
System Administration and CDDLM

by Paul Anderson <dcspaul@inf.ed.ac.uk>
Edmund Smith <esmith4@inf.ed.ac.uk>

School of Informatics
University of Edinburgh

1 Overview

System administration takes a collection of resources
and uses them to provide services. For as long as
there have been computing resources, there has been
systems administration, but the methods used and the
services provided have evolved as systems have. At
present, a management domain may include thousands
of machines, but will not typically overlap organisa-
tional boundaries. Similarly, a domain may present
hundreds of services, but the rate at which services are
changed is very low. The emergence of grid computing
means this is unlikely to be true in the future, and the
development of new techniques and technologies will
be necessary.

CDDLM and the solutions it presents have attracted
some interest in the systems administration commu-
nity, since this is the first high profile example of an
attempt at solutions to these new problems. In partic-
ular, CDDLM is the first attempt that we are aware of
to focus on the management of inter-organisational re-
sources (the management of machines owned by other
parties and exposed by a grid).

This paper presents our impressions of the solutions
developed by CDDLM in the light both of recent ad-
vances in systems administration, and of the many
decades of experience of the systems administration
community in managing resources. We also briefly ex-
amine the relationship between CDDLM and our cur-
rent project investigating techniques for managing grid
fabrics (see section5).

2 Introduction

The administration of current systems involves config-
uration at every level, from physical wires to user ap-
plications. Tools for managing today’s resources typi-
cally work from the level of bare metal up to user fac-
ing services and applications, including many low level
services which provide necessary infrastructure. The
provision of these low level services is never a goal,
only a result of the need to supply services to users.

For an administrator working with inter-organisational
resources, many of their infrastructure services must

be expected to be adopted from the organisation main-
taining them. We suspect it is considerations like these
which have lead to CDDLM’s focus upon application
deployment (the very highest level).

A similar approach has been taken in the management
of many current installations, where instead of “adopt-
ing” foreign infrastructure, the infrastructure is main-
tained manually, and a configuration tool used only
to manage software packages. Systems like these,
however, have proven vulnerable to failure, especially
when there are complex interactions between services
in each domain.

One of the requirements for a fault tolerant service
is the ability to adapt resources to its provision when
failures occur. When the service’s configuration is
co-dependent upon the configuration of the infrastruc-
ture (for example services visible through firewalls,
services whose host must be registered in DNS) it is
necessary for the tool performing the adaptation to be
aware of this co-dependent configuration. We argue
that this means that even though CDDLM is unlikely
to perform full-scale infrastructure management, it will
be necessary to represent (at least) partial configura-
tions of low-level services.

3 What is system configuration?

Whether it is providing grid services, or financial
workstations, a modern computing installation consists
of a highly complex network of hardware and intercon-
nected services. Thefabric configurationproblem[5]
involves taking the following raw materials:

❑ A collection ofbare metal hardware.

❑ A repositoryof software.

❑ A specificationof the required behaviour of the
overall system.

and turning these into a workingfabric which reli-
ably and correctly implements the given specification.
Moreover, it is necessary to maintain this correspon-
dence with all of the above items in a state of continual
evolution.

Over the past 15 years, the complexity of real fab-
ric configuration problems has increased considerably,
and the process has evolved from a largely manual
operation, to one involving a high degree of automa-
tion (see [6] for an overview of techniques). Initially,

Revision: 1.0.0 17 September 2004



(2)

skilled system administrators would hand-configure in-
dividual nodesfor particular roles, manually planning
the relationships between them, without any formal
translation between the overall requirements and the
individual configurations. Current state-of-the-art sys-
tems now deal with higher-level aspects ofservices
which span entire fabrics, automatically translating
service requirements into configuration parameters for
the individual nodes. However, there is still a large gap
between the high-level behavioural requirement spec-
ification, and the input parameters for such a system;
closing this gap is one aspect of current fabric config-
uration research.

LCFG[2, 7] is a good example of a current configu-
ration tool. It has been in (evolving) production use
for over ten years and was the standard configuration
tool for development of the EDG[1] (European Data-
Grid) testbeds1. AppendixA provides an overview of
the LCFG architecture and notes some of the current
problems.

Typical fabric services include Kerberos (authenti-
cation), NFS (file service), LDAP/DNS/NIS (name
services), NTP (time synchronisation), SMTP/IMAP
(mail), printing, web services, authorisation, etc. An
LCFG-managed fabric might have in the order of 1000
nodes, with each node having about 5000 configuration
parameters, controlling about 50components(software
subsystems)2.

More important than scale however, is (a) the contin-
ual rate of change in configurations (see4.3), and (b)
the difficulty of managing and structuring the configu-
ration specifications when many different people need
to control different “aspects” of the overall fabric (see
4.2).

We believe that current fabric configuration develop-
ment is inhibited by the lack of a common framework,
or standard language to describe configurations. Hence
the interest in CDDLM. However, we also recognise
that some important problems are still open research
areas, and any such framework would need to be suffi-
ciently flexible to incorporate likely developments.

4 Experiences of practical configu-
ration

There are many configuration tools for managing to-
day’s resources, however we believe there exists a gen-
eral consensus in the system administration commu-
nity at present that none of these tools is sufficient to

1Some sites now use the new tool Quattor[3], which offers a sim-
ilar level of functionality, and is based on a similar architecture

2The type of components available, and the wide range of param-
eters can be seen from the LCFG Guide[4].

meet the demands placed upon it. While we acknowl-
edge that the CDDLM technologies are aimed at a dif-
ferent space (the types of resources that are expected to
be mainstream in the future), we believe there is some
significant overlap with current systems.

We have therefore taken this section to present what
we believe are difficult problems in systems adminis-
tration at present which will impact upon the effective-
ness of CDDLM’s approach.

❑ In section4.1we discuss the difficulty of provid-
ing autonomic behaviours without allowing a sys-
tem’s configuration to drift.

❑ In section4.2we present some of the problems of
federated management

❑ In section4.3we review some experiences on the
inevitability of configuration evolution.

❑ Section4.4 discusses the difficulty in managing
the security of resources in real world situations.

❑ Finally, section4.5examines the lessons that have
been learned about the impact of tool complexity
both upon its effectiveness and upon its adoption.

4.1 Providing autonomic behaviour

The CDDLM charter indicates that responsibility will
be taken for providing autonomic behaviour for man-
aged applications (“liveness and redeployment”). This
is a significant challenge, since autonomics on any
large scale is an unsolved problem. In this section we
hope to outline some of the problems that have been
experienced in attempting to provide autonomics in
previous system configuration tools, and some of the
current thinking in this area.

Previous attempts at autonomics fall into two broad
categories:

1. Blind autonomics performs redeployment and mi-
gration upon the detection of failure, without in-
volving the fabric management system. This has
the advantage of not corrupting the intended state
of the system, and the disadvantage that the spec-
ification no longer represents anything like the re-
ality.

2. The tested alternative to blind autonomics is what
we will call “procedural” autonomics, where the
specification itself is changed in the event of fail-
ure and the configuration system itself reconfig-
ures and redeploys. This leads to a specification
drift: it can be hard to explain a given specifica-
tion, the administrator’s intended specification is

Paul Anderson, Edmund Smith



System Administration and CDDLM (3)

lost, and any return to the desired state after the
failure is repaired is generally impossible (with-
out manual intervention and a knowledge of what
the previous state was).

The current speculation is that the only way to ef-
fectively implement autonomics is with network level
specification. That is, the desired service is specified
at a network level and the configuration system acts to
maintain that service. This means that theres no need
to update the specification (it just says the network has
the service), which avoids configuration corruption.

4.2 Conflicting configuration requirements

It is a frequent occurrence in the configuration of a
system of any complexity that multiple conflicting re-
quirements are placed upon some aspect of the config-
uration. To some extent, this is inevitable when com-
plex systems are being configured by many different
people. However, most current tools handle conflicts
very badly:

In some tools (such as cfengine) conflicts lead to os-
cillations between configuration states. In LCFG, con-
flicts are deterministically resolved, but only on the or-
der in which they occur (last specified “wins”) which
makes for a great deal of source file gymnastics as
users attempt to assert a particular value.

In the current CDDLM implementation (as we un-
derstand it), there is no particular conflict resolution
mechanism, which means an individual service might
oscillate, might be determined by the most recently re-
quested value, the first specified value, or some other
(as yet untried) system. The major arguments against
this approach are usability, maintainability.

Usability and maintainability are discussed as separate
problems in their own right elsewhere, but in this spe-
cific context it is worth noting that none of the above
resolution strategies are good; in many cases they yield
a configuration which does not satisfy the intent of any
of the authors, and may even be indeterminate!

Current thinking suggests that many conflicts can be
avoided by providing language constructs which allow
the specification of much “looser” constraints, rather
than demanding explicit values (this is related to the re-
quirements for autonomics discussed above). In other
cases, the outcome should be deterministic, and obvi-
ous – for example by the specification of explicit pri-
orities.

4.3 Configuration evolution

CDDLM appears to lean towards the idea of a
“perfect deployment”, where a system configuration
is described perfectly enough to remain unchanged
throughout its lifetime. Traditional fabric configura-
tion tools tend to take aconvergentapproach (see [9])
where the lifetime is assumed to be indefinite, and the
system is in a state of continuous reconfiguration, at-
tempting to track the evolving specification. In large
systems, the phenomenon of “asymptotic configura-
tion” is typical – the configuration requirements actu-
ally change before the entire system has reached the
previously specified configuration state!

We would argue that CDDLM must consider long-
lived services, since many potential CDDLM applica-
tions may also run for weeks, months or years. Ex-
periences of general system configuration tell us that
systems do not remain static over these time frames;
they are often tuned or managed in various ways which
do not require them to be shut down or redeployed.
While it can be argued that CDDLM does notprevent
a configuration from changing without redeployment,
it does not appear at present to enable this to be done
cleanly or in a standard way.

4.4 Managing configuration security

Much of the discussion about security in the context
of grid applications and CDDLM is focused around
authentication. Most sites have a well-developed user
authentication infrastructure internally which a config-
uration tool may rely upon.

There are two major security problems for existing
tools which will also be important for CDDLM:

❑ Configuration authorisation: managing the as-
pects of a system’s configuration a particular user
is authorised to effect.

❑ Machine authentication: when configuration in-
formation is automatically generated, it becomes
difficult to authenticate.

In terms of authorisation, we note that some CDDLM-
deployed services will need to be (partially) config-
ured by multiple sources (this becomes inevitable as
the scale of deployments increases). Furthermore, CD-
DLM will need consider the sharing of adopted fabric
services (see section2) which will necessitate a robust
authorisation approach.

Tools at present have only been able to distinguish
between the authority to manage a machine or not.
Finer grained options (allowing particular administra-
tors only to manage specific aspects for example) have

Revision: 1.0.0 17 September 2004



(4)

(to the authors’ knowledge) never been successfully
applied in a production system.

Authentication of generated configuration information
is an area of active interest at present as current gen-
eration tools move towards greater automation. We
note that this has been recognised as a difficulty by the
CDDLM group, but we are unclear on the current ap-
proach. We are not aware of any current tool presenting
a viable solution to this problem.

4.5 Complexity and usability

One issue which has become apparent comparatively
recently is the problem of usability and complexity of
configuration tools. There has been clear feedback
from the system administration community that the
learning curve is a major barrier to adoption for most of
the current tools which attempt to address the overall
system configuration problem.

Moreover, a fundamental aim of such tools is to gener-
ate a reliable and correct system configuration, and it is
essential to include the human element in this process:
misunderstandings and unpredictable behaviour of the
configuration tool is likely to be a source of many more
configuration errors, than technical problems with the
tool itself.

We are concerned about the complexity of the CD-
DLM proposals in the light of these current issues.
While we acknowledge much of the perceived diffi-
culty stems from the incompleteness of documentation
at this time, we still suggest the overall complexity may
be too high.

5 OGSAConfig

OGSAConfig is a JISC funded project investigating
dynamic reconfiguration for grid fabrics. As part of
our effort to support standardisation in the area, we in-
vestigated using the CDDLM proposed interfaces.

Dynamic fabric reconfiguration is a similar problem
to that addressed by CDDLM, although it is aimed at
grids of a different era. The applications we are most
anxious to support are those deployed on current e-
science grids. Since many of these applications cannot
co-exist, our problem appears very similar to that of
CDDLM: describe and deploy an application for con-
sumption by users, then undeploy it.

We have diverged from CDDLM in several ways that
are worth discussing. Firstly, the need for centralised
configuration management (most major tools take this
approach, and it was beyond the scope of our project to
develop a new tool) meant that we separated the act of

describing a potential configuration to the fabric from
the act of deploying it. This allows us to describe it
once to a fabric “broker”, then deploy it independently
at individual nodes.

We found this structure very difficult to reconcile with
CDDLM which has both a host oriented bias (it ap-
pears a CDDLM service is intended to represent a por-
tal to the configuration of individual hosts) and an em-
phasis on deployment as description. These considera-
tions and trade-offs will be discussed in some detail in
the forthcoming OGSAConfig architecture report [8].

6 Conclusions

CDDLM is one of the first standards efforts in the area
of systems administration. It focusses on the manage-
ment of some particular resource types which are not
yet common, and for which standard configuration in-
terfaces will be vital. It seems clear to us that there
are many similarities between these resources and the
currently prevailing types, and that there is the poten-
tial to learn from the problems experienced by tools in
present use.

As grids become more common, and services and sys-
tems migrate outward to third-party providers, the need
for standards like CDDLM will grow. However, for
the forseeable future these “on-demand” resources will
need to interact with the more traditional kind, which
will make bridging between existing tools and CD-
DLM important. We suggest it is important to con-
sider in advance how such bridging might be achieved,
especially given the significant difference in structure
between the CDDLM solutions and such tools.

In section4 we looked at some existing system con-
figuration problems which we believe will impact CD-
DLM. We believe the danger for CDDLM lies in at-
tempting to establish a standard for problems whose
solution is not well understood. This might be allevi-
ated by avoiding mandating unnecessary detail, whose
inclusion could prevent future solutions from fitting
within the framework.

7 Acknowledgements

OGSAConfig is funded by a grant from the Joint Infor-
mation Systems Committee (JISC)3.

Some travel for this research has been funded by the
GridNet programme4.

3http://www.jisc.ac.uk
4http://www.nesc.ac.uk/esi/gridnet.html

Paul Anderson, Edmund Smith

http://www.jisc.ac.uk
http://www.nesc.ac.uk/esi/gridnet.html


System Administration and CDDLM (5)

������� �	��
����


��������������� ��


� ��������� � 
 ��!"�����
�#��
$� �&% �

� � ��!(')� �

* � �

+,!(- ��
.���/���
� ��021 � � � � !(3

� ��021 ��! �
4 � 5 �

� � ��! ��6 !
�#7 ��!�%�- ��


8 
 ����3:9&��!(� 


� !���� 5;� 
 5
� ��������� � 
 ��!"�����

� ����! ��6 ! < 3�1 � %=�>�:�&%
� ��������� � 
 ��!"�����

�������
? 
 �����@9 �

* 3 ��


Figure 1: OGSAConfig Architecture

Appendix A LCFG

The LCFG architecture is shown in figure2:

❑ The configuration of the entire fabric is described
in source filesheld on a master server. These files
donotcorrespond to individual nodes, or even in-
dividual services; rather, they correspond to dif-
ferent aspectsof the entire fabric. Frequently,
these will correspond to individual node roles,
such as a “laptop” or a “student machine”, or an
“public web server”.

❑ A compiler on the master servercomposesthe
source files affecting each node to generate a per-
nodeprofile. This profile contains all the configu-
ration information necessary to recreate the entire
node from the bare metal hardware, and the soft-
ware repository.

❑ When a profile changes (due to a source file
change), the server notifies the affected client5,
and the client fetches the new profile using HTTP.

❑ The configuration parameters (resources) in the
profile are interpreted by a (configurable) set of
components on the client machine, each of which

5The client also polls periodically for changes in case it is un-
available at the time the notification occurs.

translates these into the low-level configuration
files and options required for a particular subsys-
tem (for example, mail server, or authentication).

Several points are worth noting:

❑ LCFG mandates a centralised architecture; all
configuration specifications must be channelled
via the master server, even if they originate else-
where. We believe that this is a problem, both for
scalability, reliability. More seriously, it requires
a single, authoritative source of all configuration
information which is not possible in a dynamic
and/or federated environment.

❑ Configurations of individuals nodes are automat-
ically generated by composing various aspects.
The aspects may involve inter-node interactions;
for example, configuring one node as a firewall,
and an another as a public web server, should
create a profile for the firewall which includes a
“hole” for the web server.

❑ There is no explicit deployment lifecycle. The
LCFG components are responsible for deploying,
undeploying and dynamically reconfiguring ser-
vices at the node level to ensure that they con-
form to the specification. Exactly the same prin-
ciple is even used to install new nodes by trans-

Revision: 1.0.0 17 September 2004



(6)

���

�����

�����	


�������
���

��� ������

	�����������

��������

�����������

���������

������������
����������������������


���
������

 �����������

��!" �	"#$"#

Figure 2: LCFG Architecture

forming the empty disk into one containing the
required software. Note that any synchronisation
of deployment or reconfiguration of inter-node
services requires communication via the master
server, or the use of some out-of-band technique.
This can be a problem when deploying or recon-
figuring complex inter-node services.

References

[1] The European DataGRID. web page.
http://web.datagrid.cnr.it/ .

[2] LCFG. web page.
http://www.lcfg.org/ .

[3] Quattor. web page.
http://www.quattor.org/ .

[4] Paul Anderson. The complete guide to LCFG.
Technical report.
http://www.lcfg.org/doc/guide.pdf .

[5] Paul Anderson. What is this thing called ”con-
figuration”? LISA Large Scale Configuration
Workshop, October 2003.
http://homepages.inf.ed.ac.uk/ ...

dcspaul/publications/config2003.pdf .

[6] Paul Anderson, George Beckett, Kostas Kavous-
sanakis, Guillaume Mecheneau, and Peter Toft.
Technologies for large-scale configuration man-
agement. Technical report, The GridWeaver
Project, December 2002.
http://www.gridweaver.org/WP1/ ...

report1.pdf .

[7] Paul Anderson and Alastair Scobie. LCFG - the
Next Generation. InUKUUG Winter Conference.
UKUUG, 2002.
http://www.lcfg.org/doc/ ...

ukuug2002.pdf .

[8] Paul Anderson and Edmund Smith. A dynamic
configuration architecture. Technical report, The
OGSAConfig project, October 2004.
http://groups.inf.ed.ac.uk/ ...

ogsaconfig/papers/report2.pdf .

[9] Mark Burgess. Automated system administration
with feedback regulation.Software-Practice and
Experience, 28, 1998.
http://www.iu.hioslo.no/˜mark/ ...

research/feedback/feedback.html .

Paul Anderson, Edmund Smith

http://web.datagrid.cnr.it/
http://www.lcfg.org/
http://www.quattor.org/
http://www.lcfg.org/doc/guide.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/config2003.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/config2003.pdf
http://www.gridweaver.org/WP1/report1.pdf
http://www.gridweaver.org/WP1/report1.pdf
http://www.lcfg.org/doc/ukuug2002.pdf
http://www.lcfg.org/doc/ukuug2002.pdf
http://groups.inf.ed.ac.uk/ogsaconfig/papers/report1.pdf
http://groups.inf.ed.ac.uk/ogsaconfig/papers/report1.pdf
http://www.iu.hioslo.no/~mark/research/feedback/feedback.html
http://www.iu.hioslo.no/~mark/research/feedback/feedback.html

	Overview
	Introduction
	What is system configuration?
	Experiences of practical configuration
	Providing autonomic behaviour
	Conflicting configuration requirements
	Configuration evolution
	Managing configuration security
	Complexity and usability

	OGSAConfig
	Conclusions
	Acknowledgements
	LCFG
	References

