1174
(69) <foo:adminSupportHours> 1175
(70) business hours only 1176
(71) </foo:adminSupportHours> 1177
(72) </foo:administers> 1178
(73) </record> 1179
(74) <instanceId> 1180
(75) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1181
(76) <localId> 1182
(77) http://example.com/administers/PeteTheLabTechToLabMachineB 1183
(78) </localId> 1184
(79) </instanceId> 1185
(80) </relationship> 1186
(81) <relationship> 1187
(82) <sourceItem> 1188
(83) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1189
(84) <localId>http://example.com/PeteTheLabTech</localId> 1190
(85) </sourceItem> 1191
(86) <targetItem> 1192
(87) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1193
(88) <localId>http://example.com/machines/XYZ9753</localId> 1194
(89) </targetItem> 1195
(90) <record xmlns:foo="http://example.com/computerModel" 1196
(91) recordId="http://example.com/administers"> 1197
(92) <foo:administers> 1198
(93) <foo:adminSupportHours>24/7</foo:adminSupportHours> 1199
(94) </foo:administers> 1200
(95) </record> 1201
(96) <instanceId> 1202
(97) <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 1203
(98) <localId> 1204
(99) http://example.com/administers/PeteTheLabLabTechToLabMachineA 1205
(100) </localId> 1206
(101) </instanceId> 1207
(102) </relationship> 1208
(103) </edges> 1209
(104) </queryResult> 1210

 1211

 1212

5. Registration Service 1213

 1214

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 32 of 51

5.1 Overview 1215

The Registration service is used in push mode federation, as described in section 1216
3.2.1 (Federation Modes). 1217

The fundamentals of push mode federation are: 1218

• The MDR invokes the Register operation for items and/or relationships that it 1219
wishes to register. Each item or relationship must be associated with at least 1220
one record type supported by the Registration service. The MDR may register 1221
a subset of the data records it has about any item or relationship. 1222

• The Registration service responds with the registration status for each item or 1223
relationship named in the Register operation. The status is either accepted or 1224
declined. 1225

o If the return status is accepted, the Registration service returns the ID 1226
that identifies the item or relationship within the Registration service. 1227
For accepted data, the MDR is expected to update the Registration 1228
service whenever any of the registered data changes. The specification 1229
does not stipulate how soon after the data changes the update must 1230
occur – this would typically be determined by local policy. 1231

o If the return status is declined, the Registration service is presumably 1232
not maintaining the registration data, and no updates to that data are 1233
accepted. 1234

• The specification does not stipulate what the Registration service should or 1235
must do with the registered data. The semantics of accepted and declined 1236
only have meaning with respect to the obligations of the MDR to update the 1237
Registration service when the data changes. 1238

• The MDR also uses the Register operation to update registered data. An 1239
update may consist of any combination of: 1240

o Changes to existing data, such as a property value change 1241

o Registering an additional record type for this item or relationship 1242

o Deregistering a previously registered record type for this item or 1243
relationship 1244

• The MDR uses the Deregister operation to remove an existing registration for 1245
an item or relationship. For example, if the item or relationship is deleted, the 1246
MDR would typically delete its own records and deregister the previous 1247
registration. Another example when Deregister would be used is if an 1248
administrator decides to stop federating the data about this item or 1249
relationship, even though the item or relationship still exists and the MDR still 1250
maintains data about it. 1251

• The specification does not stipulate what the Registration service should or 1252
must do after a Deregister operation. To cite some non-prescriptive 1253
examples: 1254

o If it has the same data from another MDR that this MDR deregisters, it 1255
might disassociate the data with the deregistering MDR, while 1256
maintaining the existing data. 1257

o If it has data from another MDR about the deregistered item or 1258
relationship, it might delete the deregistered data while maintaining 1259
the data from the other MDR. 1260

o If it has the same data from another MDR, but it considers the 1261
deregistering MDR the authoritative source, it might mark the item or 1262
relationship as deleted. 1263

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 33 of 51

o If the deregistering MDR is the only source of data about the item or 1264
relationship, it might delete all knowledge of the item or relationship. 1265

 1266

5.2 Normative definition 1267

5.2.1 Common data element types 1268

The cmdbf:MdrScopedIdType is used in several places to identify an item or 1269
relationship. It contains two URIs: one that is the ID of the enclosing MDR 1270
(<mdrId>), and one that is a local ID that is unique within the scope of the MDR 1271
(<localId>). The <instanceId> element is of the type of cmdbf:MdrScopedIdType. 1272
The pseudo-schema of the <instanceId> element is: 1273

(01) <instanceId> 1274
(02) <mdrId>xs:anyURI</mdrId> 1275
(03) <localId>xs:anyURI</localId> 1276
(04) </instanceId> 1277

This could be abbreviated in a pseudo schema to be: 1278
(01) <instanceId>cmdbf:MdrScopedIdType</instanceId> 1279

5.2.2 Register 1280

The Register operation is used by an MDR to notify a Registration service that new 1281
items have been discovered or updated and data is now available in the MDR. 1282

The outline for the Register operation is as follows. 1283
(01) <registerRequest> 1284
(02) <mdrId>cmdbf:MdrScopedIdType</mdrId> 1285
(03) <itemList> 1286
(04) <item> 1287
(05) <instanceId>cmdbf:MdrScopedIdType</instanceId> + 1288
(06) <record recordId=”xs:anyURI”> 1289
(07) xs:any 1290
(08) </record> * 1291
(09) <additionalRecordType namespace="xs:anyURI" 1292
(10) localName="xs:NCName"/> * 1293
(11) </item> * 1294
(12) <itemList> ? 1295
(13) <relationshipList> 1296
(14) <relationship> 1297
(15) <instanceId>cmdbf:MdrScopedIdType</instanceId> + 1298
(16) <sourceItem>cmdbf:MdrScopedIdType</sourceItem> 1299
(17) <targetItem>cmdbf:MdrScopedIdType</targetItem> 1300
(18) <record recordId=”xs:anyUri”> 1301
(19) xs:any 1302
(20) </record> * 1303
(21) <additionalRecordType namespace="xs:anyURI" 1304
(22) localName="xs:NCName"/> * 1305
(23) </relationship> * 1306
(24) <relationshipList> ? 1307
(25) </registerRequest> 1308

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 34 of 51

The following describes additional constraints on the outline listed above: 1309

mdrId 1310
The ID of the MDR registering its data. This ID MUST be unique among all of the 1311
MDRs and Federating CMDBs that are federated together. 1312

itemList 1313
The list of items being registered. The list contains any number of <item> 1314
elements, though if it contains zero <item> elements, including <itemList> 1315
serves no purpose. An <item> SHOULD NOT be repeated in the list. 1316

itemList/item 1317
Some or all of the contents of an <item>. 1318

itemList/item/instanceId 1319
The <instanceId> that serves as a unique key for the <item>. There MUST be at 1320
least one for each <item>. The <instanceId> MUST contain the values that 1321
would select the <item> in a query using an <instanceIdSelector>. 1322

itemList/item/record 1323
Each <item> contains any number of <record> elements. The 1324
<record>@recordId attribute represents a unique key with this MDR for this 1325
record. 1326

The <record> element MUST contain exactly one child element. The namespace 1327
and local name of the child element together are the record type. 1328

The <record> type MUST be supported by the registration service. 1329

The MDR may support queries for <record> types that it chooses to not federate 1330
through the registration service. 1331

There MAY be multiple <record> elements. The set of passed elements will be 1332
considered a complete replacement if the registration service already has data 1333
from this MDR about this <item>. For example, if the MDR had previously 1334
registered this <item> with a ComputerConfiguration and ComputerAsset record, 1335
and another registration call is made for the same item with only the 1336
ComputerConfiguration record, then it will be treated as a deletion of the 1337
ComputerAsset record from the federation. 1338

itemList/item/additionalRecordType 1339
An MDR MAY support through its query interface record types for an item that are 1340
not included in the registerRequest message. If so, it MAY indicate the record 1341
types for the item by including one or more <additionalRecordType> elements. 1342
The <additionalRecordType>/@namespace and 1343
<additionalRecordType/@localName attributes together represent the record type. 1344
The MDR SHOULD NOT include a <additionalRecordType> if for the same record 1345
type it includes a <record>. 1346

For example, the MDR may support for queries ComputerIdentification, 1347
ComputerConfiguration, and ComputerAsset records. If the registerRequest 1348
message includes only the ComputerIdentification record contents in the 1349
<record> element, the MDR may provide in <additionalRecordType> elements 1350
the localName and namespace URIs for the ComputerConfiguration and 1351
ComputerAsset records 1352

 relationshipList 1353
The list of relationships being registered. The list contains any number of 1354
<relationship> elements, though if it contains zero <relationship> elements, 1355
including <relationshipList> serves no purpose. 1356

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 35 of 51

relationshipList/relationship 1357
Some or all of the contents of a <relationship>. 1358

relationshipList/relationship/instanceId 1359
The <instanceId> that serves as a unique key for the <relationship>. There 1360
MUST be at least one for each <relationship>. The <instanceId> MUST contain 1361
the values that would select the <relationship> in a query using an 1362
<instanceIdSelector>. 1363

relationshipList/relationship/sourceItem 1364
The <instanceId> that serves as a unique key for the <item> referenced by the 1365
source side of a relationship. There MUST be exactly one for each <relationship>. 1366
The <instanceId> MUST contain one of the values that would select the source 1367
<item> in a query using an <instanceIdSelector>. 1368

relationshipList/relationship/targetItem 1369
The <instanceId> that serves as a unique key for the <item> referenced by the 1370
target side of a relationship. There MUST be exactly one for each <relationship>. 1371
The <instanceId> MUST contain one of the values that would select the source 1372
<item> in a query using an <instanceIdSelector>. 1373

relationshipList/relationship/record 1374
Each <relationship> contains any number of <record> elements. The <record> 1375
type MUST be supported by the registration service. 1376

The MDR may support queries for <record> types that it chooses to not federate 1377
through the registration service. 1378

There MAY be multiple <record> elements. The set of passed elements will be 1379
considered a complete replacement if the registration service already has data 1380
from this MDR about this <relationship>. For example, if the MDR had previously 1381
registered this <relationship> with a RunsOn and DependsOn record, and 1382
another registration call is made for the same item with only the RunsOn record, 1383
then it will be treated as a deletion of the DependsOn record from the federation. 1384

relationshipList/relationship/additionalRecordType 1385
An MDR MAY support through its query interface more record types for a 1386
relationship than it federates through the registration service. If so, it MAY 1387
indicate the record types per relationship instance by including one or more 1388
<additionalRecordType> elements. The <additionalRecordType>/@namespace 1389
and <additionalRecordType/@localName attributes together represent the record 1390
type. The MDR SHOULD NOT include an <additionalRecordType> if for the same 1391
record type it includes a <record>. 1392

 1393

5.2.3 Register Response 1394

The outline for the response to a Register operation is as follows. 1395
(01) <registerResponse> 1396
(02) <instanceResponse> 1397
(03) <instanceId>cmdbf:MdrScopedIdType</instanceId> 1398
(04) <accepted> 1399
(05) <alternateInstanceId> 1400
(06) cmdbf:MdrScopedIdType 1401
(07) </alternateInstanceId> * 1402
(08) </accepted> ? 1403

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 36 of 51

(09) <declined> 1404
(10) <reason>xs:string</reason> * 1405
(11) </declined> ? 1406
(12) <instanceResponse> * 1407
(13) </registerResponse> 1408

The following describes additional constraints on the outline listed above: 1409

instanceResponse 1410
An element that indicates the action taken for one item or relationship in the 1411
Register request. There can be any number of <instanceResponse> elements. 1412
There SHOULD be exactly one <instanceResponse> element per item or 1413
relationship in the Register request. 1414

 instanceResponse/instanceId 1415
One of the <instanceId> elements from the Register request for an item or 1416
relationship. 1417

instanceResponse/accepted 1418
An element that indicates that the item or relationship instance was accepted. 1419

Exactly one of either <accepted> or <declined> MUST be present. 1420

instanceResponse/accepted/alternateInstanceId 1421
Zero or more element that contain other IDs by which the item or relationship is 1422
known, each one of which is acceptable as a key to select the item or relationship 1423
in a query. 1424

instanceResponse/declined 1425
An element that indicates that the item or relationship instance was declined. 1426

Exactly one of either <accepted> or <declined> MUST be present. 1427

instanceResponse/declined/reason 1428
Zero or more strings that contain reason(s) why the registration was declined. 1429

 1430

5.2.4 Deregister 1431

The Deregister operation is used by an MDR to notify the Registration service that 1432
the data that an MDR has about an item or relationship will no longer be registered. 1433

The outline for the Deregister operation is as follows. 1434
(01) <deregisterRequest> 1435
(02) <mdrId>cmdbf:MdrScopedIdType</mdrId> 1436
(03) <itemIdList> 1437
(04) <instanceId>cmdbf:MdrScopedIdType</instanceId> * 1438
(05) <itemIdList> ? 1439
(06) <relationshipIdList> 1440
(07) <instanceId>cmdbf:MdrScopedIdType</instanceId> * 1441
(08) <relationshipIdList> ? 1442
(09) </deregisterRequest> 1443

The following describes additional constraints on the outline listed above: 1444

mdrId 1445
The ID of the MDR deregistering its data. This ID MUST be the ID used when the 1446
data was registered using the Register request. 1447

itemIdList 1448

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 37 of 51

The list of items being deregistered. The list contains any number of 1449
<instanceId> elements, though if it contains zero <instanceId> elements, 1450
including <itemIdList> serves no purpose. 1451

itemIdList/instanceId 1452
The <instanceId> that serves as a key for the <item>. The <instanceId> MUST 1453
be either the <instanceId> from the Register request, or an 1454
<alternateInstanceId> from a <registerResponse>. An <instanceId> SHOULD 1455
NOT be repeated in the list. 1456

relationshipIdList 1457
The list of relationships being deregistered. The list contains any number of 1458
<instanceId> elements, though if it contains zero <instanceId> elements, 1459
including <relationshipList> serves no purpose. 1460

relationshipIdList/instanceId 1461
The <instanceId> that serves as a key for the <relationship>. The <instanceId> 1462
MUST be either the <instanceId> from the Register request, or an 1463
<alternateInstanceId> from a <registerResponse>. An <instanceId> SHOULD 1464
NOT be repeated in the list. 1465

 1466

5.2.5 Deregister Response 1467

The outline for the response to a Deregister operation is as follows. 1468
(01) <deregisterResponse> 1469
(02) <instanceResponse> 1470
(03) <instanceId>cmdbf:MdrScopedIdType</instanceId> 1471
(04) <accepted /> ? 1472
(05) <declined> 1473
(06) <reason>xs:string</reason> * 1474
(07) </declined> ? 1475
(08) <instanceResponse> * 1476
(09) </deregisterResponse> 1477

The following describes additional constraints on the outline listed above: 1478

instanceResponse 1479
An element that indicates the action taken for one item or relationship in the 1480
Deregister request. There can be any number of <instanceResponse> elements. 1481
There SHOULD be exactly one <instanceResponse> element per item or 1482
relationship in the Register request. 1483

instanceResponse/instanceId 1484
The <instanceId> from the Deregister request for an item or relationship. 1485

instanceResponse/accepted 1486
An element that indicates that the item or relationship instance was accepted. 1487

Exactly one of either <accepted> or <declined> MUST be present. 1488

instanceResponse/declined 1489
An element that indicates that the deregistration of the item or relationship 1490
instance was declined. An example of when a Deregister request might be 1491
declined is when the Registration service does not recognize <instanceId> in the 1492
Deregister request. 1493

Exactly one of either <accepted> or <declined> MUST be present. 1494

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 38 of 51

instanceResponse/declined/reason 1495
Zero or more strings that contain reason(s) why the deregistration was declined. 1496

 1497

6. Secure, Reliable, Asynchronous Federation 1498

 1499

This specification does not address a number of features that will predictably be 1500
required in an operational environment. Such features may be considered largely 1501
orthogonal to the operations defined in this specification and will affect no change to 1502
their definition. As a reference we list here some features which have been 1503
considered by the authors, but have been deemed out of scope. For the convenience 1504
of the reader references to other applicable standards are provided. These could be 1505
composed into the Web Services environment of an implementer needing or desiring 1506
the given functionality. 1507

6.1 Security 1508

Security may encompass the areas of the security of the SOAP messages as well as 1509
the authentication of users to a service and the authorization of use of certain 1510
resources. For such functionality the reader is referred to the following standards: 1511

• XML Signature Syntax and Processing 1512

• XML Encryption Syntax and Processing 1513

• WS-Security 1.0 1514

• WS-SecureConversation 1.0 1515

• WS-Basic Security Profile 1.0 1516

6.2 Reliability 1517

Reliability is the ability for a sender of a given SOAP message to know that his or her 1518
message will be delivered to the correct receiver(s) with no loss of data. This is 1519
feature is addressed by the following Web Services standards and specifications: 1520

• WS-ReliableMessaging 1.0, 1.1 1521

• WS-I Reliable Secure Profile (in development) 1522

6.3 Asynchrony 1523

An asynchronous Web Service is one in which a request is made, but a response may 1524
not be given until some later time. During this intervening time the requestor is 1525
freed to do other operations. In this sense we consider asynchronous Web Services 1526
to be of a non-blocking nature. Asynchrony is addressed in the following Web 1527
Services standards and specifications: 1528

• WS-Addressing 1.0 1529

 1530

 1531

7. Acknowledgements 1532

The authors would like to acknowledge the contributions of the CMDB Federation 1533
Business Committee whose members included: 1534

Mike Baskey, IBM 1535

Tom Bishop, BMC Software 1536

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 39 of 51

Josh Cohen, Microsoft 1537

Rob Orr, IBM 1538

Jim Saliba, CA 1539

William Vambenepe, HP 1540

John Van Son, IBM 1541

Yoshinari Abe, Fujitsu 1542

 1543

The authors would also like to acknowledge the CMDB Federation Use Case Working 1544
Group whose members included: 1545

Mark Johnson, IBM 1546

Pam Molennor, CA 1547

Mike Oitzman, (formerly of) BMC Software 1548

Klaus Wurster, HP 1549

 1550

Finally, the authors would like to acknowledge people who have had some 1551
involvement in the discussion of the specification at various times during its 1552
development, including: 1553

Dale Clark, CA 1554

Ken Huang, BMC Software 1555

Stefan Negritoiu, Microsoft 1556

Tim van Ash, HP 1557

Marshall Whatley, HP 1558

Boris Yanishpolsky, Microsoft 1559

 1560

8. References 1561

 1562

[RFC 2119] 1563
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 1564
2119, Harvard University, March 1997. (See http://www.ietf.org/rfc/rfc2119.txt.) 1565

[XPath 2.0] 1566

"XML Path Language (XPath) 2.0", W3C Recommendation, January 2007 (See 1567
http://www.w3.org/TR/xpath20/.) 1568

 1569
**ITIL ® is a Registered Trade Mark, and a Registered Community Trade Mark of the Office 1570
of Government Commerce, and is Registered in the U.S. Patent and Trademark Office. 1571

 1572

 1573

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 40 of 51

Appendix A Detailed UML Class Diagrams 1574

 1575

 1576

 1577

Figure 6 – Overall Class Diagrams 1578

 1579

 1580

 1581

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 41 of 51

Appendix B XML Schema 1582

 1583

A normative copy of the XML Schema [XML Schema Part 1, Part 2] description for 1584
this specification can be retrieved from the following address: 1585

http://schemas.cmdbf.org/0-9-5/cmdbfDataModel.xsd 1586

A non-normative copy of the XML Schema description is listed below for convenience. 1587
<?xml version="1.0" encoding="UTF-8" ?> 1588
 1589
<!-- 1590
Copyright Notice 1591
© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, 1592
and Microsoft. All Rights Reserved. 1593
 1594
Any permissions and license grants would go here ## 1595
 1596
THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO 1597
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT 1598
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 1599
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE 1600
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION 1601
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 1602
TRADEMARKS OR OTHER RIGHTS. 1603
 1604
THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, 1605
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY 1606
USE OR DISTRIBUTION OF THE SPECIFICATION. 1607
 1608
The name and trademarks of the Authors may NOT be used in any manner, 1609
including advertising or publicity pertaining to the Specification or 1610
its contents without specific, written prior permission. Title to 1611
copyright in the Specification will at all times remain with the 1612
Authors. 1613
 1614
No other rights are granted by implication, estoppel or otherwise. 1615
--> 1616
 1617
 1618
<xs:schema targetNamespace="http://schemas.cmdbf.org/0-9-5/datamodel" 1619
 xmlns:xs="http://www.w3.org/2001/XMLSchema" 1620
 elementFormDefault="qualified" blockDefault="#all" 1621
 xmlns:cmdbf="http://schemas.cmdbf.org/0-9-5/datamodel"> 1622
 1623
 <!-- Message Global Element Declarations --> 1624
 1625
 <xs:element name="query" type="cmdbf:QueryType" /> 1626
 <xs:element name="queryResult" type="cmdbf:QueryResultType" /> 1627
<xs:element name="registerRequest" 1628

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 42 of 51

 type="cmdbf:RegisterRequestType" /> 1629
 <xs:element name="registerResponse" 1630
 type="cmdbf:RegistrationServiceResponseType" /> 1631
 <xs:element name="deregisterRequest" 1632
 type="cmdbf:DeregisterRequestType" /> 1633
 <xs:element name="deregisterResponse" 1634
 type="cmdbf:RegistrationServiceResponseType" /> 1635
 1636
 <!-- Query Request Definitions --> 1637
 <xs:complexType name="QueryType"> 1638
 <xs:sequence> 1639
 <xs:element name="itemTemplate" type="cmdbf:ItemTemplateType" 1640
 minOccurs="0" maxOccurs="unbounded" /> 1641
 <xs:element name="relationshipTemplate" 1642
 type="cmdbf:RelationshipTemplateType" minOccurs="0" 1643
 maxOccurs="unbounded" /> 1644
 </xs:sequence> 1645
 </xs:complexType> 1646
 1647
 <xs:complexType name="ItemTemplateType"> 1648
 <xs:sequence> 1649
 <xs:element name="instanceIdSelector" 1650
 type="cmdbf:MdrScopedIdType" 1651
 minOccurs="0" maxOccurs="1" /> 1652
 <xs:element name="propertyValueSelector" 1653
 type="cmdbf:PropertyValueSelectorType" minOccurs="0" 1654
 maxOccurs="unbounded" /> 1655
 <xs:element name="xpath1Selector" type="cmdbf:XPath1SelectorType" 1656
 minOccurs="0" maxOccurs="unbounded" /> 1657
 <xs:element name="recordTypeSelector" type="cmdbf:QNameType" 1658
 minOccurs="0" maxOccurs="unbounded" /> 1659
 <xs:element name="propertySubsetDirective" 1660
 type="cmdbf:PropertySubsetDirectiveType" minOccurs="0" 1661
 maxOccurs="1" /> 1662
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" 1663
 processContents="lax" /> 1664
 </xs:sequence> 1665
 <xs:attribute name="id" type="xs:ID" use="required" /> 1666
 <xs:attribute name="dropDirective" type="xs:boolean" use="optional" 1667
 default="false" /> 1668
 </xs:complexType> 1669
 1670
 <xs:complexType name="RelationshipTemplateType"> 1671
 <xs:sequence> 1672
 <xs:element name="instanceIdSelector" 1673

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 43 of 51

 type="cmdbf:MdrScopedIdType" 1674
 minOccurs="0" maxOccurs="1" /> 1675
 <xs:element name="propertyValueSelector" 1676
 type="cmdbf:PropertyValueSelectorType" minOccurs="0" 1677
 maxOccurs="unbounded" /> 1678
 <xs:element name="xpath1Selector" type="cmdbf:XPath1SelectorType" 1679
 minOccurs="0" maxOccurs="unbounded" /> 1680
 <xs:element name="recordTypeSelector" type="cmdbf:QNameType" 1681
 minOccurs="0" maxOccurs="unbounded" /> 1682
 <xs:element name="propertySubsetDirective" 1683
 type="cmdbf:PropertySubsetDirectiveType" minOccurs="0" 1684
 maxOccurs="1" /> 1685
 <xs:element name="source" type="cmdbf:RelationshipRefType" 1686
 minOccurs="0" maxOccurs="1" /> 1687
 <xs:element name="target" type="cmdbf:RelationshipRefType" 1688
 minOccurs="0" maxOccurs="1" /> 1689
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" 1690
 processContents="lax" /> 1691
 </xs:sequence> 1692
 <xs:attribute name="id" type="xs:ID" use="required" /> 1693
 <xs:attribute name="dropDirective" type="xs:boolean" use="optional" 1694
 default="false" /> 1695
 </xs:complexType> 1696
 1697
 <xs:complexType name="RelationshipRefType"> 1698
 <xs:attribute name="ref" type="xs:IDREF" use="required" /> 1699
 <xs:attribute name="minimum" type="xs:int" /> 1700
 <xs:attribute name="maximum" type="xs:int" /> 1701
 </xs:complexType> 1702
 1703
 <xs:complexType name="PropertyValueSelectorType"> 1704
 <xs:sequence> 1705
 <xs:element name="equal" type="cmdbf:EqualOperatorType" 1706
 minOccurs="0" maxOccurs="unbounded" /> 1707
 <xs:element name="less" type="cmdbf:ComparisonOperatorType" 1708
 minOccurs="0" maxOccurs="1" /> 1709
 <xs:element name="lessOrEqual" 1710
 type="cmdbf:ComparisonOperatorType" 1711
 minOccurs="0" maxOccurs="1" /> 1712
 <xs:element name="greater" type="cmdbf:ComparisonOperatorType" 1713
 minOccurs="0" maxOccurs="1" /> 1714
 <xs:element name="greaterOrEqual" 1715
 type="cmdbf:ComparisonOperatorType" minOccurs="0" 1716
 maxOccurs="1" /> 1717
 <xs:element name="contains" type="cmdbf:StringOperatorType" 1718

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 44 of 51

 minOccurs="0" maxOccurs="unbounded" /> 1719
 <xs:element name="like" type="cmdbf:StringOperatorType" 1720
 minOccurs="0" maxOccurs="unbounded" /> 1721
 <xs:element name="isNull" type="cmdbf:NullOperatorType" 1722
 minOccurs="0" maxOccurs="1" /> 1723
 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" 1724
 processContents="lax" /> 1725
 </xs:sequence> 1726
 <xs:attribute name="namespace" type="xs:anyURI" use="required" /> 1727
 <xs:attribute name="localName" type="xs:NCName" use="required" /> 1728
 <xs:attribute name="matchAny" type="xs:boolean" use="optional" 1729
 default="false" /> 1730
 </xs:complexType> 1731
 1732
 <xs:complexType name="XPath1SelectorType"> 1733
 <xs:sequence> 1734
 <xs:element name="prefixMapping" 1735
 type="cmdbf:PrefixMappingType" /> 1736
 <xs:element name="xpathExpression" type="xs:string" /> 1737
 </xs:sequence> 1738
 </xs:complexType> 1739
 1740
 <xs:complexType name="PrefixMappingType"> 1741
 <xs:attribute name="prefix" type="xs:NCName" use="required" /> 1742
 <xs:attribute name="namespace" type="xs:anyURI" use="required" /> 1743
 </xs:complexType> 1744
 1745
 <xs:complexType name="PropertySubsetDirectiveType"> 1746
 <xs:sequence> 1747
 <xs:element name="selectedProperty" type="cmdbf:QNameType" 1748
 minOccurs="0" maxOccurs="unbounded" /> 1749
 </xs:sequence> 1750
 </xs:complexType> 1751
 1752
 <!-- property value selectors --> 1753
 <xs:complexType name="ComparisonOperatorType"> 1754
 <xs:simpleContent> 1755
 <xs:extension base="xs:anySimpleType"> 1756
 <xs:attribute name="negate" type="xs:boolean" use="optional" 1757
 default="false" /> 1758
 </xs:extension> 1759
 </xs:simpleContent> 1760
 </xs:complexType> 1761
 1762
 <xs:complexType name="StringOperatorType"> 1763

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 45 of 51

 <xs:simpleContent> 1764
 <xs:extension base="xs:string"> 1765
 <xs:attribute name="caseSensitive" type="xs:boolean" 1766
 use="optional" default="true" /> 1767
 <xs:attribute name="negate" type="xs:boolean" use="optional" 1768
 default="false" /> 1769
 </xs:extension> 1770
 </xs:simpleContent> 1771
 </xs:complexType> 1772
 1773
 <xs:complexType name="EqualOperatorType"> 1774
 <xs:simpleContent> 1775
 <xs:extension base="xs:anySimpleType"> 1776
 <xs:attribute name="caseSensitive" type="xs:boolean" 1777
 use="optional" default="true" /> 1778
 <xs:attribute name="negate" type="xs:boolean" use="optional" 1779
 default="false" /> 1780
 </xs:extension> 1781
 </xs:simpleContent> 1782
 </xs:complexType> 1783
 1784
 <xs:complexType name="NullOperatorType"> 1785
 <xs:attribute name="negate" type="xs:boolean" use="optional" 1786
 default="false" /> 1787
 </xs:complexType> 1788
 1789
 <!-- Query Response definition --> 1790
 <xs:complexType name="QueryResultType"> 1791
 <xs:sequence> 1792
 <xs:element name="nodes" type="cmdbf:NodesType" minOccurs="0" 1793
 maxOccurs="unbounded" /> 1794
 <xs:element name="edges" type="cmdbf:EdgesType" minOccurs="0" 1795
 maxOccurs="unbounded" /> 1796
 </xs:sequence> 1797
 </xs:complexType> 1798
 1799
 <xs:complexType name="NodesType"> 1800
 <xs:sequence> 1801
 <xs:element ref="cmdbf:item" minOccurs="1" 1802
 maxOccurs="unbounded" /> 1803
 </xs:sequence> 1804
 <xs:attribute name="templateId" type="xs:ID" use="required" /> 1805
 </xs:complexType> 1806
 1807
 <xs:complexType name="EdgesType"> 1808

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 46 of 51

 <xs:sequence> 1809
 <xs:element ref="cmdbf:relationship" minOccurs="1" 1810
 maxOccurs="unbounded" /> 1811
 </xs:sequence> 1812
 <xs:attribute name="templateId" type="xs:ID" use="required" /> 1813
 </xs:complexType> 1814
 1815
 <!-- Registration Service --> 1816
 <xs:complexType name="RegisterRequestType"> 1817
 <xs:sequence> 1818
 <xs:element name="mdrId" type="xs:anyURI" /> 1819
 <xs:element name="itemList" type="cmdbf:ItemListType" 1820
 minOccurs="0" maxOccurs="1" /> 1821
 <xs:element name="relationshipList" 1822
 type="cmdbf:RelationshipListType" minOccurs="0" 1823
 maxOccurs="1" /> 1824
 </xs:sequence> 1825
 </xs:complexType> 1826
 1827
 <xs:complexType name="ItemListType"> 1828
 <xs:sequence> 1829
 <xs:element ref="cmdbf:item" minOccurs="1" 1830
 maxOccurs="unbounded" /> 1831
 </xs:sequence> 1832
 </xs:complexType> 1833
 <xs:complexType name="RelationshipListType"> 1834
 <xs:sequence> 1835
 <xs:element ref="cmdbf:relationship" minOccurs="1" 1836
 maxOccurs="unbounded" /> 1837
 </xs:sequence> 1838
 </xs:complexType> 1839
 1840
 <xs:complexType name="DeregisterRequestType"> 1841
 <xs:sequence> 1842
 <xs:element name="mdrId" type="xs:anyURI" /> 1843
 <xs:element name="itemIdList" type="cmdbf:MdrScopedIdListType" 1844
 minOccurs="0" maxOccurs="1" /> 1845
 <xs:element name="relationshipIdList" 1846
 type="cmdbf:MdrScopedIdListType" minOccurs="0" maxOccurs="1" /> 1847
 </xs:sequence> 1848
 </xs:complexType> 1849
 1850
 <xs:complexType name="MdrScopedIdListType"> 1851
 <xs:sequence> 1852
 <xs:element ref="cmdbf:instanceId" minOccurs="1" 1853

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 47 of 51

 maxOccurs="unbounded" /> 1854
 </xs:sequence> 1855
 </xs:complexType> 1856
 1857
 <xs:complexType name="RegistrationServiceResponseType"> 1858
 <xs:sequence> 1859
 <xs:element name="instanceResponse" 1860
 type="cmdbf:InstanceResponseType" minOccurs="0" 1861
 maxOccurs="unbounded" /> 1862
 </xs:sequence> 1863
 </xs:complexType> 1864
 1865
 <xs:complexType name="InstanceResponseType"> 1866
 <xs:sequence> 1867
 <xs:element name="instanceId" type="cmdbf:MdrScopedIdType" 1868
 minOccurs="1" maxOccurs="1" /> 1869
 <xs:element name="accepted" type="cmdbf:AcceptedType" 1870
 maxOccurs="1" minOccurs="0" /> 1871
 <xs:element name="declined" type="cmdbf:DeclinedType" 1872
 maxOccurs="1" minOccurs="0" /> 1873
 </xs:sequence> 1874
 </xs:complexType> 1875
 1876
 <xs:complexType name="AcceptedType"> 1877
 <xs:sequence> 1878
 <xs:element name="alternativeInstanceId" 1879
 type="cmdbf:MdrScopedIdType" maxOccurs="unbounded" 1880
 minOccurs="0" /> 1881
 </xs:sequence> 1882
 </xs:complexType> 1883
 1884
 <xs:complexType name="DeclinedType"> 1885
 <xs:sequence> 1886
 <xs:element name="reason" type="xs:string" maxOccurs="unbounded" 1887
 minOccurs="0" /> 1888
 </xs:sequence> 1889
 </xs:complexType> 1890
 1891
 <!-- Shared elements definition --> 1892
 <xs:element name="item" type="cmdbf:ItemType" /> 1893
 <xs:complexType name="ItemType"> 1894
 <xs:sequence> 1895
 <xs:element ref="cmdbf:record" minOccurs="0" 1896
 maxOccurs="unbounded" /> 1897
 <xs:element ref="cmdbf:instanceId" minOccurs="1" 1898

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 48 of 51

 maxOccurs="unbounded" /> 1899
 <xs:element name="additionalRecordType" type="cmdbf:QNameType" 1900
 minOccurs="0" maxOccurs="unbounded" /> 1901
 </xs:sequence> 1902
 </xs:complexType> 1903
 1904
 <xs:element name="relationship" type="cmdbf:RelationshipType" /> 1905
 <xs:complexType name="RelationshipType"> 1906
 <xs:sequence> 1907
 <xs:element name="sourceItem" type="cmdbf:MdrScopedIdType" 1908
 minOccurs="1" maxOccurs="1" /> 1909
 <xs:element name="targetItem" type="cmdbf:MdrScopedIdType" 1910
 minOccurs="1" maxOccurs="1" /> 1911
 <xs:element ref="cmdbf:record" minOccurs="0" 1912
 maxOccurs="unbounded" /> 1913
 <xs:element ref="cmdbf:instanceId" minOccurs="1" 1914
 maxOccurs="unbounded" /> 1915
 <xs:element name="additionalRecordType" type="cmdbf:QNameType" 1916
 maxOccurs="unbounded" minOccurs="0" /> 1917
 </xs:sequence> 1918
 </xs:complexType> 1919
 1920
 <xs:element name="record" type="cmdbf:RecordType" /> 1921
 <xs:complexType name="RecordType"> 1922
 <xs:sequence> 1923
 <xs:any namespace="##other" processContents="lax" /> 1924
 </xs:sequence> 1925
 <xs:attribute name="recordId" type="xs:anyURI" use="required" /> 1926
 </xs:complexType> 1927
 1928
 <xs:element name="instanceId" type="cmdbf:MdrScopedIdType" /> 1929
 <xs:complexType name="MdrScopedIdType"> 1930
 <xs:sequence> 1931
 <xs:element name="mdrId" type="xs:anyURI" minOccurs="1" 1932
 maxOccurs="1" /> 1933
 <xs:element name="localId" type="xs:anyURI" minOccurs="1" 1934
 maxOccurs="1" /> 1935
 </xs:sequence> 1936
 </xs:complexType> 1937
 1938
 <xs:complexType name="QNameType"> 1939
 <xs:attribute name="namespace" type="xs:anyURI" use="required" /> 1940
 <xs:attribute name="localName" type="xs:NCName" use="required" /> 1941
 </xs:complexType> 1942
</xs:schema> 1943

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 49 of 51

A normative copy of the WSDL [WSDL 1.1] description for this specification can be 1944
retrieved from the following addresses: 1945
http://schemas.cmdbf.org/0-9-5/cmdbfQuery.wsdl 1946
http://schemas.cmdbf.org/0-9-5/cmdbfRegistration.wsdl 1947

 1948

A non-normative copy of the WSDL descriptions are listed below for convenience. 1949

8.1 Query Service WSDL 1950

<?xml version="1.0" encoding="utf-8"?> 1951
<!-- 1952
Copyright Notice 1953
(c) 2007 BMC Software, CA, Fujitsu, Hewlett-Packard Development Company 1954
(HP), International Business Machines Corporation (IBM), and Microsoft 1955
Corporation. All rights reserved. 1956
--> 1957
<wsdl:definitions 1958
 targetNamespace="http://schemas.cmdbf.org/0-9-5/query" 1959
 xmlns:tns="http://schemas.cmdbf.org/0-9-5/query" 1960
 xmlns:cmdbf="http://schemas.cmdbf.org/0-9-5/datamodel" 1961
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 1962
 xmlns:xs="http://www.w3.org/2001/XMLSchema"> 1963
 1964
 <wsdl:types> 1965
 <xs:schema 1966
 targetNamespace="http://schemas.cmdbf.org/0-9-5/datamodel"> 1967
 <xs:include 1968
 schemaLocation= 1969
 "http://schemas.cmdbf.org/0-9-5/cmdbfDataModel.xsd" /> 1970
 </xs:schema> 1971
 </wsdl:types> 1972
 1973
 <wsdl:message name="QueryRequest"> 1974
 <wsdl:part name="body" element="cmdbf:query" /> 1975
 </wsdl:message> 1976
 1977
 <wsdl:message name="QueryResponse"> 1978
 <wsdl:part name="body" element="cmdbf:queryResult" /> 1979
 </wsdl:message> 1980
 1981
 <wsdl:portType name="QueryPortType"> 1982
 <wsdl:operation name="GraphQuery"> 1983
 <wsdl:input message="tns:QueryRequest" /> 1984
 <wsdl:output message="tns:QueryResponse" /> 1985
 </wsdl:operation> 1986
 </wsdl:portType> 1987

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 50 of 51

 1988
</wsdl:definitions> 1989

 1990

8.2 Registration Service WSDL 1991

 1992
<?xml version='1.0' encoding='UTF-8' ?> 1993
<!-- 1994
Copyright Notice 1995
(c) 2007 BMC Software, CA, Fujitsu, Hewlett-Packard Development Company 1996
(HP), International Business Machines Corporation (IBM), and Microsoft 1997
Corporation. All rights reserved. 1998
--> 1999
<wsdl:definitions 2000
 targetNamespace="http://schemas.cmdbf.org/0-9-5/registration" 2001
 xmlns:tns="http://schemas.cmdbf.org/0-9-5/registration" 2002
 xmlns:cmdbf="http://schemas.cmdbf.org/0-9-5/datamodel" 2003
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 2004
 xmlns:xs="http://www.w3.org/2001/XMLSchema"> 2005
 2006
 <wsdl:types> 2007
 <xs:schema 2008
 targetNamespace="http://schemas.cmdbf.org/0-9-5/datamodel"> 2009
 <xs:include 2010
 schemaLocation= 2011
 "http://schemas.cmdbf.org/0-9-5/cmdbfDataModel.xsd" /> 2012
 </xs:schema> 2013
 </wsdl:types> 2014
 2015
 <wsdl:message name="RegisterRequest"> 2016
 <wsdl:part name="body" element="cmdbf:registerRequest" /> 2017
 </wsdl:message> 2018
 <wsdl:message name="RegisterResponse"> 2019
 <wsdl:part name="body" element="cmdbf:registerResponse" /> 2020
 </wsdl:message> 2021
 2022
 <wsdl:message name="DeregisterRequest"> 2023
 <wsdl:part name="body" element="cmdbf:deregisterRequest" /> 2024
 </wsdl:message> 2025
 <wsdl:message name="DeregisterResponse"> 2026
 <wsdl:part name="body" element="cmdbf:deregisterResponse" /> 2027
 </wsdl:message> 2028
 2029
 <wsdl:portType name="RegistrationPortType"> 2030
 <wsdl:operation name="Register"> 2031

© Copyright 2007 by BMC Software, CA, Fujitsu, Hewlett-Packard, IBM, and Microsoft. All rights reserved.
 Page 51 of 51

 <wsdl:input message="tns:RegisterRequest" /> 2032
 <wsdl:output message="tns:RegisterResponse" /> 2033
 </wsdl:operation> 2034
 2035
 <wsdl:operation name="Deregister"> 2036
 <wsdl:input message="tns:DeregisterRequest" /> 2037
 <wsdl:output message="tns:DeregisterResponse" /> 2038
 </wsdl:operation> 2039
 </wsdl:portType> 2040
 2041
</wsdl:definitions> 2042

 2043

