
Compact GML: merging mobile computing and mobile
cartography

Andrea Piras, Roberto Demontis, Emanuela De Vita, Stefano Sanna
CRS4, Center for Advanced Studies, Research and Development in Sardinia

Edificio 1, Loc. Piscinamanna, Polaris
09010, Pula (CA), Italy

{piras, demontis, emy, gerda}@crs4.it
http://www.crs4.it

Abstract. The use of portable devices is moving from "Wireless Applications",
typically implemented as browsing-on-the-road, to "Mobile Computing", which
aims to exploit increasing processing power of consumer devices. As users get
connected with smartphones and PDAs, they look for geographic information
and location-aware services. While browser-based approaches have been ex-
plored (using static images or graphics formats such as Mobile SVG), a data
model tailored for local computation on mobile devices is still missing. This
paper presents the Compact Geographic Markup Language (cGML) that en-
ables design and development of specific purpose GIS applications for portable
consumer devices where a cGML document can be used as a spatial query re-
sult as well.

1 Introduction

The use of portable devices is moving from "Wireless Applications", typically ex-
ploited as browsing-on-the-road, to "Mobile Computing", which aims to exploit in-
creasing processing power of consumer devices. As users get connected with smart-
phones and Personal Digital Assistants (PDAs), they look for geographic information
and location-aware services. The spread of hand-held devices, new generation of pro-
grammable cellular phones and the availability of development environments for such
devices have made possible the design and development of new kind of software that
satisfies the users’ needs about mobility support and personal information manage-
ment.
Many of such software applications are specialized for geographic data management
and cartographic presentations (i.e. navigation systems, interactive maps for tourism
and commerce). Current mobile cartographic systems are based on ad-hoc approaches,
tailored for a specific device. Moreover, they are stand-alone applications, aimed only
to support user mobility. At the same time, software development for mobile devices
and web applications is moving from digital mapping and travel assistant applications
to Location Based Services (LBSs), in which content and information are filtered
according to user position.

The need for embedded maps into general-purpose application is emerging. LBS can
be considered as an extension of general purpose Web Services, where execution
context consists of both user profile and user position. While user profile is intended
to be manually provided by the user (by means of registration form or automatic
agent-based profiling systems), user position is automatically gathered by dedicated
hardware.
Positioning is key element for LBS: Global Positioning System (GPS), aGPS (pro-
vided by some network operators on 3G European cellular networks), CellID (based
on the number that enables to identify each cell/tower on GSM network) are widely
available on consumer market, with different form factors and connections. Bluetooth
devices make it possible to add positioning facilities to any Bluetooth master device
able to link to a serial port (the RFCOMM protocol), opening new application scenar-
ios. Positioning is the enabling technology for client-side; as said before, GPS data
can be exploited thanks to processing and programmability of new exciting mobile
devices. Technologies such as Java2 MicroEdition (J2ME) and SymbianOS, specifi-
cally designed for mobile phones, and Microsoft Windows Mobile platform (Pock-
etPC and Smartphone) enable design and development of powerful client side applica-
tions, able to access to LBS and provide customized, accessible graphical user inter-
faces (GUIs).
Convergence of positioning and programmability has brought to real implementation
of LBS, mobile computing paradigm and mobile cartography systems. While browser-
based approaches have been explored (using static images or graphics formats such as
Mobile SVG), a data model tailored for local computation on mobile devices is still
missing.
This paper presents design and implementation of the Compact Geographic Markup
Language (cGML), a custom version of GML tailored for mobile devices and mobile
LBS applications.

2 Mobile cartography and devices

The basic properties of cartography depend on the answers to questions “What should
it be represented?”, “Who is the end user?”, and “Where is data being displayed?”.
With the spread of mobile devices and the convergence of Internet and wireless com-
munications, the cartography is being adopted to such devices. Therefore, the basic
properties are addressed by the service specific purpose, the user profile and the mo-
bile device constraints.
The mobile cartography permits to nomadic users to collect all pieces of information
for satisfying their needs and taking decision in different situations (i.e. during tourism
vs. work traveling) with reference to their proximity.
In this context, the representation of proximity is focused on describing an area of
interest (AOI) where same points of interest (POIs) are evidenced. Each POI can have
text information for providing detailed description. The map of one AOI is not only
the result of a request but it can be used for composing next request. The quantity and

quality of the information that can be provided to the mobile device cannot be sup-
ported by its hardware capabilities.
This section provides a brief overview about the LBSs, the mobile device constraints
and some approaches to provide maps in mobile devices.

2.1 Location Based Service

A generic service that provides geographical or geographical related information
based on a position is called Location Based Service (LBS). There are two different
kinds of LBSs: the task-centered services (i.e. emergency management and electricity
line repair) and the user-centered services (i.e. travel assistant and people finder).
An important business is focused onto provide to mobile users the right information,
at the right position, at the right time, for the right device and therefore specific ser-
vices are requested for specific purposes. In particular, two aspects must be consid-
ered: the functionalities and the market of niche product [1].
The GPS-enabled mobile devices avoid users to specify their “right position” through
the tuple street/city/country: it will be gathered by the mobile application and sent
automatically to the server. This scenario introduces the biggest obstacle topic for
LBS: the lack of privacy security system that guarantees the protection of customer
personal data. Ubiquitous computing paradigm would be considered as a reliable
solution to have service flexibility and user data protection: private data (such as user
position and user path) is kept inside mobile devices and provides outside only if
needed. There is no Location Server to store users location.

Fig. 1. Generic mobile LBS structure.

Regarding to the “right time”, it is usually considered the instant when the user makes
his request but LBS capable to predict future locations and prepare information are
under development [2].
Finally, the “right device” is referred to the data-adaptation issue. To improve the LBS
performance, the number of functionalities processed in client side is increased but
device constraints influence the service functionalities about data format specification,
data transferring and its visualization on client.
In last year, standards based on XML language for LBS were defined. Examples are
the specification of the GeoMobility Server and the XML for Location Service (XLS)
proposed by OpenLS [3]. The last one is derived from the concept of interoperability
in GIS application based on the Geographic Markup Language (GML), the Web Fea-
tures Server (WFS) and the Web Map Server (WMS).

2.2 Mobile device constraints

Device constraints influence application design and development for mobile devices:
practices and models should be refactored to achieve usability and performance goals
on such equipment. This paragraph provides an overview of such constraints and
describes some approaches common to mobile computing research field.
Application developers have to deal with hardware constraints in terms of small dis-
play (min. 96x54 pixel), reduced color palette (sometimes with one bit LCDs), CPU
power, battery life, limited persistent storage (min. 8Kb), runtime heap and ROM
(min. 512Kb).
Mobile device communication is based on narrowband wireless networks. Network
congestion makes harder to get connected and the physical obstacles between terminal
and base station brings to frequent “connection lost” status. Therefore, application
designers try to limit the data size transferred in each session using compression and
data splitting strategies.
Splitting data does not requires simple “byte packaging” but “information packaging”
based on semantic analysis of content, in order to transform information in an aggre-
gate of atomic (and small) items. For instance, considering one map as one single
object, it can be split in small sets of bytes and recomposed to be able to process its
information (“byte packaging”) or it can be split in small map items, that can be sepa-
rately processed and each one contains a part of the information of the whole map (
“information packaging”). The last approach is a valid solution for discontinued con-
nection issues: since every data fragment is atomic and self-contained, there is no need
to have a continuous network connection; any network failure will affect only current
data item, while previously received items can be processed and shown to the user.
The application programming interfaces (APIs) provided by runtime environments for
mobile devices are poorer that their desktop counterpart and focused on the require-
ments for working on small displays and on the different strategies about GUI usabil-
ity. Issues about GUI design and development are:

• Display size and resolution of PDAs and mobile phones reduced respectively
to 1/4 and to 1/8 of PC screens (some recent mobile phones have high-
resolution Quarter VGA screens).

• Reduced color palette (from 2 to 16 bits).
• For smartphones, the lack of a full-size QWERTY keyboard but also of a re-

duced, compact keyboard with essential keys. They only provide a numeric
keypad, multi-tapping character selection, a few predefined buttons and usu-
ally two customizable soft buttons. Only few high-end models provide pen-
based input system, very similar to PDA’s.

• For smartphones, the pointing system must be simulated for giving the user
the same feeling of the mouse. PDAs have touch-screens.

• Availability of programming libraries.
• The no-homogeneity of users’ experience about information technology re-

quires particular attention by the designer for defining very intuitive GUIs.
• The mobile user is “user on the road” (opposite to user sat in front of the

monitor of his desktop), therefore the application must provide information
easy to understand.

While next generation devices will provide powerful hardware and rich software li-
braries, current technology has still to be exploited and will move to smallest devices
(like watches) in next future.
About software, J2ME architecture is a robust environment for applications running
on mobile devices: it relies on well-known Java platform, it is cross-platform, it does
not require agreement to deploy applications and it is not related to a specific
implementer (JVM have been developed by many independent software houses). It
defines two profiles to fit the range of main device categories: Personal Profile for
high-end PDAs and game consoles and Mobile Information Device Profile (MIDP)
for mobile phones and entry-level PDAs. Major phone manufacturers bundle their
own J2ME implementation in a rich set of their models, ranging from entry-level
(games market) to high-end business communicator terminals (business market). The
main MIDP’s lacks are object introspection, Java Native Interface (JNI) and floating
point mathematic. The last one can be performed by software but that could be
expensive, in terms of power processing.
To date, the most important development environments alternative to J2ME are In-
Fusio, Mophum, SymbianOS, Microsoft Win32 e .NET. In-Fusio and Mophum keep
some J2ME base characteristics and are mainly devoted to games market. They re-
quire the developer signs a distribution agreement with the technology providers and
network operators. SymbianOS provides one the richest programming interfaces
(based on C++ language) available in the mobile phone market and it is able to exploit
all the hardware characteristics. Microsoft PocketPC Win32 and .NET Compact
Framework are development environments for Windows Mobile platform. They ad-
dress PDA market and recently the high-end mobile phones market, porting some of
well-known programming concepts and paradigms of the Windows desktop platform.

2.3 Approaches

The early approaches have been thought for allowing users to view maps on their no-
programmable phones. Mobile telecommunication companies and service providers

realized applications based on messages: user sends a Short Message Service (SMS)
containing the specification of the map and receives one Multimedia Messaging Ser-
vice (MMS) with the image of the map.
To date, with the spread of Java-enabled phones and the increase of their capabilities,
these approaches tend to be become obsolete and they are substituted by several kinds
of commercial products. They can be grouped in three main approaches.
A common solution is based on native application tailored for one specific phone or
PDA and requires information (geographic and generic) to be stored on client device.
In this way, no Internet connection is required but information must be pre-selected
and stored locally on the device before the trip.
Another approach is based on web applications: the user connects to a Web site
through the browser bundled in device, specifies zoom factor, query keywords, and
preferences about map details and the site returns the images. Some sites offer the
possibility to receive images sized to the PDA display (see [4] and [5]). Nevertheless,
each map is non-interactive and changing any parameter means the need to send an-
other request to the site and to download the resulting page. Therefore, such an ap-
proach is efficient with reliable and cheap Internet connections.
The last one mixes the twos: the user browses the map service using a PC and trans-
fers final map to the target device. During his trip, the user does not need an Internet
connection but he could see only the pre-loaded map.
These three approaches share a common drawback: they are stand-alone applications.
They neither are nor can be integrated with other application, like an agenda or an
address book. This is not an issue for very specific applications, like professional
cartographic programs, but often a large set of mobile application need a simple map-
like representation of geographic data and maps are only an “accessory” functionality.
A new scenario emerges: simple maps should be retrieved remotely and described in a
platform independent format. Such a solution can be easily implemented with web
services technology and XML-based languages.

3 GML

The most known XML-based language for encoding geographic information is the
GML (Geography Markup Language), defined by the Open GIS Consortium. It has
been adopted as “de facto” standard and it is not related to any specific hardware or
software platform: data encoded using it can be easily read and understood by any
programming language and software system able to parse XML streams. GML en-
codes vector geographical information together with metadata on spatial and non-
spatial resources.
The first two GML main releases, GML 1.0 [6] and GML 2 (GML 2.0 [7], GML 2.1.1
[8] and GML 2.1.2 [9]), have the objective to encode geographic information in XML,
allowing its modeling, storage and transport. They are based on the OpenGis® Ab-
stract Specification [10] and, in particular, on the simple geographic features defined
as features containing geometric properties. Each geometric property contains a set of
two-dimensional coordinates of its vertexes.

Version 3.0 introduces a lot of new characteristics and concepts to improve and ex-
tend the GML capabilities. The language is also based on the ISO 19100 series [11]
specification and not only on the OpenGIS® Abstract Specification. GML becomes
from an XML encoding to an XML grammar for the manipulation of geographic in-
formation. The set of geometric primitives is enriched by new numerous and more
expressive types of the real world and by the introduction of the three dimensional
primitives. Curves and their segments, arcs, Bezier curves, clothoids, geodesic curves,
triangles, rectangles, surfaces are some examples of new one and two-dimensional
primitives while we find solid in the three dimensional ones. New sets of geometric
elements allow defining aggregations of them whose interiors are disjoint and compos-
ite geometries.
The list of new features in GML 3.0 [12] and GML 3.1 [13] comprises: the definition
of coordinate reference systems and coordinate operations; topology; temporal infor-
mation (including temporal reference systems, temporal topology and geometry);
dynamic features representation; the possibility to insert definitions and dictionaries,
unit of measure, measuring systems, direction (orientation, direction, heading, bearing
or other directional aspects of geographic features); observation feature to describe the
information associated to a capture event and the value for the result of the observa-
tion, coverage model and representations, styles definition.
The style information may be used for styling but may also be completely ignored
because GML has the strict separation of data and presentation and the internal styling
mechanism is been though as a separate model that can be “plugged-in” to a GML
data set.
The common mechanism to obtain a map from GML data is to convert it into an XML
graphical format such as SVG [14], Mobile SVG [15], VML [16] or X3D [17] using
standard XML transformation facilities (XSLT [18]).

Fig. 2. Transforming GML into graphical format.

Usually, the language resulting by the XSLT processing is SVG for desktop applica-
tions (see [19] e [20]) and Mobile SVG for mobile devices ones. Mobile SVG consists
of subsets of SVG’s elements, attributes and events selected for being used in mobile
devices and considering the variety of mobile devices, two profiles are defined: SVG
Tiny (SVGT), suitable for restricted mobile devices like smartphones; SVG Basic
(SVGB), targeted for higher-level mobile devices, like the PDAs.
There are commercial and open source tools to perform such a translation and
SVG/Mobile SVG rendering. Some renders are natively embedded into web browser

(i.e. Mozilla [21]), some distributed as plug-ins for many browsers (i.e. Adobe [22]
and Corel [23] SVG Viewer) and some available as stand-alone viewers (i.e. Apache
Squiggle [24]). The overview on SVG implementations is completed by native SVG
editors (W3C Amaya [25] and Jasc WebDraw [26]), SVG-exporting editors (Adobe
Illustrator [27] and Corel CorelDraw [28]) and toolkits (Batik SVG Toolkit [29],
CSIRO SVG Toolkit [30] and TinyLine [31]).

4 The Compact Geographic Markup Language (cGML)

There are some drawbacks in direct use of GML for mobile devices. Processing and
saving GML data require a considerable memory space which cannot be provided on
mobile devices (see section 2.2). Furthermore, the transfer of GML documents of
hundreds of kilobytes through unreliable and narrowband wireless connection is ex-
pensive and boring for users. The GML document could be compressed before the
transfer but the decompressing process in the mobile device requires considerable
processing power and extra memory capabilities.
The GML coordinates express geographic locations with high definition and with
more details respect to actual user needs and visualization capabilities of device. Fi-
nally, projecting and scaling geographic data can be impracticable on small appli-
ances, since many devices (i.e. all MIDP-compliant mobile phones) have not a native
support for floating-point math.
These considerations and the wish to eliminate the GML translation in SVG in favour
to draw directly the geometric data, have driven the definition of compact Geographic
Markup Language (cGML).

4.1 Language features

cGML is inspired by GML 2.1.2 so all the references of GML items in these sections
must be considered related to this version and the features introduced by upper ver-
sions are not among the objectives of the current cGML release.
The word “compact” in the cGML definition summarizes one of its key aspects. We
can consider the cGML a compact version of the GML because it uses shorter ele-
ments names, removes elements without attributes that have only the target to contain
other elements, reduces the number of available attributes and does not provide sup-
port to XLink [32]. Although the cGML elements names are shorter than GML ones,
they preserve the human-readability feature of the XML documents because their
names are chosen in way to make possible to guess their related words (see Table 1).
A cGML document would be a stand-alone XML document so we introduced the
cGML root element and defined concrete elements based on the GML’s abstract ones.
The correct sequence of cGML children elements starts with Head followed by fea-
tures and/or feature collections elements.
Head and its children elements define the spatial reference system (SRS) and the
viewport size where the geometric information will be drawn. The SRS provides indi-
cation regarding coordinates transformation from the real world to the cartographic

data and it is specified by the value of the srsName attribute in the RealBox ele-
ment. Respect to GML, the SRS is unique in the cGML and it is applied to all geome-
try primitives. The RealBox value is the coordinates of the interest area expressed by
integers.
The View element contains the view size of the device screen. Its zoom attribute is
the scale factor between the real box and the view and represents the inverse of the
number of units expressed in the SRS associated to one pixel.
In the following example of cGML document, the Head block is contained in rows 3
– 8. The value of the srsName attribute is EPSG:32632 and it is the EPSG coordi-
nate reference system code [33] for the UTM (WGS84) Zone 32N CRS.
The information in the Head element allows determining the scale factor between the
geographic coordinates of the AOI and the coordinates expressed in pixels of the view
area. Furthermore, for obtaining the real coordinates of one point of the view, it is
necessary to consider that the plotting plane is mirrored respect to horizontal axis
respect to the real plane. Defining the view area as (0, 0, weight, height), the real box
area as (bx1, by1, bx2, by2), the real coordinates Preal(x, y) of a point Pview(xv, yv) in
the view are defined by the rules:

x = round(zoom * xv) + bx1

y = round(zoom * (height - yv)) + by1

Using the values in the following example of the Head code, one pixel represents
approximately 3.75 meters and the real coordinates Preal(x, y) for the point Pview(25,
187) of the view are:

x = round(0.2667 * 25) + 510775 = 510782

y = round(0.2667 * (400 - 187)) + 4339616 = 4339673

Starting from the abstract GML feature and feature collection elements (_Feature
and _FeatureCollection), cGML defines concrete and simpler features (Ft and
FtCl respectively), while the featureMember element has been removed. The
optional attribute fid of the GML feature is substituted by the required id. The op-
tional child element description is renamed in info while name becomes an
optional attribute of Ft and FtCl. In the following example of cGML document,
there is one feature collection, with the id equals to Shape1 (rows 9 – 22), contain-
ing two features, with the id attributes are a1 (rows 10 – 15) and b6 (rows 16 – 21),
and another feature, with the id attribute is p_o (rows 23 – 27).
The feature element contains the geometries. They are defined in two-dimensional
SRS and use linear interpolation between coordinates. The primitive and aggregate
geometry elements are the same for cGML and GML 2.1.2 except for the GML Box
and the cGML Arc, MlArc (multi-arc) and MlLnRn (multi-linear ring). The names
of geometry elements are compacted in shorter ones, following the cGML philosophy,
and the GML geometry members are not used.

Example of cGML document.

 1: <?xml version="1.0" encoding="UTF-8"?>
 2: <cGML
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="cgml_base.xsd"
 version="1.0">
 3: <Head>
 4: <RealBox srsName="EPSG:32632">
 5: <cds>510775,4339616 512275,4341116</cds>
 6: </RealBox>
 7: <View zoom="0.2667">400,400</View>
 8: </Head>
 9: <FtCl id="Shape1" name="areas">
10: <Ft id="a1" name="mainstreet">
11: <LnSt>
12: <cds>267,39 276,42</cds>
13: </LnSt>
14: <info>info for feature a1 in Shape1</info>
15: </Ft>
16: <Ft id="b6">
17: <LnSt>
18: <cds>326,64 353,78 396,102</cds>
19: </LnSt>
20: <info>info for feature b6 in Shape1</info>
21: </Ft>
22: </FtCl>
23: <Ft id="p_o" name="postal office">
24: <Point>
25: <cds>79,10</cds>
26: </Point>
27: </Ft>
28: </cGML>

Rows are numbered to simplify references to parts of the document.

GML allows to define the coordinates of the vertexes of the geometries either as a
sequence of coord elements (that encapsulate the X, Y and Z elements) or as a single
string contained within a coordinates element. For cGML, the second encoding
system has been chosen: it allows reducing the number of characters for expressing the
same coordinate list. The name coordinates is modified in the shorter cds and its
value is one sequence of tuples separate by one or more spaces with each tuple com-
posed from one to four integers separated by commas. Furthermore, the cGML coor-
dinates are related to the screen device. In rows 5, 12, 18, 25 of previous cGML docu-
ment, examples of cds values.

Table 1. Comparison between some GML and cGML tags.

GML cGML Characters saved

_FeatureCollection FtCl 78%

_Feature Ft 75%

Description Info 64%

LineString LnSt 60%

LinearRing LnRn 60%

Polygon Plgn 43%

MultiGeometry MlGeo 62%

MultiPoint MlPoint 30%

MultiLineString MlLnSt 60%

MultiLinearRing MlLnRn 60%

MultiPolygon MlPlgn 50%

outerBoundaryIs ex 87%

innerBoundaryIs in 87%

coordinates cds 73%

4.2 The XML Schemas

The cGML is defined by three XML Schema ([34] and [35]) files:
cgml_base.xsd, cgml_feature.xsd and cgml_geometry.xsd. The first
file contains the specification of the cGML root element, the sub-tree related to the
Head element and defines the sequence of features and feature collections. It is the
file name specified in the xsi:noNamespaceSchemaLocation attribute of the
cGML documents. Row 3 of the previous example of cGML document depicts the
start tag of the root element. cgml_feature.xsd file defines the structure for Ft
and FtCl while cgml_geometry.xsd specifies the list of geometry primitives
and the coordinates. The files are downloadable from the cGML support site
(http://www.crs4.it/nda/cgml).
The cGML is thought to be able to work as a stand-alone XML document and so its
three XML Schema files are required for defining one cGML instance. Even if,
schema design lets developers to write XML documents, not cGML instances, based
only the cGML geometries or the cGML features and geometries.

Fig. 3. The XML Schema files of the cGML.

4.3 Advantages of short tags

The introduction of the compact notation and the deletion of some elements produce
immediate advantages in the manipulation of data on mobile devices. The XML
documents, instances of cGML, are an average of about 64% shorter then GML ones,
so:

• The document transfer on wireless networks requires less time and it is
cheaper for user.

• Using a static and well-known vocabulary allows the development of opti-
mized parsers.

• No compression on server side and decompression on client side are re-
quired. The second one is an operation power processing consuming in de-
vice with limited capabilities.

• Decrease the depth of Document Object Model (DOM) tree. In this way,
cGML parser reduces the memory space for their processing and it can work
in entry-level smartphones too.

Although the short tag names, the cGML document preserves the human-readable
feature of XML documents.

5 An architecture based on cGML

We have tested cGML on a web service that exports geographic data provided by a
GIS service to a Java client. In next subsections, we describe the server and the client
implementations.

5.1 The server side

The server gathers various kinds of data divided in geographical feature and their no-
geographical attributes. All of these data are referenced by name and contain planar
coordinates.

Data processing is performed by means of a predefined cGML model. The geographic
information is retrieved from topology GIS data files and the non-geographic data
from items collected in tables. The SRS is EPSG:32632 and coordinates are multi-
plied by 1000 to have one pixel per millimeter. The server application is able to create
the model using either local data files (i.e., ESRI shape files) and external data (i.e.,
GML from WFS) or it can use data model of a wide AOI defined directly in cGML. A
geographic feature is related one by one to a cGML feature element by the value of
their id attribute.

Example of Head block of a cGML data model used by server side application. It refers to a
specific AOI where the scale factor of the data is defined by the zoom attribute.

<Head>
 <RealBox srsName="EPSG:32632">
 <cds>507000,4339000 518000,4348000</cds>
 </RealBox>
 <View zoom=”1000.0”>11000000,9000000</View>
</Head>

In this example, one meter is represented by one thousand of points in the viewport.

The server waits client requests on port 3010. Each request contains the specification
of the new features context based on device screen size and on the AOI (the Real-
Box element). It can also request one single particular features collection (one layer)
through the specification of the id attribute of the Layer element.

Fig. 4. The features data model in the server side application.

When the server receives a request, it performs these transforming operations on data
model items:
• Clipping: it selects the geographic data of the specified AOI.
• Projection: the server processes different data with different projection and merge

them.
• Scaling: the real coordinate values are adapted for plotting in the viewport with-

out collapsed or overlapped lines.
The selected geographic data items are projected and scaled by the server because the
runtime environment for smartphones has not a native support for floating-point
mathematical operations.
The result of such a transformation is used to define cGML geometric elements and
their coordinates. Final cGML document is completed by adding the feature attributes,
the info elements and the Head block.
The server side is developed using the Java programming language.

An example of client request.

<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <RealBox srsName="EPSG:32632">
 <cds>510505,4339272 512871,4341638</cds>
 </RealBox>
 <View>400,400</View>
 <Layer id=”restaurant”/>
</Request>

5.2 The cGML Viewers

J2ME has been chosen as reference implementation platform, since it addresses most
of cellular phones and PDAs market and provides platform independence, thanks to its
MIDP and PP profiles (see section 2.2). We developed a cGML Viewer for each
J2ME profile (both PDA and smartphone). The two clients have the same core and the
same functionalities but very different GUIs because they are adapted to the device
constraints.
The software routines of the viewers keep particular cure into limit the memory usage,
for both static object allocation and dynamic heap for methods invocation, and into
reduce the number of time-consuming operations. Well known design patterns have
been slightly modified (trusted, i.e., for the accessor methods to the private fields) and
some common properties of the single elements have been delegated to the objects
collecting them (i.e., the object related to feature collection collects the common
properties of the contained features). This approach limits the flexibility but, on the
other side, saves memory and allows having an interactive mapping system even on a
device with very constrained resources.
The viewer obtains a cGML map file establishing an HTTP connection to the server
port 3010 and sending a request formatted like the previous example. The size of the
returned document is compatible with the RMS (Record Management System) persis-

tence facility of the MIDP profile, therefore it is possible to store the map in phone
memory as well and to recover it without a new connection to the server.
The viewer parses the downloaded cGML document using the kXML SAX parser [36]
and it instances objects for managing the Header, Ft and FtCl elements and ge-
ometry information.
These objects are the input of the plotting routines: they can be displayed without
extra processing since data has been pre-processed on the server side. Plotter has been
optimized to reduce allocation of new objects: double buffering and flyweight pattern
to share a common set of elementary components.
The resulting map is shown by the cGML Viewer. It also includes the possibility of
process the common basic operations on the map and has some little but important
features. The basic operations are: map saving/loading in/from device memory, zoom-
ing in – out, panning, searching a point of interest by name, choosing a point of inter-
est by means of cursor and selecting the order of layers visualization. All these opera-
tions are processed in the device without establishing new connection to the server and
downloading other cGML documents. The server connections are required only if the
user asks for data outside initial AOI.
Other features have been implemented to improve user accessibility. The map can
emphasize some descriptive labels for selected objects and they are always drawn with
horizontal text. In this way, the user does not need to rotate the device to read texts
and the display emphasizes only the objects the user has required, providing good
experience even in bad light conditions. Furthermore, the cGML Viewer for smart-
phones uses context commands accessible through the custom soft buttons as user
command inputs and supports a virtual cursor, which can be used to select objects on
the map, because it has not a pointing system such as mouse or a touch-screen.

(a) (b)

Fig. 5. Two images about the cGML Viewer for smart-phones. The image (a) shows a section n
of a map and contains the virtual cursor. Image (b) shows a section of the map and emphasizes
the name and the line of the selected item.

(a) (b) (c)

Fig. 6. The three images show the way to find a street by name using the cGML Viewer for
smart-phones. The image (a) shows the list of available functionalities. Image (b) displays the
GUI where inserts the name of the street. While image (c) shows the map with a highlighted
street.

(a) (b)

Fig. 7. Two images about the cGML Viewer for PDA. The image (a) depicts the whole map,
emphasizes the different areas and shows some POIs. Image (b) displays the information re-
lated to the selected POI.

(a) (b)

Fig. 8. The cGML Viewer enables to define itineraries, image (a), and search streets by name,
image (b).

6 Future works

The cGML 1.0 implements some basic ideas about mobile cartography on very con-
strained devices. We plan the features to introduce in next version, in way to apply
some characteristics of the wide set of specifications of GML 3. The set of geometric
primitives will be extended with new two dimensional and three dimensional items.
Direction and coverage information will enable to enrich the cGML, while other ob-
jects will be studied and evaluated. Next research activities will focus on styling in-
formation and multilevel structure.
About styling information, GML 2 does not provide indications and GML 3 presents a
default style that may be completely ignored. We would like to define one styling
system considering the CSS [37] – HTML [38] model. In the cGML Head block, the
optional style element will be added. It will have a reference to a separate file con-
taining the style information and styles will be applied following the same cascading
mechanism of CSS. The feature and geometric elements will have the optional style
attribute and it will have the same role of the HTML class attribute. The style in-
formation will be encoded in XML and the use of available XML styling languages
must be evaluated. The style information will enable the user: to define the color of
geometric elements and features, the border of lines (single, double, dash, dotted,
etc.); to link images related to features or geometric entities; to insert detailed descrip-
tions, specify their visual presentation and structure them in tables or lists; to refer
web pages.
Together with new features, the existing schemas will bear a refactoring process to
make the cGML a GML application schema. In GML 2, the application schemas were

restricted to the development of dictionaries for geographic features and based only on
the feature.xsd file of GML 2. Therefore, we could not develop the cGML as an
application schema and we have chosen to define simple schemas inspired by the ones
of GML 2.1.2 but without neither importing nor referencing them. In GML 3, the
application schema concept is extended to almost of GML schemas and next cGML
version could use them.

7 Conclusions

The GML is the “de facto” standard to exchange geographical data but it is not suit-
able for low-end mobile devices. In this paper, we have proposed a compact version
of GML 2.1.2, based on short tags and encoded with pre-projected and pre-scaled
coordinates: the cGML.
The cGML design and development follow the Dynamic Systems Development
Method (DSDM) principals [39] and they have been characterized by a continuous
designing, coding and testing loop. Design phase concerns design specifications of
XML elements and attributes. Development phase concerns actual XML Schemas
definition, their example instances, the parser, the server side and the client viewers.
During integration and test phase, the different parts are put together and tested. The
test results become the input for restarting the cycle. Our attention has been focused
on to find a compromise between the geographic information, their visual
representation and the mobile device power processing capabilities of the J2ME
enabled devices. Since target platform has stronger limits than SymbianOS or
WindowsCE/PocketPC operating systems, design phase has required to investigate the
device limits and sometimes application models have been trashed since they were not
appliable on the commercial devices. The result of this iterative process is cGML 1.0
and application prototype.
cGML acts as model and view at the same time. The geographic information can be
totally transferred to client device for drawing, caching, and local operations without a
permanent connection to the server, keeping some XML key features (platform inde-
pendent, easily extensible, human readable).
Other works [40] have shown that map provisioning for mobile devices requires im-
plementing a complex infrastructure. cGML enable to simplify application implemen-
tation and deployment, by means of XML-based language and web services infrastruc-
ture.
In the field of User-Adaptative Maps [41], it has been exposed that it is not enough to
focus on adaptations to technical parameters (device characteristics, quality of service,
location) but maps need to be dynamically generated according to lots of variables.
cGML enables to be on-the-fly generated according to device profile adapting the
view to the screen size of the device. It can also be tailored according to any other
user (or device) property specified in the request to the server.
Over to the GML, the XML language closest to cGML is Mobile SVG. They share the
same objective: they are designed to be used in applications for mobile devices. How-
ever, cGML and Mobile SVG keep the same main scope of their “father” languages:

cGML encodes geographic information, even if it could be directly showed, and Mo-
bile SVG encodes vector graphics.

8 References

[1] Williams, D. H.: It’s the (LBS) applications, stupid!
http://www.wirelessdevnet.com/features/williams_lbs01/ (2003)

[2] Karimi, H.A., Liu, X.: A Predictive Location Model for Loation-Based Services. In
Proceedings GIS’03 (2003) 126 – 133

[3] OpenGIS Location Services (OpenLS): Core Services. Version 1.0.
http://portal.opengis.org/files/?artifact_id=3418 (2004)

[4] Maporama, http://www.maporama.com
[5] Mapquest, http://www.mapquest.com
[6] Geography Markup Language (GML) v1.0. http://www.opengis.org/docs/00-029.pdf

(2000)
[7] Geography Markup Language, v2.0. http://www.opengis.org/docs/01-029.pdf (2001)
[8] Geography Markup Language, v2.1.1. http://www.opengis.org/docs/02-009.pdf

(2002)
[9] OpenGIS® Geography Markup Language (GML) Implementation Specification, ver-

sion 2.1.2. http://www.opengis.org/docs/02-069.pdf (2002)
[10] OpenGis® Abstract Specification, http://www.opengis.org/specs/?page=abstract
[11] International Standard Orgnization, Technical Committee 211 - Geographic informa-

tion/Geomatics.
http://www.iso.org/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeDetailPage.T
echnicalCommitteeDetail?COMMID=4637

[12] OpenGIS® Geography Markup Language (GML) Implementation Specification –
Version 3.0. http://www.opengis.org/docs/02-023r4.pdf (2003)

[13] Geography Markup Language (GML), version 3.1.
http://portal.opengis.org/files/?artifact_id=4700 (2004)

[14] Scalable Vector Graphics (SVG) 1.1 Specification. http://www.w3.org/TR/SVG/
(2003)

[15] Mobile SVG Profiles: SVG Tiny and SVG Basic, Version 1.2.
http://www.w3.org/TR/SVGMobile12/ (2004)

[16] Vector Markup Language (VML). http://www.w3.org/TR/NOTE-VML (1998)
[17] X3D. http://www.web3d.org/x3d/
[18] XSL Transformations (XSLT) Version 1.0. http://www.w3.org/TR/xslt (1999)
[19] Lake, R.: Making Maps With Geography Markup Language (GML). Galdos Systems

Inc. (2000)
[20] Guo, Z., Zhou, S., Xu, Z., Zhou, A.: G2ST: A Novel Method to Transform GML to

SVG. In Proceedings 11th International Symposium of ACM. ACM Press (2003) 161
– 168

[21] Mozilla SVG Project. http://www.mozilla.org/projects/svg/
[22] Adobe SVG Zone. http://www.adobe.com/svg/
[23] Corel® SVG Viewer. http://www.smartgraphics.com/Viewer_prod_info.shtml
[24] Apache Squiggle – the SVG Browser. http://xml.apache.org/batik/svgviewer.html
[25] W3C Amaya. http://www.w3.org/Amaya/Amaya.html
[26] Jasc WebDraw. http://www.jasc.com/products/webdraw/
[27] Adobe Illustrator. http://www.adobe.com/products/illustrator/main.html

[28] CorelDraw.
http://www.corel.com/servlet/Satellite?pagename=Corel2/Products/Home&pid=1047
022690654

[29] Batik SVG Toolkit. http://xml.apache.org/batik/
[30] CSIRO SVG Toolkit. http://sis.cmis.csiro.au/svg/
[31] TinyLine. http://www.tinyline.com/
[32] XML Linking Language (XLink) Version 1.0. http://www.w3.org./TR/xlink/ (2001)
[33] EPSG Geodesy Parameters database of geodetic parameters and Coordinate Refer-

ence Systems. http://ocean.csl.co.uk/
[34] XML Schema Part 1: Structures. http://www.w3.org/TR/xmlschema-1/ (2001)
[35] XML Schema Part 2: Datatypes. http://www.w3.org/TR/xmlschema-2/ (2001)
[36] kXML Project. http://kxml.enhydra.org/
[37] Cascading Style Sheets, level 2 CSS 2 Specification. http://www.w3.org/TR/REC-

CSS2/ (1998)
[38] HTML 4.01 Specification. http://www.w3.org/TR/html4/ (1999)
[39] DSDM Consortium. The Underlying Principles.

http://www.dsdm.org/en/about/principles.asp
[40] Reichenbacher, T.: The world in your pocket towards a mobile cartography. In Pro-

ceeding of the 20th International Cartographic Conference (2001)
[41] Zipf, A.: User-adaptive maps for location-based services (lbs) for tourism. In Pro-

ceeding of ENTER 2002 (2002)

