
Draft Federal XML Developer’s
Guide

December 2001

U.S. Federal CIO Council
Enterprise Interoperability and Emerging Information

Technology Committee
XML Working Group

Status Of This Document

This document is under review by the WG, and will represent the consensus of
the WG as an initial set of guidance for the development of XML components
within the government when finalized. It is intended to be a living document that
will be updated frequently.

ii

U.S. FEDERAL CIO COUNCIL XML WORKING GROUP

Draft Federal XML Developer’s Guide:
Version .1

DECEMBER 2001

Executive Summary

The global economy is increasingly dependent upon creative solutions to escalat-
ing information technology demands. The potential advantages of Internet trans-
mission of payloads of information have highlighted the need to integrate data
across applications, systems, and organizations. With the Internet—and particu-
larly web-enabled exchange of data—still in its relative infancy, we have a unique
opportunity for governments, business, and industry to foster the cooperative in-
ternational development of a standardized platform-independent syntax designed
to facilitate identification, exchange, and display of data using web transfer proto-
cols. Extensible Markup Language (XML) is emerging as the preeminent tool for
developers interested in maximizing system interoperability.

In recognition of XML’s significance as a web-based end-to-end solution for in-
formation interchange, the Enterprise Interoperability and Emerging Information
Technology (EIEITC) committee of the U.S. Federal CIO Council created the
Federal XML Working Group in June 2000. The Group’s primary responsibilities
are to partner with national and international standards organizations in the devel-
opment of XML and to guide the U.S. Government’s transition to XML for elec-
tronic data interchange (EDI).

Integral to the Working Group’s leadership is the promulgation of written guide-
lines promoting best practices and recommending federal standards for XML. The
CIO Council submits this draft Federal XML Developer’s Guide, version .1 for
review by all federal agencies pending consideration by the Office of Manage-
ment and Budget as future Federal Agency policy.

iii

Contents

Chapter 1 Background.. 1-1

1.1 INTRODUCTION ... 1-1

1.2 TERMINOLOGY.. 1-2

1.3 IMPLEMENTATION REQUIREMENTS ... 1-2

1.4 APPENDICES.. 1-3

Chapter 2 Software Application Specifications ... 2-1

2.1 RECOMMENDED XML SPECIFICATIONS.. 2-1

Chapter 3 XML Component Conventions ... 3-1

3.1 STANDARDIZED CASE CONVENTION ... 3-1

3.2 USAGE OF ACRONYMS AND ABBREVIATIONS.. 3-2

3.3 XML COMPONENT SELECTION AND CREATION.. 3-3

3.3.2 Creating XML Component Names from ISO 11179 Data Elements 3-8

3.3.3 Choosing XML Component Names... 3-9

Chapter 4 Schema Design Conventions... 4-1

4.1 SCHEMA LANGUAGES ... 4-1

4.2 RECOMMENDED SCHEMA DEVELOPMENT METHODOLOGY................................... 4-2

4.3. CAPTURING METADATA... 4-5

4.3.1. Application Specific Metadata... 4-7

4.3.2. Capturing XML Component Definitions ... 4-7

4.3.3. Enumerations and Capturing Code Lists ... 4-8

Chapter 5 Document Annotation Conventions .. 5-1

5.1. DOCUMENT VERSIONING .. 5-1

5.1.1 Versioning DTDs ... 5-2

5.1.2. Versioning XML Schemas... 5-2

5.1.3. Versioning Stylesheets... 5-3

5.2 HEADERS .. 5-3

iv

5.2.1 Schemas ... 5-4

5.2.2 Stylesheets.. 5-4

5.2.3 Instances... 5-5

Chapter 6 Attribute Versus Element Conventions....................................... 6-1

Chapter 7 Federal XML Registry... 7-1

Appendix A ebXML and UN/CEFACT...1

REPRESENTATION TERMS ...6

Appendix B Schema Development...1

POSSIBLE SCHEMA DEVELOPMENT PROCEDURE SUMMARY ...1

Appendix C Tools and References ...1

TOOLS 1

Appendix D Combined XML Schema Example ..1

Appendix E Sample XML Document Headers ..1

Sample Schema Header ...1

Sample Stylesheet Header..5

Sample Instance header..8

Appendix F Points of Contact...1

Appendix G Glossary and Acronyms ...1

FIGURES
Error! No table of figures entries found.

TABLES
Table A-1. Representation Terms ..6

Table A-2. Other Representation Terms..7

v

vi

Chapter 1 Background

1.1 INTRODUCTION
Federal initiatives are implementing XML-enabled applications very quickly.
This document will assist government activities in developing XML implementa-
tions in the short term, while lessons learned are collected. It is an adaptation of
the updated consensus draft of the Department of the Navy (DON) XML Devel-
oper’s Guide (version 1.1) of November 7, 2001. The Navy’s latest status of this
document series is maintained at the NavyXML Quickplace.

This document is an early deliverable of the overall federal strategy for
employing XML. It provides general development guidance for the many
XML initiatives currently taking place within Departments and Agencies,
while the WG is in the process of developing a long-term strategy for
aligning XML implementations with government business needs.

This version of the guidance is primarily written to assist developers in
creating standardized schemas that describe XML payloads of informa-
tion. It should be noted that payloads represent only one component re-
quired for secure, reliable information exchange. Other components
include a specification for reliable messaging (including authentication,
encryption, queuing, and error handling), business service registry and re-
pository functions, and transport protocols. Emerging technologies and
specifications are, or will shortly, provide XML-based solutions to many of
these needs. Various committee’s within the CIO Council as well as the
architecture team within the Quicksilver Initiative are addressing these ar-
eas as part of the overall federal architecture. The XML Working Group
will work with the Quicksilver Initiative to develop an XML Primer that will
describe each of these components and bring together the overall strategy
for capitalizing on XML as a tool for enterprise interoperability.

Paragraphs of this document are broken into three parts:
�

�

�

“Guidance” provides a concise summary of requirements and
recommendations.

“Explanation” provides a brief explanation of the reasoning behind the
guidance provided.

“Example” provides one or more non-normative examples pertaining to
the guidance.

1-1

The bulk of this document is contained in appendices that are provided as non-
normative supplementary information. The appendices should be considered to
have a “draft” status, and do not represent the consensus of the WG.

The document is primarily intended for developers already familiar with XML;
however, it has a comprehensive glossary, to assist XML beginners. Some of this
document focuses on XML Schemas as a tool for interoperability. To realize the
maximum benefit, we suggest that you take the time to become familiar with the
XML Schema language. An excellent tutorial with labs is available at
http://www.xfront.com/.

We encourage developers to try the techniques recommended here and provide
feedback to the WG. We will collect lessons learned and best practices, updating
and expanding this document periodically.

1.2 TERMINOLOGY
The terms MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are used throughout
this document, and should be interpreted in accordance with the Harvard Univer-
sity Network Working Group “Request for Comments” # 2119 of “Best Current
Practice” # 14 (RFC 2119i).

The term XML is used to describe a large range of specifications and technologies
associated with XML markup. It is critical that activities developing XML-
enabled applications have a firm understanding of basic XML terminology.
Appendix G provides a list of applicable acronyms and terms.

Many schema languages have been created for expressing validation rules; how-
ever, throughout this document the term ‘schema‘with a small ‘s’ is used generi-
cally (to include DTDs), while the term XML Schema or just Schema (capital ‘S’)
refers specifically to schemas authored in accordance with the World Wide Web
Consortium (W3C) XML Schema recommendation.

1.3 IMPLEMENTATION REQUIREMENTS
The WG understands that short timeframe XML implementations or pre-existing
schema that do not follow this guidance cannot be changed immediately. Activi-
ties should read this document and develop a migration plan to evolve their cur-
rent XML implementations; additionally, the WG encourages submission of
feedback as lessons learned are collected.

Most items in this document should be considered as guidance rather than re-
quirements. Specifically, items using the terms MUST, MUST NOT,
REQUIRED, SHALL, and SHALL NOT should be considered as the only re-
quirements.

1-2

http://www.xfront.com/

1.4 APPENDICES
The appendices are presented in draft form. They do not represent a consensus of
the WG. They are provided, as-is, and are to be considered non-normative. The
only exceptions are the portions of the ebXML Specifications and Technical Re-
ports quoted in Appendix A.

1-3

1-4

Chapter 2 Software Application Specifications

2.1 RECOMMENDED XML SPECIFICATIONS
GUIDANCE

In general, production applications SHOULD only use software that implements W3C
Final Recommendations. Applications using software that implement W3C technical re-
ports at other stages of the development process, or non-W3C specifications, MUST do
so with the following restrictions:

�

�

�

�

Production Applications:

h Prior to creating, incorporating or using software that implements non-
W3C specifications activities MUST:

� Ensure that no competing W3C endorsed recommendation
exists or is being developed.

� Ensure that the specification is a product of a credible, rec-
ognized consortium or organization such as the Organiza-
tion for the Advancement of Structured Information
Standards (OASIS), the United Nations Centre for Trade
Facilitation and Electronic Business (UN/CEFACT), the
OMG, OAG, UDDI, RossettaNet, or BizTalk.

h Activities MAY choose to implement W3C technical reports with a
Proposed Recommendation status provided they are committed to im-
mediately update software should any changes be made when the re-
port reaches final status

Pilot Applications: Activities developing pilot applications (as a precursor
to production) MAY also implement software that conforms to W3C tech-
nical reports with a Candidate Recommendation status.

(Advanced Concept) Demonstrations: Activities developing demonstration
applications (as a proof of concept) MAY also implement software that
conforms to W3C technical reports with a Working Draft status.

h Exception: Activities MAY implement software that conforms to the
SOAP 1.1 W3C Note, but MUST then be ready and committed to up-
date software to the SOAP 1.2 specification when it reaches Final
Recommendation status.

Regardless of the stage of application productions, activities MUST NOT
implement specifications or standards that compete with W3C technical
work.

2-1

OTHER GUIDANCE

�

�

All component software (XML parsers, generators, validators, enabled ap-
plications, servers, databases, operating systems), and other software ac-
quired or used by federal activities SHALL be fully compliant with all
W3C XML technical reports holding recommended status when such re-
ports exist.

Proprietary extensions to W3C Technical Reports:

h MUST NOT be employed in any software or XML document (in-
stance, schema, stylesheet) that will be shared publicly with activities
outside a particular development environment.

h SHOULD only be employed locally (within a homogeneous develop-
ment environment) after careful evaluation of possible impacts on
cross-platform interoperability, and dependency on software from a
single vendor. This decision MUST only be made by government pro-
gram managers.

EXPLANATION

W3C Technical Reports has a complete list of W3C reports in all stages of devel-
opment. The following table provides a list of XML specifications or standards
that are not W3C recommendations (yet). Two categories are provided. The
“Recommended” column represents widely adopted standards that are believed to
be mature and uniformly supported by software implementations. The “Maturing”
column represents other standards that the WG believes to be sufficiently mature,
however they may not be uniformly supported in existing software implementa-
tions, so caution is advised. Future versions of this document will add additional
specifications from other standards bodies and efforts such as ebXML, OASIS,
UN/CEFACT, etc.

Recommended Maturing

SAX1 1.0 and 2.0 SOAP 1.1 (W3C Note)

SOAP 1.1 has been adopted by various commercial and federal activities such as
ebXML. Members of the WG have evaluated the specification and believe that it
is sufficiently stable and mature to support production implementation. SOAP 1.1
exists as a W3C Note, however SOAP 1.2 is being pursued by the W3C XML
Protocol Working Group. When it becomes a Final Recommendation, activities

1 SAX is not a specification developed by a standards body or the W3C. It is an open source

project maintained by a community of developers. SAX parsers have been written for several lan-
guages, but the only platform independent version is the Java API. A parser that is SAX compliant
must implement an equivalent to the Java API, which is provided at the SAX homepage.

2-2

http://www.w3.org/TR/
http://sax.sourceforge.net/
http://www.w3.org/TR/SOAP/

XML Component Conventions

with SOAP 1.1 implementation MUST have planned for and be ready to migrate
to SOAP 1.2.

Application vendors often provide proprietary extensions to adopted standards.
These extensions may simplify the job of software developers, but they also make
developed systems dependent on software from a single vendor, and often they
also restrict the software to being run on a single vendor’s operating system or
hardware. Government program managers must have the final say in the decision
to employ such extensions, even when doing so inside a single system’s bounda-
ries or within a homogeneous development environment. When making such a
decision, government program managers will be guided by potential impacts on
interoperability, not only by current information exchange instances, but by
potential information exchange instances as well.

EXAMPLE

To further illustrate the guidance regarding use of proprietary extensions to W3C
Technical Reports, we provide two examples:

�

� Example 2: An activity is developing a Visual Basic application for de-
ployment in a Windows 2000 environment. In that application, the
MSXML DOM API is used to manipulate XML. Microsoft has added
many convenient extensions to the W3C DOM recommendation that the
developers want to use. Since the programming environment is restricted
to the Microsoft environment (Windows and Visual Basic), the govern-
ment program manager agrees to allow the use of the MSXML DOM.

Example 1: An activity developing an XSL stylesheet is using the
XALAN XSL processor. Developers discover that the XALAN software
has implemented an extension to XSLT that allows generation of multiple
output HTML documents from a single stylesheet. This is convenient
since the project requires multiple outputs. The lead project manager con-
sults with the government program manager; the program manager agrees
to allow the use of this proprietary extension, provided a stylesheet with-
out the extension is also delivered.

The key difference between these examples is software code portability. In the
first example, the stylesheet should be able to run in any environment (operating
system, language, and XSL processor), therefore a strictly XSLT conformant de-
liverable was required. In the second example, code portability was not an issue
since the project was restricted to the Microsoft environment already due to the
choice of programming language and operating system.

2-3

Chapter 3 XML Component Conventions

3.1 STANDARDIZED CASE CONVENTION
GUIDANCE

Federal developers SHALL adopt the camel case convention, as defined by the
ebXML Technical Architecture, when creating XML component names. Excerpts
are provided in Appendix A.

�

�

XML Elements and XML Schema Types use upper camel case: The first
letter in the name is upper case, as is the letter beginning each subsequent
word.

XML Attributes use lower camel case: Like upper camel case, except the
first letter of the first word is lower case.

EXPLANATION

Major XML consortia such as OASIS, Universal Business Language,
UN/CEFACT, RosettaNet, Biztalk and ebXML (see Internet references in
Appendix C) have all adopted the camel case convention for XML component
naming, with ebXML differentiating between upper and lower camel case.

EXAMPLE

 <?xml version=“1.0” encoding=“UTF-8” ?>
<!—
Example of an upper camel case element and lower camel case
attribute

—>
<UpperCamelCaseElement

lowerCamelCaseAttribute=“foo”/>

3-1

http://www.ebxml.org/

3.2 USAGE OF ACRONYMS AND ABBREVIATIONS
GUIDANCE

Federal developers SHOULD follow the ebXML guidance for usage of acronyms
or abbreviations in XML component names2 with the following caveats:

�

�

�

�

�

�

�

Acronyms SHOULD NOT be used in XML element and attribute names.
When acronyms are used they MUST be in upper case.

Abbreviations MUST NOT be used in XML element and attribute names.

For XML Schema types, abbreviations MUST be avoided while acronyms
SHOULD NOT be used consistent with the rest of this guidance.

While commonly used acronyms SHOULD NOT be used in element and
attribute names, the decision to use an acronym SHALL be made by pro-
gram and/or functional managers rather than by application developers.
The decision to use an acronym MUST be based the belief that its use will
promote common understanding of the information both inside a commu-
nity of interest as well as across multiple communities of interest. When
an acronym does not come from a credible, identifiable source or when it
introduces a margin for interpretation error, it MUST NOT be used.

Acronyms used in component names MUST be spelled out in the compo-
nent definition that is required to be included via schema annotations (as
XML comments or inside XML Schema annotation <xsd:documentation>
elements) (see Section 4.3.2). References to authoritative sources from
which the acronyms are taken MUST also be included in schema docu-
mentation.

Underscores (_), periods (.) and dashes (-) MUST NOT be used.

Verbosity in tag size should be limited to what is required to conform to
the Tag Name Content recommendations. When tags will be used in data-
base structures, a limit of 30 characters is recommended.

EXPLANATION

XML documents that rely heavily on terse abbreviated component names are dif-
ficult to understand, and subject to misinterpretation. The general consensus
among the major XML standards development consortia is that abbreviations
should be avoided and acronyms used sparingly. Government business language
is heavily laden with both acronyms and abbreviations, and it is often difficult to

2 This guidance is restricted to component names only; it does not apply to attribute or ele-

ment values. For instance the attribute measureUnitCode=”HZ” where HZ represents Hertz is ac-
ceptable as long as the code list from which HZ was taken is published a readily available.

3-2

XML Component Conventions

distinguish between an acronym and an abbreviation (e.g., CONOPS). After sig-
nificant deliberation, the WG has adopted the position that abbreviations result in
ambiguous markup and should never be used, and that acronyms for use in ele-
ment and attribute names are acceptable where they make sense, but should in
general be avoided. The working group strongly recommends that the decision for
exception acronym usage be based on a management decision that such usage will
actually promote understanding.

EXAMPLE:

This is an example of providing an element definition in a DTD. Note that the ac-
ronym “EPA” is spelled out in the definition.

 <!—EPAFacilityIdentificationCode

Definition: A 6-digit code used to uniquely identify
Facilities with statutory environmental data reporting
responsibiities to the Environmental Protection Agency (EPA)

—>

<!ELEMENT EPAFacilityIdentificationCode (#PCData)>

3.3 XML COMPONENT SELECTION AND CREATION
GUIDANCE

Draft Federal XML Tag Standards Policy requires that existing federal XML
components be used if suitable. Therefore, the Federal XML Registry (FXR)
MUST be searched for existing suitable components prior to creation of new
components. There are three possible results for this search. Components may be
fully suitable, partially suitable, or undiscovered.

� A component is suitable if:

h it satisfies the element domain requirements,

h it is in upper/lower camel case depending upon whether it is an ele-
ment, attribute or type,

h is either named after a “business term“, or conforms to ISO 11179
conventions, and

h abbreviations and acronyms are spelled out in the component defini-
tion.

If the component is suitable, it MUST be used, and use of that component MUST
be registered within the FXR.

3-3

�

�

�

�

�

�

�

�

A discovered component is considered not suitable if any of the above
conditions are not met.

If the component is not suitable, you SHOULD create a suitable component, se-
lecting XML component names as follows:

Create a “dictionary entry” using the ISO 11179 rules as modified by
ebXML and UN/CEFACT (see Appendix A).

Create an XML Schema Type derived from ISO 11179-compliant name
converted to upper camel case. You SHOULD document the type with
metadata from the FXR, such as the definition, URL to the item, and regis-
try identifier. Additionally you SHOULD apply any domain restrictions to
the type rather than the element. Additionally you MAY document any
mappings to authoritative federal data models or data element definitions
in the element’s definition (see Section 4.3.2).

Create an XML Element that is named according to the ISO 11179-
derived type name. Additionally, you MAY document any mappings to
existing standard business terms (Section 3.3.1).

For XML Attributes, use an ISO 11179-compliant name in lower camel
case.

For an XML DTD, create elements that are named after ISO 11179-
compliant names in upper camel case, and document the ISO 11179 name
in the DTD as an XML comment.

Register the new element and its relationship to the existing FXR element
in the appropriate namespace of the Federal XML Registry.

If no component is found, you SHOULD create XML component names
following the rules defined above for unsuitable components, except that
there will be no reference to an existing FXR element.

When used as XML component names, the ISO 11179 element names SHALL be
converted to camel case by removing the periods and spaces, and adjusting the
capitalization.

EXPLANATION

The Draft Federal XML policy requires the reuse of XML elements registered in
the FXR if those tags are found suitable. The intent of this guidance is to provide
clarification as to what suitability means, and reinforce the mandate that the regis-
try be searched as a starting point for suitability determination.

In the case where an element has been identified as a candidate for reuse but it
fails suitability criteria, the above guidance provides a solution for creation of a

3-4

XML Component Conventions

suitable element while maintaining a semantic relationship to the initially discov-
ered candidate.

For creation of XML elements when no suitable element exists in the FXR, the
WG recommends the ebXML modified ISO 11179 data element naming conven-
tion as solid basis for XML component creation. In summary, an ISO 11179-
compliant data element name consists of three parts:

�

�

�

�

�

�

�

�

An “Object Class” term, which describes the kind of thing to which you
refer. This Object Class may consist of one or more words, some of which
may be context terms.

For example, the ISO 11179 name ‘Acoustic Signal. Frequency. Measure’
has the Object Class ‘Acoustic Signal’.

A “Property Term” which is the property of the thing to which you refer,
which may consist of one or more words. For example, the ISO 11179
name ‘Acoustic Signal. Frequency. Measure’ has the Property Term ‘Fre-
quency’.

A “Representation Term” which identifies allowable values for an ele-
ment. This list is taken from an enumerated list of allowable representation
types (see Appendix A). For example, the ISO 11179 name ‘Acoustic Sig-
nal. Frequency. Measure’ has the Representation Term ‘Measure’.

The ebXML Technical Report, Naming Convention for Core Components pro-
vides 14 “rules” for constructing proper data element names. Some considerations
are:

When the Representation Type and the Property Term are redundant, the
Property Term is dropped, so ‘Item. Identification. Identifier’ becomes
‘Item. Identifier’

When an element describes an entire class of things (e.g., not a specific
property of it), the Property Term may again be dropped, for instance
‘Documentation. Identifier’

An aggregate component shall have a representation type of ‘details’.

Note that ISO 11179 names SHOULD be made directly into XML component
names:

For XML Schema types and XML attribute names

For XML element names.

3-5

http://www.ebxml.org/specs/ebCCNAM.pdf

The excerpts provided in Appendix A were taken from draft documents that are
evolving rapidly. This information SHOULD be used as guidance only, but may
prove helpful.

EXAMPLE

The following example is an excerpt from that provided in Appendix D.

 <?xml version=“1.0” encoding=“UTF-8” ?>

- <xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema” elementFormDe-
fault=“qualified” attributeFormDefault=“unqualified”>

+ <xs:complexType name=“MeasureType”>

- <!—
Full content of MeasureType not provided here. See Appendix E.

—>

</xs:complexType>

- <xs:annotation>

- <xs:documentation source=“http://www.ebxml.org/specs/ccDICT.pdf”>

- <ebXML>

<CoreComponent UID=“core000152”>Text. Type</CoreComponent>

</ebXML>

</xs:documentation>

</xs:annotation>

- <xs:simpleContent>

- <xs:extension base=“xs:decimal”>

<xs:attribute name=“measureUnitCode” type=“xs:string” use=“optional” de-
fault=“HZ”/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

- <!—
ISO 11179-derived type name

—>

- <xs:complexType name=“AcousticSignalFrequencyMeasure”>

- <xs:simpleContent>

3-6

XML Component Conventions

- <!—
Domain restriction placed in type

—>

- <xs:restriction base=“MeasureType”>

<xs:totalDigits value=“10”/>

<xs:fractionDigits value=“3”/>

<xs:pattern value=“\d*.\d{3}”/>

<xs:attribute name=“measureUnitCode” fixed=“HZ”/>

</xs:restriction>

</xs:simpleContent>

</xs:complexType>

- <!—
Element named after business term, “Acoustic Frequency”

—>

- <xs:element name=“AcousticFrequency” type=“AcousticSignalFrequencyMeasure”>

- <xs:annotation>

- <!—
Annotation maps element to DII COE registered element

—>

- <xs:documentation
source=“http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358”>

- <COEXMLRegistry>

<Namespace prefix=“TAR”>Tracks and Reports</Namespace>

<TagName>ACOUST_SIGNA_FREQ</TagName>

<Definition>ACOUSTIC SIGNATURE FREQUENCY. THE FREQUENCY
OF AN EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE
THOUSANDTH HERTZ.</Definition>

<RegistryID>8358</RegistryID>

</COEXMLRegistry>

</xs:documentation>

</xs:annotation>

</xs:element>

- <!—

3-7

COE element name made synonymous with camel case business term through
use of substitution group

—>

- <xs:element name=“ACOUST_SIGNA_FREQ”
type=“AcousticSignalFrequencyMeasure” substitution-
Group=“AcousticFrequency”>

- <xs:annotation>

<xs:documentation>Business Term</xs:documentation>

</xs:annotation>

</xs:element>

</xs:schema>

3.3.2 Creating XML Component Names from ISO 11179
 Data Elements

GUIDANCE

XML components SHOULD be named after ISO 11179 data element names:

�

�

�

�

�

XML Elements SHOULD be named after ISO 11179 data element defini-
tions.

XML Attributes SHOULD be named after ISO 11179 data elements.

XML Schema types MUST be named after ISO 11179 data elements

ISO 11179 names MUST be converted to suitable XML component names by
converting to camel case by removing white space and periods:

Types and elements are converted to upper camel case.

Attributes are converted to lower camel case.

EXPLANATION

As discussed in the explanation portion of Section 3.3, ISO 11179 part 5 provides
a standard for creating data elements. This standard employs a dot notation and
white space to separate the various parts of the element and multiple words in a
part respectively. In order to meet XML requirements for component naming, the
ISO 11179 name must be converted to a Name Token.

3-8

XML Component Conventions

The ISO 11179 part 5 standard provides a way to precisely create a data element
definition and name. Using or referencing this name in a schema provides ana-
lysts with a better understanding of XML component semantics, while using
business terms improves readability, it results in ambiguous element names that
fail to convey sufficient semantic values to support a comprehensive understand-
ing of the metadata to be conveyed in the markup.

Requiring type to conform to ISO 11179 conventions will facilitate automated
analysis of schema components during any harmonization efforts.

The upper and lower camel case conventions are adopted from ebXML.

EXAMPLE

In the example of Section 3.3, the type ‘AcousticSignalFrequencyMeasure’ was
created from the ISO 11179 standard data element ‘Acoustic Signal. Frequency.
Measure’.

3.3.3 Choosing XML Component Names

GUIDANCE

The selection of XML component names MUST be a thoughtful process involv-
ing business, functional, database, and system subject matter experts. In the
schema design process, federal XML developers MAY use temporary or dummy
XML component names while consensus is sought on more carefully designed
and defined names.

The creation and/or selection of XML component names and business terms

�

�

�

MUST involve domain subject matter experts (operational personnel, pro-
gram managers, etc), functional data experts (database administrators,
functional data manager, data modelers, etc.) and software developers—
application developers MUST NOT be left on their own to perform this
function,

uses existing definitions from standard data element definitions, and

SHOULD NOT occur just for the sake of having one—the existence and
use of business terms SHOULD be determined by consensus of a commu-
nity of users. When a business term is not apparent or does not exist, the
ISO 11179-compliant name MAY be used as the XML component name
instead.

EXPLANATION

At a business level, the primary function of XML is to provide a metalanguage for
rigorously specifying the syntax of information exchange. Since information ex-

3-9

change involves multiple parties (at a minimum one sender and one receiver),
XML specifies agreements between parties within a community of interest for a
particular domain of information. XML itself however does not require or provide
a mechanism for defining semantics (precisely what is meant by a particular
term), however to achieve interoperability, both the syntax and semantics must be
explicitly defined. The process of selecting proper component names and reaching
agreements on the definitions is primarily a business function of XML and MUST
involve all stakeholders. Frequently, application developers who are on the lead-
ing edge of technology will understand the benefits of and implement XML in IT
systems before business personnel become involved. As a result, XML compo-
nent names often are not useable by an entire community, seriously impeding in-
teroperability.

3-10

Chapter 4 Schema Design Conventions

4.1 SCHEMA LANGUAGES
GUIDANCE

Only W3C-recommended languages SHALL be used within the government for
describing documents—specifically, the DTD and the W3C-recommended XML
Schema language.

All activities developing data-oriented schema in DTD syntax SHOULD plan on
migrating to XML Schemas in their next software release.

Federal XML developers MAY elect to use DTDs for markup of data that is
strictly document-oriented (paragraph, chapter, appendix…), however the XML
Schema language is the preferred method.

EXPLANATION

The WG recommends the XML Schema language method for creating schemas.
XML Schemas provide a rich syntax for expressing metadata. Some of its features
include:

�

�

�

�

�

Structures are defined, in Part 1 of the XML Schema recommendation,
that allow the expression of relational (keyed) data, and object-oriented
(type inheritance) relationships. While the Schema allows both relational
and object relationships, XML is a hierarchical language that lends itself
more to the object-like behaviors.

Several flexible options for defining element content models are specified.

The language also provides for better modularity by allowing two different
ways—”include” or “import”—to reuse external Schemas.

Part 2 of the XML Schema recommendation deals with data types. The
DTD syntax allows for expression of only a few data types, and only one
data type (a string) may be assigned as contents of an XML element. The
others are for different types of XML attributes. XML Schemas have doz-
ens of built-in data types, and allow creating custom data types from com-
binations of the built-in set.

The concept of a “type” is extended beyond simple data types (string,
Boolean, integer, etc.). Complex types may be declared and named, creat-
ing stereotype content models of other XML elements; these can be ex-

4-1

http://www.w3.org/TR/xmlschema-2/

tended, restricted, and assigned to XML elements in an “object-like” fash-
ion.

� Several means of further-constraining element and attribute values are
provided, including use of Regular Expressions and predefined enumer-
ated value lists to constrain element and attribute values. An entire range
of facets (e.g., minimum/maximum values and lengths) are also available
for further constraining an element’s range of possible values. DTDs do
not allow use of regular expressions and only allow enumerated value lists
for attributes.

For activities that intend to migrate towards XML Schemas, an excellent free
XML schema tutorialii is available. It provides both detailed presentations and
hands-on labs. Additionally, a series of XML Schema best practice papersiii is
available. These papers provide more XML Schema development technical detail
than is provided here.

4.2 RECOMMENDED SCHEMA DEVELOPMENT METHODOLOGY
GUIDANCE

Federal XML developers SHOULD adopt the practice of developing schemas
based on information exchange requirements identified via business process mod-
eling. The information modeling process and the XML schema creation process
SHOULD be separate and distinct steps.

Business process models and corresponding document models describing infor-
mation exchanged in the processes MAY use the Unified Modeling Language
(UML) if appropriate. For example, the UN/CEFACT-adopted Unified Modeling
Methodology (UMM), based on UML, MAY be used for the process modeling.
The WG expects to evaluate the UMM for applicability to government data do-
mains for possible official adoption at a later date.

Database modeling languages that are oriented primarily toward describing in-
formation via relational (keyed) structures SHOULD NOT be used for modeling
of systems and information that will primarily use XML as the data exchange
format.

Schema development SHOULD take place as a team effort, involving functional
data experts, business experts, program managers, and IT specialists. The WG
also highly encourages collaboration between activities developing schemas
within related information domains.

Conversely, schema development SHOULD NOT be solely the function of IT
specialists. XML component names in general SHOULD NOT be taken directly
from underlying relational database table and column names, unless the elements

4-2

http://www.xfront.com/xml-schema.html
http://www.xfront.com/xml-schema.html
http://www.xfront.com/BestPracticesHomepage.html

Schema Design Conventions

within that database have been named and created in accordance with a federal
standard that represents concurrence by an entire Community of Interest (COI).

EXPLANATION

The single most critical factor in creating logical, reusable schemas for informa-
tion exchange in XML is the separation of the information modeling process from
the schema creation process. Information should be modeled independently of
creating a schema. This allows stakeholders to focus on creating logical, consis-
tent representations of information without getting distracted by the myriad of
schema-design options that have nothing to do with the information. Once an ac-
ceptable information model has been created, mapping rules from the model to a
schema can be used or developed, which makes schema creation straightforward.
This is the most important step, as well as the most often neglected.

Newly-trained or inexperienced developers typically begin creating schemas on
an ad hoc basis, without the involvement of business functional experts or a care-
fully crafted information model that lends itself to expressing hierarchical, object
like relationships. Application developers working without management and func-
tional involvement and without an appropriate model are often tempted to create
XML quickly and easily from relational database table and column names. XML
components produced in this fashion have very terse, abbreviated, and generally
unreadable names, which are often not reusable by other systems or lack concur-
rence within the community of users.

The result of the actions in the above paragraph is inevitably a poorly-designed
set of schemas with little reusability, extensibility, or readability. This translates
into rework later at additional expense.

Most XML uses can be conceptualized as business processes in which communi-
ties of users share information. Successful schema development should be based
on analyzing, documenting, and reaching consensus on the business processes, the
parcels of information (documents) exchanged in those processes, and the struc-
ture of a commonly understood vocabulary/grammar for creating the documents.

The focus of XML schema and component development should be on creating
XML languages that are understood by a community of stakeholders who engage
in business processes together. In this context, the term business process has a
greater scope than just business-to-business transactions (B2B) where products
are bought and sold for money. Some examples:

� An EPA activity wishes to make reference tables of XML-format code
lists available to its community. Here the process is consumer-to-
application (C2A)/application-to-consumer (A2C) and application-to-
application (A2A). A user (consumer) may request the table data via a
web-browser (C2A); the activity receives the request and returns XML

4-3

that is transformed to HTML (A2C). An application may also request and
receive the same information in XML format via SOAP (A2A).

�

�

A Treasury application wishes to make fiscal data—from messages avail-
able on a publish-subscribe or broadcast basis—to Treasury analysts and
other Treasury applications.

DoD logistics activity wishes to store product data from an acquisition in a
neutral format so that at some future point it can be parsed and read into
any database for future processing by other activities needing it. In this
case, the process can be thought of as consumer-to-consumer (C2C), be-
cause the product data that is received by the acquiring consumer should
be represented in an XML language that is understood by other consumers
within the community.

Relational modeling languages like IDEF1x are appropriate for logical and physi-
cal enterprise data modeling of complex systems or data warehouses that will be
implemented primarily by relational data bases. However, it is more difficult to
model hierarchical, object-like relationships expressed by XML in this language.
Relational modeling focuses the efforts of the modeling exercise on the efficient
representation of data as a set of normalized entities. This simplifies the process
of creating relational databases, but complicates the process of understanding the
hierarchical nature of information, and it often hides or neglects critical object
like aspects of the domain.

XML is an information sharing metalanguage that is inherently hierarchical. It is
better represented via graphical modeling languages, which allow capture of ob-
ject relationships versus key/key-reference relationships of normalized entities.
The WG recommends that activities interested in capitalizing on XML as an in-
formation exchange medium take the time to learn the UML. UML is rapidly be-
coming the de facto industry standard for system requirements analysis and
business-process and information modeling, as well as software design. It pro-
vides a common language that business experts, managers and IT specialist can
use throughout all phases of a system’s implementation (requirements discovery,
analysis, business rules and workflow documentation, software design, and de-
ployment).

Many data-modeling languages have an object orientation. However, products
supporting the direct creation of XML DTDs and/or Schema from UML are be-
coming available. A number of different, non-standards based approaches are in-
corporated in these tools. However, the UN/CEFACT EDIFACTiv (EDI for
Administration, Commerce and Transport) Working Group (EWG) is undertaking
to develop an international standard for UML to XMLv mapping that will even
further improve future tool support. By taking the time to create UML static struc-
ture models of information exchange requirements, schemas can be automatically
generated and updated as standards and models evolve. This will ultimately drive
down the cost of implementing XML based systems.

4-4

http://www.ebtwg.org/

Schema Design Conventions

UML to XML tools are in their infancy. Due to lack of a standard, each tool
works differently at present. However, by taking the time to learn UML now, and
beginning the process of creating information models in UML, government activi-
ties will position themselves to capitalize on future advancements.

Regardless of the modeling language chosen, it is useful to construct and use
information and data models that are independent of XML specific syntax.
This will allow stakeholders involved in schema design to separate informa-
tion modeling decisions from XML design decisions.

EXAMPLE

A proposed procedure for schema development is presented in Appendix D. It is
non-normative, and provided as an example only.

4.3. CAPTURING METADATA
GUIDANCE

Federal XML developers SHOULD, within reason, capture as much metadata as
possible in a schema.

The schema language chosen (DTDs or XML Schema) will impact the amount of
metadata that can be expressed and the ability of applications to access the meta-
data for processing.

�

�

�

For DTDs, XML comments MAY be used to annotate the DTD with defi-
nitions and constraints, which the DTD syntax does not allow.

Alternatively, for DTDs, fixed attributes MAY be used to capture the
metadata.

For XML Schema, metadata may be captured in a number of ways, as is
discussed in the following sections. These are the four primary ways of
capturing metadata:

h Domain value restrictions SHOULD be captured by the use of built-in
Schema data types, the construction of custom data types, the assign-
ment of enumerations to XML component values, the use of regular
expressions, and minimum/maximum value constraints.

h Metadata regarding the structure and cardinality of components
SHOULD be captured by expressing element order as a (set of)
choice(s) or an ordered or unordered sequence. Additionally, the exact
number of times an element can, (or must) be repeated MAY be speci-
fied.

4-5

h Logical relationships or relationships to existing data dictionaries and
models (such as the Department of Defense Data Dictionary System
(DDDS), ebXML core components, or Federal Reference Data Sets)
may be expressed by the use of types or Schema annotations.

h An element’s definition, sources of definitions or code lists, version in-
formation, and other metadata MAY be captured by the use of Schema
annotations.

�

�

�

�

�

�

�

�

�

Developers MAY consider the creation of a verbose semantic schema and
a compact schema strictly for document validation purposes.

Alternatively, schema documentation and annotations MAY be provided
by creating a schema guide that is URL accessible and referenced in the
header of the schema. Tools such as XML Authority and XML Spy 4.x
provide excellent documentation generation capabilities that can partially
automate this process.

EXPLANATION

The schema is more than just a document structure validation tool. The XML
Schema language, in particular, has a rich feature set for capturing extra metadata
that can provide:

Data element definitions through the use of annotations

Detailed domain value constraints

Logical data element pedigree through the use of annotations and types.

By capturing this metadata, the schema becomes an interoperability tool, because
analysts can read it and understand the meaning and derivation of various XML
components. Several sources of metadata exist that can be used to derive XML
components. These include:

The Federal XML Registryvi.

The initial set of ebXML core components (see the ebXML Technical Re-
portsvii on Core Components)

Agency Specific Data Dictionaries (such as the DDDS)

Various commercial standards (ISO, UN/CEFACT, ANSI ASC X12, etc.)

With the exception of the FXR, the sources named do not provide readily reusable
XML component names, however they do provide accepted, reusable data ele-
ment definitions.

4-6

http://www.ebxml.org/specs/
http://www.ebxml.org/specs/

Schema Design Conventions

A fully documented XML Schema may be quite verbose. Such “semantic” Sche-
mas can provide critical insight to analysts who desire to understand and interop-
erate by making use of the information in the Schema. However, they contain
much more information than is really necessary for document structure validation.
A “compact” Schema that is equivalent to the “semantic” Schema may be quickly
built for validation purposes. Having both a full “semantic” Schema and a “com-
pact” schema may be appropriate for activities wishing to provide extensive
Schema annotations, or underlying type relationships while having a smaller
schema used strictly for validation.

A schema guide document that fully defines and explains each component in the
schema and the schema’s logical structure is an alternative to creating a fully
documented semantic schema.

EXAMPLE

Appendix D provides an example that combines several of the concepts discussed
so far, including capturing definitions and relationships.

4.3.1. Application Specific Metadata

GUIDANCE

Application specific metadata (such as SQL statements or API calls) that are of
interest only to a single application SHALL NOT be included in instances or
schemas.

EXPLANATION

Including application specific metadata in an instance unnecessarily clutters the
document, increases bandwidth requirements, and is only useful to one applica-
tion.

4.3.2. Capturing XML Component Definitions

GUIDANCE

Federal XML developers MUST—through XML comments, XML Schema anno-
tations, a schema guide, or data dictionaries—document XML element and XML
Schema type definitions. These definitions SHOULD be related to underlying
ISO 11179 data element definitions.

Definitions SHOULD be brief and when possible be taken from existing standard
data element definitions, such as those provided by the DDDS, ebXML Core
Components, Federal Reference Data Sets, or other agency Standards.

4-7

Definitions SHOULD contain URL or other pointers to the definition’s source, so
that analysts can look up additional information.

Developers MAY extend the XML Schema annotation <xsd:documentation> tag
by further marking up information provided with custom tags. No standards for
this yet exist; however, the general guidelines of this document should be fol-
lowed, and custom metadata tag names should follow the naming convention of
the source data dictionary.

Developers MAY elect to publish schema documentation in a separate schema
guide, however if this option is chosen, the schema must be URL accessible and
referenced in the schema header.

EXPLANATION

Many activities in the government are rapidly developing schemas. Mandating
that schema developers take the time to provide element and Schema type defini-
tions will facilitate identifying commonalities and reusable components. Further-
more, it will start to enforce some rigor and thought in the creation of XML
components as business and technical experts come together to create definitions
for components and map their context-specific elements back to applicable gov-
ernment enterprise data standards.

Section 6 provides guidance on use of XML elements versus attributes. The WG
recommends that attributes be minimized, and only used to provide supplemen-
tary metadata necessary to understand the business value of an XML element. By
adopting this convention, and that of naming attributes in camel case according to
ISO 11179 conventions, attributes will be reasonably self-explanatory and there-
fore not require a definition in most cases.

EXAMPLE

Appendix D provides a consolidated example of capturing definitions in XML
Schema.

The example in Section 3.2 also illustrates these concepts.

4.3.3. Enumerations and Capturing Code Lists

GUIDANCE

Federal XML schema developers SHOULD use XML Schemas to express enu-
meration constraints on XML element and attribute values, when enumeration is
considered essential to XML based data validation, such enumerated lists are of
reasonable length, and the enumerations are considered stable (not likely to
change frequently).

4-8

Schema Design Conventions

The decision to explicitly enumerate in a schema SHOULD be made by program
managers based on the resulting size of the schema, bandwidth availability, and
validation requirements.

Code lists from which enumerations are taken SHOULD be referenced by URI or
other pointers so that analysts can lookup code values.

EXPLANATION

The government frequently represents data element values as codes rather than as
free text. Codes are much easier for an application to understand and process be-
cause they are taken from a finite list of possible values, each with accepted se-
mantics. Application developers create software to execute actions based on those
code definitions and a specified set of business rules. XML can be used to ex-
change data that uses codes to abbreviate information, and the schema can be used
to provide metadata about codes and their associated definitions (reference ta-
bles). Again, the way this is accomplished depends on the schema language cho-
sen, with XML Schemas offering the most functionality. Capturing a reference to
a list of valid codes and code values will greatly enhance implementations and
allow future analysis to identify standard code reference tables. However, for
code lists that historically change frequently, a URI pointer to the authoritative
code list source is preferable.

EXAMPLE

A DTD example of an element taken from the MIL-STD-6040 (USMTF) with an
enumerated set of possible values and an XML comment referencing the source of
the code definitions. Note, the only way to express an enumeration in a DTD is
via an attribute. In this example, the ‘casualtyCategoryCode’ attribute is better
made an XML element (see Section 6). Use of the XML Schema language would
have allowed expressing this enumeration as an element.

<!ELEMENT Casualty EMPTY>

<!ATTLIST Casualty casualtyCategoryCode (1 | 2 | 3 | 4)
#REQUIRED>

<!—casualtyCategoryCode

Definition: A CATEGORY DENOTING THE EFFECT OF A CASUALTY ON A
UNIT’S PRIMARY AND/OR SECONDARY MISSION AREAS.

Source: MIL-STD-6040 Baseline 2001 FFIRN 1207 FUDN 0001—>

4-9

4-10

Chapter 5 Document Annotation Conventions

GUIDANCE

Federal XML schema developers MUST provide carefully thought out comments
within schema and stylesheets, which provide basic information necessary to use
and understand the document.

In general, Instances SHOULD NOT be documented, however, there may be
situations in which it is appropriate.

EXPLANATION

Just as it is good programming practice to document application code using a cod-
ing standard, it is important that XML schemas and stylesheets be well-
documented in a standard fashion. The following paragraphs provide some rec-
ommended guidance.

The simplest way to express annotations is through the use of XML comments.
Comments can be inserted anywhere in an XML document after the XML decla-
ration.

XML Schema annotations provide a more flexible, extensible way to document
Schemas as illustrated by many examples in this document.

5.1. DOCUMENT VERSIONING
GUIDANCE

Version information for instances, schemas, and stylesheets MUST be available
via document annotations (XML comments or Schema annotations).

EXPLANATION

Having a schema’s version number available to developers will assist in creating
implementation that will maintain backward compatibility. Version information is
also necessary for stylesheets in order to determine which version of a stylesheet
correctly transforms an instance that conforms to a version of a schema.

5-1

5.1.1 Versioning DTDs

GUIDANCE

DTD version information SHOULD be captured as an XML comment in the
header of the DTD, and MAY be captured as a fixed attribute of the root element.

EXPLANATION

DTDs offer two methods of documenting version numbers. The most straightfor-
ward is to put the DTD version number in the header XML comment. A second
method is to declare a fixed schema version attribute to the XML Root Element.
This will make the version generally available to applications via an API call.

EXAMPLE

<?xml version=‘1.0’ encoding=‘UTF-8’ ?>

<!ELEMENT root EMPTY>

<!ATTLIST root schemaVersion CDATA #FIXED ‘1.0’ >

Section 5.2 discusses providing version information in an XML comment in the
header of a schema

5.1.2. Versioning XML Schemas

GUIDANCE

XML Schemas MUST include a version using the ‘version’ attribute of the XML
Schema specification.

EXPLANATION

The schema header as discussed in Section 5.2 provides a uniform method to cap-
ture a consistent body of information required for a schema. However, developers
can make version information more easily available to applications through the
use of the version attribute as shown in the example.

5-2

Attributes Versus Elements

EXAMPLE

Example of using Schema annotations to capture schema version information in
an <xsd:appInfo> tag:

<?xml version=“1.0” encoding=“UTF-8” ?>

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema” ele-
mentFormDefault=“unqualified” version=“1.0” >

…

</xsd:schema>

5.1.3. Versioning Stylesheets

GUIDANCE

A stylesheet MUST contain both its own version number (by using the built in
version attribute of the XSLT language) and references to the name and versions
of the schema that describe instances upon which the stylesheet performs cor-
rectly.

EXPLANATION

Tracking stylesheet versions is very important because a new version of a
stylesheet may or may not correctly transform an instance conforming to an old
version of a schema. Explicitly asserting which versions of a schema are sup-
ported in a stylesheet will alleviate potential interoperability issues as implemen-
tations evolve.

EXAMPLE

See example provided in Appendix E.

5.2 HEADERS
GUIDANCE

To promote interoperability, every schema, stylesheet, or instance MUST contain
some basic metadata.

5-3

The metadata identified in Sections 5.2.1 and 5.2.2 SHOULD be provided.

[Ed. Note–There already exists a Federal electronic information exchange header
standard. the metadata in 5.2.1 and 5.2.2 should be normalized with that existing
standard.]

5.2.1 Schemas

� Schema Name

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Federal XML Registry Namespace(s)

Functional Data Area

URL to most current version

For XML Schema, other Schemas imported or included to include FXR
Namespace and version Schema file name, and URL.

For DTD, external entities referenced to include FXR Namespace and ver-
sion (in the case of parameter entities that are modular DTDs)

A description of the purpose of the schema

The name of the application or program of record that created and and/or
manages the schema

The version of the application or program of record

A short description of the application interface that uses the description. A
URL reference to a more detailed interface description may be provided

Developer point of contact information to include activity, name and email

A change history log that includes change number, version, date and
change description.

5.2.2 Stylesheets

Stylesheet Name

A list of schemas3 and XSL processors against which the stylesheet has
been tested.

The FXR Namespace where the stylesheet is registered

Functional Data Area of the application that makes use of the stylesheet

5-4

Attributes Versus Elements

�

�

�

�

�

�

�

URL to most current version

Other stylesheets imported to include name and URL

A description of the purpose and function of the stylesheet

Application or program of record (with version) responsible for develop-
ing and maintaining the stylesheet

Developer point of contact information to include activity, name and email

A change history log that includes change number, version, date and
change description.

5.2.3 Instances

The name and URL of the schema that validates, and the stylesheet (if
any) that correctly transforms it, if these are not specified already as part
of the instance.

EXPLANATION

Other interested parties must be able to read a document and understand how to
implement it or use information from it. Much of the information captured in a
header XML comment can be better made available to applications through the
use of fixed attributes or XML Schema annotations. However, having a consistent
set of header information in a consistent location in an XML document will pro-
mote better configuration management and interoperability as methods for mak-
ing this information available to applications are standardized. While examples
are provided that show the above information captured in a single comment after
the XML declaration, this should not discourage innovative developers from pro-
viding the same information as Schema annotations (possible with custom markup
inside a <xsd:documentation> tag). Some information may also be captured as
fixed attributes if developing in DTDs, as illustrated by previous examples.

EXAMPLE

Appendix E provides non-normative examples of document headers.

5-5

5-6

Chapter 6 Attribute Versus Element Conventions

GUIDANCE

The use of attributes SHOULD be carefully considered. Attributes SHOULD only
be used to convey metadata that will not be parsed. Attributes, if used, SHOULD
provide extra metadata required to better understand the business value of an ele-
ment.

Some additional guidelines are:

�

�

�

�

Attribute values SHOULD be short, preferably numbers or conforming to
the XML Name Token convention. Attributes with long string values
SHOULD NOT be created.

Attributes SHOULD only be used to describe information units that can-
not or will not be further extended or subdivided.

Information specific to an application or database MUST NOT be ex-
pressed as values of attributes (see Section 4.3.1).

Use attributes to provide metadata that describes the entire contents of an
element. If the element has children, any attributes should be generally
applicable to all the children.

EXPLANATION

One of the key schema design decisions is whether to represent an information
element as an XML element or attribute. Once an information element has been
made an attribute, it cannot be extended further; for this reason and to promote
better uniformity within the federal sector, we discourage the use of attributes.

EXAMPLE

In Example 1, the code KTS (for knots) provides extra metadata required to un-
derstand the ‘business value’ of the element–600. It answers the question, “600
what?”

Example 1:

<TargetVelocityMeasure measureUnit-
Code=“KTS”>600</TargetVelocityMeasure>

6-1

In the other examples, we illustrate several appropriate ways of expressing coded
values.

Examples of inappropriate attribute usage:

Example 2:

<TargetVelocity measure=“600” measureUnitCode=“KTS”/>

Example 3:

<CasualtyCategoryCode definition=“[TRAINING ACTIVITY ONLY]
EQUIPMENT CASUALTY EXISTS BUT WILL NOT IMPACT
TRAINING WITHIN 30 DAYS.”> 1</CasualtyCategoryCode>

In Example 3, both the business value and descriptive metadata are attribute val-
ues. This provides no mechanism for applications to determine which piece of
information describes the other. In Example 4, the attribute is used to provide a
verbose definition while the code value comprises the element contents; because
XML parsers normalize white space in attribute values, attributes are inappropri-
ate for use in this manner.

6-2

Chapter 7 Federal XML Registry

GUIDANCE

Draft Federal XML Tag Standards Policy REQUIRES all federal developers to
reuse existing tags in the FXR if sufficient, or re-use commercial industry stan-
dard vocabularies if applicable, before developing their own.

It furthermore REQUIRES activities to register developed XML components with
the FXR. When XML components from a commercial XML consortium are used,
they also MUST be registered.

Developers MUST familiarize themselves with FXR site and the FXR order
scheme. Each activity submitting a registration package to the registry is
REQUIRED to do so via the registry manager.

EXPLANATION

While this guidance provides many recommendations and examples of how to
create more interoperable XML, the single biggest factors affecting interoperabil-
ity are visibility and reuse. The intent of the FXR is to provide visibility into
XML components that are being used throughout the government.

The WG is working with government representatives to develop specific guidance
for developers as to the appropriate registration scheme with which they should
register. Until this is promulgated, activities should study the registry site, and
contact the FXR Information Manager for what appears to be the most appropriate
place for registration. If unable to locate an appropriate registration scheme loca-
tion, register with the ‘To Be Determined’ (TBD) registration scheme URN.

Pending resolution, a single application should submit its registration package to a
single Federal Registry. In the case where an application’s data crosses bounda-
ries, request the FXR Information Manager to provide guidance.

EXAMPLE

An example of a Federal Registration package was obtained from the FXR and is
available for download the FXR information library.

7-1

7-2

Appendix A
ebXML and UN/CEFACT

DESCRIPTION
ebXML was an 18-month international project sponsored jointly by OASISviii
and UN/CEFACTix that ended in May, 2001 with the delivery of several specifi-
cations, technical reports and white papers available at www.ebxml.org/specs.
The ebXML deliverables define an architecture with two distinct views. The
Functional Service View (FSV) defines

�

�

�

�

�

�

functional capabilities,

Business Service Interfaces, and

protocols and Messaging Services.

In other words, the FSV consists of specifications and standards that describe how
an ebXML-compliant system will physically operate to include interfaces, proto-
cols, and registry/repository operations.

The Business Operational View (BOV) addresses:

the semantics of business data in transactions and associated data inter-
changes

the architecture for business transactions, including:

h operational conventions,

h agreements and arrangements, and

h mutual obligations and requirements.

The BOV work focused on two areas. The first focus was on creating a methodol-
ogy by which business processes can be modeled as orchestrated collaborations
between business partners who exchange payloads of information (which may be
XML documents). The UMM was chosen as the modeling methodology and a
BPSS was created. Second, the BOV work focused on creating a methodology for
creating two types of reusable components:

process components which can be used to build complex business process
models

A-1

http://www.ebxml.org/specs

� information components which can be used to construct business docu-
ments as payloads of ebXML messages.

Some of the ebXML technical reports discuss the concept of core components as
universal, domain independent information entities defined in an XML-neutral
syntax. This is significant because the ebXML authors intentionally did not ad-
dress how components (core and domain specific) should be used to produce
business documents (in XML). According to the ebXML architecture, ebXML
components exist as registered objects within an ebXML registry/repository sys-
tem; the work of defining production rules for creating XML payloads from regis-
try entries was deferred. This decision has drawn sharp criticism from some,
however it makes sense. The ebXML strategy was to first address how to repre-
sent information (semantics and context) independently of how it is syntactically
expressed as an XML document; consequently the ebXML technical reports on
core components adopt the ISO 11179 naming convention for creation of diction-
ary entries for information entities. They do not specify how to create XML com-
ponent names for schemas describing business documents containing payloads of
information.

The ebXML deliverables provide a basis for future work required to make the vi-
sion of global interoperability a reality. OASIS and UN/CEFACT agreed to divide
that work between them with OASIS assuming responsibility for the FSV aspects
while UN/CEFACT took on the BOV portion. Since that time, UN/CEFACT has
established the EWGx,

“…for the purpose of continuing the UN/CEFACT’s role in pioneering
the development of XML standards for electronic business. The group
was formed to build on the success of the earlier ebXML Joint Initiative
between UN/CEFACT and OASIS, which delivered its first set of speci-
fications in May 2001.”

One of the key deliverables of this group will be a final Core Component Specifi-
cation that will combine and further refine the ebXML Core Component Techni-
cal Reportsxi.

The rest of the information presented in this appendix is taken from the deliver-
ables of the ebXML project. These documents are works in progress. They may
be useful in selecting data element and XML component names, however devel-
opers must and should expect the rules and specifications presented here to evolve
rapidly.

A-2

http://www.ebxml.org/specs/index.htm
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/

EBXML NAMING RULES
Quoted4 from the ebXML Technical Architecturexii, Section 4.3 Design Conven-
tions for ebXML Specifications:

“In order to enforce a consistent capitalization and naming convention
across all ebXML specifications “Upper Camel Case” (UCC) and “Lower
Camel Case” (LCC) Capitalization styles SHALL be used. UCC style
capitalizes the first character of each word and compounds the name. LCC
style capitalizes the first character of each word except the first word.

1. ebXML DTD, XML Schema and XML instance documents SHALL have
the effect of producing ebXML XML instance documents such that:

h Element names SHALL be in UCC convention
(example: <UpperCamelCaseElement/>).

h Attribute names SHALL be in LCC convention
(example: <UpperCamelCaseElement lowerCamelCaseAttrib-
ute=“Whatever”/>)…

2. General rules for all names are:

h Acronyms SHOULD be avoided, but in cases where they are used, the
capitalization SHALL remain (example: XMLSignature).

h Underscore (_), periods (.) and dashes (-) MUST NOT be used
(don’t use: header.manifest, stock_quote_5, commercial-transaction,
use HeaderManifest, stockQuote5, CommercialTransaction instead).”

The following are component-naming rules as quoted from the technical report,
Naming Convention for Core Componentsxiii Section 5.2. They are based on the
ISO 11179 Part 5 draft specification. In reading these understand that:

�

Since the publication of this report, the UN/CEFACT has changed “repre-
sentation type” to “representation term”:

4 Copyright © ebXML 2001. All Rights Reserved.

“This document and translations of it MAY be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its imple-
mentation MAY be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this
document itself MAY not be modified in any way, such as by removing the copy-
right notice or references to ebXML, UN/CEFACT, or OASIS, except as required
to translate it into languages other than English.”

A-3

http://www.ebxml.org/specs/ebTA.pdf
http://www.ebxml.org/specs/ebCCNAM.pdf

�

�

These rules apply to creation of ebXML “core components” but may be
used in the creation of DON specific elements as well.

These initial rules are being incorporated into the UN/CEFACT’s Core
Components Specification, which is being developed by the Core Compo-
nent project team. Developers may choose to use the rules specified in the
draft Core Components Specification rather than these. When that docu-
ment reaches final status, this appendix will be updated accordingly. For
now the May 2001 Core Component Naming Convention rules as speci-
fied by the initial ebXML project are provided for reference.

h Rule 1: The Dictionary Entry Name shall be unique and shall consist
of Object Class, a Property Term, and Representation Type.

h Rule 2: The Object Class represents the logical data grouping (in a
logical data model) to which a data element belongs” (ISO 11179).
The Object Class is the part of a core component’s Dictionary Entry
Name that represents an activity or object in a context.

An Object Class may be individual or aggregated from core compo-
nents. It may be named by using more than one word.

h Rule 3: The Property Term shall represent the distinguishing
characteristic of the business entity. The Property Term shall occur
naturally in the definition.

h Rule 4: The Representation Type shall describe the form of the set of
valid values for an information element5. It shall be one of the terms
specified in the “list of Representation Types” as included in this
document.

Note: If the Representation Type of an entry is “code” there is often a
need for an additional entry for its textual representation. The Object
Class and Property Term of such entries shall be the same.

(Example: “Car. Colour. Code” and “Car. Colour. Text”).

h Rule 5: A Dictionary Entry Name shall not contain consecutive redun-
dant words. If the Property Term uses the same word as the Represen-
tation Type, this word shall be removed from the Property Term part
of the Dictionary Entry Name.

5 The term ‘information element’ is used generically in the same context as the term data ele-

ment, and should not be confused with XML Elements. An information element (or entity as
ebXML refers to them) can be expressed as any of several XML components (XML Elements,
attributes, or XML Schema types).

A-4

http://www.ebtwg.org/projects/core.html
http://www.ebtwg.org/projects/core.html

For example: If the Object Class is “goods”, the Property Term is “de-
livery date”, and Representation Type is “date”, the Dictionary Entry
Name is ‘Goods. Delivery. Date’.

In adoption of this rule the Property Term “Identification” could be
omitted if the Representation Type is “Identifier”.

For example: The identifier of a party (“Party. Identification. Identi-
fier”) will be truncated to “Party. Identifier”.

h Rule 6: One and only one Property Term is normally present in a Dic-
tionary Entry Name although there may be circumstances where no
property term is included (e.g., Currency. Code).

h Rule 7: The Representation Type shall be present in a Dictionary Entry
Name. It must not be truncated.

h Rule 8: To identify an object or a person by its name the Representa-
tion Type “name” shall be used.

h Rule 9: A Dictionary Entry Name and all its components shall be in
singular form unless the concept itself is plural (e.g., goods).

h Rule 10: An Object Class as well as a Property Term may be com-
posed of one or more words.

h Rule 11: The components of a Dictionary Entry Name shall be sepa-
rated by dots followed by a space character. The words in multi-word
Object Classes and multi-word Property Terms shall be separated by
the space character. Every word shall start with a capital letter.

h Rule 12: Non-letter characters may only be used if required by lan-
guage rules.

h Rule 13: Abbreviations, acronyms and initials shall not be used as part
of a Dictionary Entry Name, except where they are used within busi-
ness terms like real words (e.g., EAN.UCC global location number,
DUNS number (see Section 3.2).

h Rule 14: All accepted acronyms and abbreviations shall be included in
an ebXML glossary [read, “…included in the element definition in the
schema annotation, see Section 3.2“].

A-5

REPRESENTATION TERMS
The following extract is provided from a 12 October 2001 draft of the
UN/CEFACT core component specification. It is provided for information only:
Here Representation Term is used versus the earlier Representation Type initially
used in the ebXML technical reports.

Table A-1. Representation Terms

Representation
Term Definition

Links to Core
Component Type

Amount A number of monetary units specified in a cur-
rency where the unit of currency is explicit or im-
plied.

Amount. Type

Code A character string (letters, figures or symbols) that
for brevity and/or language independence may be
used to represent or replace a definitive value or
text of an attribute. Codes usually are maintained
in code lists per attribute type (e.g., colour).

Code. Type

Date A day within a particular calendar year (ISO
8601).

Date Time. Type

Date Time A particular point in the progression of time (ISO
8601).

Date Time. Type

Graphic A diagram, graph, mathematical curve, or similar
representation

Graphic. Type

Identifier A character string used to identify and uniquely
distinguish one instance of an object within an
identification scheme from all other objects within
the same scheme.

[Note: Type shall not be used when a person or
an object is identified by its name. In this case the
Representation Term “Name” shall be used.]

Identifier. Type

Indicator A list of two, and only two, values that indicate a
condition such as on/off; true/false etc. (synonym:
“Boolean”).

Indicator. Type

Measure A numeric value determined by measuring an
object. Measures are specified with a unit of
measure. The applicable unit of measure is taken
from UN/ECE Rec. 20.

Measure. Type

Name A word or phrase that constitutes the distinctive
designation of a person, place, thing, or concept.

Text. Type

Percent A rate expressed in hundredths between two val-
ues that have the same unit of measure.

Numeric. Type

A-6

Table A-1. Representation Terms

Representation
Term Definition

Links to Core
Component Type

Picture A visual representation of a person, object, or
scene

Picture. Type

Quantity A number of non-monetary units. It is associated
with the indication of objects. Quantities need to
be specified with a unit of quantity.

Quantity. Type

Rate A quantity or amount measured with respect to
another measured quantity or amount, or a fixed
or appropriate charge, cost or value (e.g., US Dol-
lars per hour, US Dollars per EURO, kilometre
per litre, etc).

Numeric. Type

Text A character string generally in the form of words
of a language.

Text. Type

Time The time within a (not specified) day (ISO 8601). Date Time. Type

Value

Numeric information that is assigned or is deter-
mined by calculation, counting or sequencing. It
does not require a unit of quantity or a unit of
measure

Numeric. Type

The following representation terms apply to aggregate Core Components or Core
Component types.

Table A-2. Other Representation Terms

Representation Term Definition
Links to Core

Component Type

Details The expression of the aggregation of Core
Components to indicate higher levelled infor-
mation entities

Not Applicable

Type The expression of the aggregation of Core
Components to indicate the aggregation of
lower levelled information entities to become
Core Component Types. All Core Component
Types shall use this Representation Term

Not Applicable

Content The actual content of an information entity.
Content is the first information entity in a Core
Component Type

Used with the con-
tent components of
Core Component
Types

The ebXML core components technical reports require that name of “aggregate
information entities” use the special representation type, ‘details’. Federal XML
developers may omit the term ‘details’ from the end of tag names when XML

A-7

element names are generated from the ISO 11179 name. For example, the ISO
11179 data element name ‘Address. Details’ would be represented in the XML
instance as <Address>; in the XML Schema that describes the instance, the
element Address would be created from the ISO 1179 derived Schema type Ad-
dressDetails.

The Representation Terms provided by ISO 11179 may not be adequate for a
number of engineering, scientific and operational concepts. In these cases, tempo-
rary use of other term names, such as until the list of types is expanded, MAY be
considered; however do this with caution.

A-8

A-9

Appendix B
Schema Development

POSSIBLE SCHEMA DEVELOPMENT PROCEDURE SUMMARY
The following is presented as a possible procedure for developing schema. It does
not represent the consensus of the WG; rather it is presented for your considera-
tion and feedback. It is purely developmental; all or none of it may be useful.

STEPS

In creating XML components according to these conventions, try the following:

Step 1. Analyze the business processes in which your application will ex-
change, use or store information. Understand who the consumers (both
human and machine) of the information your application provides are.
The WG recommends the use of the UMM and UML for this process,
however any model that provides a basic understanding of how infor-
mation will be exchanged across system boundaries (application to ap-
plication, application to human, or human to application) can provide a
basis for development as more rigorous modeling techniques, such as
the UMM, are learned. The business process modeling should identify
and name actors (persons, organizations, or systems) that participate in
the process. The roles that each actor plays should also be identified
and named. It is important to separate the name of the actor from the
name of the role because often the same actor will participate in multi-
ple roles within a process.

Step 2. Based on the information exchange requirements identified in step 1,
spend the time to model the data in each document that will be ex-
changed within the processes defined in step 1. The WG strongly rec-
ommends using the UML to conduct the modeling. Several efforts are
underway to create production rules by which UML models can be di-
rectly used to generate XML documents. An excellent online resource
is xmlmodeling.com.

Step 3. Look for previously developed XML components that can be reused,
either in the FXR or schema developed by commercial consortia.
(W3C Technical Reports provides references).

Step 4. Create the ebXML/ISO 11179 compliant name and definition for each
element identified in step 2 that will be used in an information ex-
change scenario.

B-1

http://www.xmlmodeling.com/
http://www.w3.org/TR/

Step 5. Identify extra metadata required to understand the business value of
each element. This extra metadata may be expressed in either the
schema or the instance as attributes (Section 6 provides detailed guid-
ance).

Step 6. Analyze the information element. Ensure you have identified specific
physical elements for each data item that will appear in the XML
instance. This process will help the team identify underlying logical
elements or generic physical elements that can be reused by declaring
them as XML Schema Types or as abstract elements. This analysis
should supplement the model you defined in step 2, and may require
that you iterate through step 2 again. The UML static structure artifact
is extremely useful here. Last, determine relationships between ele-
ments defined here and existing data models and definitions (such as
the ebXML core components, the DDDS, and the Federal XML Regis-
try).

Step 7. Identify any common business terms that are associated with the in-
formation elements defined in step 2.

Step 8. Create the schema 6.

a. If creating the schema as a DTD, your choices are to make the
model elements defined as an XML element or an attribute.

b. If employing the XML Schema language, you have some extra
choices in deciding how to express a model element. Model ele-
ments can be expressed

� as types, which may be declared abstract,

� as abstract XML elements, or

� as (non-abstract) XML elements or attributes.

c. One strategy for creating XML Schemas is as follows:

� Create an underlying set of simple and complex XML
Schema types describing base data types, reusable logical
and generic physical elements.

� Declare every model element that will appear in the XML
instance as type that derives from the types declared previ-
ously.

6 Up until now, we have not considered how we will express the information in XML. It is a

good XML engineering practice to go through the process of defining and modeling information
before the additional complications and design alternatives of XML are addressed. Trying to do
both information modeling and XML design at the same time is confusing, and often, critical as-
pects of one or the other are missed.

B-2

Schema Development

� Create XML Schema types and attributes using the same
name as the ISO 11179 named model elements.

� Create XML element names that consist of an optional con-
text term plus the ISO 11179 Object Class (plus property
term if appropriate) plus representation term. For example
<DoDMaterialItemIdentifier>, where the context term is
“DoD” indicating that the element is specific to the De-
partment of Defense.

� For element names that also have common business terms
with commonly used synonyms, such as NSN for National
Stock Number, create a substitution group for the addi-
tional business terms and synonyms.

d. Build the schema from the bottom-up and top-down.

e. Register any newly created XML elements with the FXR.

B-3

Appendix C
Tools and References

TOOLS
Tools for developing and employing XML in applications are flooding the mar-
ket. However, most if not all of these tools are in early stages of development. In
future revisions to this publication, recommendations will be provided as to tools
that have either been used, evaluated or are know by reputation. Pros and cons of
each will be presented in the case where they are known. Application developers
who have used a particular tool may request that it be included in this list, pro-
vided it meets at least two of the following criteria:

�

�

�

�

It is relatively mature or produced by an established vendor (such as IBM
or Microsoft). A beta tool from Microsoft, or from IBM Alphaworks may
be included, however a beta tool from CrazyXMLTools.com should not.

It is a leader in a developing area, such as X2X’s XLink processor. While
still immature, it is currently one of the leaders in XLink processing soft-
ware.

It has been used by a federal activity and found to be useful and relatively
free of bugs, or the bugs are well documented.

It has been evaluated by a neutral third part (such as Forrester or the Gart-
ner Group, or an established periodical) with favorable results.

Submit proposed tools to the editor using the format in Table C-1:

C-1. Proposed Tools

Name and Link Description Pros Cons

XML, XSL and Schema Development

XML Parsers and XSL Processors

Databases

“Servers”

C-1

mailto:bhopkins@logicon.com?subject=Proposed Addition to XML Tools List

Miscellaneous

A more complete list of available XML software is maintained at
www.xmlsoftware.com.

PUBLICATIONS

Table C-2 lists publications that have been reviewed and found to be good refer-
ence material. The table presents several levels of reader and recommends appro-
priate reading for each.

C-2

http://www.xmlsoftware.com/

Tools and References

C-2. Reference Publications

Audience Title ISBN Author(s) Date

Management/Business XML: A Manager’s Guide 0-201-
43335-4

Dick 2000

 ebXML: The New Global
Standard for Doing Business
on the Internet

0-735-
71117-8

Kotok &
Weber

2001

Business/Technical XML in a Nutshell: A Desk-
top Quick Reference (Nut-
shell Handbook)

0-596-
00058-8

Harold &
Means

2001

 Metadata Solutions: Using
Metamodels, Repositories,
XML, and Enterprise Portals
to Generate Information on
Demand

0-201-
71976-2

Tannenbaum 2001

 Modeling XML Applications
with UML: Practical e-
Business Applications

0-201-
70915-5

Carlson 2001

Technical The Wrox Professional XML
Series

 Wrox

 Building B2B Applications
with XML: A Resource
Guide

0-471-
40401-2

Fitzgerald 2001

 Java & XML, 2nd Edition:
Solutions to Real-World
Problems

0-596-
00197-5

McLaughlin 2001

 SOAP: Cross Platform Inter-
net Development Using XML

0-130-
90763-4

Seely &
Sharkey

2001

 Inside XSLT 0-735-
71136-4

Holzner 2001

 XML Schema Development:
An Object-Oriented Ap-
proach

0-672-
32059-2

Brauer 2001

INTERNET

Listed below are related Internet resources:

C-3

http://www.wrox.com/Books/books.asp?sub_section=1&subject_id=30&subject=XML
http://www.wrox.com/Books/books.asp?sub_section=1&subject_id=30&subject=XML
http://www.wrox.com/

�

�

�

�

�

�

�

�

�

�

�

�

BizTalk http://www.biztalk.org/home/default.asp

ebXML http://www.ebxml.org

UN/CEFACT http://www.UN/CEFACT.org/

OASIS http://www.oasis-open.org/

Open Applications Group http://www.openapplications.org/

The Object Management Group www.omg.org

RosettaNet
http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial

Schema.net http://www.schema.net

W3C http://www.w3.org

XML.com http://www.xml.com/

The XML Cover Pages http://www.oasis-open.org/cover/sgml-xml.html

XML Software.com http://www.xmlsoftware.com/

C-4

http://www.biztalk.org/home/default.asp
http://www.ebxml.org/
http://www.ebtwg.org/
http://www.omg.org/
http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial
http://www.schema.net/
http://www.w3.org/
http://www.xml.com/
http://www.oasis-open.org/cover/sgml-xml.html
http://www.xmlsoftware.com/

Appendix D
Combined XML Schema Example

The following XML Schema is a combined example illustrating some of the guid-
ance and concepts discussed in this document. The example is non-normative, and
does not represent a consensus. It is provided for information only.

In this example, a tag from the FXR, <ACOUST_SIGNA_FREQ> is reused, but
the principles of ISO 11179 and camel case are applied using the functionality of
the XML Schema language to maintain interoperability.

[Ed. Note–This example currently uses business terms as element names, in lieu
of the required ISO 11179 type names. This example will need to be updated prior
to formal release of the document. This example is also DoD centric, and may not
be easily understandable by other agencies. The example should be changed to a
common business process such as purchase order that is non agency specific.]

The FXR defines a tag <ACOUST_SIGNA_FREQ> in the Tracks & Reports
Namespace. An instance might look like this:

<ACOUST_SIGNA_FREQ>12.100</ACOUST_SIGNA_FREQ>

Definition: ACOUSTIC SIGNATURE FREQ. THE FREQUENCY OF AN
EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE THOUSANDTH HERTZ.

Maximum Length: 10

You can view this tag definition at
http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358.

A possible XML Schema for this element:

<?xml version=“1.0” encoding=“UTF-8” ?>
- <!—
edited with XML Spy v4.1 U (http://www.xmlspy.com) by Brian
Hopkins (Logicon/CISD)

—>
- <xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema” element-

FormDefault=“qualified” attributeFormDefault=“unqualified”>
- <xs:complexType name=“MeasureType”>

D-1

http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358

- <xs:annotation>
- <xs:documentation source=“http://www.ebxml.org/specs/ccDICT.pdf”>
- <ebXML>
<CoreComponent UID=“core000152”>Text. Type</CoreComponent>

</ebXML>
</xs:documentation>
</xs:annotation>

- <xs:simpleContent>
- <xs:extension base=“xs:decimal”>
<xs:attribute name=“measureUnitCode” type=“xs:string” use=“optional” de-

fault=“HZ”/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
- <!—
ISO 11179-derived type name

—>
- <xs:complexType name=“AcousticSignalFrequencyMeasure”>
- <xs:annotation>
- <xs:documentation

source=“http://www.spawar.navy.mil/VPO/dataDictionary.doc#ID1234”>
- <!—
example source attribute points to notional data dictionary
where the ISO name is definied. If the dictionary is readily
URL accessible, then the <ISO11179Name> element below is
redundant and may be ommitted. Shown here for example.

—>
- <ISO11179Name>
<ObjectClass>Acoustic Signal</ObjectClass>
<PropertyTerm>Frequency</PropertyTerm>
<RepresentationTerm>Measure</RepresentationTerm>

</ISO11179Name>
</xs:documentation>

- <xs:documentation
source=“http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358”>

- <!—
example source attribute points to Federal XML Registry
Namespace from which element is derived

D-2

Combined XML Schema Example

—>
- <COEXMLRegistry>
<Namespace prefix=“TAR”>Tracks and Reports</Namespace>
<TagName>ACOUST_SIGNA_FREQ</TagName>
<Definition>acoustic SIGNATURE FREQ. THE FREQUENCY OF AN

EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE
THOUSANDTH HERTZ.</Definition>

<RegistryID>8358</RegistryID>
</COEXMLRegistry>
</xs:documentation>
</xs:annotation>

- <xs:simpleContent>
- <xs:restriction base=“MeasureType”>
<xs:totalDigits value=“10”/>
<xs:fractionDigits value=“3”/>
<xs:pattern value=“\d*.\d{3}”/>
<xs:attribute name=“measureUnitCode” fixed=“HZ”/>

</xs:restriction>
</xs:simpleContent>
- <!—
Annotations provide logical pedigree of element: Its ISO 11179
name and it mapping to an existing component already
registered with Federal XML Registry

—>
</xs:complexType>
- <!—
Element named after business term, “Acoustic Frequency”

—>
- <xs:element name=“AcousticFrequency”

type=“AcousticSignalFrequencyMeasure”>
- <xs:annotation>
<xs:documentation>Business Term</xs:documentation>

</xs:annotation>
</xs:element>
- <!—
COE element name made synonymous with camel case business term
through use of substitution group

D-3

—>
- <xs:element name=“ACOUST_SIGNA_FREQ”

type=“AcousticSignalFrequencyMeasure” substitution-
Group=“AcousticFrequency”>

- <xs:annotation>
<xs:documentation>COE Registered name</xs:documentation>

</xs:annotation>
</xs:element>
</xs:schema>

SCHEMA GUIDE FOR ACOUSTICSIGNALFREQUENCYMEASURE SCHEMA TYPE AND
ASSOCIATED ELEMENTS

The Schema defines 5 XML Components: 2 types, 2 elements and 1 attribute.

Elements Complex types

ACOUST_SIGNA_FRE
Q

AcousticSignalFrequencyMeasure

AcousticFrequency MeasureType

The Federal XML Registry element name is defined as:

‘element ACOUST_SIGNA_FREQ’

diagram

Federal XML Registry name

type AcousticSignalFrequencyMeasure

facets totalDigits 10

 fractionDig-
its

3

 pattern \d*.\d{3}
attrib-

utes
Name Type Use Default Fixed

measureUnit-
Code

 HZ

D-4

Combined XML Schema Example

measureUnit-
Code

 HZ

annota-

tion
documenta-

tion
Federal XML Regis-
try name

source <xs:element name=“ACOUST_SIGNA_FREQ”

type=“AcousticSignalFrequencyMeasure” substitution-
Group=“AcousticFrequency”>

<xs:annotation>

<xs:documentation>Federal XML Registery name</xs:documentation>

</xs:annotation>

</xs:element>

D-5

Points to note:

�

�

�

�

It is derived from a type ‘AcousticsSignalFrequencyMeasure’.

It has several facets that restrict its domain.

It has one attribute, ‘measureUnitCode’ that is fixed with a value of HZ.

It is declared to be in the substitution group of the element ‘AcousticFre-
quency’.

‘element AcousticFrequency is a business term’ (notionally agreed to by all
stakeholders within a COI).

diagram

Federal XML Registry name

type AcousticSignalFrequencyMeasure
facets totalDigits 10

fraction-
Digits

3

pattern \d*.\d
{3}

attributes Name Type Use Default Fixed

measureUnit-
Code

 HZ

annotation documenta-

tion
Business
Term

source <xs:element name=“AcousticFrequency”

type=“AcousticSignalFrequencyMeasure”>

<xs:annotation>

<xs:documentation>Business Term</xs:documentation>

</xs:annotation>

</xs:element>

D-6

Combined XML Schema Example

Points to note:

�

�

The business term has a synonym, ‘ACOUST_SIGNA_FREQ’, defined
above and declared to be in the substitution group.

It has the same attributes and facets as ‘ACOUST_SIGNA_FREQ’ be-
cause it derives from the same type.

‘complexType AcousticSignalFrequencyMeasure’ is the common Schema type
from which both elements are derived.

diagram

type restriction of MeasureType

used by ele-
ments

ACOUST_SIGNA_FREQ
AcousticFrequency

facets totalDigits 10

fraction-
Digits

3

pattern \d*.\d
{3}

attrib-

utes
Name Type Use Default Fixed

measureUnit-
Code

xs:string optional HZ

 <!—example source attribute points to notional data

dictionary where the ISO name is defined. If the dic-
tionary is readily URL accessible, then the
<ISO11179Name> element below is redundant and
may be omitted. Shown here for example.—>

D-7

<ISO11179Name>

 <ObjectClass>Acoustic Signal</ObjectClass>

 <PropertyTerm>Frequency</PropertyTerm>

 <Representation-
Term>Measure</RepresentationTerm>

</ISO11179Name><!—example source attribute
points to Federal XML Registry Namespace from
which element is derived—>

<FederalXMLRegistry>

 <Namespace prefix=“TAR”>Tracks and Re-
ports</Namespace>

 <Tag-
Name>ACOUST_SIGNA_FREQ</TagName>

 <Definition>acoustic SIGNATURE FREQ. THE
FREQUENCY OF AN EMITTED ACOUSTIC
SIGNAL TO THE NEAREST ONE THOUSANDTH
HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

</FederalXMLRegistry>

D-8

Combined XML Schema Example

D-9

source <xs:complexType name=“AcousticSignalFrequencyMeasure”>

<xs:annotation>

<xs:documentation
source=“http://www.spawar.navy.mil/VPO/dataDictionary.doc#ID1234 “>

<!—example source attribute points to notional data dictionary where the ISO
name is defined. If the dictionary is readily URL accessible, then the
<ISO11179Name> element below is redundant and may be omitted. Shown
here for example.—>

<ISO11179Name>

<ObjectClass>Acoustic Signal</ObjectClass>

<PropertyTerm>Frequency</PropertyTerm>

<RepresentationTerm>Measure</RepresentationTerm>

</ISO11179Name>

</xs:documentation>

<xs:documentation
source=“http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358”>

<!—example source attribute points to Federal XML Registry Namespace from
which element is derived—>

<FederalXMLRegistry>

<Namespace prefix=“TAR”>Tracks and Reports</Namespace>

<TagName>ACOUST_SIGNA_FREQ</TagName>

<Definition>acoustic SIGNATURE FREQ. THE FREQUENCY OF AN
EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE THOUSANDTH
HERTZ.</Definition>

<RegistryID>8358</RegistryID>

</FederalXMLRegistry>

</xs:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:restriction base=“MeasureType”>

<xs:totalDigits value=“10”/>

<xs:fractionDigits value=“3”/>

<xs:pattern value=“\d*.\d{3}”/>

<xs:attribute name=“measureUnitCode” fixed=“HZ”/>

</xs:restriction>

D-10

Combined XML Schema Example

Points to note:

�

�

�

�

The Type annotation provides the following:

h ISO 11179 name parts. The source of this documentation is provided
as a notional data dictionary referenced by URL and ID.

h FXR Metadata including the definition.

The domain restrictions are placed in the type versus at the element level.

The attribute, ‘measureUnitCode’ has an optional value of HZ. It is set to
fixed in the element declaration.

The type is derived from an ebXML “core component”

‘complexType MeasureType’ is a complex type derived from an ebXML core
component.

diagram

type extension of xs:decimal

used by complex-
Type

AcousticSignalFre-
quencyMeasure

attributes Name Type Use Default Fixed

measureUnit-
Code

xs:string optional HZ

annota-

tion
documenta-

tion
<ebXML>

 <CoreComponent UID=“core000152”>Text.
Type</CoreComponent>

</ebXML>

source <xs:complexType name=“MeasureType”>

<xs:annotation>

<xs:documentation source=“http://www.ebxml.org/specs/ccDICT.pdf”>

<ebXML>

D-11

<CoreComponent UID=“core000152”>Text. Type</CoreComponent>

</ebXML>

</xs:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base=“xs:decimal”>

<xs:attribute name=“measureUnitCode” type=“xs:string” use=“optional” de-
fault=“HZ”/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

Points to note:

�

�

�

The measureUnitCode attribute common to all other types and elements is
defined only once—here.

The type extends from the simpleType of decimal, again defined only
once—here.

The annotations provide mapping to the initial ebXML core component
UID.

XML Schema documentation generated with XML Spy Schema Editor
www.xmlspy.com

Some examples of XML instance fragments this document will validate:

<ACOUST_SIGNA_FREQ>100.000</ACOUST_SIGNA_FREQ>

or

<ACOUST_SIGNA_FREQ measureUnit-
Code=“HZ”>100.000</ACOUST_SIGNA_FREQ>

or

<AcousticFrequency measureUnitCode=“HZ”>100.000</AcousticFrequency
>

D-12

http://www.xmlspy.com/

Appendix E
Sample XML Document Headers

Sample Schema Header

<?xml version=“1.0” encoding=“UTF-8”>

<!—Schema/DTD Header ****************************

Schema Name: SPAWARVPO$2-1_FolderData$1-1.xsd

Federal XML Registry Information: TBD
Functional Data Area: Administration

Current version available at (URL):
https://www.spawar.navy.mil/vpo/schemas/SPAWARVPO$2-1_FolderData$1-
1.xsd

Other Schemas Imported (XML Schema only):

**** Namespace Prefix: PER
“http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm”

**** Schema File Name: BUPERSBUPERSOnLine$3-0_Document$2-2.xsd

**** Available at URL: www.bupers.navy.mil/bupersOnLine/schemas/

Other Schemas Included (XML Schema only): None

External DTDs Referenced (DTD only): n/a

**** Name: n/a

**** Available at (URL): n/a

Description: Provides information regarding the content of VPO folders such as
content file names, file sizes, file owner, file status, and file access information.

Application: Virtual Program Office

Application Version: 2.1

Application Interface:

E-1

XML data is available from the VPO application via HTTP at
https://www.spawar.navy.mil/vpo/GetFolderInfo.asp. Input queries via HTTP
GET with query string format, “…?dir=directoryName”. A complete interface
description document is available at
https://www.spawar.navy.mil/vpo/interfaces/GetFolderInfo.txt

Associated Stylesheet:

**** Name: SPAWARVPO$2-1_ViewFolderContents$1-0.xsl

**** Available at (URL): https://www.spawar.navy.mil/vpo/stylesheets/

Developed by (Gov’t Activity): SPAWAR 08

Point of Contact Name: Joe Smith

Point of Contact Email: jsmith@spawar.navy.mil

Change History:

CHANGE # Version DATE DESCRIPTION OF CHANGE

 0 1.0 15 Sep 2001 Initial release

 1 1.1 30 Sep 2001 Updated to include file size infor-
mation

**

—>

This is a generic header that is provided in text-only, non-XML format. It can be
used for either a DTD or XML Schema. A possibly more useful approach would
be to markup header information using XML. The tags could be encapsulated by
XML comment markup (<!—…—> or in the case of XML Schemas, included as
an annotation following the XML Schema declaration.

Marking up header information could be very useful; for instance a large number
of schemas could be automatically analyzed to determine which Federal XML
Namespaces and Functional Data Areas they fell into. This would be a time con-
suming manual process otherwise.

The WG may work to standardize the tags and procedures for providing header
information in XML markup. Until then, it is important to get the information
somewhere in the document. Activities wishing to experiment with different
strategies and techniques for providing header data are encouraged to do so and

E-2

Sample XML Document Headers

report their findings to the WG. Consider the above example the minimum infor-
mation we think will be required. Your input is encouraged.

Notes on header fields:

Header Item Description
Schema Name: The standard name of the schema file. See

Document Naming Convention

Tested With: List the name and version number of the XML
processor(s) that have been tested and are known to
correctly validate this schema.

Federal XML Registry
Information:

Identify the Federal XML Registry Information re-
lated to elements from this schema by specifying the
Federal XML Registry Information Prefix data. You
can specify multiple Namespaces for XML Schemas
that use tags from mulitple namespaces. This is only
possible through the use of XML Schemas because
DTDs do not support XML Namespace prefixing.

Functional Data Area: Indicate the Functional Data Area to which the ap-
plication that uses this schema belongs.

Current version available
at (URL):

If this schema is URL accessible, put the address
here. We highly recommend that all schemas be
available on-line to assist other activities desiring to
interoperate.

Other Schemas Imported
(XML Schema only):

The next three fields are
repeatable

The XML Schema language allows the reuse of ex-
isting XML Schema so that schemas can be modu-
larized. The first way of doing this is via the XML
Schema Import syntax.

**** Namespace Prefix
and URL:

The XML Schema Import syntax is used when de-
siring to reuse a schema whose elements belong to a
different XML Namespace from the elements into
which the import is being conducted.

**** Schema File Name: The standard name of the imported schema file. See
Document Naming Convention

*** Available at (URL): If this schema is URL accessible, put the address
here. We highly recommend that all schemas be
available on-line to assist other activities desiring to

E-3

Header Item Description
interoperate.

Other Schemas Included
(XML Schema only):

The next two fields are
repeatable

The second way XML Schemas allow reuse of other
schemas is through the XML Schema Include syn-
tax. Includes can be used when the elements in the
included schema belong to the same XML Name-
space as the schema into which the include is occur-
ing. A schema may both include and import.

**** Schema File Name: The standard name of the imported schema file, see
Document Naming Convention

*** Available at (URL):

If the schema file to be imported is URL accissable,
put its address here. We highly recommend that all
schemas be available on-line to assist other activi-
ties desiring to interoperate.

External DTDs Refer-
enced (DTD only):

The next two fields are
repeatable

Information regarding any External Parameter En-
tity references are made to an external DTD. This
approximates the modular design capability avail-
able in XML Schema.

**** Name: The standard name of the DTD file, see Document
Naming Convention

**** Available at(URL): If this schema DTD is URL accissable, put its ad-
dress here. We highly recommend that all schema
DTDs be available on-line to assist other activities
desiring to interoperate.

Description: Plain text description of the type of information de-
scribed by the schema.

Application: The name of the application which produces XML
documents that validate to this schema.

Application Version: The version (major.minor) of the application that
produces this schema.

Application Interface: A plain text descriptive summary of how other ap-
plications interface with this application (e.g., via
HTTP, using query parameters passed via HTTP
POST or GET). Examples of query name/value
pairs may be provided. If SOAP is used, you should
provide a brief description of the method calls and

E-4

Sample XML Document Headers

Header Item Description
parameters. A good XML engineering practice is to
completely document your application interface; if
you have done so, reference that documentation
here. Making the interface specification available
via a (secure) URL will assist other developers in
interoperating.

Associated Stylesheet: If a stylesheet is available to render instances that
validate to this schema, provide information here.

**** Name: The standard name of the stylesheet file, see
Document Naming Convention

**** Available at (URL) If the stylesheet is URL accessible, put the its ad-
dress here. We highly recommend that all
stylesheets be available on-line to assist other activi-
ties desiring to interoperate.

Developed by (Gov’t
Activity):

Government Activity and Office code.

Point of Contact Name:
Joe Smith

Name of person to contact with questionions regard-
ing the schema.

Change History: The following fields provide an audit trail of
changes.

CHANGE # Keep a sequentially numbered list of changes.

Version You should also assign Major and minor version
numbers.

DATE Date implemented

DESCRIPTION OF
CHANGE

Plain text description.

Sample Stylesheet Header

This sample stylesheet header is the similar to the schema header with the addi-
tion of information regarding the version of a schema from which the stylesheet is
written, and the removal of non-applicable items.

E-5

<?xml version=“1.0”>

<!—Stylesheet Header ****************************

Stylesheet Name: SPAWARVPO$2-1_ViewFolderData$1-1.xsl

Tested to:

**** Schema Name: SPAWARVPO$2-1_FolderData$1-1.xsd

**** Schema Version: 1.1

**** XSL Processors: MSXML 3.0, XALAN 1.2.2
Federal XML Namespace: TBD

Functional Data Area: Administration

Current version available at (URL): https://www.spawar.navy.mil/vpo/stylsheets/

Other Stylsheets Imported:

**** File Name: BUPERSBUPERSOnLine$3_Document$2-2.xsl

**** Available at URL: www.bupers.navy.mil/bupersOnLine/stylsheets/

Description: XSLT compliant stylesheet renders folder contents as an HTML ta-
ble

Application: Virtual Program Office

Application Version: 2.1

Developed by (Gov’t Activity): SPAWAR 08

Point of Contact Name: Joe Smith

Point of Contact Email: jsmith@spawar.navy.mil

Change History:

CHANGE # Version DATE DESCRIPTION OF CHANGE

 0 1.0 15 Sep 2001 Initial release

 1 1.1 30 Sep 2001 Updated to include file size infor-
mation

E-6

Sample XML Document Headers

**

—>

E-7

The following notes indicate differences between the stylesheet and schema
header only.

Header Item Description
Stylesheet Name: The standard name of the schemastylesheet file. See

Document Naming Convention

Tested to: Information regarding the specific schema and soft-
ware with which this stylesheet has been tested.

**** Schema Name: Name(s) of the schemas with which this stylesheet
has been tested.

**** Schema Version: Version(s) of the schemas with which this stylesheet
has been tested.

**** XSL Processors: Name(s) of the XSL processors with which this
stylesheet has been tested.

Other Stylesheets Im-
ported

The next two fields are
repeatable

Stylesheets—like schemas—can be constructed
modularly. Provide information here regarding other
reused stylesheets.

**** File Name: The standard name of the file. See Document Nam-
ing Convention

*** Available at (URL): If this Stylesheet is URL accessible, put its address
here.

Sample Instance header

It is important that XML documents include some basic information. Most of the
needed information can be gleaned from the header data provided by the schema
that describes the document and the stylesheet(s) that transform or render it. The
XML specifications provide syntax for pointing to schemas and stylesheets at the
beginning of an XML document. In cases where validation against a schema
and/or transformation with a stylesheet is not required, it is still desirable to pro-
vide references to schemas and stylesheets if available. Consider this example:

E-8

Sample XML Document Headers

<?xml version=“1.0” encoding=“UTF-8” ?>

<!—

Schema and Stylesheet Reference Data:
stylesheet type = xslt

url = http://spawar.navy.mil/stylesheets/SPAWARVPO$2-
1_ViewFolderData$1-1.xsl

version = 1.1

schema type = XML Schema (W3C)

url = http://spawar.navy.mil/schemas/SPAWARVPOV2-
1FolderDataV1-1.xsd

version = 1.1

—>

<root/>

E-9

Appendix F
Points of Contact

Federal XML WG Government Lead:

(To Be Determined) Joint Federal CIO Council XML Working Group Lead and
Editor:

F-1

Appendix G
Glossary and Acronyms

The following draft glossary is provided in advance of the WG’s future XML
Glossary deliverable. It does not reflect the consensus of the WG. These items are
provided for information only.

TERMS

Abstract–In the context of an XML Schema, an XML element or Schema type
may be declared abstract, meaning that it may not be used directly. An abstract
element may not be directly used in an instance, but must have a non-abstract
element in its substitution group (e.g., an abstract element ‘Address’, which de-
fines the contents of an address). A non-abstract ‘HomeAddress’ element that is
substitutable for ‘Address’ can be used as an XML element. The ‘HomeAddress’
structure reuses the previously defined ‘Address’ contents, but the tag provides a
specific context. Schema types may also be declared abstract. Similar to abstract
elements, abstract types may not be directly used to reference elements, but must
have a non-abstract type that extends/restricts from it. The non-abstract type can
then be used to reference XML elements. The concept of abstractness is taken
from object-oriented programming, where an abstract class may be defined; re-
quiring sub-typing prior to instantiation.

Binding - A term frequently used in reference to XML applications taken from the
field of computer science. In the context of applications that have a public inter-
face that communicates in XML (such as the case with a web service), binding
refers to the information required and the process by which an external source
connects to, and interacts with it to get data in XML. Binding can also refer to the
process and application required to connect a software module (e.g. a Java class,
or COM object) to a public XML interface, or the way in which the public XML
is related to an underlying data source (such as a relational database).

BPSS - The Business Process Specification Schema was developed as part of the
ebXML project as a schema for describing a business process in an XML
instance. In may be created from UML models of business processes developed
according to the UMM as described in the technical report, Business Process and
Business Information Analysis Overview v1.0xiv. The BPSS is available in either
DTD format xv or XML Schema (Candidate Recommendation) formatxvi.

Business Term - The ebXML specifications refers to a business term as a com-
monly used term referencing a commonly understood concept within a specific
domain. To enhance understandability, it is appropriate to use business terms as

DRAFT——12/21/01 G-1

http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/ebBPSS.dtd
http://www.ebxml.org/specs/ebBPSS.xsd

XML Element names (when they exist), rather that the often esoteric ISO 11179
syntax.

Camel Case–A convention in which names of elements and attributes are all
lower case with the exception of the beginning of a new word, which is in upper-
case. ebXML differentiates between upper camel case—where the first letter of
the name is also capitalized—and lower camel case, where it is not. Example of
an upper camel case name: UpperCamelCase. A lower or just camel case name:
lowerCamelCase. Camel case is emerging as the industry norm for XML element
naming. ebXML specifies elements to be in upper and attributes to be in lower
camel case, while BizTalk, RosettaNet, and Oasis use straight camel case for both
elements and attributes.

CSS - Cascading Style Sheets. A set of W3C recommendations for styling HTML
and XML documents based on the application of formatting instructions in a lin-
ear, cascading fashion. CSS is an alternative to styling XML with XSL, but CSS
does not have the transformational component of XSLT.

Class–A software component that provides instructions for the creation of an ob-
ject. Applications are said to create instances of a class (“objects“) through a
process referred to as instantiation. In the context of XML, a schema is a “class”
that describes XML instances (data “objects”).

Federal XML Registry–The Federal XML Registry provides a baseline set of
XML components developed through coordination and approval among the fed-
eral XML community. The Registry allows you to browse, search, and retrieve
data that satisfy your requirements.” Draft Federal XML policy requires that all
activities developing XML register components be developed with the appropriate
Federal XML Namespace.

Federal XML Registry Information–The Federal XML Registry is divided into
“Namespaces”. A Namespace is a collection of people, agencies, activities, and
system builders who share an interest in a particular problem domain or practical
application. This implies a common worldview as well as common abstractions,
common data representations, and common metadata. The Federal XML Registry
allows Namespaces to publish their existence and their available information re-
sources so that outsiders may discover them and assess whether they want to
share.” Federal XML Registry Information is an extension of the Federal XML
Registry concept.

Federal XML Registry Information Manager–Each Federal XML Namespace has
a central activity responsible for it. The individual responsible for coordinating
and administering the Namespace is the Registry Information Manager. Point of
contact information for the Registry Information Managers is available by click-
ing on the Namespace hyperlinksxvii on the registry’s web site.

DRAFT——12/21/01 G-2

http://www.w3.org/Style/CSS/
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

Draft Glossary and Acronyms

Federal XML Registry Information Prefix–Each Federal XML Namespace has
been assigned a three-letter prefix that may be used as XML Namespace qualifiers
in XML instances and Schemas.

Federal XML Registration Package–Activities developing XML within the gov-
ernment are required to submit a specially formatted package of information to
the FXR containing metadata about the components registered. Information about
how and what to register can be found herexviii.

COM Object–The Common Object Model is a Microsoft sponsored interface
specification for creating interoperable software components. Distributed COM or
DCOM is Microsoft’s COM interface standard for distributed computing, i.e.,
where an “application” consists of software “objects” distributed across nodes of
a network. DCOM is similar to the Java based EJB specification, but works only
for Microsoft operating systems. DCOM objects can communicate via TCP/IP
and their own proprietary messaging framework (Windows Distributed iNternet
Architecture or DNA). Alternatively, COM objects can communicate with other
non-COM/non-Window’s objects such as Java Classes or EJBs via XML and
SOAP.

CORBA–Common Object Request Broker Architecture. CORBA is a framework
created by the Object Management Groupxix (OMG) to facilitate plat-
form/operating system/programming language-neutral distributed computing.
Software components or “objects” interact in client-server relationships, with an
Object Request Broker (ORB) software component acting as intermediary. Via
the IIOP, CORBA-based distributed applications can operate across the Internet.
Most commonly used with the Java language, though CORBA is language inde-
pendent.

Core Components–One goal of the ebXML effort is to define a set of universal
core components that are contextually neutral and can be used across all domains
to express semantics of common business concepts. Core components may be in-
formation entities, defined in the ebXML Core Component Dictionary technical
reports, or process components discussed in the ebXML Business Process techni-
cal reports. Note that the core component technical reports do not address how an
information component will be expressed in XML.This was an intentional omis-
sion on the part of ebXML. It was felt that prior to defining rules for creation of
XML, a necessary first step was to create a schema neutral standard for defining
components in business terminology. The work of defining how core components
map to XML will be undertaken by the Core Component Project Teamxx of the
UN/CEFACT sponsored EWG.

DDDS–The Defense Data Dictionary Systemxxi defines standard data elements
per the DoD 8320 series of documentsxxii. The DDDS provides definitions of
Standard Data Elements (SDEs) from core data models across all DoD data do-
mains. The DDDS elements are mainly logical in nature, and may be used to ex-

DRAFT——12/21/01 G-3

http://www.omg.org/
http://www.ebxml.org/project_teams/core_components/core_components.htm
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebtwg.org/projects/core.html
http://www-datadmn.itsi.disa.mil/ddds/ddds40.html
http://www-datadmn.itsi.disa.mil/guidance.html

press logical, semantic relationships between XML elements. XML Schema types
may be used to express relationships to DDDS standard data elements.

Document Type Declaration–A declaration at the beginning of an XML document
indicating a DTD to which the instance must conform.

DOM - The Document Object Model. The set of W3C DOM recommenda-
tionsxxiii form application interface descriptions (APIs) for expressing the con-
tents of XML or HTML “documents” as hierarchical tree-like models of
information with data forming the “leaves” of the tree. XML Processors that im-
plement the DOM interface parse an entire XML document, creating a data tree in
memory. Applications that call a DOM parser access data from the XML object
tree through a set of programmatic instructions defined by the specifications. The
instructions allow applications to “walk the document tree”, searching for ele-
ments and attributes that meet query criteria (XPath expressions). Results are re-
turned to the calling application and assigned to application variables for further
processing.

DTD - Document Type Definition. A schema syntax that is part of the XML 1.0
specification and derived from SGML.

EJB–Enterprise Java Beans. EJB is an interface specification which a Java class
may implement. Software objects that implement the EJB interface may interop-
erate in an enterprise (distributed) environment—even across the Internet via
TCP/IP and the CORBA IIOP. In this fashion, an “application” may consist of a
number of independent software components (“objects“) that are physically sepa-
rated at different nodes of a network, but functioning together as a single applica-
tion similar to the Microsoft (D)COM specification.

Entity–In the context of a DTD, an entity is a declarative construct defining or
referencing text, or a binary file. Entities are defined in the DTD, and referenced
elsewhere in the DTD (parameter entity) or in the body of the XML (general en-
tity). A validating parser encountering a reference to a previously defined entity
during the validation process will insert the entity’s value in place of the entity
reference. Internal entities are declared in the DTD and may be general or
parameter. External entities point to an external file containing the entity
declaration via URI reference; they also may be internal or external. A parsed
entity is some form of encoded text and is therefore processed by a parser. An
unparsed entity is a reference to a binary file that will not be parsed. Unparsed
entities are always external. Through entities, DTDs may declare a common
construct once, and reuse it many times throughout the DTD or in the instance. A
common use for parameter entities is to declare a common set of attributes in the
DTD. Assigning the attributes to an element only requires a reference to the
parameter entity, versus retyping the entire attribute list many times. A second use
of external unparsed general entities is to make reference to a binary file (such as
an image or sound file) within an XML instance.

DRAFT——12/21/01 G-4

http://www.w3.org/DOM/
http://www.w3.org/DOM/

Draft Glossary and Acronyms

EDI–Electronic Data Interchange. A term referring to the conduct of eBusiness
through the exchange of electronic messages. Two message standards exist as rig-
orously defined sets and segments, one maintained by the U.S. led ANSI X12
body, and the second led by UN/EDIFACT.

Fatal Error - [From the XML 1.0 specification] “An error which a conforming
XML parser must detect and report to the application. After encountering a fatal
error, the parser may continue processing the data to search for further errors and
may report such errors to the application. In order to support correction of errors,
the processor may make unprocessed data from the document (with intermingled
character data and markup) available to the application. Once a fatal error is de-
tected, however, the processor must not continue normal processing (i.e., it must
not continue to pass character data and information about the document’s logical
structure to the application in the normal way).” In other words, upon detecting a
fatal error (such as a well-formedness violation), the parser is unable to provide
information from the XML document to the calling application such that the ap-
plication may continue functioning normally.

HTML - Hypertext Markup Languagexxiv

Interface–The process by which a software application interacts with other soft-
ware or users. In object-oriented programming an (software) “object’s” interface
is often described separately from the internal logic in a process know as “encap-
sulation”. Essentially the interface encapsulates and hides the internal logic. This
allows flexibility to change and improve object code without affecting other ob-
jects. An interface description is made public so other objects/applications know
how to interact. Software is said to “implement” an interface if it conforms to the
behavior as defined in an interface description. The Object Management Group
(OMG) has defined a formal syntax (language) for defining interfaces in a pro-
gramming language neutral fashion. This is called the OMG Interface Description
Languagexxv (OMG IDL). This IDL is used to define interface specifications
such as the DOM API and CORBA. For developers implementing public XML
interfaces, it is a good idea to document exactly how other applications connect,
query, and receive (i.e. bind to) your application; while it is not necessary to go to
the trouble of writing a formal IDL interface description, some kind of formal
document will greatly aid other applications desiring to share data.

IIOP–Internet Inter-Orb Protocol. A TCP/IP based protocol that facilitates com-
munication between CORBA ORBs. Via IIOP, CORBA client objects at one
location on the Internet can communicate with CORBA server objects at another
node and vice versa.

ISO 11179 - Information Technology - Specification and Standardization of Data
Elements is a 6-part ISO standard providing a framework and methodologies for
developing, documenting, and registering standard data elements. Of interest to
XML developers is Part 5: Naming And Identification Principles For Data Ele-
ments upon which the ebXML naming convention is based. The specifications are

DRAFT——12/21/01 G-5

http://www.omg.org/
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.omg.org/gettingstarted/omg_idl.htm

available from the ISO Storexxvi under section 35.040 - Character Sets And In-
formation Coding for a small fee.

Markup - Special characters used by Markup Languages (SGML, XML, HTML)
to differentiate data from metadata. SGML allows document authors the flexibil-
ity of specifying which characters are used for markup, where as in XML the
markup characters are fixed. Markup characters may not be used in data text
(unless special precautions are taken). In the tags definition example, the markup
characters are ‘<‘(greater than), ‘>‘(less than), and ‘/’ (forward slash). The XML
specificationxxvii defines start tag markup as opening with a ‘<‘and ending with a
‘>‘. It specifies that end tag markup opens with ‘</’ and ends with ‘>‘.

Metadata - Data about data. For example, for the data ‘3000N’, the metadata
might be ‘latitude’. Markup languages such as SGML and XML encapsulate data
with tags that contain text describing the metadata. See the example provided in
the tags definition.

Normative–A term frequently used by software specifications to mean required,
mandatory, or representing the only way to accomplish something. Often refer-
ences are cited as normative, meaning that the requirements of these references
apply to the document being read, or as non-normative, meaning they are pro-
vided as information only.

Object–A term used frequently in relation to XML and computer science. Strictly
speaking, an object is a run-time software construct that resides in the Random
Access Memory (RAM) of the host computer. Objects are created by applications
from code that defines the object’s behavior; this code is called a class. In object-
oriented programs, objects interact with other objects to create the behavior of the
application. An object’s behavior is described by an Interface consisting of meth-
ods and properties. A method can be thought of as a behavior of the object that
can be triggered by calling it and optionally passing parameters. For instance, the
object ‘myAccount’ might have the method ‘getBalance(accountNumber)’. Ob-
ject oriented languages use the ‘dot’ notation to refer to objects and methods.
From the previous example, ‘currentBalance == myAc-
count.getBalance(accountNumber)’ is a code snippet that assigns to the ‘current-
Balance’ variable the balance returned from the ‘myAccount’ object when the
‘getBalance()’ method is called by passing in the ‘accountNumber’ variable. Ob-
ject properties are similar to methods, but instead of calling a behavior, a property
call to an object returns a previously set value of the property. Returning to the
example, ‘myName == myAccount.accountOwner’ sets the ‘myName’ variable
equal to the ‘accountOwner’ property of the ‘myAccount’ object, conversely
‘myAccount.accountOwner == myName’ sets the ‘accountOwner’ property of the
‘myAccount’ object to the value of the ‘myName’ variable. XML that has been
parsed by an XML processor implementing the DOM API is transformed into a
set of objects that may be used by the calling application to extract data from the
XML. Also, an application may construct a DOM tree of objects in memory then
transmit the data to another application or object as a textually encoded string of

DRAFT——12/21/01 G-6

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006

Draft Glossary and Acronyms

XML. The receiving object then accesses the data via the DOM or SAX APIs.
Since the XML format is neutral, a COM object created by a Windows applica-
tion may interact with an EJB object running on a Unix platform for true cross-
platform, language-independent distributed computing.

Payload (XML)–Protocols and frameworks such as SOAP, BizTalk, and ebXML
use XML to markup message header information necessary for binding, reliable
messaging, and security. The term ‘payload’ refers to the XML being transmitted
that contains the actual business information being communicated.

Public (XML) Interface–XML may be employed internal to an application or it
may be used to communicate information to other systems outside the originating
applications environment. The term ‘Public Interface’ refers to XML used by an
application or set of homogeneous applications to communicate with other appli-
cations across system boundaries. Federal policy for registration of XML compo-
nents applies to public interfaces; these policies are not intended to restrict the use
of XML internal to systems; in fact, it is recommended that applications separate
internal XML grammars processed by application code from that used for external
communications.

Qualified (elements and attributes)–The practice of prefixing an element or an
attribute with an XML Namespace qualifier in accordance with the Namespaces
in XMLxxviii W3C Recommendation. This allows two elements with the same
name to be disambiguated by an XML processor.

Regular Expression–A language for defining patterns in strings and numbers. The
XML Schema language allows elements and attributes to be constrained by regu-
lar expressions to provide a precise description of the range of possible values.
For instance, an element of type=‘integer’ could be further constrained to be only
a 3-digit integer by the regular expression ‘/d{3}’.

Rendering (XML) - XML is not easily useable to readers in its native format and
should be transformed for presentation (rendered), rendered for presentation, ei-
ther by a CSS, XSLT (to well-formed HTML) for browser viewing, or by XSL-
FO into a format for viewing by other presentation applications (e.g. into Adobe
Acrobat.pdf, or MS Word.doc files.) Note: It is a common assumption that all
XML must be rendered (by a stylesheet) to be useful, and that therefore all XML
must have a stylesheet. This is a mistake; XML data can be used by an application
via an API and never get rendered at all.

SAX - Simple API for XML. SAXxxix is an open-source interface for accessing
information from XML documents. SAX parsers process a document, triggering
events in the calling application corresponding to the parser encountering opening
tags, closing tags and character data. Accessing XML data via SAX is very quick
and places fewer demands on system resources than DOM, however once proc-
essed, a document must be re-parsed if the required information was not retained
initially. This can be conceptualized as “serial” access to the information.

DRAFT——12/21/01 G-7

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/

Schema - Within the context of XML, a document describing a set of XML In-
stances. Schemas may be expressed in a number of different languages. Most fa-
miliar is the Document Type Definition (DTD) syntax described in the XML 1.0
specification. Schemas provide the rules against which a validating parser
validates an instance of XML.

SGML - The Standard Generalized Markup Language [ISO 8879xxx]. SGML is
the parent of both HTML and XML.

SOAP - “SOAP is the Simple Object Access Protocol—a way to create widely
distributed, complex computing environments that run over the Internet using ex-
isting Internet infrastructure. SOAP is about applications communicating directly
with each other over the Internet in a very rich way.” [MS] “SOAP is a protocol
specification for invoking methods on servers, services, components, and objects.
SOAP codifies the existing practice of using XML and HTTP as a method invoca-
tion mechanism. The SOAP specification mandates a small number of HTTP
headers that facilitate firewall/proxy filtering. The SOAP specification also man-
dates an XML vocabulary that is used for representing method parameters, return
values, and exceptions.” [DevelopMentor]. Taken from the XML Cover
Pagesxxxi. The current SOAP 1.1 specificationxxxii is a W3C Note; SOAP
1.2xxxiii is going through the W3C consensus processxxxiv and was published as
a first working draft in July 2001.

SQL - Structured Query Language - A language for querying, writing to, and con-
structing relational databases. Many versions of SQL exist; meaning that an SQL
query that works for one database will not necessarily work against another.

SDE–Standard Data Element as defined by the DoD 8320 series and used in the
DDDS.

Stylesheet - A generic term that may refer to an XSL Stylesheet or a CSS. Often
the term is used to reference XSL Stylesheets implicitly, however this is not tech-
nically correct, as a stylesheet may be CSS conformant, and have nothing the do
with XML whatsoever. The primary function of a stylesheet is to render XML to
a presentation format. However, XSLT can transform one XML instance into an-
other different instance. Application of a stylesheet by an XSL processor to an
XML document for the purpose of creating another XML document (i.e. an XML
to XML transformation) does not render a presentation format at all. More simply,
applying a stylesheet to XML doesn’t imply that the output is ready for viewing;
you have to understand what the stylesheet is doing.

Substitution Group–In the context of XML Schemas, a substitution group may be
declared for an element to define a synonymous group of tag names. A top-level
element is declared, then other elements are declared with an attribute indicating
they belong in the substitution group of the top element. Different elements do not
necessarily have to have the same structures–used in this fashion they are func-
tionally similar to a group of optional elements where only one may be chosen.

DRAFT——12/21/01 G-8

http://www.w3.org/TR/2000/REC-xml-20001006
http://xml.coverpages.org/soap.html
http://xml.coverpages.org/soap.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://www.w3.org/Consortium/Process-20010719/submission

Draft Glossary and Acronyms

The top-level element may be declared abstract. In this case the top level element
may not be used but can serve as a generic model for non-abstract elements in the
substitution group. This is similar and somewhat redundant of the functionality
provided by XML Schema types.

Throw (an error)–A term adopted from the Java language to indicate that a proc-
essing error has occurred. Conceptually, Java “throws” the error to an error-
handling object, which “catches” it, or may “throw” it to another object, and so
on.

UID–Unique Identifier. A generic term used to indicate that an object or item has
a string or number that identifies it uniquely within a specific context or environ-
ment. Universally Unique Identifiers (UUIDs) and Globally Unique Identifiers
(GUIDs) are special identifiers that are guaranteed universal uniqueness via an
identifier assignment algorithm.

UML - The Unified Modeling Languagexxxv defines a standard language and
graphical notation for creating models of business and technical systems. UML is
not only for programmers. It defines several model types that span a range from
functional requirements definition and activity work-flow (business process)
models to logical and physical software design and deployment. The UML has
over the last few years become the lingua franca for business and technical stake-
holders to communicate and develop IT systems. Through the UMM, UML has
been adopted by UN/CEFACT and ebXML as the modeling language of choice.

UMM - The Unified Modeling Methodologyxxxvi is a product of UN/CEFACT,
and describes the UN/CEFACT-recommended methodology for modeling busi-
ness processes to support the development of the next generation EDI. It is based
upon the Rational Unified Processxxxvii, and uses the UML as it modeling lan-
guage. In the UMM, business process are modeled by deconstructing them into a
series of document exchanges which are orchestrated to form a complex process.
The ebXML Technical Report Business Process and Business Information Analy-
sis Overview v1.0 further develops the UMM. The ebXML Business Process
Specification Schema v1.01 (BPSS) provides a schema in the form of a DTD for
specifying business processes as an XML instance. It may be developed as part of
a UMM modeling process.

URL/URI/URN–Uniform Resource Locators, Uniform Resource Indicators, and
Uniform Resource Names are different, related methods of uniformly referencing
resources across networked environments. A W3C Note explains the differ-
encexxxviii.

Valid (XML) - An XML instance (document) whose structure has been verified in
conformance to a schema by a validating parser. Note that an XML instance must
be well-formed to be valid, but it does not need to be valid to be well-formed.
This is because a parser will always check well-formedness constraints but will
only check validation constraints if it is a validating parser.

DRAFT——12/21/01 G-9

http://www.rational.com/uml/index.jsp
http://www.unece.org/cefact/
http://www.ebxml.org/
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/bpOVER.pdf
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/

Validating Parser - An XML parser that enforces validity constraints by compar-
ing the structure and syntax of an XML instance to the rules specified in a
schema. Not all parsers are validating parsers, and validating parsers enforce vali-
dation according to specific schema languages. Most validating parsers are capa-
ble of enforcing validity against a DTD, while some can enforce validation rules
described in other schema languages.

W3C - The World Wide Web Consortiumxxxix was created in October 1994 to
lead the World Wide Web to its full potential by developing common protocols
that promote its evolution and ensure its interoperability. W3C has more than 500
Member organizationsxl from around the world and has earned international rec-
ognition for its contributions to the growth of the Web.

W3C Recommendation - A work that represents consensusxli within W3C and
has the Director’s stamp of approval. W3C considers that the ideas or technology
specified by a Recommendation are appropriate for widespread deployment and
promote W3C’s mission.

W3C Note–A W3C Note is a publication of a member idea. Notes do not go
through the consensus process. They represent the ideas of a single (group of)
W3C member(s).

(W3C) XML Schema - A schema written in accordance with the W3C XML
Schema language. [From the W3C Schemaxlii page] “XML Schemas express
shared vocabularies and allow machines to carry out rules made by people. They
provide a means for defining the structure, content and semantics of XML docu-
ments. The XML Activity Statementxliii explains the W3C’s work on this topic in
more detail.” The W3C XML Schema language is described in three
recommendations: XML Schema Part 0: Primerxliv, XML Schema Part 1: Struc-
turesxlv, and XML Schema Part 2: Datatypesxlvi. In the Federal XML Devel-
oper’s Guide (this document), the term XML Schema is used in reference to a
W3C XML Schema language-compliant schema.

Web-service–A generic term used to refer to the use of Hypertext Transfer Proto-
col (HTTP) and XML to exchange information. Frequently the term implies the
use of SOAP to exchange information between applications, versus application-
to-human, which is done in HTML.

Well-formed (XML) - An XML instance that meets well-formedness constraints
defined by the XML 1.0 specification. Well-formedness constraints are precise
syntactic rules for markup of data. As an example, the XML specification stipu-
lates that every open tag must have a corresponding and properly nested closing
tag. A document must be well-formed in order to be considered XML. A parser
processing a document will throw a fatal error if it detects a well-formedness vio-
lation.

DRAFT——12/21/01 G-10

http://www.w3.org/
http://www.w3.org/Consortium/
http://www.w3.org/Consortium/Process-20010719/submission
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Activity.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

Draft Glossary and Acronyms

Well-formed HTML - HTML that meets the well-formedness constraints of XML
1.0. Well-formed HTML is not the same as XHTML.

XHTML - Extensible HyperText Markup Languagexlvii.

XML - [From the XML 1.0 specification] “Extensible Markup Language, abbre-
viated XML, describes a class of data objects called XML documents and par-
tially describes the behavior of computer programs which process them. XML is
an application profile or restricted form of SGML. By construction, XML docu-
ments are conforming SGML documents.” The XML 1.0 specification is a W3C
Recommendation. In XML, metadata is described by an extensible set of tags; the
tags are said to be extensible, because unlike HTML, where the markup tags are
fixed, developers are given the flexibility to define their own tags or reuse tags
defined by another party. This flexibility is both the key to XML’s power and the
single biggest stumbling point to achieving interoperability when making use of
XML.

(XML) API - Application Programming Interface. In the context of XML, parsers
expose their data to a calling application via an interface. An interface is a speci-
fication (which the parser conforms to) that describes how the parser will pass
data from an XML document to a calling application. The two accepted XML
API’s are DOM and SAX.

(XML) Attributes–In the context of XML, attributes provide a mechanism for at-
taching additional metadata to an XML element. For example, <element attrib-
ute=“value”/>. An XML attribute is not equivalent to an object or relational
model attribute. Data model entity attributes may be expressed as either XML at-
tributes or elements. Frequently in discussions surrounding the application of
XML to data models, one party will be referring to attributes in the context of
XML and another to attributes in the context of data models, causing confusion.

XML Comments–The structure for inserting free text comments into XML. The
same structure is used for SGML and HTML comments. <!—comment text
here—>

XML Component–A generic term used to refer to XML elements, attributes, and
XML Schema type definitions.

(XML) Document - - [Paraphrased from the XML 1.0 specification] “A data ob-
ject is an XML document if it is well-formed, as defined in the XML 1.0, specifi-
cation. A well-formed XML document may in addition be valid if it meets certain
constraints” as described by a schema. Synonymous with XML instance.

(XML) Elements–The fundamental unit of information in XML. Elements are en-
capsulated by tags, and may contain (among other things) attributes (declared in-
side the opening tag), other elements, or data.

DRAFT——12/21/01 G-11

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/
http://www.w3.org/TR/2000/REC-xml-20001006

(XML) Child Element–The hierarchical nature of XML allows elements to con-
tain or be nested inside other elements, forming a conceptual data tree (see
DOM). Often XML elements are referenced in terms of parent-child relationships.
A child element is an element contained between the tags of a parent element.
Child elements are also referred to as descendants, while parent elements may be
referred to as ancestors.

(XML) Grammar/Vocabulary–Related terms often used synonymously to indicate
a set of element and attribute names and the structures described by a schema or
set of related schemas that employ the elements and attributes. More precisely, the
term vocabulary implies a commonly defined set of elements and attributes, while
grammar refers to the composition of the vocabulary into meaningful business
documents by one or more related schemas. An XML Namespace may be used to
describe a vocabulary, while a schema may employ vocabulary from a single or
multiple XML Namespaces.

(XML) Instance - Synonymous with XML Document. The term derives from ob-
ject-oriented programming where objects are considered instances of classes. Pro-
grammers write code that defines application behavior in terms of classes of
objects. In application execution, objects are instantiated (see object) from these
class definitions. XML provides an object-like way to conceptualize textual data.
Essentially, schemas are the equivalent of object classes, and XML documents are
equivalent of object instances. Hence the term XML instance is widely used,
however XML document is the official term used by the W3C.

XML Namespace–An XML Namespace is a conceptual “space” to which element
and attribute names may be assigned. An XML Namespace is declared within an
XML instance by assigning a URI reference and an optional qualification prefix
to an element. The element and all its children are considered to be “in” the XML
Namespace unless specifically qualified with another Namespace’s prefix. The
URI reference does not have to an associated document physically at the URI.
Within an XML Schema, the ‘targetNamespace’ attribute may be used to indicate
that all elements declared within the schema are to be treated as “in” the target
Namespace. The W3C Recommendation Namespaces in XMLxlviii provides the
full specification for XML Namespaces. Note: Federal XML Namespaces may
use XML Namespaces, but the two terms are not synonymous.

(XML) Name Token–Per the XML 1.0 specification, a Name Token is “…any
mixture of name characters…” where a “name” character obey the XML name
convention. A [XML] Name “…is a token beginning with a letter or one of a few
punctuation characters, and continuing with letters, digits, hyphens, underscores,
colons, or full stops, together known as name characters. Names beginning with
the string “xml”, or any string which would match ((‘X’|’x’) (‘M’|’m’) (‘L’|’l’)),
are reserved for standardization in this or future versions of this specification.”
White space characters (hex #x20, #x9, #xD, #xA) are excluded from Name To-
kens.

DRAFT——12/21/01 G-12

http://www.w3.org/TR/1999/REC-xml-names-19990114/

Draft Glossary and Acronyms

(XML) Parser - A software application (module) that either reads or receives a
text encoded binary stream, decodes it, verifies the input conforms to “well-
formedness“constraints of the XML 1.0 specification, (in the case of a Validating
Parser) checks validity of the XML Instance against a schema if available, and
exposes the content via an API to a calling application. A parser can be a stand-
alone application, but it is most often a module called by a larger program (the
calling application). A Parser may also be referred to as an XML Processor.

(XML) Processor - A synonym for an XML parser.

XML Declaration–Every well-formed XML document must begin with a state-
ment that as a minimum declares the version of XML that the document conforms
to. Example: <?xml version=“1.0”>,

XML Document Tree–Refers to the logical model of an XML document concep-
tualized as a data tree, with a Root Node and branch nodes ending at data that can
be thought of as the leaves. See DOM.

(XML) Root Node–The first node originating the XML Document Tree. The Root
Node is not the same as the root element.

(XML) Root Element–Refers to the XML element in which all other elements
must be nested. The root element (a physical XML construct) is a child of the
logical root node of the document tree.

(XML Schema) Type–An XML component defined by the XML Schema lan-
guage. Types do not show up in XML instances; they are used within the Schema
to express relationships, and through type inheritance, add an object-like capabil-
ity to XML Schemas. Types may be simple, that is they allow definition of simple
data-type constraints on element values; or they may be complex, that is they de-
fine structures consisting of other elements. For example a type could be defined
<xsd:complexType name=“AddressDetails”>…</xsd:complexType>, then the
definitions for XML elements, ‘ShippingAddress’ and ‘MailingAddress’ could
reference the previously defined generic type.

(XML) Schema Annotation–The XML Schema language allows addition of anno-
tations to schema components through an ‘annotation’ element
(<xsd:annotation>) which must contain either a ‘documentation’ element
(<xsd:documentation>) or ‘AppInfo’ element (<xsd:appInfo>). A ‘source’ attrib-
ute may be added to either element to provide a URL reference to the source of
the annotation. Annotations provide a more sophisticated way to provide docu-
mentation and application information that may be parsed and accessed by appli-
cations via an API.

(XML) Tags - XML (and its parent SGML) annotate metadata through the use of
tags that indicate which text in a document are considered metadata and which is
to be considered data. Tags are surrounded by markup characters. As an example,
the data ‘3000N’ can be marked up in XML, <latitude>3000N</latitude>. The

DRAFT——12/21/01 G-13

http://www.w3.org/TR/2000/REC-xml-20001006

tags are <latitude> (start tag) and </latitude> (end tag). Note: As discussed in the
XML definition presented here, developers are free to defines tags. As an exam-
ple, the data ‘3000N’ could be alternatively marked up as, <lat>3000N</lat>, and
still be well-formed. The document schema will specify which of all possible
well-formed XML instances are valid for a particular application. An additional
example is <Latitude hemisphere=“N”>3000</Latitude>; here the tag contains an
XML attribute to specify the hemisphere. The choice as to the attribute name and
possible values are also at the developer’s discretion. Note that Parsers processing
documents are sensitive to markup tag case, therefore in the first example the tag
<latitude> is not equivalent to the later example tag, <Latitude>.

XPath–XPath is a W3C recommendation whose primary purpose is to provide a
compact, non-XML notation for identifying parts of an XML document. It oper-
ates on the abstract, logical structure of an XML document, rather than its surface
syntax by modeling an XML document as a tree of nodes. The document tree can
be navigated by applications implementing XPath. XPath is the result of an effort
to provide a common syntax and semantics for functionality shared between XSL
Transformations [XSLT] and XPointer.

XSL - The Extensible Style Sheet Language. [From the W3C XSL pagexlix]
“XSL is a language for expressing stylesheets. It consists of three parts: XSL
Transformationsl (XSLT): a language for transforming XML documents, the
XML Path Languageli (XPath), an expression language used by XSLT to access
or refer to parts of an XML document (XPath is also used by the XML Linkinglii
specification). The third part is XSL Formatting Objects: an XML vocabulary for
specifying formatting semantics. An XSL stylesheet specifies the presentation of
a class of XML documents by describing how an instance of the class is trans-
formed into an XML document that uses the formatting vocabulary. For a more
detailed explanation of how XSL works, see the What Is XSLliii page.” As of 16
October 2001, XSLliv is a W3C final recommendation.

XSL Processor - The software (module) executing XSL transformation and for-
matting instructions. At a minimum, consists of an XSLT conformant transforma-
tion component, and an optional XSL-FO processing component. A word of
caution: XSL processor vendors often add “extensions” to the XSLT specifica-
tion. While often extremely useful, stylesheets written using these extensions will
not perform correctly in another XSLT compliant processor, eliminating their
cross-platform compatibility.

XSL-FO - XSL Formatting Objects: an XML vocabulary for specifying format-
ting semantics. XSL-FO works in conjunction with XSLT to markup transformed
XML with formatting object tags. Applications capable of processing these tags
render the XML to another application’s presentation environment. For example,
Apache’s Formatting Object Processor (FOP) can transform XML to Adobe PDF
format. Another example is jfor, an open-source formatting object processor for
transforming XML to Rich Text Format (RTF).

DRAFT——12/21/01 G-14

http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/Style/XSL/WhatIsXSL.html
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://xml.apache.org/fop/

Draft Glossary and Acronyms

XSLT - XSL Transformationslv, a W3C recommendation [from the XSLT rec-
ommendation] “…defines the syntax and semantics … for transforming XML
documents into other XML documents” [including well-formed HTML].” XSLT
is the only W3C-recommended XML syntax for transforming XML documents.
Developers writing stylesheets should ensure they are strictly conformant to this
specification to ensure reusability. We recommend conformance testing using
several XSLT-compliant XSL processors.

i RFC 2119, http://www.ietf.org/rfc/rfc2119.txt
ii XML Schema Tutorial, http://www.xfront.com/xml-schema.html
iii Schema Best Practices, http://www.xfront.com/BestPracticesHomepage.html
iv UN/CEFACT, http://www.UN/CEFACT.org/
v UN/CEFACT UML2XML, http://www.UN/CEFACT.org/projects/u2xdr.html
vi Federal XML Registry, http://diides.ncr.disa.mil/xmlreg/user/index.cfm
vii ebXML Specifications and Technical Reports, http://www.ebxml.org/specs/
viii OASIS, http://www.oasis-open.org/
ix UN/CEFACT, http://www.unece.org/cefact
x UN/CEFACT, http://www.UN/CEFACT.org/
xi ebXML Core Component Technical Reports,
http://www.ebxml.org/specs/#technical_reports
xii ebXML Technical Architecture, http://www.ebxml.org/specs/ebTA.pdf
xiii ebXML Technical Report, Naming Convention for Core Components

http://www.ebxml.org/specs/ebCCNAM.pdf
xiv Business Process and Business Information Analysis Overview v1.0,

http://www.ebxml.org/specs/bpOVER.pdf
xv ebXML Business Process Specification DTD, http://www.ebxml.org/specs/ebBPSS.dtd
xvi ebXML Business Process Specification XML Schema (CR),
http://www.ebxml.org/specs/ebBPSS.xsd

DRAFT——12/21/01 G-15

http://www.w3.org/TR/xslt
http://www.ietf.org/rfc/rfc2119.txt
http://www.xfront.com/xml-schema.html
http://www.xfront.com/BestPracticesHomepage.html
http://www.ebtwg.org/
http://www.ebtwg.org/projects/u2xdr.html
http://diides.ncr.disa.mil/xmlreg/user/index.cfm
http://www.ebxml.org/specs/
http://www.oasis-open.org/
http://www.unece.org/cefact
http://www.ebtwg.org/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/ebTA.pdf
http://www.ebxml.org/specs/ebCCNAM.pdf
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/ebBPSS.dtd
http://www.ebxml.org/specs/ebBPSS.xsd

xvii COE XML Namespace Managers,
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
xviii COE XML Registration Information,
http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm#submit
xix The Object Management Group, http://www.omg.org/
xx UN/CEFACT Core Component Project, http://www.UN/CEFACT.org/projects/core.html
xxi DDDS, http://www-datadmn.itsi.disa.mil/ddds/ddds40.html
xxii DOD 8320, http://www-datadmn.itsi.disa.mil/guidance.html
xxiii W3C DOM, http://www.w3.org/DOM/
xxiv HTML, http://www.w3.org/MarkUp/
xxv OMG IDL, http://www.omg.org/gettingstarted/omg_idl.htm
xxvi ISO Store, http://www.iso.ch/iso/en/prods-services/ISOstore/store.htm
xxvii XML 1.0, http://www.w3.org/TR/2000/REC-xml-20001006
xxviii Namespaces in XML, http://www.w3.org/TR/1999/REC-xml-names-19990114/
xxix SAX, http://www.megginson.com/SAX/
xxx ISO 8879 (SGML), http://www.w3.org/TR/2000/#ISO8879
xxxi XML Cover Pages - SOAP, http://xml.coverpages.org/soap.html
xxxii SOAP 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
xxxiii SOAP 1.2, http://www.w3.org/TR/2001/WD-soap12-20010709/
xxxiv W3C Process, http://www.w3.org/Consortium/Process-20010719/submission
xxxv UML, http://www.rational.com/uml/index.jsp
xxxvi Unified Modeling Methodology, http://www.gefeg.com/tmwg/tm090.pdf
xxxvii Rational Unified Process, http://www.rational.com/products/rup/index.jsp
xxxviii W3C Note, URI/URL/URN Clarification, http://www.w3.org/TR/2001/NOTE-uri-
clarification-20010921/
xxxix W3C, http://www.w3.org/
xl W3C Members, http://www.w3.org/Consortium/#membership
xli W3C Consensus Processes, http://www.w3.org/Consortium/Process-
20010719/submission
xlii W3C Schema page, http://www.w3.org/XML/Schema
xliii W3C Activity Statement, http://www.w3.org/XML/Activity.html
xliv XML Schemas: Part 0, http://www.w3.org/TR/xmlschema-0/
xlv XML Schemas: Part 1, http://www.w3.org/TR/xmlschema-1/
xlvi XML Schemas: Part 2, http://www.w3.org/TR/xmlschema-2/
xlvii XHTML, http://www.w3.org/MarkUp/#xhtml1
xlviii Namespaces in XML, http://www.w3.org/TR/1999/REC-xml-names-19990114/
xlix W3C XSL Page, http://www.w3.org/Style/XSL/

DRAFT——12/21/01 G-16

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm
http://www.omg.org/
http://www.ebtwg.org/projects/core.html
http://www-datadmn.itsi.disa.mil/ddds/ddds40.html
http://www-datadmn.itsi.disa.mil/guidance.html
http://www.w3.org/DOM/
http://www.w3.org/MarkUp/
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.iso.ch/iso/en/prods-services/ISOstore/store.htm
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.megginson.com/SAX/
http://www.w3.org/TR/2000/
http://xml.coverpages.org/soap.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://www.w3.org/Consortium/Process-20010719/submission
http://www.rational.com/uml/index.jsp
http://www.gefeg.com/tmwg/tm090.pdf
http://www.rational.com/products/rup/index.jsp
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
http://www.w3.org/
http://www.w3.org/Consortium/
http://www.w3.org/Consortium/Process-20010719/submission
http://www.w3.org/Consortium/Process-20010719/submission
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Activity.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/MarkUp/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/Style/XSL/

Draft Glossary and Acronyms

l XSL Transformations, http://www.w3.org/TR/xslt
li XPath, http://www.w3.org/TR/xpath
lii XLink, http://www.w3.org/TR/xlink/
liii What is XSL, http://www.w3.org/Style/XSL/WhatIsXSL.html
liv XSL Final Recommendation, http://www.w3.org/TR/2001/REC-xsl-20011015/
lv XSLT, http://www.w3.org/TR/xslt

DRAFT——12/21/01 G-17

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink/
http://www.w3.org/Style/XSL/WhatIsXSL.html
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/xslt

	Executive Summary
	Figures
	Tables
	Background
	1.1Introduction
	1.2Terminology
	1.3Implementation Requirements
	1.4Appendices

	Software Application Specifications
	2.1Recommended XML Specifications
	
	Guidance
	Other Guidance
	Explanation
	Example

	XML Component Conventions
	3.1Standardized Case Convention
	
	Guidance
	Explanation
	Example

	3.2Usage of Acronyms and Abbreviations
	
	Guidance
	Explanation
	Example:

	3.3XML Component Selection and Creation
	
	Guidance
	Explanation
	Example

	3.3.2Creating XML Component Names from ISO 11179 �Data Elements
	Guidance
	Explanation
	Example

	3.3.3Choosing XML Component Names
	Guidance
	Explanation

	Schema Design Conventions
	4.1Schema Languages
	
	Guidance
	Explanation

	4.2Recommended Schema Development Methodology
	
	Guidance
	Explanation
	
	Regardless of the modeling language chosen, it is useful to construct and use information and data models that are independent of XML specific syntax. This will allow stakeholders involved in schema design to separate information modeling decisions from

	Example

	4.3. Capturing Metadata
	
	Guidance
	Explanation
	Example

	4.3.1.Application Specific Metadata
	Guidance
	Explanation

	4.3.2.Capturing XML Component Definitions
	Guidance
	Explanation
	Example

	4.3.3.Enumerations and Capturing Code Lists
	Guidance
	Explanation
	Example

	Document Annotation Conventions
	
	
	Guidance
	Explanation

	5.1.Document Versioning
	
	Guidance
	Explanation

	5.1.1Versioning DTDs
	Guidance
	Explanation
	Example

	5.1.2.Versioning XML Schemas
	Guidance
	Explanation
	Example

	5.1.3.Versioning Stylesheets
	Guidance
	Explanation
	Example

	5.2Headers
	
	Guidance

	5.2.1Schemas
	5.2.2Stylesheets
	5.2.3Instances
	Explanation
	Example

	Attribute Versus Element Conventions
	
	
	Guidance
	Explanation
	Example

	Federal XML Registry
	
	
	Guidance
	Explanation
	Example
	
	
	
	
	Appendix A�ebXML and UN/CEFACT

	Description
	ebXML Naming Rules
	Representation Terms
	
	
	
	
	
	
	Appendix B�Schema Development

	Possible Schema Development Procedure Summary
	
	
	
	STEPS
	
	
	Appendix C�Tools and References

	Tools
	
	Publications
	
	Audience
	Title
	ISBN
	Author(s)
	Date
	Management/Business
	Business/Technical
	Technical

	Internet
	
	
	
	
	Appendix D�Combined XML Schema Example

	Schema Guide for AcousticSignalFrequencyMeasure Schema Type and Associated Elements
	
	
	
	
	Appendix E�Sample XML Document Headers

	Sample Schema Header
	
	Notes on header fields:

	Sample Stylesheet Header
	Sample Instance header
	
	
	
	
	
	Appendix F�Points of Contact
	Appendix G�Glossary and Acronyms

	Terms

