

Copyright© OASIS. All Rights Reserved

Content assembly mechanism
(CAM) Specifications and

Description Document

Version 1.0

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 2 of 69

CHANGE HISTORY

Status Version Revision Date Editor Summary of Changes
Draft 1.0 0.10 30 December, 2002 DRRW Rough Draft

 0.11 12th February, 2003 DRRW Initial Draft

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 3 of 69

OASIS COPYRIGHT NOTICE

Copyright (C) The Organization for the Advancement of Structured Information Standards
[OASIS] (1 March 2001). All Rights Reserved

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Information on OASIS's procedures with respect to rights in OASIS specifications can be found
at the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementors or users of this
specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the
contents of this specification. For more information consult the online list of claimed rights.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 4 of 69

TABLE OF CONTENTS

1.0 ACKNOWLEDGEMENTS ..5

2.0 INTRODUCTION ...6
2.1.1 GOALS ...7
2.2.1 APPROACH ..7
2.3.1 AUDIENCE ...7
2.4.1 BOUNDARIES...8
2.5.1 USE MODELS...8
2.6.1 PROBLEM AND OBJECTIVES ...9

2.6.1 Operational Requirements..9
2.6.2 Design Constraints ...11
2.6.3 Related Specifications...11

2.7.1 IMPLEMENTATION ASPECTS OF CONTENT ASSEMBLY TECHNOLOGY12
2.7.1 Technical Factors ...12
2.7.2 Summary..14

3.0 PRE-REQUISITES..15

4.0 CONTENT ASSEMBLY MECHANISM TECHNICAL SPECIFICATION16
4.1.1 OVERVIEW ..17
4.2.1 ASSEMBLY STRUCTURES..22
4.3.1 BUSINESS USE CONTEXT RULES ..24

4.3.1.1 XPath syntax functions.. 29
4.4.1 CONTENT REFERENCING ..31
4.5.1 DATA VALIDATIONS...33
4.6.1 DISCRETE VALUE LIST SUPPORT (“CODELISTS”)..34
4.7.1 ADVANCED FEATURES ...36
4.6.1 IN-LINE USE OF PREDICATES AND REFERENCES...36
4.6.2 NON-XML STRUCTURE REFERENCING ..39
4.6.1 INCLUDING EXTERNAL STRUCTURES INTO CAM..41
4.6.2 OBJECT ORIENTED INCLUDES SUPPORT ..42
4.8.1 IMPLEMENTATION NOTES...43
4.9.1 CAM PROCESSOR NOTES...44
4.10.1 EXTERNAL BUSINESS CONTENT MAPPING ..45
4.11.1 CONFORMANCE LEVELS AND FEATURE SETS..48

A ADDENDUM..49
A1.1 EXAMPLE OF AN ADDRESS ASSEMBLY...49
A1.2 EXAMPLE OF AN OAGIS BOD ASSEMBLY ..54
A1.3 CAM SCHEMA (W3C XSD SYNTAX) ...55
A1.4 IMPLEMENTING RELAX NG WITH CAM ..67
A1.5 BUSINESS PROCESS MECHANISM (BPM) CONTEXT SUPPORT......................................67

5.0 REFERENCES...69
Deleted: 68

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 5 of 69

1.0 Acknowledgements

OASIS wishes to acknowledge the contributions of the members of the CAM Technical
Committee to this standards work.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 6 of 69

2.0 Introduction

Content assembly has been solved in a variety of ways in the past. Particularly the traditional
electronic data interchange (EDI) approach is to rigorously restrict content variance so as to avoid
the need for dynamic definitions in software. This proved to be both the strength and weakness
of EDI, and therefore for specific business scenarios EDI itself resorted to the use of written
implementation guidelines to formalize the interchange details.

With the advent of XML based transaction content implementers have learned that while
constructing schema structure definitions provides a higher degree of flexibility for business
scenarios than EDI nevertheless the same limitations on interoperability recur while there is no
robust means to specify business scenario details for actual schema use.

OASIS itself has found that its technical teams developing industry vocabularies cannot fully
derive the needed depth of detail on the use of such vocabularies while making use of schema
alone. Further more the notion of producing business re-usable information components
(BRICs1) both within and across OASIS industry vocabularies has been problematic in XML
(especially without robust inclusion and versioning mechanisms).

Clearly the urgent business need is to move beyond this and provide a machine-readable format
in XML that can then allow business application software to automatically configure the
interchanges according to the business rules.

Additionally to facilitate the broad collaborative adoption of BRICs technology particularly
requires a formal way of storing and retrieving vocabulary entries within the Registry technology
that OASIS is developing. Again while early work has been attempted in this area using schemas
alone, this has not proved suitable for the three key structural needs of atomic element definitions,
lists of code values (codelists) and assembly components. Added to this is the need to provide
content validation rules and a mechanism to support business context variables. Here again
OASIS teams are developing specifications that require these mechanisms to coordinate across
the deployment information architecture.

The core role of the OASIS CAM specifications is therefore to provide a generic standalone
content assembly mechanism that extends beyond the basic structural definition features in XML
and schema to provide a comprehensive system with which to define dynamic e-business
interoperability.

In addition the CAM specifications are providing support and collaboration tools to existing
OASIS technical work by linking together key components of the overall e-business systems
architecture.

1 Typical BRICs include such concepts as ‘Billing Address’, ‘Person Name’, ‘Shipping
Requirements’, and so forth, where the BRICs provide pre-built collections of atomic XML
elements that can be simply stacked together into a business transaction. UN/CEFACT
specifications refer to these capabilities as a “BIE” – a Business Information Entity, however BIE
is a logical concept, whereas BRIC is its physical manifestation in XML syntax.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 7 of 69

In the context of e-business collaboration the problem fundamentally stems from the need for
each partner to be able to both quickly adopt and start using standard industry building blocks and
interchanges, while at the same time being able to overlay onto this their own local business
context and special needs, (such as product specific information or country or locale specific
information).

We now look at how this overall vision translates into specific goals, approach and functional
requirements.

2.1.1 Goals
· Promote development of interoperable e-business systems and best practice usage for

maintenance and ease of adoption of vocabularies.
· Provide the coupling between the conceptual layer and the physical production systems

within the overall architecture stack. Particularly that business process definition
technology can use CAM to construct transaction content for discreet business steps and
provide associated use and context driven mappings.

· Provide a simple migration path for legacy business-to-business (B2B) and EDI systems
to adopt XML driven mechanisms.

· Provide a coupling content include mechanism that supports possible object-oriented
design methods as part of the include attributes.

· Enable Registry systems to implement library dictionaries of pre-built assembly
components (BRICs) and publish these for discovery and re-use.

· Enable development of both simple public domain components and also sophisticated
vendor products, and encourage early development by design simplicity.

· Provide ability to develop conformance suites by use of level mechanisms.

2.2.1 Approach
· Open mechanism for content assembly using simple XML scripting.
· The use of three levels within the specification to separate out the functionality by

complexity. This ensures ease of implementation, future extensibility and conformance.
· Minimalist approach to use of external specifications, therefore the foundation of CAM is

XML 1.0 syntax and the XPath specification, augmented with as limited set of functions
and extensions as is possible.

· Extensible design coupled with a simple but powerful base foundation. The initial scope
will defer complex and extended capabilities to Level 3 components and also later
versions beyond the initial V1.0 release.

· Avoid reliance on complex markup devices such as namespaces, XLink and so on.
· Provide a simple coupling content include mechanism that supports possible object-

oriented design methods as part of the include attributes.
· Ensure that CAM scripts can be hand-edited and are visually simple to read.

2.3.1 Audience
· CAM is intended for use by technical business analysts with IT experience and by

implementation programmers constructing e-business systems and particularly business
process definitions. Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 8 of 69

· It is also intended to allow solution vendors to integrate CAM functionality underneath
their products to provide extended functionality by analysing and purposing CAM
content and rules for designer and production components.

· End users should be able to interact with CAM driven components to adapt e-business
technology to their discrete business needs.

2.4.1 Boundaries

· Re-use XML mechanisms as much as possible, therefore minimizing the need to re-
invent software technology.

· Ensure that CAM implementations can use standard libraries, such as XML parsers and
web browser environments as much as possible.

· CAM is not intended to be a mapping solution, but instead should support and enable
vendors own mapping tools.

· CAM is not intended as a replacement for general-purpose schema systems, instead CAM
can be used to dynamically emit schema structures, and particularly for defining e-
business transaction structures.

· Collaborate with OASIS Registry and Business Process TC’s around use models,
functional requirements and context mechanisms.

· Define APIs as needed to exchange semantic content with external systems, such as
Registries.

· Provide a neutral structural mechanism that is not specific to any markup technology but
instead can handle a range of such definitions.

· Use XML syntax that can be hand edited without need for complex syntax mechanisms
and tools.

2.5.1 Use Models
· Design process – ability to assemble business transaction models from pre-built

components; re-use and discovery are strong needs
· Transaction mapping – physical layer integration between business information

transactions, industry standard dictionaries, and backend application systems
· Post-design / pre-production – documentation and verification of business model and

rules through generation of test materials, validation scripts and plain text documentation
artefacts

· Production – context driven assembly of business transactions and e-forms and their
associated validation artefacts such as schema and declarative software scripts

· Standards bodies wanting to document assembly information for industry vocabularies

The work on providing an open means of expressing transaction payloads for eBusiness is in
response to a long running and recurring need when building large networks of collaborative
partners electronically.

Some real world examples of such uses include the following:

• A large government department looking to simplify and manage over two thousand
interfaces between inter-departmental systems including legacy COBOL formats, ERP

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 9 of 69

system formats, EDI transactions, audit reporting, online transactions and new XML
documents.

• A government implementing an e-Gov initiative to bring electronic access to government
for its citizens via electronic forms integration in two major and several minor alternate
languages.

• The automotive industry looking to improve information flow to 20,000 dealerships from
anyone of the 15 car manufacturers in North America.

• A supermarket chain looking to provide cheap accounting exchanges with its 2,000 small
suppliers in local marketplaces for an array of different products.

• A major PC hardware manufacturer looking to send catalogue information to 27,000
websites worldwide for its reseller network.

• A telecommunications company supporting hundreds of complex technical service
engineering requests using variants of EDI and XML based messages in a rapidly
changing industry were new categories of products are created every month.

The current work on content assembly is therefore focused on providing a solution that can meet
the business transactional needs.

2.6.1 Problem and Objectives
Technically within the e-business architecture design stack the CAM component is providing the
linkage to the payload formats and transactions from the business process Schema specifications.
Within each step of the business process it may have associated with it one or more physical
transaction payload(s) that carries the actual information exchanged. The CAM provides the
means to capture the structural, contextual and referential information about the payload
formatting.

The CAM provides the critical glue between the logical model and the physical implementation,
allowing representation of the ABCDE's of the interchange - Assembly Structure(s), Business Use
Context Rules, Content References (with optional associated data validation), Data Validations
(both design time assembly pre-requisites and post-assembly cross-checking.), and External
Mappings (to backend application data). The CAM defines the structural formatting and the
business rules for the transaction content. This then drives the implementation step of linking the
derived final contextual details to the actual application information.

2.6.1 Operational Requirements

In determining operational needs there are two levels and areas to include. The first level is the
overall operational approach to solving large enterprise level interactions, then enterprise to small
business interactions, and small business to small business interactions. Several common use
cases were presented in the Introduction above for the first two interactions, while the third use is
in its infancy today, (such as individuals exchanging address book entries between PDA devices).
Therefore we will concentrate on the first two interactions and use areas around the enterprise
needs.

The second level is a broad one based around enabling the paradigm of use for the business
domain expert generally. The need is to enable the technology to be used by the functional staff
across industry, rather than being restricted to specialist IT staff. Notice this requirement is Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 10 of 69

intrinsically linked to the fact that small business to small business interactions today are paper
based and not automated electronically. So these domain expert requirements stem from the
ability to specify design time details that then leads to operational use. The key new aspect here
is a tight coupling between what the business domain experts specify and the actual runtime
software physically uses. In today’s application systems there is a clear separation of these
functions, where programmers take the business domain specifications and convert these into
machine instructions, and therefore there is only virtual coupling between the runtime and the
design time.

The operational requirements therefore fit under two broad categories, one relates to enabling the
coupling of runtime software to design artefacts and managing those consistently across a
complex organization, the second relates to empowering business domain experts to be able to
take on the task of constructing business processes and the associated information exchanges.
Business domain experts need the ability to manage and specify information content structures
and assemble and discover and reuse existing definitions of common components, such as address
or invoice.

The exchange of business information as transactions is how the physical business process is
facilitated. Reducing the cost and effort of managing and maintaining these business transaction
interactions is therefore pivotal in defining the operational requirements. For a large enterprise
this translate into reducing the headcount of staff needed, reducing the effort to migrate between
implementation versions, reducing the necessary specialty skills and instead enabling general
business staff. For small business it means being able to support multiple large partners diverse
requests for information interchanges from a single technology base.

Summarizing these operational requirements for enabling the business information layer approach
produces the following items:

• Ability to provide the enterprise with a single consistent method that provides the linkage

between the business domain and the physical information exchanges
• Ability to allow multiple information domains to coexist naturally with verifiable integration

across the information services layer between enterprises and domains
• Ability to drive runtime interactions from design-time component definitions
• Ability to support use by technical functional staff, not just specialist IT staff
• Ability to build consistent simple transaction definitions that can be selectively adapted for a

broad range of localized uses
• Ability to create a discrete content set for exchanging where adherence to the business

content rules is known and verifiable prior to transmission
• Ability to extend a base definition to include domain use details in a controlled way,

including versioning
• Ability to support use of a dictionary and registry to retrieve extended central definitions and

business metadata from, not just simple field level typing information
• Reusable primitive content components that business users can purpose as needed into bigger

transactions and content
• Ability to apply a use context to a primitive component (i.e. address = billing.address)
• Ability to apply use context to a structure of content to select required and optional

components (i.e. if (product_type=perishable then refrigeration_details = required))
Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 11 of 69

• Ability to completely substitute content structure depending on business use localization (i.e.
if (delivery=USA then ZIPcode.address else International.address))

• Ability to support multiple different legacy content structure types, not just XML

Next we consider the implementation design constraints that apply when considering the
operational constraints and the implementation technology details.

2.6.2 Design Constraints

• Suitable for use by technical business users, not just programmers
• Declarative approach, not procedural
• Neutral approach - can support a variety of structural languages, XML, DTD, XSD, EDI,

HTML, XForm, and more.
• Re-use of the XML family of specifications toolset to provide specific functionalities as

needed
• Provide Registry facilitation
• Provide ability to re-use structure components
• Provide support for migration of legacy transaction formats
• Support Business Process Modelling needs for substitution transaction formats
• Support use of UN/CEFACT Core Components and Business Information Entities (BIEs)

These list technical behaviours and capabilities. From the end user functional perspective the
lesson learned is that provide a single set of business transactions, while useful to provide a base
point, does not accommodate the actual fielded instances that implemented business applications
need. Therefore CAM must provide users with that ability to quickly assimilate standard
transaction components, while being able to easily tailor them to their own environment and
requirements. In combination with an OASIS Registry of domain applicable content, this
provides business users "help from above", where they can reference assembly components to
align with pre-developed and consistent usage, while ensuring that the logical model and the their
physical implementation are tightly coupled. This avoids the lesson learned, that developing
'standard' examples leads to a gap between what people actually use. From the viewpoint of the
Model Driven Architecture2 approach this bridges the gap between the model and the physical
world. Therefore CAM provides this crucial piece in the e-business architecture stack, thereby
ensuring that implementers are getting uniformity and interoperability that are at the heart of
providing cost-effective and maintainable electronic business interchanges.

2.6.3 Related Specifications

The OASIS CAM TC is doing preliminary work with other OASIS teams including the CIQ and
Registry teams on utilizing CAM technology, and also the OASIS ebMS IIS team for context
parameter mechanisms. Other potential collaborations include the UBL team and the CEFACT
Core Components and ATG teams, and the OAG BOD development team. Contact has also been
made with ISO on their work with the LISA.org projects and the potential for aligning OASIS
CAM with the ISO 16642 and more related ISO specifications. See the CAM website for more
details.

2 For more details on Model Driven Architecture see US Government OMG approach
 http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 12 of 69

2.7.1 Implementation Aspects of Content Assembly technology

This section continues by looking at how the CAM mechanism is implemented and fits within the
overall e-business architecture and XML technologies. The diagram shown in figure 2.7.1 shows
how CAM integrates within the overall combination of available components designed to ensure
accurate, consistent and secure information interchanges.

Figure 2.7.1: Ensuring Information Exchange Accuracy and long-term consistency

XML
business information

Schema

Delivery Assembly

Schema:
Content structure definition
and
simple content typing

Content Assembly:
Business logic for
content structure decisions and
explicit rules to enforce content,
and interdependencies, with
business exchange context,
and content definition
cross-references via UID
associations

Secure Authenticated Delivery and Tracking:
Reliable Messaging system, envelope format and payload with exchange participant profile controls

UID content referencing system
ensures consistent definition usage

UID

Registry/
Dictionary

UID – Universal ID content referencing system
values – comprise of domain prefix, six digit integer, optional version, sub-version.

2.7.1 Technical Factors

With reference to figure 2.7.1, the four crucial components of consistent interchanges are laid out
around the central need to control the payload of information itself.

Delivery is the first part of the equation shown here, ensuring that reliable information is
received, in the expected format, from the parties that are expected to deliver the content. This
part is clearly the mission of the e-business messaging components, and the associated business
process and business scenario details.

Next up below the delivery are the schema definitions. Traditionally people approaching XML
and e-business anticipate that all that is required is a schema of some form, and that the complete
interchange is thereby described and their business integration problems are solved.
Unfortunately schema is not engineered and designed to solve this complete problem, instead it Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 13 of 69

only describes in a limited fashion the information model for document content. So which ever
kind is selected, W3C Schema, XML DTD, RELAX, or even EDI structures, these only provide
the model of the complete 'set' of all possible uses of the structure. This kind of validation is
suitable for detecting basic structural errors within content where performance requirements
preclude more extensive and rigorous error checking. An extreme example is found in something
like an 850 EDI Purchase Order, and its XML schema equivalents, where there are literally
thousands of possible permutations permissible from a single schema instance. Consequently a
transaction can be valid for the schema checks, but fail more extensive checks of the information
integrity.

The result is that there is no way to provide consistent replicatable interchange specification using
Schema or DTD. Instead we find that publishers of industry schema dictionaries are augmenting
these base schema definitions with extended use case documentation using word processor
documents and spreadsheets to capture the "MIG" Message Implementation Guidelines and show
"samples". To solve this quandary the next item shown in figure 2.7.1 is the CAM mechanism
that brings together the business implementation detail and relates it directly to the structural
permutations.

These problems are obviously not new, and we know that a declarative approach leads to a finite
set of implementation points, without requiring to necessarily state all possible combinations
procedurally. Therefore our CAM approach adopts a declarative approach, and as a bonus this
also happens to be how people logically address business definitions themselves. You state what
rules apply and then you expect the machine to take those and apply them logically. So a
declarative approach is much more intuitive and naturally familiar to crosscheck and verify for
business users.

The CAM mechanism specifically allows the use of declarative predicates to be applied to
structural components described by the transaction structure. Notice that the transaction structure
can be provided by Schema, DTD, simple XML, or even EDI and legacy structures; and the
CAM approach works by combining these predicates with stating input / output path locations
using XPath syntax. This ability of CAM to work independently of any flavour of structure
language - DTD, Schema, EDI, and so on, is a key feature. Notice that XPath itself, by providing
structure reference pairs, is in fact independent of XML, since the structure node names
referenced in the XPath syntax need not be of an XML structure, but will work against any formal
structural system that uses explicit nodes.

Again this is not a new concept, but a refinement of prior work. For instance when using well-
formed XML as the reference structure, the predicates can be provided with in-line directives to
describe the content model and this also supports legacy formats, where the legacy format itself is
being modelled by the XML reference structure.

Using XPath and declarative predicates in this way allow CAM to state the MIG (message
implementation guidelines) in a machine accessible format. Notice that such predicates require
parameter values at design and runtime to provide explicit context. For example, if my CAM
template provides for both USA and UK mailing address formats, a business process will need to
know explicitly which to use. Therefore CAM provides the means to couple to the business
context of the Business Process Mechanism (BPM) of the implementation stack, and this will
include a set of partner parameter profile context values and link from the BPM itself (the details
of this mechanism are provided later in this document in the addendum).

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 14 of 69

Using this mechanism allows for localization and substitution structures to match the business
transaction needs at run-time.

The final item in figure 2.7.1 shows the Registry and Dictionary referencing. Again while using a
simple schema in isolation does provide the simple ability to datatype structural content, and also
limit content to lists of tokens, it does not provide the means to express business rules about
content. Therefore this mechanism is no substitute for a registry system that is able to provide
extended metadata semantics about each and every component of a business transaction, along
with versioning and access control.

To achieve the coupling between the structural definition and the business semantics, CAM again
uses the XPath referencing system, and points each such reference to a UID reference value, that
then locates the explicit metadata for that item within the Registry and / or business dictionary
required. When referencing a simple existing business dictionary this can also offer just a simple
inline locally defined reference (thus providing a lightweight implementation model that is not
totally dependent on the presence of a Registry system always being present).

2.7.2 Summary

In summary what figure 2.7.1 demonstrates is the means to make consistent assembly possible,
and drives adoption of simple transaction structures. Again one of the lessons learned is the
“kitchen-sink” effect with schema used by itself in isolation. Such implementers strive to make a
schema represent all possible combinations of an interchange, and rapidly the schema itself
becomes voluminous and unwieldy, exactly the opposite of what they originally intended to
create with a simple interchange definition. Whereas CAM allows implementers to create simple
standalone pieces for just a limited set of use cases. Then when more use cases are required the
context rules and additional structural items are compartmentalized within the CAM and
immediately identifiable, instead of being lost inside complex combinations of schema structure
components. Encouraging good design habits and implementation methods is definitely a major
intention of the overall e-business architecture utilizing the CAM approach.

In line with this architecture, the CAM system breaks away from vendor specific mapping
technologies and provides an open infrastructure that any vendor can implement, and more
importantly end users can build to and then exchange easily without requiring special tools or
editors.

Figure 2.7.2 below shows how CAM technology itself fits into the overall e-business components
architecture.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 15 of 69

Figure 2.7.2: CAM technology and e-business architecture stack.

Events
Rules

TransactionTransaction

SchemaSchema

ContractContract
Agreement Pattern

WorkflowWorkflow
Modeling &
Business Patterns

request

process

request

process

response

process

reject

accept propose

counter

Exchange Exchange

SpecificationSpecification
Model & Schemas

Nouns

Verbs
Transport

Roles
ConceptConcept
Registry

Te
m

pl
at

e
Te

m
pl

at
e --

dr
iv

en

dr
iv

en

Business GoalsBusiness Goals
Goal Pattern

CAM templateCAM template

Context

The next section will provide the actual implementation details of CAM and how to construct and
utilize them.

3.0 Pre-requisites

These specifications make use of W3C technologies, including XML V1.1 and XPath. It should
be noted that only a subset of the XPath technology, specifically the locator sections of the XPath
specification are utilized. Explicit details of XPath syntax are provided in the body of this
specification. A schema definition is provided for the assembly mechanism structure.
Knowledge of these technologies is required to interpret the XML sections of this document.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 16 of 69

4.0 Content Assembly Mechanism Technical Specification

This section describes the implementation specifications for CAM. Figure 4.1 shows how
implementers can integrate CAM technology into their existing systems, and then extend this out
to include all aspects of the e-business information content management technologies.

Figure 4.1: Deploying CAM technology

Context
Values

Context
Values

Required
Content

Structure

Required
Content
Structure

Process
Engine

Process
Engine Content

References
Content

References

1

Payload /
Rendering
Payload /
Rendering

2

Content
Assembly
Mechanism
Template

Content
Assembly
Mechanism
Template

Payload
Mapping
Payload
Mapping

3

Application
Database

Application
Database

Registry
Components

Registry
Components Conceptual

Logical

Physical
Vocabularies

and
Industry Dictionaries

Vocabularies
and

Industry Dictionaries

Business Re-usable
Information

Components- BRICs

Business Re-usable
Information

Components- BRICs

Structure
Choices

Structure
Choices

In reference to figure 4.1, item 1 is the subject of this section, describing the syntax and
mechanisms. Item 2 is a process engine designed to implement the CAM logic as an executable
software component, and similarly item 3 is an application software component that links the e-
business software to the physical business application software and produces the resultant
transaction payload for the business process itself (these aspects are covered in this document in
the addendum on implementation details).

Input to the conceptual model section can come from UML and similar modelling tools to define
the core components and relevant re-usable business information components themselves, or can
come from existing industry domain dictionaries (see the OASIS/CEFACT work on core
components specifications for details).

The specification now continues with the detailing the physical realization in XML of the CAM
template mechanism itself.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 17 of 69

4.1.1 Overview

The CAM itself consists of four logical sections, and the CAM is expressed in XML syntax.
These are shown in figure 4.1.1 as high-level XML structure parent elements3.

Figure 4.1.1: High-level parent elements of CAM (in simple XML syntax)

<CAM>

 <AssemblyStructure/>

 <BusinessUseContext/>

 <ContentReference/>

 <DataValidations/>

 <ExternalMapping/>

</CAM>

The five sections provide the ABCDE's of the interchange definition - Assembly Structure(s),
Business Use Context Rules, Content References (with optional associated data validation), Data
Validations and External Mappings. The figure 4.1.24 here shows the complete hierarchy for
CAM at a glance.

3 Note: elements have been labelled using UN spellings, not North American spellings

4 This diagrammatic syntax is preferred for all structure definitions in this document, as being
neutral markup and easy to visualize for human interpretation. The notation follows basic XML
V1.0 logic where “+” equals “One or more”, “*” equals “Zero or more”, and so on.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 18 of 69

Figure 4.1.2: Structure for entire CAM syntax at a glance

Each of these parent items is now described in detail in the following sub-sections, while figure
4.1.3 here shows the formal schema definition for CAM (see the Appendix for machine readable
Schema formats in XSD syntax). While the documented schema provides a useful structural
overview, implementers should always check for the very latest version on-line to ensure
conformance and compliance to the latest explicit programmatic details.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 19 of 69

Figure 4.1.3: CAM structure definition in DTD syntax

<!-- CAM structure for OASIS CAM. February 10th, 2003

Modification history:

1.00 Initial

Copyright (c) 2003 OASIS. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that such redistributions retain this

copyright notice.

This CAM structure is provided "as is" and there are no expressed or implied

warranties. In no event shall OASIS be liable for any damages arising out of

the use of this structure. -->

<!ELEMENT CAM (AssemblyStructure, BusinessUseContext?, ContentReference?,

DataValidations?, ExternalMapping?, annotation?) >

<!ELEMENT AssemblyStructure (Header, Declaration*,Structure+)>

<!ELEMENT Header (CAMlevel, Description?, Owner?, Version?, DateTime)>

<!ELEMENT CAMlevel EMPTY>

<!ATTLIST CAMlevel

 value (1 | 2 | 3) #REQUIRED >

<!ELEMENT Description (#PCDATA) >

<!ELEMENT Owner (#PCDATA) >

<!ELEMENT Version (#PCDATA) >

<!ELEMENT DateTime (#PCDATA) >

<!ELEMENT Declaration EMPTY >

<!ATTLIST Declaration

 parameter CDATA #REQUIRED

 values CDATA #IMPLIED

 default CDATA #IMPLIED

 datatype CDATA #IMPLIED >

<!ELEMENT Structure ANY >

<!ATTLIST Structure

 ID CDATA #IMPLIED

 reference CDATA #IMPLIED

 taxonomy (UID | XSD | DTD | RNG | XML) #REQUIRED >

<!ELEMENT BusinessUseContext (Rules)>

<!ELEMENT Rules (default?, context*)>
Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 20 of 69

<!ELEMENT default (context+ | constraint+)>

<!ELEMENT context (context+ | constraint+)>

<!ATTLIST context

 condition CDATA #REQUIRED >

<!ELEMENT ContentReference (Addressing,item+)>

<!ELEMENT Addressing (registry+)>

<!ELEMENT constraint EMPTY >

<!ATTLIST constraint

 condition CDATA #IMPLIED

 action CDATA #REQUIRED >

<!-- predicates (excludeAttribute | excludeElement | excludeTree |

 makeOptional | makeMandatory | makeRepeatable |

 setChoice | setId | setLength | setLimit | setMask |

 setValue | restrictValues | restrictValuesByUID |

 useAttribute | useChoice | useElement | useTree |

 useAttributeByID | useChoiceByID | useElementByID |

 useTreeByID) -->

<!ELEMENT DataValidations (Conditions+)>

<!ELEMENT Conditions (conditional+)>

<!ATTLIST Conditions

 condition CDATA #IMPLIED >

<!ELEMENT conditional EMPTY >

<!ATTLIST conditional

 expression CDATA #REQUIRED

 syntax (XPath | JavaScript | VB | Perl | Other) #IMPLIED

 outcome (fail | ignore | report) #REQUIRED

 message CDATA #IMPLIED

 test (always | postcheck | precheck) #REQUIRED >

<!ELEMENT registry EMPTY>

<!ATTLIST registry

 name CDATA #REQUIRED

 access CDATA #REQUIRED

 method (URL | http | SOAP | ebXML | UDDI | Other) #REQUIRED

 description CDATA #IMPLIED

>

 Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 21 of 69

<!ELEMENT item EMPTY>

<!ATTLIST item

 type (noun | corecomponent | BIE | BRIC | defaultAssembly | identifier

| verb | schema | documentation) #REQUIRED

 name CDATA #IMPLIED

 UIDReference CDATA #REQUIRED

 taxonomy CDATA #REQUIRED

 registry CDATA #IMPLIED

 datatype CDATA #IMPLIED

 setlength CDATA #IMPLIED

 setmask CDATA #IMPLIED

>

<!ELEMENT annotation (documentation+) >

<!ELEMENT documentation (#PCDATA) >

<!ATTLIST documentation

 type (description | note | license | usage | other) #REQUIRED

>

<!ELEMENT ExternalMapping (ContentAssociation+) >

<!ELEMENT ContentAssociation (Description?,InputSource,OutputStore,RulesSet) >

<!ELEMENT InputSource EMPTY >

<!ATTLIST InputSource

 type (SQL | XML | EDI | TXT | ODBC | OTHER) #IMPLIED

 location CDATA #IMPLIED >

<!ELEMENT OutputStore EMPTY >

<!ATTLIST OutputStore

 type (SQL | XML | EDI | TXT | ODBC | OTHER) #IMPLIED

 location CDATA #IMPLIED >

<!ELEMENT RulesSet (MapRule+) >

<!ELEMENT MapRule EMPTY >

<!ATTLIST MapRule

 output CDATA #REQUIRED

 input CDATA #REQUIRED >

The next sections describe each parent element in the CAM in sequence, their role and their
implementation details.

Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 22 of 69

4.2.1 Assembly Structures
The purpose of the AssemblyStructure section is to capture the required content structure or
structures that are needed for the particular business process. This section is designed to be
extremely flexible in allowing the definition of such structures. While in this document simple
well-formed XML is used throughout to illustrate the usage, any fixed structured markup can
potentially be utilized, such as DTD, Schema, EDI, or other (typically they will be used as
substitution structures for each other). It is the responsibility of the implementer to ensure that all
parties to an e-business transaction interchange can process such content formats where they are
applicable to them (of course such parties can simply ignore content structures that they will
never be called upon to process).

The formal structure rules for AssemblyStructure are expressed by the syntax in figure 4.2.2
below. The figure 4.2.1 here shows a simple example for an AssemblyStructure using two
different structures for content.

Figure 4.2.1: Example of Structure and format for AssemblyStructure
<AssemblyStructure>

 <Header>

 <CAMlevel value="1"/>

 <Description>Example 4.2.1 using structures</Description>

 </Header>

 <Structure taxonomy=”…”>

<!-- the physical structure of the required content goes here, and can be

a schema instance, or simply well-formed XML detail, see example below in

figure 4.2.2 -->

 </Structure >

</AssemblyStructure>

In the basic usage, there will be just a single structure defined in the AssemblyStructure /
Structure section. However, in the more advanced use, then multiple substitution structures may
be provided, and these can also be included from external sources, and nesting of assemblies; see
the section below on Advanced Features for details.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 23 of 69

To provide the direct means to express content values within the structure syntax the following
two methods apply. A substitution value is indicated by two percentage signs together “%%”,
while any other value is assumed to be a fixed content value. Figure 4.2.2 shows examples of this
technique.

Figure 4.2.2: Substitution and fixed parameter values, with a well-formed XML structure

<AssemblyStructure>

 <Header>

 <CAMlevel value="1"/>

 <Description>Example 4.2.2 Well-formed XML structure</Description>

 </Header>

 <Structure taxonomy=”XML”>

 <Items CatalogueRef=”2002”>

<SoccerGear>

 <Item>

<RefCode>%%</RefCode>

<Description>%%</Description>

<Style>WorldCupSoccer</Style>

<UnitPrice>%%</UnitPrice>

 </Item>

<QuantityOrdered>%%</QuantityOrdered>

<SupplierID>%%</SupplierID>

<DistributorID>%%</DistributorID>

<OrderDelivery>Normal</OrderDelivery>

<DeliveryAddress/>

</SoccerGear>

 </Items>

 </Structure>

</AssemblyStructure>

Referring to figure 4.2.2, the “2002”, “WorldCupSoccer” and “Normal” are fixed values that will
always appear in the payload transaction at the end of the CAM process.

In addition to the XML markup, within the AssemblyStructure itself may optionally be included
in-line syntax statements. The CAM system provides the BusinessUseContext section primarily
to input context rules (see section below), however, these rules may be optionally included as in-
line syntax in the AssemblyStructure. However, all rules where present in the
BusinessUseContext section take precedence over such in-line syntax rules.

The next section details examples of in-line context rules.

Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 24 of 69

4.3.1 Business Use Context Rules

Once the assembly structure(s) have been defined, then the next step is to define the context rules
that apply to that content. The technique used is to identify a part of the structure by pointing to
it using an XPath locator reference, and then also applying an assertion using one of the structure
predicates provided for that purpose (an optional comparison evaluation expression can also be
used with the XPath locator reference where applicable). Figure 4.3.1 shows these structure
assertion predicates.

Figure 4.3.1: The assertion predicates for BusinessUseContext

excludeAttribute()

excludeElement()

excludeTree()

makeOptional()

makeMandatory()

makeRepeatable()

setChoice()

setId()

setLength()

setLimit()

setMask()

setValue()

restrictValues()

restrictValuesByUID()

useAttribute()

useChoice()

useElement()

useTree()

useAttributeByID()

useChoiceByID()

useElementByID()

useTreeByID()

startBlock()

endBlock()

Each predicate provides the ability to control the cardinality of elements within the structure, or
whole pieces of the structure hierarchy (children within parent). An example of such context
rules use is provided below, and also each predicate and its’ behaviour is described in the matrix
in figure 4.3.3 below. Also predicates can be used in combination to provide a resultant
behaviour together, and example is using makeRepeatable() and makeOptional() together on a Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 25 of 69

structure member.

Note that the BusinessUseContext section controls use of the structure, while if it is required to
enforce explicit validation of content, then there is also the DataValidations section that provides
the means to check explicitly an element to enforce content rules as required. See below for
details on this section. This validation section is also further described in the advanced use section
since it can contain extended features.

Referring to the structure in the example shown in figure 4.2.2 then figure 4.3.2 here provides
examples of context based structural predicate assertions. Notice that such context rules can be
default ones that apply to all context uses of the structure, while other context rules can be
grouped and constrained by a XPath locator rule expression. There are three styles of such XPath
expressions:

 XPath expression refers to structure members directly and controls their use
 XPath expression refers to structure member and contains condition of its value
 XPath expression refers to token that is not member of structure, but is a known external

control value from the profile of the business process itself.

Such XPath expressions will match all the structural elements that they can refer to, so if a unique
element is always required, implementers must ensure to provide the full XPath identity so that
only a single unique match occurs. An example is a reference to “//ZIPCode” which will match
any occurrence, whereas “//BillingAddress/ZIPCode” will only match that item.

Figure 4.3.2: Syntax example for BusinessUseContext

<BusinessUseContext>

<Rules>

 <default>

 <context> <!-- default structure constraints -->

 <constraint action="makeRepeatable(//SoccerGear)" />

 <constraint action="makeMandatory(//SoccerGear/Items/*)" />

<constraint action="makeOptional(//Description)" />

<constraint action="makeMandatory(//Items@CatalogueRef)" />

<constraint action="makeOptional(//DistributorID)" />

<constraint action="makeOptional(//SoccerGear/DeliveryAddress)" />

 </context>

 </default>

 <context condition="token='//SoccerGear/SupplierID' and

contains(value,'SuperMaxSoccer')">

 <constraint action="makeMandatory(//SoccerGear/DeliveryAddress)"/>

 </context>

 <context condition="token='%DeliveryCountry%' and contains(value,'USA'">

 <constraint action="useTree(//SoccerGear/DeliveryAddress/USA)"/>

 </context>

</Rules>
Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 26 of 69

</BusinessUseContext>

Referring to the XPath expressions in figure 4.3.2, examples of all three types of expression are
given to show how the XPath expressions are determined and used. For external control values
the special name “token=” is used and the XPath does not contain the leading ‘//’ delimiters to
denote such items, instead a pair of % indicators denote a substitution value.

Referring to figure 4.3.3 below, the following applies:

//elementpath XPath expression resolving to an element(s) in the structure

//memberpath XPath expression resolving to either an element(s) or an attribute(s) in the
structure

//treepath XPath expression resolving to parent element with children in the structure
//StructureID reference to an in-line ID assignment within the structure, or ID value

assigned using setID() predicate.
//elementpath@
attributename

XPath expression resolving to an attribute or attributes in the structure

IDvalue String name used to identify structure member
UIDreference Valid UID and optional associated registry and taxonomy that points to an

entry in a Registry that provides contextual metadata content such as a
[valuelist] or other information

Figure 4.3.3: Matrix of predicates for BusinessUseContext declarations.

Predicate Parameter(s) Description
excludeAttribute() //elementpath@attributename Conditionally exclude

attribute from structure
excludeElement() //elementpath Conditionally exclude

element from structure
excludeTree() treepath Conditionally exclude a

whole tree from
structure

makeOptional() //elementpath Conditionally allow part
of structure to be
optional

makeMandatory() //elementpath Conditionally make part
of structure required

makeRepeatable() //elementpath Conditionally make part
of structure occur one or
more times in the
content

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 27 of 69

Predicate Parameter(s) Description
setChoice() //elementpath Indicate that the first

level child elements
below the named
elementpath are actually
choices that are
conditionally decided
with a useChoice()
predicate action

setId() //elementpath,IDvalue Associate an ID value
with a part of the
structure so that it can
be referred to directly by
ID

setLength() //memberpath Control the length of
content in a structure
member

setLimit() //elementpath, count For members that are
repeatable, set a count
limit to the number of
times they are repeatable

setMask() //memberpath, mask, syntax Assign a regular
expression or picture
mask to describe the
content.

setValue() //memberpath, value Place a value into the
content of a structure

restrictValues() //memberpath, [valuelist] Provide a list of allowed
values for a member
item

restrictValuesByUID() //memberpath, UIDreference Provide a list of allowed
values for a member
item from a registry
reference

useAttribute() //elementpath@attributename Require use of an
attribute for a structure
element and exclude
other attributes

useChoice() //elementpath Indicate child element to
select from choices
indicated using a
setChoice() predicate.

useElement() //elementpath Where a structure
definition includes
choices indicate which
choice to use.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 28 of 69

Predicate Parameter(s) Description
useTree() //treepath Where a structure

member tree is optional
indicate that it is to be
used

useAttributeByID() StructureID As per useAttribute but
referenced by structure
ID defined by SetId or
in-line ID assignment

useChoiceByID() StructureID As per useChoice but
referenced by structure
ID defined by SetId or
in-line ID assignment

useTreeByID() StructureID As per useTree but
referenced by structure
ID defined by SetId or
in-line ID assignment

useElementByID() StructureID As per useElement but
referenced by structure
ID defined by SetId or
in-line ID assignment

StructureType() StructureID, type Denote the type of
content format within an
assembly structure, such
as X12EDI, EDIFACT,
XML, CDF, HL7, FIX
and so on.

startBlock() StartBlock, [StructureID] Denote the beginning of
a logical block of
structure content. The
StructureID is an
optional reference. This
function is provided for
completeness. It should
not be required for XML
structures, but may be
required for non-XML
content; basic CAM
conformance at Level 1
does not require this
function.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 29 of 69

Predicate Parameter(s) Description
endBlock() endBlock, [StructureID] Denote the end of a

logical block of
structure content. The
StructureID is an
optional reference, but if
provided must match a
previous startBlock()
reference. This function
is provided for
completeness. It should
not be required for XML
structures, but may be
required for non-XML
content; basic CAM
conformance at Level 1
does not require this
function.

The predicates shown in figure 4.3.3 can also be used as in-line statements within an assembly
structure, refer to the section on advanced usage to see examples of such use.

4.3.1.1 XPath syntax functions

The W3C XPath specification provides for extended functions. The CAM XPath usage exploits
this to add the following set of related conditional evaluations. The base XPath provides the
“contains” function for examining content, the functions shown in figure 4.3.4 extend this to
provide the complete set of familiar logical comparisons.

Figure 4.3.4 XPath Comparator functions.

Comparator Format Description
equal() equal (value, ‘value’) Conditionally check for

a matching value
NOTequal() NOTequal (value, ‘value’) Conditionally check for

a non-matching value
greater () greater (value, ‘value’) Conditionally check for

a greater value
lessthan () lessthan (value, ‘value’) Conditionally check for

a lesser value
greaterEQ () greaterEQ (value, ‘value’) Conditionally check for

a greater than or equal to
value

lessthanEQ () lessthanEQ (value, ‘value’) Conditionally check for
a lesser or equal value

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 30 of 69

Comparator Format Description
begins () begins (value, ‘value’) Conditionally check for

a string matching the
front part of value, equal
or longer strings match.

ends () ends (value, ‘value’) Conditionally check for
a string matching the
end part of value, equal
or longer strings match.

lookup () lookup (value, ‘call address’) Conditionally check for
a string being located in
a list referenced by a
call address. Note: call
address is defined in
ContentReference
section.

member () member (valuelist,

‘[value,value,value,…]’)
Conditionally check for
a string matching the
value of a member of a
list of unique values.

Only the extensions to XPath syntax shown in figure 4.3.4 are supported. Additionally XPath
syntax support is limited to locator expressions only, and excludes the XPath features for
manipulation of content directly as a result set.

Using these capabilities provides sufficient expressive capability to denote structural
combinations for context driven assembly and also for basic data validation (see following
applicable sections).

The next section shows how to associate a reference to a dictionary of content model metadata, or
to provide the content model directly for members of the structure content.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 31 of 69

4.4.1 Content Referencing

The purpose of content referencing is to provide additional information about the metadata of
each item of the structure and the content model and associated data typing when applicable. It
also provides crosswalk information to a dictionary of noun definitions, and thus potentially from
your physical implementation to the logical BRIC components themselves. This ability to
provide crosswalk implementation details is vital to maximizing interoperability and re-use
within the optimal e-business architecture and also allowing the use of modelling tools and
object-oriented technologies.

The example in figure 4.4.1 shows the content referencing for the structure in figure 4.2.2, and
shows how multiple dictionary domains (namespaces) can be accommodated in blending a
composite structure together, while also allowing extensions using locally defined content items
that are not part of any dictionary. The use cases for content referencing can be summarized as:

 No registry dictionary is available so all content referencing is locally defined
 A default content model can be defined using the predicates, (these however will not take

precedence over explicit rules in the BusinessContext section), but will override any
inline predicates within AssemblyStructure

 A single registry and industry domain is referenced only
 Multiple registry domains are referenced
 Combinations of all of the above

Further notes on aspects of the particular syntax instructions for content referencing are given
below.

Figure 4.4.1: Example of Content Referencing for AssemblyStructure

<ContentReference>

 <Addressing>

<registry name="SGIR" access="registry.sgir.org:1023" method="URL"

 description="Sporting Goods Industry Registry"/>

<registry name="SGIRWSDL" access="registry.sgir.org:1025" method="WSDL"

 description="Sporting Goods Industry Registry"/>

<registry name="UN" access="registry.un.org:9090" method="ebXML"

 description="United Nations EDIFACT Registry"/>

<registry name="UPS" access="registry.ups.com:7001" method="URL"

 description="United Parcels Service Registry"/>

<registry name="USPS" access="registry.usps.gov:8080" method="URL"

 description="United States Postal Service Registry"/>

<registry name="LocalSQL" access="rdbms.mybusiness.com:4040" method="SQL"

 description="Local Product Database stored procedures"/>

 </Addressing> Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 32 of 69

 <item type="noun" name="RefCode"

UIDReference="SGIR010027" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="Description"

UIDReference="SGIR010050" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="Style"

UIDReference="SGIR010028" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="SupplierID"

UIDReference="SGIR010029" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="CatalogueRef" UIDReference="none" taxonomy="none"

datatype="text" setlength="4" setMask="'\d\d\d\d',PERL" />

 <item type="noun" name="DistributorID" UIDReference="none" taxonomy="none"

datatype="text" setlength="30" />

 <item type="noun" name="UnitPrice"

UIDReference="070010" taxonomy="EDIFACT" registry="UN"/>

 <item type="noun" name="QuantityOrdered"

UIDReference="070011" taxonomy="EDIFACT" registry="UN"/>

 <item type="noun" name="OrderDelivery"

UIDReference="UPS050050" taxonomy="UID" registry="UPS"/>

 <item type="defaultAssembly" name="DeliveryAddress"

UIDReference="USPS090081:01:05" taxonomy="UID" registry="USPS"/>

 </ContentReference>

Each of the modes of determining a content reference is shown in figure 4.4.1, along with the use
of the Registry addressing section to link between the logical and physical addresses of Registry
content. Notice that with locally defined items (UIDReference="none" taxonomy="none"), then
one of the optional predicate5 parameters is used to further define the content model (e.g.:
setlength="4").

Typically references are to nouns within the assembly structure, but can also be to a composite
item as a defaultAssembly, as is the case with the DeliveryAddress example (such
defaultAssembly items can equate to BRICs, and have an <as:include> for their structure content,
see details in the advanced techniques section below).

Similarly the taxonomy preferred is that of the UID system, however where legacy schemes exist
such as EDI element dictionary numbering, then the UIDReference can accommodate such values
accordingly. The UID values themselves are composed of an alpha prefix representing an
acronym for the domain organization, followed by a simple 6-digit numeric. Optionally a UID
can also have a suffix of colon, major version, and colon, minor version, to provide version
control. When the version information is omitted then the UID reference points to the latest
current information from the registry by default.

5 Implementation note: the XPath parameter for the predicate defaults to the name value to
identify the item within the assembly structure

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 33 of 69

If an item refers to a registry acronym that is not defined in the //Addressing/registry statement,
then a warning should be issued, but process can continue. Similarly, warnings should be
generated for assembly structure members that do not have ContentReference entries, but all such
items will have a default content model of type="text" as a simple string type. Notice that
type="[datatype]" supports the W3C Schema data types by default.

The content referencing is intended to provide assembly metadata for the information content
model during assembly. The next section can handle post-assembly processing and validation
requirements on receipt of content, as well as on creation of content.

4.5.1 Data Validations

This section provides the means to verify information content of transaction instances built from
CAM structure and context rules. This verification can occur at design/runtime during creation
of a content instance, and also some verification can occur post-content creation, typically upon
content receipt by some other party. The DataValidation section is thus more likely to be tied to a
particular production implementation and environment, particularly for post-content creation
checks. However, users can choose to provide generic CAM formulas that apply to all
implementations within a domain using XPath expressions as allowed within CAM, and then
allow implementers to extend these for particular local instances.

Since validation rules are highly syntax dependent, parties using them must agree on their support
for the expression syntax(es) selected that are not CAM compatible XPath expressions or calls via
the Registry call mechanism defined within the Content Reference section . (Within the e-
business architecture this would occur at the business agreement level where parties specify
support for particular processing environment features – see figure 2.7.2).

Figure 4.5.1: Example of Data Validations for AssemblyStructure

<DataValidations>

 <Conditions

condition="token='%DeliveryCountry%' and contains(value,'USA'">

 <conditional

expression="’//UnitPrice’ and greater(value,’0.00’)"

syntax="XPath" outcome="fail"

message="Item price not valid / missing" test="always"/>

<conditional

expression="’//RefCode + //UnitPrice’ and

lookup(value,’SGIRWSDL:unitprice_check’)” outcome="report"

message="Unit price value does not match catalog" test="always"/>

<conditional

expression="’//SupplierID’ and

lookup(value,’SGIRWSDL:supplierID_check’)” outcome="fail"

message="Unknown Supplier ID" test="always"/>
Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 34 of 69

<conditional

expression="’//DistributorID’ and

lookup(value,’SGIRWSDL:distributor_check’)” outcome="fail"

message="Unknown distributor ID" test="postcheck"/>

<conditional itemRef="//QuantityOrdered" conditioncheck="value"

expression="’//QuantityOrdered’ and

lookup(value,’LocalSQL:quantityOnHand()’)” outcome="report"

message="Item not available / backordered" test="postcheck"/>

 </Conditions>

</DataValidations>

The conditional section shown in figure 4.5.1 shows a variety of methods, from in-line XPath
expressions, through to remotely executed ‘verbs’ from a registry as a web service, through to
SQL stored procedures. Notice that WSDL is used as the interface example to web services, and
the WSDL description may involve passing of parameters (such as the //RefCode to verify the
//UnitPrice). These details can be determined through the programmatic interface to the
particular lookup reference service6.

Again, support for these methods are dependent on the business agreements between parties and
the capabilities and requirements of parties. Some parties may simply opt to not support
DataValidation conditions, or only those using XPath, and so on. Because of this, it is anticipated
that the DataValidation section will provide useful hints to parties on requirements for a complete
and accurate business exchange. How far they will be able to support these, and how many local
extensions are built using the base mechanisms provided in the syntax methods of DataValidation
will depend on the maturity of the information systems of the implementers. Since these
mechanisms and section are least accessible to business users, and most accessible to
programmers the initial intent here is to provide basic functionality that is useful to a broad range
of business use. It is not intended to replace extensive, proprietary and complex application logic
in backend systems.

For a simple implementation it is suggested that basic information checks are instituted using the
provided XPath syntax and comparator functions. Then later more extended checks can be
supported via external calls. Similarly if the outcome is marked as ‘ignore’ or ‘report’, this
means that early implementers can treat these checks simply as documentation notes as to the
checking that backend complex application logic will perform, until they are more fully able to
support the recovery and post-processing required via their business processing service
components.

4.6.1 Discrete Value List Support (“Codelists”)

6 Note: OASIS Registry support for CAM services through this specification is covered
separately in the addendum of this specification document.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 35 of 69

This note discusses support for code list functionality. Over 50% of traditional EDI transaction
content is comprised of code values that are referenced and shared between trading partners.
CAM provides two XPath functions to directly implement these capabilities. Firstly is the
member() function that allows specific code values to be specified in the CAM template itself.
Second is the lookup() function that supports the use of code values external to the template
itself, where one or more parameters are passed into it. The configuration of the lookup function
external access is configured through the Content Reference section Registry definition
statements. See the examples provided in that section, and in the validation examples in figure
4.5.1 above. Nested code list lookups can be configured using nested <conditions> expressions.

The next section details further advanced features that can be used to augment the basic CAM
functionality.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 36 of 69

4.7.1 Advanced Features

This section details extended uses of the basic features. For this first release this is focused on
three aspects, in-line use of predicates within structures, non-XML structure content referencing,
and including external content into a CAM.

4.6.1 In-line use of predicates and references

The figure 4.6.1.1 here shows an extended example for an AssemblyStructure using two different
structures for content and the in-line statements indicating those content selections. The in-line
commands are inserted using the “as:” namespace prefix, to allow insertion of the command
statements wherever they are required. These in-line commands compliment the predicates used
within the <BusinessUseContext> section of the assembly. The table in figure 4.6.1.2 gives the
list of these in-line statements and the equivalent predicate form where applicable.

Figure 4.6.1.1: Example of Multiple substitution structures for AssemblyStructure

<CAM xmlns:as="http://www.oasis-open.org/committees/cam">

 <AssemblyStructure>

 <Structure as:choiceID="FirstOne" taxonomy=’XML’>

 <!-- the physical structure of the required content goes here -->

 </Structure >

 <Structure as:choiceID="SecondOne" taxonomy=’XML’>

 <createTroubleTicketByValueResponse as:choiceID="OptionA">

 <!-- the physical structure of the required content goes here -->

 </createTroubleTicketByValueResponse>

 <createTroubleTicketByValueResponse as:choiceID="OptionB">

<!-- the physical structure of the required content goes here -->

 </createTroubleTicketByValueResponse>

 </Structure >

 </AssemblyStructure>

</AssemblyScript>

Reviewing figure 4.6.1.1 there are two main substitution structures, and within the second there
are also two sub-structure choices. The actual behaviour and which structure content is included
in the physical content is controlled by predicate statements within the <BusinessUseContext>
section of the assembly. Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 37 of 69

The in-line statements available are detailed in the table shown in figure 4.6.1.2, and where the
in-line command entry is marked “not applicable” then these items can only be used within the
<BusinessUseContext> section. Also where there is both a predicate statement and an in-line
command, then the predicate statement overrides and takes precedent.

Figure 4.6.1.2: Matrix of in-line statement commands and predicate commands.

Predicate In-line Command Notes
excludeAttribute() Not applicable
excludeElement() Not applicable
excludeTree() Not applicable
makeOptional() as:makeOptional="true" Make part of structure optional,

or make a repeatable part of the
structure optional (i.e.
occurs=zero)

makeMandatory() as:makeMandatory="true" Make part of structure required
makeRepeatable() as:makeRepeatable="true"

as:setLimit="5"
Make part of structure occur one
or more times in the content; the
optional as:limit="nnnn"
statement controls how many
times maximum that the repeat
can occur.

setChoice() Not applicable
setId() as:choiceID="label" Associate an ID value with a part

of the structure so that it can be
referred to directly by ID

setLength() as:setLength="nnnn" Control the length of content in a
structure member

setLimit() as:setLimit="nnnn" For members that are repeatable,
set a count limit to the number of
times they are repeatable

setMask() as:setMask=

"’Mask’,’syntax’"
Assign a regular expression or
picture mask to describe the
content.

setValue() as:setValue="string" Place a value into the content of
a structure

restrictValues() as:restrictValues=

"[valuelist]"
Provide a list of allowed values
for a member item

restrictValuesByUID() as:restrictValuesByUID=

"UID"
Provide a list of allowed values
for a member item from an
registry reference

useAttribute() Not applicable
useChoice() Not applicable

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 38 of 69

Predicate In-line Command Notes
useElement() as:useElement="true" Where a structure definition

includes choices indicate which
choice to use.

useTree() as:useTree="true" Where a structure member tree is
optional indicate that it is to be
used.

useAttributeByID() Not applicable
useChoiceByID() Not applicable
useTreeByID() Not applicable
useElementByID() Not applicable
StructureType() as:structureType="string" Denote the type of content

format within an assembly
structure, such as X12EDI,
EDIFACT, XML, CDF, HL7,
FIX and so on.

Not applicable <include>URL

</as:include>
Allows inclusion of an external
source of assembly instructions
or structure. The URL is any
single valid W3C defined URL
expression that resolves to
physical content that can be
retrieved. Note: can only be
used in the <Structure> section
of assembly.

The next figure 4.6.1.3 shows some examples of using these in-line commands within a structure.

Figure 4.6.1.3: Use of in-line commands with a well-formed XML structure

<AssemblyStructure xmlns:as="http://www.oasis-open.org/committees/cam">

 <Structure taxonomy=’XML’>

 <Items CatalogueRef=”2002”>

 <SoccerGear>

 <Item as:makeRepeatable="true">

<RefCode as:makeMandatory="true" as:setLength="10">%%</RefCode>

<Description>%%</Description>

<Style>WorldCupSoccer</Style>

<UnitPrice as:setMask="’999.99’,’SQL’">%%</UnitPrice>

 </Item>

<QuantityOrdered as:setMask="’999’,’SQL’">%%</QuantityOrdered>

<SupplierID as:makeMandatory="true">%%</SupplierID>

<DistributorID>%%</DistributorID>

<OrderDelivery>Normal</OrderDelivery> Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 39 of 69

<DeliveryAddress/>

 </SoccerGear>

 </Items>

 </Structure>

</AssemblyStructure>

The next section shows the use of non-XML structure, and it should be noted that in-line
commands cannot be used with non-XML structures, all such structures require the use of
predicates within the <BusinessUseContext> section of the assembly.

4.6.2 Non-XML structure referencing

This section shows how the CAM system supports referencing to non-XML content as shown in
figure 4.6.2.1 for a legacy EDI structure definition. The XPath system can reference to nodes
within such structures using an appropriate node-referencing scheme that is pre-determined, (for
instance in an EDI transaction this would be segment identifier and field number within the
segment as the node name).

Figure 4.6.2.1: An EDI example of referencing non-XML content structures

<AssemblyStructure xmlns:as="http://www.oasis-open.org/committees/cam">

 <Structure as:choiceID="EDI850" as:structureType="X12EDI" taxonomy=’XML’>

 <EDI Type="ASCII" Version="4040" Standard="X12">

 <TransactionSet ID="850" Name="Purchase Order" Note="">

 <Segment ID="ST" Name="Transaction Set Header" Req="M" MaxUse="1">

 <Element ID="01" Name="Transaction Set Identifier Code" Req="M"

Type="ID" MinLength="3" MaxLength="3"

Note="The transaction set identifier 'ST01' is used by the

translation routines of the interchange partners to select the

appropriate transaction set definition 'e.g., 810 select the

Invoice Transaction Set'."/>

 <Element ID="02" Name="Transaction Set Control Number" Req="M"

Type="AN" MinLength="4" MaxLength="9"/>

 <Element ID="03" Name="Implementation Convention Reference" Req="O"

Type="AN" MinLength="1" MaxLength="35"

Note="The implementation convention reference 'ST03' is used by

the translation routines of the interchange partners to select

the appropriate implementation convention to match the

transaction set definition."/>

 </Segment>

 <!-- then more segments follow here... -->
Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 40 of 69

 </TransactionSet>

 </EDI>

 </Structure >

</AssemblyStructure>

The EDI structure definition in figure 4.6.2.1 is one system for describing an EDI structure;
another example would be the IGML system (http://www.igml.org) or similar systems, or a very
simple system using substitution tokens as shown in figure 4.6.2.2, and then the UN/EDIFACT
transaction IMPDEF system. Another alternate to using well-formed XML as the structure
example is to use a DTD or Schema instance itself.

All these may be considered for use with assembly as the business needs require.

Figure 4.6.2.2: Tokens EDI example of referencing non-XML content structures

<AssemblyStructure>

 <Structure as:choiceID="Healthcare Transaction" as:structureType="Tokens"

taxonomony=’EDI’>

ISA*00*%%*00*%%*01*%%*01*Interchange Rec*010404*1031*U*00200*000025331*0*I*:~

GS*AA*%%*%%*20010404*1031*000000000*T*004010X097~

ST*276*0001~

BHT*0010*13**%%~

HL*1**%%*1~

NM1*PR*2*%%*****PI*%%~

HL*2*1*%%*1~

NM1*41*2*%%*****46*X67E~

HL*3*2*%%*1~

NM1*1P*2*%%*****SV*987666~

HL*4*3*22*0~

DMG*D8*%%*M~

NM1*QC*1*%%*%%****MI*%%~

TRN*1*%%~

REF*BLT*%%~

AMT*T3*%%~

REF*1K*%%~

REF*BLT*%%~

AMT*T3*%%~

SE*%%*0001~

GE*1*000000000~

IEA*1*%%~

 </Structure > Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 41 of 69

</AssemblyStructure>

The tokens method using “%%” for the replacement items as shown in figure 4.6.2.2 is easily
adapted to suit a wide variety of non-XML content structures.

An example of an XPath predicate reference would makeRepeatable(\\HL::NM1) for a block
of lines, and makeOptional(\\REF) to indicate a segment line or
makeMandatory(\\AMT\01) to indicate a field within a segment.

In each case partners using these systems must agree on the processing rules for the non-XML
content they are intending to process. Industry standards bodies can also define such rules as
extensions to the base CAM system for legacy payloads within their own domain. Implementers
may provide a generic tokens method as a default for non-XML content since it can handle a
broad range of such content.

4.6.1 Including External Structures into CAM

In the first release of CAM, this facility is restricted to including external structure definitions
within the <structure> section of the document only. This ensures a reasonable level of
complexity for implementations, while allowing use of existing structure definitions such as DTD
or Schema specifications easily and simply. The external structure can also be a CAM BRIC
structure emitted from a modelling tool, or similar means of allowing combinations of structure
components together to make a complete whole. Such tools can easily use in-line commands
within the structure to align the assembly process with the model definitions.

The example in figure 4.6.3.1 shows syntax for including an external structure or composite
fragments of structure together for use within assembly. The business rules within the
<BusinessUseContext> section can then reference these structure items to complete the
functionality required.

Figure 4.6.3.1: Use of <as:include> commands within an assembly XML structure

<CAM xmlns:as="http://www.oasis-open.org/committees/cam">

 <AssemblyStructure>

 <Structure taxonomy=’XML’>

 <BusinessInvoice>

 <as:include>

http://www.uncefact.org/strct/invoice.xml

</as:include>

<billingAddress>

<as:include>

http://www.uncefact.org/strct/address.xml

</as:include>

</billingAddress>

 </BusinessInvoice>

 </Structure>
Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 42 of 69

 </AssemblyStructure>

 <BusinessUseContext/>

 <ContentReference/>

 <DataValidations/>

</CAM>

Include statements are assumed to retrieve consistent pieces of content, and not fragments that do
not parse as a contiguous whole.

The document referenced by an <as:include> statement may contain one or more further
<as:include> statements, however, if this contains a circulatory reference, then processing of the
include statements should fail and stop with an appropriate error message. Nested including
provides direct support for core component mechanisms and BRIC components that can be
assembled together.

4.6.2 Object Oriented Includes Support

In order to augment the ability of modelling tools to generate CAM structure objects, the include
statement has optional parameters attached to it of extends=" " and implements=" ".

Figure 4.6.2.1 Example of CAM include with OO extensions

<CAM xmlns:as="http://www.oasis-open.org/committees/cam">

 <AssemblyStructure>

 <Structure taxonomy=’XML’>

 <BusinessInvoice>

 <as:include extends="SGIR:UN034500" implements="SGIR:UN034750">

http://www.uncefact.org/strct/invoice.xml

</as:include>

<billingAddress>

<as:include extends="SGIR:CIQ010100" implements="SGIR:CIQ010350">

http://www.uncefact.org/strct/address.xml

</as:include>

</billingAddress>

 </BusinessInvoice>

 </Structure>

 </AssemblyStructure>

 <BusinessUseContext/>

 <ContentReference/>

 <DataValidations/>

</CAM>

Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 43 of 69

The extends and implements parameters are optional, and the CAM processor does not parse the
information contained in them. Essentially they are external notes for use in modelling tools.

Typical values however may consist of a registry alias prefix, with UID reference value that
denote semantic content.

The next section reviews the requirements of the last step of the assembly process, which bridges
to the physical business application and data content. It provides the means to formalize that step
beyond the assembly and the linkage to the physical systems.

4.8.1 Implementation Notes

These notes are provided to assist implementers developing assembly software. The
specifications provided here are not intended to describe a complete system for implementers to
build. They provide the underlying specifications that implementers can use to construct products
that support the assembly process. Implementers will need to build their own user interface
components to manage and control the assembly itself. However the design of assembly has
anticipated that implementers can take advantage of an iterative set of steps from the providing of
the content structure through to the definition of the context rules and validation rules that can
assist the users and reduce the need for repetitive entry through the use of prompts and intelligent
software cues that derive their information from the previous step in the definition of the
complete assembly.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 44 of 69

4.9.1 CAM Processor Notes

These notes are provided to assist implementers developing assembly software. Within an
assembly implementation the processor examines the assembly document and then interprets the
instructions and provides the completed content structure details given a particular set of business
context parameters as input. This content structure could be stored as an XML DOM structure
for XML based content, or can be stored in some other in-memory structure format for non-XML
content, or the memory structure could be temporarily stored and then this format passed to a
business application step for final processing of the business content within the transaction.

Since typical development environments already contain linkage between the XML parser, the
DOM, an XPath processor, the scripting language such as JavaScript, and the data binding toolset
such as XSLT, or a comparable mapping tool, the assembly approach based on an XML script fits
naturally into this environment.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 45 of 69

4.10.1 External Business Content Mapping

The business content mapping is an optional component to the base assembly functionality, and is
primarily intended to bridge between the neutral assembly approach and specific domain
implementations. The business content mapping script instructions are designed to provide non-
procedural hints to implementation systems. Implementers can choose to use these to drive
specific back-end application systems, or simply as documentation to constructing such
application system linkages within their own systems. This can then provide useful hints to the
assembly process itself or to implementations integrating between multiple application systems
and requiring extended crosswalk information.

This initial release is a simple non-procedural system that allows specification of statements that
can bridge between the assembly transaction and the business application. It is not intended to
provide a complete full-function computation engine, but does provide the ability to simply
equate between application content and structure content members with some ability to
manipulate the content (it should be noted to that XPath statements contain some limited content
manipulation functionality as well).

Figure 4.10.1: Example of business content mapping script

<ExternalMapping>

 <ContentAssociation>

 <Description>Product List</Description>

 <InputSource/>

 <OutputStore type=”SQL” location=”product_table”/>

 <RulesSet>

 <MapRule output="Products_List" input="@STARTGRP()"/>

 <MapRule output="type" input="Sales/Company/Year/Qtr/Product@type"/>

 <MapRule output="name"

input="@trim(Sales/Company/Year/Qtr/Product/Item@name)"/>

 <MapRule output="manufacturer"

input="Sales/Company/Year/Qtr/Product/Item@manufacturer"/>

 <MapRule output="value"

input="Sales/Company/Year/Qtr/Product/Item@value"/>

 <MapRule output="sold"

input="Sales/Company/Year/Qtr/Product/Item@sold"/>

 <MapRule output="Products_List" input="@ENDGRP()"/>

 </RulesSet>

 </ContentAssociation>

</ExternalMapping>

 Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 46 of 69

The syntax for this section is summarized in the following table shown in figure 4.10.2 and these
predicates are designed as a simple set of sparse commands that augment the XPath statements to
provide a core of content string based functionality.

Figure 4.10.2: Summary of business content mapping script commands

Predicate Parameter(s) Description
@concat(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Combine two strings
together. Predicates can be
combined to derive
resultant string content.

@trim(p1) //memberpath Remove trailing and
leading white space from
content.

@startgrp() [//memberpath] Start of loop of recurring
content. Optional
memberpath reference
denotes when ‘next record’
condition occurs on change
of value / occurance in the
input structure.

@endgrp() None End of loop of recurring
content

@multiply(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of
calculation

@divide(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of
calculation

@add(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of
calculation

@subtract(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of
calculation

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 47 of 69

Predicate Parameter(s) Description
@if(p1,p2,p3) Expression,

[//memberpath | predicate()],

[//memberpath | predicate()]

Logical expression, if the
conditional expression is
true, then p2, else p3.

@upper(p1) [//memberpath | string |

predicate()]
Change all characters to
their uppercase equivalent.

@lower(p1) [//memberpath | string |

predicate()]
Change all characters to
their lowercase equivalent.

@len(p1) [//memberpath | string |

predicate()]
Returns length of string
item.

@left(p1,p2) [//memberpath | string |

predicate()],[numeric |

//memberpath | predicate()]

Return p2 number of
leftmost characters from a
string p1.

@right(p1,p2) [//memberpath | string |

predicate()],[numeric |

//memberpath | predicate()]

Return p2 number of
rightmost characters from a
string p1.

@mid(p1,p2,p3) [//memberpath | string |

predicate()],[numeric |

//memberpath |

predicate()],[numeric |

//memberpath | predicate()]

Return p3 number of
characters from a string p1
starting from position p2.

The section completes the processing requirements for the assembly system; the addendum now
provides reference examples.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 48 of 69

4.11.1 Conformance Levels and Feature Sets

One goal of CAM is to provide the means for simple implementations. To facilitate this the
implementation has been separated into three levels, where level 1 contains the minimum
functionality, level 2 contains extended functionality and level 3 contains advanced features.

To aid implementers and conformance testing the following matrix shows by section those
features that apply to each level. Also it should be noted that the CAM header section contains
processing rules for header information relating to level control for CAM processor
implementations.

Figure 4.11.1: CAM conformance matrix.

Feature Document

reference
Level 1 Level 2 Level 3

Header section processor required required required
Structure processor, simple XML required required required
Structure processor, inline predicates none required required
Structure processor for schemas none none required

Structure processor for non-XML targets none none required
Include sub-assembly mechanism none required required
XPath Context rules required required required

XPath lookup() function support none required required

External library functions none required required
Reference section – local definitions required required required
Reference section – external registry none required required

Validation section – simple checks none required required
Validation section – extended checks none required required
Validation section – external functions none required required

External Mapping section none none required

A CAM conformance test suite will be developed and made available from the website.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 49 of 69

A Addendum

The addendum contains some sample CAM XML instances, and the formal documented schema
structure for CAM. These examples are provided both in the addendum and as standalone items
as separate XML instance files7.

A1.1 Example of an Address assembly

The first example is a complete assembly bringing together the examples used in each section of
this document. The focus is on the address details and the selection and control of the structure
content given that address details are highly variant depending on the delivery country.

Figure A.1.1: Sample CAM template of Address content with embedded context expressions

<!-- Example Assembly for Address and Order items -->

<CAM xmlns:as="http://www.oasis-open.org/committees/cam">

 <AssemblyStructure >

 <Header>

 <CAMlevel value="2"/>

 <Description>WorldCup Soccer Order Transaction</Description>

 <Version>1.20</Version>

 <DateTime>02/12/2003</DateTime>

 </Header>

 <Declaration parameter='DeliveryCountry' default='USA' datatype='string'/>

 <Structure taxonomy=’XML’>

 <Items CatalogueRef="2002">

 <SoccerGear>

 <Item as:makeRepeatable="true">

 <RefCode as:makeMandatory="true" as:setLength="10">%%</RefCode>

 <Description>%%</Description>

 <Style>WorldCupSoccer</Style>

 <UnitPrice as:setMask="'999.99','SQL'">%%</UnitPrice>

 </Item>

 <QuantityOrdered as:setMask="'999','SQL'">%%</QuantityOrdered>

 <SupplierID as:makeMandatory="true">%%</SupplierID>

 <DistributorID>%%</DistributorID>

7 Implementers seeking the very latest details should reference the schema and DTD structure for CAM
directly from the Internet location for developer’s resources and not rely completely on the printed
instance, since corrections and extensions to the printed formal published implementation reference
documentation can lag behind. Participation in the online technical discussion groups is strongly
recommended.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 50 of 69

 <OrderDelivery>Normal</OrderDelivery>

 <DeliveryAddress as:choiceID="USA-Street">

 <FullName>%%</FullName>

 <Street>%%</Street>

 <City>%%</City>

 <State as:setLength="2" as:makeMandatory="true">%%</State>

 </DeliveryAddress>

 <DeliveryAddress as:choiceID="USA-APObox">

 <FullName>%%</FullName>

 <APOBox>%%</APOBox>

 <City>%%</City>

 <State as:setLength="2">%%</State>

 <Country>%%</Country>

 </DeliveryAddress>

 <DeliveryAddress as:choiceID="Canada">

 <PersonName>%%</PersonName>

 <Street1>%%</Street1>

 <Street2>%%</Street2>

 <TownCity>%%</TownCity>

 <PostCode>%%</PostCode>

 <Province>%%</Province>

 <Country>Canada</Country>

 </DeliveryAddress>

 </SoccerGear>

 </Items>

 </Structure>

</AssemblyStructure>

<BusinessUseContext>

 <Rules>

 <default>

 <context> <!-- default structure constraints -->

 <constraint action="makeRepeatable(//SoccerGear)" />

 <constraint action="makeMandatory(//SoccerGear/Items/*)" />

 <constraint action="makeOptional(//Description)" />

 <constraint action="makeMandatory(//Items@CatalogueRef)" />

 <constraint action="makeOptional(//DistributorID)" />

 <constraint action="makeOptional(//SoccerGear/DeliveryAddress)" />

 </context> Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 51 of 69

 </default>

 <context condition="token='//SoccerGear/SupplierID' and

contains(value,'SuperMaxSoccer')">

 <constraint action="makeMandatory(//SoccerGear/DeliveryAddress)"/>

 </context>

 <context condition="token='%DeliveryCountry%' and contains(value,'USA'">

 <constraint

 action="useChoiceByID(//SoccerGear/DeliveryAddress(#USA-Street))"/>

 </context>

 <context condition="token='%DeliveryCountry%' and contains(value,'APO'">

 <constraint

 action="useChoiceByID(//SoccerGear/DeliveryAddress(#USA-APObox))"/>

 </context>

 <context condition="token='%DeliveryCountry%'

and contains(value,'CANADA'">

 <constraint

 action="useChoiceByID(//SoccerGear/DeliveryAddress(#Canada))"/>

 </context>

 </Rules>

</BusinessUseContext>

<ContentReference>

 <Addressing>

 <registry name="SGIR" access="registry.sgir.org:1023" method="URL"

 description="Sporting Goods Industry Registry"/>

 <registry name="SGIRWSDL" access="registry.sgir.org:1025" method="WSDL"

 description="Sporting Goods Industry Registry"/>

 <registry name="UN" access="registry.un.org:9090" method="ebXML"

 description="United Nations EDIFACT Registry"/>

 <registry name="UPS" access="registry.ups.com:7001" method="URL"

 description="United Parcels Service Registry"/>

 <registry name="USPS" access="registry.usps.gov:8080" method="URL"

 description="United States Postal Service Registry"/>

 <registry name="Local" access="rdbms.mybusiness.com:4040" method="SQL"

 description="Local Product Database stored procedures"/>

 </Addressing>

 <item type="noun" name="RefCode"

 UIDReference="SGIR010027" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="Description" Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 52 of 69

 UIDReference="SGIR010050" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="Style"

 UIDReference="SGIR010028" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="SupplierID"

 UIDReference="SGIR010029" taxonomy="UID" registry="SGIR"/>

 <item type="noun" name="CatalogueRef" UIDReference="none" taxonomy="none"

 datatype="text" setlength="4" setmask="'\d\d\d\d',PERL" />

 <item type="noun" name="DistributorID" UIDReference="none" taxonomy="none"

 datatype="text" setlength="30" />

 <item type="noun" name="UnitPrice"

 UIDReference="070010" taxonomy="EDIFACT" registry="UN"/>

 <item type="noun" name="QuantityOrdered"

 UIDReference="070011" taxonomy="EDIFACT" registry="UN"/>

 <item type="noun" name="OrderDelivery"

 UIDReference="UPS050050" taxonomy="UID" registry="UPS"/>

 <item type="defaultAssembly" name="DeliveryAddress"

 UIDReference="USPS090081:01:05" taxonomy="UID" registry="USPS"/>

 </ContentReference>

 <DataValidations>

 <Conditions

condition="token='%DeliveryCountry%' and contains(value,'USA'">

 <conditional

expression="’//UnitPrice’ and greater(value,’0.00’)"

syntax="XPath" outcome="fail"

message="Item price not valid / missing" test="always"/>

<conditional

expression="’//RefCode + //UnitPrice’ and

lookup(value,’SGIRWSDL:unitprice_check’)” outcome="report"

message="Unit price value does not match catalog" test="always"/>

<conditional

expression="’//SupplierID’ and

lookup(value,’SGIRWSDL:supplierID_check’)” outcome="fail"

message="Unknown Supplier ID" test="always"/>

<conditional

expression="’//DistributorID’ and

lookup(value,’SGIRWSDL:distributor_check’)” outcome="fail"

message="Unknown distributor ID" test="postcheck"/>

<conditional itemRef="//QuantityOrdered" conditioncheck="value"

expression="’//QuantityOrdered’ and

lookup(value,’LocalSQL:quantityOnHand()’)” outcome="report" Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 53 of 69

message="Item not available / backordered" test="postcheck"/>

 </Conditions>

</DataValidations>

</AssemblyScript>

In this particular example the three different address formats, USA street address, USA APO box
and Canadian address are selected depending on the business use context. Notice from the
business perspective this effectively controls where physically the company will deliver its
products.

See the main document for details on the techniques illustrated in each section of this example.
The overall business capability demonstrated is the ability to use a single assembly to manage the
content variants for the business process and to tie those to the context variables that determine
the actual content structure for a given business scenario.

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 54 of 69

A1.2 Example of an OAGIS BOD assembly

The next example is for the OAGIS BOD syntax (see http://www.openapplications.org) and
shows how the base BOD mechanism expressed simply as a W3C XSD schema fails to cover the
business need (see discussion in section 1 – Introduction), while the assembly for the BOD is able
to provide the required business context rules and content linkage references completely.

Figure A.1.2: Sample of a CAM template for OAGIS BOD content

<CAM>

 <!—TBD -->

</CAM>

See the main document for details on the techniques illustrated in each section of this example.
The overall business capability demonstrated is the ability to use a single assembly to manage the
content variants for the business process and to tie those to the context variables that determine
the actual content structure for a given business scenario.

Deleted: 12/02/03

Formatted: German (Germany)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 55 of 69

A1.3 CAM schema (W3C XSD syntax)

This section is provided for implementers wishing a formal specification of the XML structure
definition for the assembly itself. However specific implementation details not captured by the
XSD syntax should be referenced by studying the specification details provided in this document
and clarification of particular items can be obtained by participating in the appropriate on-line e-
business developer community discussion areas and from further technical bulletins
supplementing the base specifications.

Figure A1.3: Schema of CAM.xsd

element CAM

diagram

children AssemblyStructure BusinessUseContext ContentReference DataValidations ExternalMapping

annotation
source <xs:element name="CAM">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AssemblyStructure"/>
 <xs:element ref="BusinessUseContext" minOccurs="0"/>
 <xs:element ref="ContentReference" minOccurs="0"/>
 <xs:element ref="DataValidations" minOccurs="0"/>
 <xs:element ref="ExternalMapping" minOccurs="0"/>
 <xs:element ref="annotation" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Elements
Addressing
annotation
AssemblyStructure
BusinessUseContext
CAM
CAMlevel
conditional
Conditions
constraint
ContentAssociation
ContentReference Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 56 of 69

context
DataValidations
DateTime
Declaration
default
Description
documentation
ExternalMapping
Header
InputSource
item
MapRule
OutputStore
Owner
registry
Rules
RulesSet
Structure
Version

element Addressing

diagram

children registry
used by element ContentReference
source <xs:element name="Addressing">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="registry" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element annotation

diagram

children documentation
used by element CAM
source <xs:element name="annotation">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="documentation" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element AssemblyStructure

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 57 of 69

diagram

children Header Declaration Structure
used by element CAM
source <xs:element name="AssemblyStructure">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Header"/>
 <xs:element ref="Declaration" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Structure" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element BusinessUseContext

diagram

children Rules
used by element CAM
source <xs:element name="BusinessUseContext">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Rules"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element CAMlevel

diagram

used by element Header
attributes Name Type Use Default Fixed Annotation

value xs:NMTOKEN required
source <xs:element name="CAMlevel">

 <xs:complexType>
 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 <xs:enumeration value="3"/>
 </xs:restriction>

Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 58 of 69

 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

element conditional

diagram

used by element Conditions
attributes Name Type Use Default Fixed Annotation

expression xs:string required
syntax xs:NMTOKEN
outcome xs:NMTOKEN required
message xs:string
test xs:NMTOKEN required

source <xs:element name="conditional">
 <xs:complexType>
 <xs:attribute name="expression" type="xs:string" use="required"/>
 <xs:attribute name="syntax">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="XPath"/>
 <xs:enumeration value="JavaScript"/>
 <xs:enumeration value="VB"/>
 <xs:enumeration value="Perl"/>
 <xs:enumeration value="Other"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="outcome" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="fail"/>
 <xs:enumeration value="ignore"/>
 <xs:enumeration value="report"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="message" type="xs:string"/>
 <xs:attribute name="test" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="always"/>
 <xs:enumeration value="postcheck"/>
 <xs:enumeration value="precheck"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

element Conditions

diagram

 Deleted: 12/02/03

Formatted: French (France)

Formatted: French (France)

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 59 of 69

children conditional
used by element DataValidations

attributes Name Type Use Default Fixed Annotation
condition xs:string

source <xs:element name="Conditions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="conditional" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="condition" type="xs:string"/>
 </xs:complexType>
</xs:element>

element constraint

diagram

used by elements context default
attributes Name Type Use Default Fixed Annotation

condition xs:string
action xs:string required

source <xs:element name="constraint">
 <xs:complexType>
 <xs:attribute name="condition" type="xs:string"/>
 <xs:attribute name="action" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

element ContentAssociation

diagram

children Description InputSource OutputStore RulesSet
used by element ExternalMapping
source <xs:element name="ContentAssociation">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Description" minOccurs="0"/>
 <xs:element ref="InputSource"/>
 <xs:element ref="OutputStore"/>
 <xs:element ref="RulesSet"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 60 of 69

element ContentReference

diagram

children Addressing item
used by element CAM
source <xs:element name="ContentReference">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Addressing"/>
 <xs:element ref="item" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element context

diagram

children context constraint
used by elements context default Rules

attributes Name Type Use Default Fixed Annotation
condition xs:string required

source <xs:element name="context">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="context" maxOccurs="unbounded"/>
 <xs:element ref="constraint" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attribute name="condition" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

element DataValidations

diagram

children Conditions
used by element CAM
source <xs:element name="DataValidations">

 <xs:complexType> Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 61 of 69

 <xs:sequence>
 <xs:element ref="Conditions" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element DateTime

diagram

type xs:string
used by element Header
source <xs:element name="DateTime" type="xs:string"/>

element Declaration

diagram

used by element AssemblyStructure
attributes Name Type Use Default Fixed Annotation

parameter xs:string required
values xs:string
default xs:string
datatype xs:string

source <xs:element name="Declaration">
 <xs:complexType>
 <xs:attribute name="parameter" type="xs:string" use="required"/>
 <xs:attribute name="values" type="xs:string"/>
 <xs:attribute name="default" type="xs:string"/>
 <xs:attribute name="datatype" type="xs:string"/>
 </xs:complexType>
</xs:element>

element default

diagram

children context constraint
used by element Rules
source <xs:element name="default">

 <xs:complexType>
 <xs:choice>
 <xs:element ref="context" maxOccurs="unbounded"/>
 <xs:element ref="constraint" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType> Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 62 of 69

</xs:element>

element Description

diagram

type xs:string
used by elements ContentAssociation Header
source <xs:element name="Description" type="xs:string"/>

element documentation

diagram

type extension of xs:string
used by element annotation

attributes Name Type Use Default Fixed Annotation
type xs:NMTOKEN required

source <xs:element name="documentation">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="description"/>
 <xs:enumeration value="note"/>
 <xs:enumeration value="license"/>
 <xs:enumeration value="usage"/>
 <xs:enumeration value="other"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

element ExternalMapping

diagram

children ContentAssociation
used by element CAM
source <xs:element name="ExternalMapping">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ContentAssociation" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType> Deleted: 12/02/03

Formatted: French (France)

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 63 of 69

</xs:element>

element Header

diagram

children CAMlevel Description Owner Version DateTime
used by element AssemblyStructure
source <xs:element name="Header">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="CAMlevel"/>
 <xs:element ref="Description" minOccurs="0"/>
 <xs:element ref="Owner" minOccurs="0"/>
 <xs:element ref="Version" minOccurs="0"/>
 <xs:element ref="DateTime"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element InputSource

diagram

used by element ContentAssociation
attributes Name Type Use Default Fixed Annotation

type xs:NMTOKEN
location xs:string

source <xs:element name="InputSource">
 <xs:complexType>
 <xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="SQL"/>
 <xs:enumeration value="XML"/>
 <xs:enumeration value="EDI"/>
 <xs:enumeration value="TXT"/>
 <xs:enumeration value="ODBC"/>
 <xs:enumeration value="OTHER"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="location" type="xs:string"/>
 </xs:complexType>
</xs:element> Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 64 of 69

element item

diagram

used by element ContentReference
attributes Name Type Use Default Fixed Annotation

type xs:NMTOKEN required
name xs:string
UIDReference xs:string required
taxonomy xs:string required
registry xs:string
datatype xs:string
setlength xs:string
setmask xs:string

source <xs:element name="item">
 <xs:complexType>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="noun"/>
 <xs:enumeration value="corecomponent"/>
 <xs:enumeration value="BIE"/>
 <xs:enumeration value="BRIC"/>
 <xs:enumeration value="defaultAssembly"/>
 <xs:enumeration value="identifier"/>
 <xs:enumeration value="verb"/>
 <xs:enumeration value="schema"/>
 <xs:enumeration value="documentation"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="UIDReference" type="xs:string" use="required"/>
 <xs:attribute name="taxonomy" type="xs:string" use="required"/>
 <xs:attribute name="registry" type="xs:string"/>
 <xs:attribute name="datatype" type="xs:string"/>
 <xs:attribute name="setlength" type="xs:string"/>
 <xs:attribute name="setmask" type="xs:string"/>
 </xs:complexType>
</xs:element>

element MapRule

diagram

used by element RulesSet
attributes Name Type Use Default Fixed Annotation

output xs:string required
input xs:string required

source <xs:element name="MapRule">
 <xs:complexType>
 <xs:attribute name="output" type="xs:string" use="required"/>
 <xs:attribute name="input" type="xs:string" use="required"/> Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 65 of 69

 </xs:complexType>
</xs:element>

element OutputStore

diagram

used by element ContentAssociation
attributes Name Type Use Default Fixed Annotation

type xs:NMTOKEN
location xs:string

source <xs:element name="OutputStore">
 <xs:complexType>
 <xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="SQL"/>
 <xs:enumeration value="XML"/>
 <xs:enumeration value="EDI"/>
 <xs:enumeration value="TXT"/>
 <xs:enumeration value="ODBC"/>
 <xs:enumeration value="OTHER"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="location" type="xs:string"/>
 </xs:complexType>
</xs:element>

element Owner

diagram

type xs:string
used by element Header
source <xs:element name="Owner" type="xs:string"/>

element registry

diagram

used by element Addressing
attributes Name Type Use Default Fixed Annotation

name xs:string required
access xs:string required
method xs:NMTOKEN required
description xs:string

source <xs:element name="registry">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/> Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 66 of 69

 <xs:attribute name="access" type="xs:string" use="required"/>
 <xs:attribute name="method" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="URL"/>
 <xs:enumeration value="http"/>
 <xs:enumeration value="SOAP"/>
 <xs:enumeration value="ebXML"/>
 <xs:enumeration value="UDDI"/>
 <xs:enumeration value="Other"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="description" type="xs:string"/>
 </xs:complexType>
</xs:element>

element Rules

diagram

children default context
used by element BusinessUseContext
source <xs:element name="Rules">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="default" minOccurs="0"/>
 <xs:element ref="context" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element RulesSet

diagram

children MapRule
used by element ContentAssociation
source <xs:element name="RulesSet">

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="MapRule" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element Structure

diagram
 Deleted: 12/02/03

Formatted: French (France)

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 67 of 69

used by element AssemblyStructure
attributes Name Type Use Default Fixed Annotation

ID xs:string
reference xs:string
taxonomy xs:NMTOKEN required

source <xs:element name="Structure">
 <xs:complexType mixed="true">
 <xs:attribute name="ID" type="xs:string"/>
 <xs:attribute name="reference" type="xs:string"/>
 <xs:attribute name="taxonomy" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="UID"/>
 <xs:enumeration value="XSD"/>
 <xs:enumeration value="DTD"/>
 <xs:enumeration value="RNG"/>
 <xs:enumeration value="XML"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

element Version

diagram

type xs:string
used by element Header
source <xs:element name="Version" type="xs:string"/>

A1.4 Implementing RELAX NG with CAM

This section is focused on providing an open source implementation of CAM in combination with
OASIS RELAX NG syntax support. The initial approach is aimed at providing a conformance
level 1 implementation of CAM. The basic functionality will be obtained as much as possible by
re-using existing RELAX NG tools. The strategy is to provide a pre-processor that can consume
CAM XML syntax and then emit a valid RELAX schema that matches the structure and rules
documented in the CAM syntax. For more current information on this sub-team activity, please
visit the OASIS CAM TC website.

A1.5 Business Process Mechanism (BPM) Context Support

This section describes the mechanism for providing context variables between the CAM
processor and the remainder of the eBusiness architecture stack (see figure 2.7.2).

Deleted: 12/02/03

Formatted: French (France)

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 68 of 69

The CAM template provides the %parameter% mechanism to accept values from external
processes. However the need is to provide a consistent mechanism in XML syntax for the
propagation and specifying of context variables and their values throughout the components that
make up the architecture stack.

Figure A1.5.1 shows a basic XML structure for carrying such values and it is anticipated that
further development of this will continue with other OASIS TC groups to reach agreement on
exact details of this mechanism.

Figure A1.5.1 XML structure for eBusiness context variable exchange.

<ebContext interchangeID='123456789' BPMref='ABC123456:01' CPAref='ABC012345'>

<variables>

 <variable name="Country" value="USA"/>

 <variable name="itemType" value="nonperishable"/>

 <variable name="partnerType" value="wholesale"/>

</variables>

</ebContext>

Deleted: 12/02/03

CAM Specifications and Description Document

Copyright© OASIS, 2003. All Rights Reserved

Version: 1.00, revision 0.11 Date: 13/02/03
Status: Draft Page: 69 of 69

5.0 References

- XML Path Language (XPath) specifications document, version 1.0, W3C Recommendation

16 November 1999, http://www.w3.org/TR/xpath/

- Extensible Markup Language (XML) specifications document, version 1.1, W3C Candidate

Recommendation, 15 October 2002, http://www.w3.org/TR/xml11/

- XNL: Specifications and Description Document, OASIS CIQ TC, http://www.oasis-

open.org/committees/ciq

- XAL: Specifications and Description Document, OASIS CIQ TC, http://www.oasis-

open.org/committees/ciq

- ISO 16642 – Representing data categories http://www.loria.fr/projets/TMF/

Deleted: 12/02/03

