

business transaction information management

What CAM Is

The CAM specification provides an open
XML based system for using business rules to
define, validate and compose specific business
documents from generalized schema elements
and structures.

A CAM rule set and document assembly
template defines the specific business context,
content requirement, and transactional function
of a document. A CAM template must be
capable of consistently reproducing documents
that can successfully carry out the specific
transactional function that they were designed
for. CAM also provides the foundation for
creating industry libraries and dictionaries
of schema elements and business document
structures to support business process needs.

Solving the Inherent Problem of Automated
Information Integration

Automated information integration has
been the Holy Grail of e-Business systems
since before XML was conceived. Early
attempts centered on the use of industry
standard transaction formats typified by EDI
messages1.

These quickly showed that three needs
were paramount: the ability to design
transactions consistently, the ability to
document their usage in a clear way and then
the ability to drive software that can apply rules

1 For more information on Electronic Data Interchange
(EDI) – see N. American standards secretariat group site:
http://www.disa.org

and test information content to ensure correct
compliance.

The CAM approach provides these three
critical abilities: –

• documentation of business interchange
transactions,

• design-time assembly support with
verification, and

• runtime checking of information content.

Next we consider the limitations of current
approaches and technologies and how the
capabilities that CAM provides can address
these shortcomings.

The Present Tools and Their Limitations for
Addressing the Problem

The advent of XML has also meant that
other new tools are available to advance the
technology of automatic transaction content
handling. These include formal structure
definitions using XML schema (XSD) with
content control at the element level using
datatyping; then XSLT rules and XPath
expressions and semantic tools such as RDF
and OWL to provide machine understanding of
the role and usage of the XML based
information itself. These tools typify the
approach of controlling the actual XML
instance documents and their content (e.g.
transactions) by creating formal expression
language that provides external descriptions
about the possible instance documents that

Content Assembly Mechanism Brochure - 2

are allowed. The W3C organization has
centered its efforts on this strategy2.

People usually start this process by
defining an XML schema that contains the
rules of the actual XML structure they wish to
use. This is often sufficient for simple small
transactions between closed communities of
business partners. However for general
communities across whole industries this can
rapidly become problematic as more and more
context driven factors are added to the
schema, since schema does not have by itself
a native context driven selection mechanism.
Further more a large need is the handling of
industry lists for standard code values and
particularly sub-sets of codes where again
schema has no direct built-in method for this.

Another approach is to use UML3 modelling
techniques to create models of the information
use cases, classes and instances and then
derive XML schema definitions from these
UML structure diagrams. The ebXML core
components work and the OASIS UBL
technical work have both used this approach.
UML itself however has no mechanisms for
capturing complex cardinality relationships in
the models. Therefore this approach is limited
in the same way that XML structure models in
XSD are as well. Also industry dictionaries of
component definitions are not well integrated
into UML tools through federated registry
capabilities. However, CAM supports this
capability through its direct support for ebXML
Registry systems and the ability to derive
semantics in XML from such registries.

The Issue of Context in Business
Interchanges

In automating information integration,
knowing and defining context of use is the
single most pervasive and important factor.

2 The World Wide Web consortium (W3C), were the
creators of the XML syntax – for more information on
XML. XSD, XPath, RDF and OWL see
http://www.w3c.org
3 Universal Modelling Language (UML) as originally
developed in Rational Rose and now part of the Object
Management Group (OMG) specifications.

The older EDI systems however have no way
to support dynamic context driven content
assembly whereas CAM provides this better
than any other XML syntax system today. In
fact CAM templates work for both old EDI
payloads and new XML based transaction
structures.

What is CAM comprised of?

A CAM template has five sections:
assembly structure(s), business context rules,
content referencing, data validation and
external mappings. They can be used

altogether or in combination. The first two
sections are required; the remaining three are
optional, so a CAM template can be as simple
or sophisticated as the business needs dictate,
see figure below.

What does the addition of context to CAM
do?

In addition the CAM system provides a
global context passing mechanism, and an
XML rendering for declaring context variables.
This context mechanism is at the heart of why
CAM is so effective. By allowing users to
quantify what their context factors are
precisely, this removes the guess work from
business transaction exchanges between
partners and allows them to formulize their
collaboration agreements exactly. It also
makes re-use and identifying potential
candidate CAM template models much easier.
Simply knowing what the external parameters
are can instantly qualify if a template makes

XML
instance

structure(s)

+
Business context rules

+ Content Reference rules

+ Data Validation rules

+ External Mapping rules

can have more than one structure layout

can add inline rules directly
into structure

makeOptional()
excludeTree()

item type="noun"
name="Agency/@AgencyID"
UIDReference="ukt000910"

<conditional
expression="'//SupplierID' and
lookup(value,'SGIRWSDL:sup
plierID_check')"

<MapRule output="type"
input="Sales/Company/Yea
r/Qtr/Product@type"/>

Simple Declarative Statements

Combined
with

Content Assembly Mechanism Brochure - 3

sense for a user and allow them to therefore
select it.

How Does CAM Execute?

A CAM implementation requires that a
reference CAM template be available along
with the CAM processor engine itself. The
available jCAM processor4 is implemented in
Java and so can be used in a variety of
environments. Along with the CAM processor
will typically be an XML instance to be
manipulated by the processor. Also CAM
maybe used as a web service and sample
WSDL binding definitions are available to

facilitate this.

A practical example of what CAM does

Next the following figure shows how the
CAM template details are used to create a
specific transaction instance. Consider for
example a scenario from the current
automotive industry work on aligning inventory
control systems using the Open Applications
Group (OAGi) business transaction formats
called BODs (Business Object Documents). In
the case of such OAGi BODs the CAM
template provides the context driven rules and
structure instances derived from the master
BOPD models that given a particular car
manufacturers requirements will create the
actual resolved structure and rules for the OAG

4 The jCAM processor is open source can the resource
site is http://jcam.org.uk for the project.

BODs inventory management information
exchange required.

Each BOD also has associated with it a
complete list of each information element and
basic details of its content. The CAM
technology has been designed fundamentally
to leverage such dictionaries of noun
definitions and so the available OAGi BOD
semantics provides the perfect match for this.
The content reference section of the CAM
templates provides the means to facilitate this.

The next section provides and overview of
how to use such specific CAM features and
techniques.

How Do You Create CAM Templates and

Rule Sets?

There are several steps required in building
a CAM template depending on how complete
you would like your template to be. To fully
utilize CAM you may want to fill out all six
sections of the CAM template. Most initial
templates however only use two or three
sections for structure, business context and
content reference sections.

The first thing you require when
constructing a CAM template is an actual XML
model of the information structure you wish to
manipulate. You can either enter this directly
from scratch into the CAM template, in XML, or
you can cut and paste an example from some
XML that you are already using. So in the
example we are considering – you would
create a sample instance for a car
manufacturers system of a typical document
transaction.

 Next you go through that XML structure
and do four things:

- mark each field where information will
occur with the “%%” substitution
placeholder

- physically enter static information
exactly as and where it should occur in
the XML

- duplicate parts of the structure that may
be choices, and label those parts with
selection names (e.g.

Results for
given
context and
action

Context
Statements

CAM
Template

+

CAM gets passed context from
business use

Generates
actual XML

instance
definition
to be used

XML
transaction

content
process

and
compare

1

2
3

4

5

Content Assembly Mechanism Brochure - 4

as:choiceID=”USA-address”, and
as:choiceID=”Canada-address”)

- assign inline rules using the CAM
functions to denote local formatting and
other conditions right into parts of the
XML structure as needed (e.g.
as:setMask=”dYYYY-MM-DD”).

Once this is completed then you can move

to the Business Context section of the CAM
template. CAM assumes all elements and
attributes are required in a structure unless you
denote them otherwise. So the second step is
to indicate the CAM elements that are optional
and also elements that are repeatable. You
can also use XPath conditions to express
business rules choose when things should be
used. So you may make an element optional
only if a certain condition applies. You can
also omit parts of structure, or include others
depending on conditions, and link structure
components together so if one is selected
another is then required as well (conditional
cardinality).

As you create these business rules you
may find some conditions relate to values in
the XML structure associated with the CAM
template itself, or others may come from global
parameters that you need to pass to the CAM
processor. These global parameters can be
defined in the header section of the CAM
template and then referenced in the business
rules or the XML structure itself using the
$name syntax5.

After creating business rules for the use of
the structure, you then go to the next step in
the template by entering the content reference
section. In this section you can provide
standard definitions for elements. You also
need to use this section if you want to take
advantage of the extended features CAM has
for validating attribute use and their content.

The idea of the content reference section is
to build up a library and dictionary for your
commonly used elements across CAM
templates, but you can also use it to just locally

5 e.g. $manufacturer=”GM”, $language=”US-ENG”), or
<description lang=”$language”>%%</description>

define field details as well. To complete the
content references you simple provide
statements for each of the elements and
attributes in your XML structure that require
additional information processing. Each
statement contains the XPath of the item in the
XML structure cross referenced by a UID code
value that uniquely identifies it. You can
assign UID codes simply and easily using a
suitable prefix that you select followed by a 6
digit number (e.g. “USPS000100”,
“USPS000101”, and so on could reference
fields in a US postal address structure).

Each content reference statement can also
optionally contain data typing, field length and
other semantics about your fields.

You can use include statements in CAM
templates to optionally retrieve pre-built
structure sections and associated content
reference sections into your current template.
This allows you to develop libraries of
commonly used components, such as address
layouts, product details, and customer
information and then simply insert them as pre-
built assemblies directly in where you need
them. Also, because CAM can resolve syntax
use through the content reference section you
do not need to use cumbersome namespace
references to achieve this. Therefore re-use of
structure components is made dramatically
easier.

The next step is to provide specific data
validation rules that you may require. Typically
these are rules that occur between and across
fields in the XML structure, such as comparing
the value of one date field to another date field.
Again these use XPath expressions to
construct the rules you require. For really
complex conditions you may also choose to
invoke an external module, such as a web
service, to do the testing and return the result
back to the CAM processor.

Often you will have completed your CAM
template at this point. However you may need
to relate content using the external mapping
section. This allows you to manipulate
information and integrate it with an external
information source or format such as to a SQL

Content Assembly Mechanism Brochure - 5

database table, or to a HTML form layout, or to
another XML structure format.

This is an advanced feature set of CAM
however, and depending on what information
integration, (either inbound or outbound), that
you need will then affect what rules and
statements you put in this section.

You may also need to define an additional
structure section definition, for instance for
HTML or XML targets that you will be using
and referencing. This is also the most
powerful section of the CAM processor and
you can provide complete content assembly
and manipulation of business transactions and
information using it.

This completes this overview of creating a
CAM template. Next we consider utilizing
these capabilities of CAM alongside traditional
components of an information infrastructure to
deliver enhanced system interoperability and
agility.

How Does CAM Integrate with Other

Application Integration/B2B Products?

The most obvious use for a CAM processor
is in validating information content passing
through a messaging system, and particularly
a messaging hub. Here the CAM templates
can contain business rules to ensure that the
information received is compatible with the
business systems supported by the messaging
system. To complete out the picture a CAM
processor may be used to re-structure the
information presented to it, after first validating
that it is correct.

In addition a business process engine may
use a CAM processor to direct the creation or
processing of business transactions for it. In
this case a step in the business process will
have a CAM template associated with it that
will be invoked. The CAM processor can then
produce the desired information processing for
the business process engine.

Next a CAM processor can be deployed as

a web service to allow business partners to
pre-validate XML instances before using them

in message exchanges. By presenting an XML
instance to the web service and selecting a
CAM template the partner can have returned a
detailed report about the results of the tests
and their outcomes.

Within industry standardization efforts CAM
templates can be used to capture all the
design rules that apply to an industries use of
XML structures. The CAM processor can then
provide a validation and conformance service.
Industry groups can also create CAM
templates to document older legacy
transaction formats and provide XML based
semantics and usage rules for those.

When integrating with E-Forms systems
the CAM processor can be used in a variety of
modes. It could create forms given some input
business transaction, or it could take the output
from a form entry process and then validate it
and re-structure the content and deliver it as a
business transaction.

In short the CAM processor can be used in
a variety of roles wherever manipulation or
validation of information content structures is
required.

The figure shown on the next page shows
how CAM can be integrated into an eBusiness
stack providing the orchestration of business
transaction handling along with typical
components of the eBusiness stack such as
message handling services, business process
management engines, application integration
mapping services and industry registry of
dictionary definitions and vocabularies.

Content Assembly Mechanism Brochure - 6

Integrating CAM into an eBusiness stack

A Real World CAM Scenario

The original implementation of CAM by
British Telecomm (BT) in the UK is providing
transaction validation against hundreds of
trouble ticket message formats that BT
receives daily. These trouble ticket formats
used in the telecommunications industry are
XML messages using the xCBL syntax
approach and are highly complex XML
structures. The information carried in them is
highly variable and differs according to the
originators own telecommunications switches
and configuration details. The message
details change frequently every three to four
months as new services and products are
introduced and provisioned in response to
demands from highly dynamic and technology
driven markets within the industry.

Managing these structures and formats
takes significant manpower and especially to
detect when solution partners have made
changes to their transactions and details
without first notifying the systems connected to
them. This may also happen inadvertently
when new devices are installed in the field and
they start producing new trouble ticket reports
automatically.

Being able to direct and manage this
implementation space using the XML scripts in
the CAM templates significantly reduces this
maintenance burden and also allows changes
to be implemented rapidly and easily.

Partners can also begin to become

involved in the process themselves by
managing and maintaining the CAM template
definitions that relate to their own production
systems and configurations. They can then
share those templates with their partners when
changes are about to be placed in production.

How Does CAM Work With or
Compliment Other Semantic Definition
Initiatives (UDEF, UBL, OAG, RosettaNet,
HL7, STEP, eprXML)

The CAM technology has been designed
fundamentally to leverage dictionaries of noun
definitions and libraries of transaction formats
built from industry initiatives. By providing the
content reference section in the CAM template
the processor is able to automatically retrieve
semantics from industry registries about
individual elements in a XML transaction. This
allows consistent definitions to be deployed
across a set of industry business transactions.
It also includes the ability to version and sub-
version definitions. This is especially important
for the processing of code lists. Code lists
provide the basis for up to 50% of information
flowing in legacy EDI transactions. Industry
groups define extensive code lists for the
products and services used by their members.
Yet the W3C XML schema system does not
support code list definitions directly. Therefore
CAM provides a key capability with its built-in
lookup () functionality.

Industry initiatives today have created
dictionaries of their nouns (elements) and
verbs and labelled them with reference codes.
They have also provided classifications and
taxonomies for these as in the case of UDEF
particularly. By allowing these industry groups
to load their dictionaries into XML instances in
a registry the CAM approach unlocks the
potential of these dictionaries to effect
significant improvements in interoperability of
information in those industries.

Providing the means to assemble consistent
transactions from pre-defined libraries of
structure components and also to create

Business agreement

Drives document
exchanges

Content Assembly Mechanism Brochure - 7

libraries of business process definitions that
can be context driven are key functionality that
CAM delivers.

By linking a CAM processor service to the registry
these industry groups can then allow members to
validate XML transactions against the standard
definitions in their registries or download CAM
templates and associated business process
definitions that they can use directly in their own
systems.

By combining CAM technology with a
registry in this way provides the foundation for
even more sophisticated semantics in the
future. Taxonomies and ontologies are
emerging as ways for machines to understand
more about knowledge in a way that today only
humans are able to. Registries can provide
ontology and taxonomy driven search results.
This allows agent software and human
researchers to more effectively locate business
transaction processes, such as CAM
templates, and determine if they are suitable
for the task they need.

Enhancing the work of industry groups is a
significant benefit that CAM technology
delivers today.

CAM can also be used in tandem with
UML. UML does have a production rules
system that can be used to output XML from
UML diagrams and it is anticipated that this
can allow UML models to output partially
complete CAM templates that can then be
hand-edited in XML to complete a full
information model.

Perhaps one of the most exciting potential
uses for CAM is with the emerging OASIS
work on EPR (Electronic Process)
specifications for service oriented
applications6. Since these are required to be
fully model driven, having the CAM templates
able to resolve dynamically through context
parameters the information exchange formats
allows designers of eprAPL (EPR Application)
solutions a rapid and consistent way of
implementing these.

6 For more information on the EPR work and the
eprXML and eprAPL components – please see the
OASIS BCM TC area at http://oasis-open.org

Summary

Reviewing what CAM represents and the
opportunities it opens up we find a range of
use cases; from sophisticated discreet tasks as
part of specific architectures such as ebXML
business processes or Service Oriented
Architectures environments, to simple local
document verification as a standalone
business tool.

The value of the CAM approach is in
managing context and business rules directly
and tying these to consistent information
semantics. The lesson learned is that
consistent information exchanges must include
context management. The result from this will
be to transform the ability of industry to deploy
successful and interoperable eBusiness
information exchanges simply and quickly.

Contacts and Additional Information

The CAM technology is a product of the
OASIS Business Content Assembly
Mechanism Technical Committee. More
details can be found from the specifications
and documents that the committee has
produced. These include the latest CAM
specification, presentations introducing CAM,
and examples of CAM templates. These and
other documents can be obtained through the
OASIS website at: www.oasis-open.org.

For more information on how to participate
in CAM activities, please see the membership
links from the main OASIS web site or the
CAM TC area directly.

Content Assembly
Mechanism Technical
Committee

Chair: David Webber – drrwebber@acm.org

