
CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 1 of 1

 1

 2

 3

 4

Content Assembly Mechanism (CAM) 5

Specification Document 6

 7

 8

Committee Draft V1.0, March 2004 9

 10
 11

 12

 13

 14

 15

 16

 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 2 of 2

 29

 30

 31

CHANGE HISTORY 32
 33

Status Version Revision Date Editor Summary of Changes
Draft 1.0 0.10 30 December, 2002 DRRW Rough Draft

 0.11 12th February, 2003 DRRW Initial Draft
 0.12 23rd February, 2003 DRRW Revision for comments to 28/02/2003
 0.13 17th May, 2003 DRRW Revision for comments to 08/05/2003
 0.14 13th August, 2003 DRRW Revision for comments to 15/08/2003
 0.15 3rd February, 2004 DRRW Final edits prior to first public release
 0.16 15th February, 2004 DRRW Release Candidate for Committee Draft CAM
 0.17 19th February 2004 MMER Edited detailed comments into draft.

Committee
Draft

 0.17C 12th March 2004 DRRW Cosmetic changes to look of document to match
new OASIS template and notices statement.

 34
 35

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 3 of 3

DOCUMENT RIGHTS STATEMENT 36

OASIS takes no position regarding the validity or scope of any intellectual property or 37
other rights that might be claimed to pertain to the implementation or use of the 38
technology described in this document or the extent to which any license under such 39
rights might or might not be available; neither does it represent that it has made any 40
effort to identify any such rights. Information on OASIS's procedures with respect to 41
rights in OASIS specifications can be found at the OASIS website. Copies of claims of 42
rights made available for publication and any assurances of licenses to be made 43
available, or the result of an attempt made to obtain a general license or permission for 44
the use of such proprietary rights by implementers or users of this specification, can be 45
obtained from the OASIS Executive Director. 46

OASIS invites any interested party to bring to its attention any copyrights, patents or 47
patent applications, or other proprietary rights which may cover technology that may be 48
required to implement this specification. Please address the information to the OASIS 49
Executive Director. 50
Copyright © OASIS Open 2003 / 2004. All Rights Reserved. This document and translations 51
of it may be copied and furnished to others, and derivative works that comment on or otherwise 52
explain it or assist in its implementation may be prepared, copied, published and distributed, in 53
whole or in part, without restriction of any kind, provided that the above copyright notice and 54
this paragraph are included on all such copies and derivative works. However, this document 55
itself may not be modified in any way, such as by removing the copyright notice or references to 56
OASIS, except as needed for the purpose of developing OASIS specifications, in which case the 57
procedures for copyrights defined in the OASIS Intellectual Property Rights document must be 58
followed, or as required to translate it into languages other than English. 59
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 60
successors or assigns. 61

This document and the information contained herein is provided on an "AS IS" basis and OASIS 62
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 63
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL 64
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 65
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE." 66

Where, pursuant to a notification under this Policy, the OASIS Board of Directors is aware at the 67
time of publication of proprietary rights claimed with respect to an OASIS specification, or the 68
technology described or referenced therein, such specification shall contain the following notice: 69

OASIS has been notified of intellectual property rights claimed in regard to some or all of the 70
contents of this specification. For more information consult the online list of claimed rights. This 71
document and the information contained herein is provided on an "AS IS" basis and OASIS 72
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 73
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL 74
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 75
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 76

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 4 of 4

 77

TABLE OF CONTENTS 78
 79

1 ACKNOWLEDGEMENTS... 5 80

2 INTRODUCTION.. 6 81

3 PRE-REQUISITES .. 6 82

4 CONTENT ASSEMBLY MECHANISM TECHNICAL SPECIFICATION................... 7 83

4.1 OVERVIEW .. 8 84
4.1.1 Header declarations .. 10 85

4.2 ASSEMBLY STRUCTURES .. 11 86
4.3 BUSINESS USE CONTEXT RULES... 14 87

4.3.1 XPath syntax functions .. 23 88
4.3.2 Handling CDATA content with XPath ... 24 89

4.4 CAM CHARACTER MASK SYNTAX .. 25 90
4.5 CONTENT REFERENCING... 28 91
4.6 DATA VALIDATIONS ... 28 92

4.6.1 Discrete Value List Support (“Codelists”).. 28 93
4.7 EXTERNAL BUSINESS CONTENT MAPPING ... 28 94
4.8 ADVANCED FEATURES.. 28 95

4.8.1 In-line use of predicates and references .. 28 96
4.8.2 Non-XML structure referencing .. 28 97
4.8.3 Including External Structures into CAM ... 28 98
4.8.4 Object Oriented Includes Support ... 28 99

4.8.4.1 Support for import style functionality .. 28 100
4.8.5 Merge Structure Handling and External Content Mapping 28 101

4.9 PREDICATE FORMAT OPTIONS .. 28 102
4.10 CONFORMANCE LEVELS AND FEATURE SETS ... 28 103
4.11 FUTURE FEATURE EXTENSIONS .. 28 104

A ADDENDUM.. 28 105

A1.1 EXAMPLE OF AN ADDRESS ASSEMBLY .. 28 106
A1.2 EXAMPLE OF UBL PART ORDER OP70 AND AN OAGIS BOD ASSEMBLY.................. 28 107
A1.3 CAM SCHEMA (W3C XSD SYNTAX)... 28 108
A1.4 BUSINESS PROCESS MECHANISM (BPM) CONTEXT SUPPORT 28 109
A1.5 CAM PROCESSOR NOTES (NON-NORMATIVE) ... 28 110
A1.6 DEPRECATED DTD .. 28 111

5 REFERENCES... 28 112

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 5 of 5

 113
1 Acknowledgements 114
 115
 116
OASIS wishes to acknowledge the contributions of the members of the CAM Technical 117
Committee to this standards work. 118
 119
 120
 121

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 6 of 6

2 Introduction 122
 123
The Content Assembly Mechanism (CAM) provides an open XML based system for using 124
business rules to define, validate and compose specific business documents from generalized 125
schema elements and structures. 126
 127
A CAM rule set and document assembly template defines the specific business context, content 128
requirement, and transactional function of a document. A CAM template must be capable of 129
consistently reproducing documents that can successfully carry out the specific transactional 130
function that they were designed for. CAM also provides the foundation for creating industry 131
libraries and dictionaries of schema elements and business document structures to support 132
business process needs. 133
 134
The core role of the OASIS CAM specifications is therefore to provide a generic standalone 135
content assembly mechanism that extends beyond the basic structural definition features in XML 136
and schema to provide a comprehensive system with which to define dynamic e-business 137
interoperability. 138
 139
 140
 141
 142
3 Pre-requisites 143
 144
These specifications make use of W3C technologies, including the XML V1.0, XML 145
namespaces, W3C Schema V1.0 (XSD) with W3C Schema data types V1.0, and XPath 1.0 146
recommendations. It should be noted that only a subset of the XPath technology, specifically the 147
locator sections of the XPath specification are utilized. Explicit details of XPath syntax are 148
provided in the body of this specification. A schema definition is provided for the assembly 149
mechanism structure. Knowledge of these technologies is required to interpret the XML sections 150
of this document. 151

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 7 of 7

4 Content Assembly Mechanism Technical Specification 152
 153
This section describes the implementation specifications for CAM. Figure 4.1 shows how 154
implementers can integrate CAM technology into their existing systems, and then extend this out 155
to include all aspects of the e-business information content management technologies. 156
 157
Figure 4.1: Deploying CAM technology 158

Context
Values

Context
Values

Required
Content
Structure

Required
Content

Structure

Process
Engine

Process
Engine Content

References
Content

References

1

Payload /
Rendering
Payload /
Rendering

2

Content
Assembly
Mechanism
Template

Content
Assembly
Mechanism
Template

Payload
Mapping
Payload
Mapping

3

Application
Database

Application
Database

Registry
Components

Registry
Components Conceptual

Logical

Physical
Vocabularies

and
Industry Dictionaries

Vocabularies
and

Industry Dictionaries

Business Re-usable
Information

Components- BRICs

Business Re-usable
Information

Components- BRICs

Structure
Choices

Structure
Choices

 159
 160
In reference to figure 4.1, item 1 is the subject of this section, describing the syntax and 161
mechanisms. Item 2 is a process engine designed to implement the CAM logic as an executable 162
software component, and similarly item 3 is an application software component that links the e-163
business software to the physical business application software and produces the resultant 164
transaction payload for the business process itself (these aspects are covered in this document in 165
the addendum on implementation details). 166
 167
Input to the conceptual model section can come from UML and similar modelling tools to define 168
the core components and relevant re-usable business information components themselves, or can 169
come from existing industry domain dictionaries. 170
 171
The specification now continues with the detailing the physical realization in XML of the CAM 172
template mechanism itself. 173

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 8 of 8

 174

4.1 Overview 175

 176
The CAM itself consists of five logical sections (as illustrated in figure 2.7.1), and the CAM is 177
expressed in XML syntax. This is shown in figure 4.1.1 as high-level XML structure parent 178
elements1. 179
 180
Figure 4.1.1: High-level parent elements of CAM (in simple XML syntax) 181
 182
<CAM CAMlevel="1" version="1.0"> 183
 <Header> 184
 <AssemblyStructure/> 185
 <BusinessUseContext/> 186
 <ContentReference/> 187
 <DataValidations/> 188
 <ExternalMapping/> 189
</CAM> 190
 191
The structure sections provide the ABCDE's of the interchange definition - Assembly 192
Structure(s), Business Use Context Rules, Content References (with optional associated data 193
validation), Data Validations and External Mappings. Figure 4.1.22 next shows the complete 194
hierarchy for CAM at a glance. 195
 196
It should be noted that CAM also has built-in compatibility levels within the specification to both 197
aid in implementation of the CAM specification, and also to ensure interoperability. 198
 199
This is controlled via the CAMlevel attribute of the CAM root element. More details on the 200
CAM implementation levels and features are provided in section 4.8.8 – Conformance Levels and 201
Feature Sets. 202

1 Note: elements have been labelled using UN spellings, not North American spellings

2 This diagrammatic syntax uses modelling notations to show parent, repeated, choice and
optional model element linkages. Elements outlined with dashed lines are optional.

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 9 of 9

Figure 4.1.2: Structure for entire CAM syntax at a glance 203

 204
 205
 206

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 10 of 10

Each of these parent items is now described in detail in the following sub-sections, while figure 207
4.1.3 next shows the formal schema definition for CAM (see the OASIS web site for machine 208
readable Schema formats in XSD syntax). While the documented schema provides a useful 209
structural overview, implementers should always check for the very latest version on-line to 210
ensure conformance and compliance to the latest explicit programmatic details. 211
 212
 The next sections describe each parent element in the CAM in sequence, their role and their 213
implementation details. 214
 215
 216
4.1.1 Header declarations 217
The purpose of the Header section is to declare properties and parameters for the CAM process to 218
reference. There are three sub-sections: parameters, properties and imports. Within the main 219
header there are elements that allow documenting of the template description, owner, assigning of 220
a version number and providing a date/time stamp. These are used for informational purposes 221
only and maybe used by external processes to verify and identify that a particular CAM template 222
instance is the one required to be used. 223
 224
Parameters 225
This section allows parameters to be declared that can then be used in context specific conditions 226
and tests within the CAM template itself. These can either be substitution values, or can be 227
referencing external parameter values that are required to be passed into this particular CAM 228
template by an external process. External parameters can be passed using the CAM context 229
mechanism (see later section on Advanced Features support). Note: CAM uses the $name syntax 230
to denote external parameter references where required in the CAM template statements. 231
 232
Properties 233
These allow creation of shorthand macros that can be referenced from anywhere in the remainder 234
of the CAM template using the ${macroname} reference method. This is designed to provide an 235
easy way to maintain references to external static URL values particularly. It can also be used to 236
define shorthand for commonly repeated blocks of syntax mark-up within the CAM template 237
itself, such as a name and address layout, or a particular XPath expression. 238
 239
Imports 240
The import reference allows the CAM processor to pre-load any reference links to external files 241
containing syntax to be included into the CAM template. It also allows the external path of that 242
include file to be maintained in just one place in the template; making easier maintenance if this 243
is re-located. In addition this then allows an <include> statement within the CAM template to 244
reference the import declaration and select a particular sub-tree of content syntax to insert at that 245
given point (using an XPath statement to point to the fragment within the overall import file). 246
This also allows the included content to be done by using just one large file, instead of multiple 247
small files. 248
 249
The next section begins describing the main processing associated with the CAM template.250

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 11 of 11

 251
 252

4.2 Assembly Structures 253

The purpose of the AssemblyStructure section is to capture the required content structure or 254
structures that are needed for the particular business process step (i.e. one business process step 255
may have more or more structures it may contextually need to create). This section is designed to 256
be extremely flexible in allowing the definition of such structures. Whereas in this V1.0 257
specification simple well-formed XML is used throughout to illustrate the usage, for later releases 258
of the CAM specification consideration will be made to allow any fixed structured markup as 259
potentially being utilized as an assembly structure, such as DTD, Schema, EDI, or other (typically 260
they will be used as substitution structures for each other). It is the responsibility of the 261
implementer to ensure that all parties to an e-business transaction interchange can process such 262
content formats where they are applicable to them (of course such parties can simply ignore 263
content structures that they will never be called upon to process). 264
 265
Notice also that typically a single business process with multiple steps would be expected to have 266
multiple CAM templates, one for each business process step. While it is also possible to provide 267
a single CAM template with multiple structures for a business process with multiple steps, this 268
will likely not work unless the business transaction for each step is essentially the same (since the 269
content reference section and context rules section would have to reference potentially extremely 270
different structures). 271
 272
Using single CAM templates per step and transaction structure also greatly enhances re-use of 273
CAM templates across business processes that use the same structure content, but different 274
context. 275
 276
The formal structure rules for AssemblyStructure are expressed by the syntax in figure 4.2.2 277
below. The figure 4.2.1 here shows a simple example for an AssemblyStructure using a single 278
structure for content. 279

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 12 of 12

 280
Figure 4.2.1: Example of Structure and format for AssemblyStructure 281
<Header> 282
 <Description>Example 4.2.1 using structures</Description> 283
 <Version>1.0</Version> 284
</Header> 285
<AssemblyStructure> 286
 <Structure taxonomy=”…”> 287

<!-- the physical structure of the required content goes here, and can be 288
a schema instance, or simply well-formed XML detail, see example below in 289
figure 4.2.2 --> 290

 </Structure > 291
</AssemblyStructure> 292
 293
In the basic usage, there will be just a single structure defined in the AssemblyStructure / 294
Structure section. However, in the more advanced use, multiple substitution structures may be 295
provided. These can also be included from external sources, with nesting of assemblies; see the 296
section below on Advanced Features for details. 297
 298
To provide the direct means to express content values within the structure syntax the following 299
two methods apply. A substitution value is indicated by two percentage signs together “%%”, 300
while any other value is assumed to be a fixed content value. Figure 4.2.2 shows examples of this 301
technique. 302
 303
Figure 4.2.2: Substitution and fixed parameter values, with a well-formed XML structure 304
 305
<Header> 306
 <Description>Example 4.2.2 Well-formed XML structure</Description> 307
 <Version>1.0</Version> 308
</Header> 309
<AssemblyStructure> 310
 <Structure taxonomy=”XML”> 311
 <Items CatalogueRef=”2002”> 312

<SoccerGear> 313
 <Item> 314

<RefCode>%%</RefCode> 315
<Description>%%</Description> 316
<Style>WorldCupSoccer</Style> 317
<UnitPrice>%%</UnitPrice> 318

 </Item> 319
<QuantityOrdered>%%</QuantityOrdered> 320
<SupplierID>%%</SupplierID> 321

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 13 of 13

<DistributorID>%%</DistributorID> 322
<OrderDelivery>Normal</OrderDelivery> 323
<DeliveryAddress/> 324
</SoccerGear> 325

 </Items> 326
 </Structure> 327
</AssemblyStructure> 328
 329
Referring to figure 4.2.2, the “2002”, “WorldCupSoccer” and “Normal” are fixed values that will 330
always appear in the payload transaction at the end of the CAM process. 331
 332
In addition to the XML markup, within the AssemblyStructure itself may optionally be included 333
in-line syntax statements. The CAM system provides the BusinessUseContext section primarily 334
to input context rules (see section below), however, these rules may be optionally included as in-335
line syntax in the AssemblyStructure. However, all rules where present in the 336
BusinessUseContext section take precedence over such in-line syntax rules. 337
 338
The next section details examples of in-line context rules. 339

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 14 of 14

4.3 Business Use Context Rules 340

 341
Once the assembly structure(s) have been defined, then the next step is to define the context rules 342
that apply to that content. The technique used is to identify a part of the structure by pointing to 343
it using an XPath locator reference, and then also applying an assertion using one of the structure 344
predicates provided for that purpose (an optional comparison evaluation expression can also be 345
used with the XPath locator reference where applicable). 346
 347
There are two sections to these business context rules, default rules normally apply, and 348
conditional rules that only apply if a particular rule block evaluates to true. The business rules 349
then take the form of structure assertion predicates that define the cardinality of the structure 350
members and content definitions. Figure 4.3.1 shows these structure assertion predicates. 351
 352
Figure 4.3.1: The assertion predicates for BusinessUseContext 353
excludeAttribute() 354
excludeElement() 355
excludeTree() 356
makeOptional() 357
makeMandatory() 358
makeRepeatable() 359
setChoice() 360
setId() 361
setLength() 362
setLimit() 363
setRequired() 364
setMask() 365
setValue()setUID() 366
restrictValues() 367
restrictValuesByUID() 368
useAttribute() 369
useChoice() 370
useElement() 371
useTree() 372
useAttributeByID() 373
useChoiceByID() 374
useElementByID() 375
useTreeByID() 376
startBlock() 377
endBlock() 378
checkCondition() 379
makeRecursive() 380

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 15 of 15

 381
Each predicate provides the ability to control the cardinality of elements within the structure, or 382
whole pieces of the structure hierarchy (children within parent). An example of such context 383
rules use is provided below, and also each predicate and its’ behaviour is described in the matrix 384
in figure 4.3.3 below. Also predicates can be used in combination to provide a resultant 385
behaviour together, an example is using makeRepeatable() and makeOptional() together on a 386
structure member. 387
 388
Note that the BusinessUseContext section controls use of the structure, while if it is required to 389
enforce explicit validation of content, then there is also the DataValidations section that provides 390
the means to check explicitly an element to enforce content rules as required. See below for 391
details on this section. This validation section is also further described in the advanced use section 392
since it can contain extended features. 393
 394
Predicates that affect the definition of the content that will be used in any context is derived by 395
applying the rules using the following precedence rules. The lower numbered rules are applied 396
first and can be overridden by the high numbered rules. 397
 398

1. AssemblyStructure Inline predicates. 399
2. ContentReference predicates. 400
3. BusinessUseRules default rules and predicates. 401
4. BusinessUseRules conditional rules and predicates. 402

 403
Referring to the structure in the example shown in figure 4.2.2, figure 4.3.2 provides examples of 404
context based structural predicate assertions. Notice that such context rules can be default ones 405
that apply to all context uses of the structure, while other context rules can be grouped and 406
constrained by a XPath locator rule expression. There are three styles of such XPath expressions: 407

1. XPath expression refers to structure members directly and controls their use 408
2. XPath expression refers to structure member and contains condition of its value 409
3. XPath expression refers to token that is not member of structure, but is a known external 410

control value from the profile of the business process itself. 411
 412
Such XPath expressions will match all the structural elements that they can refer to, so if a unique 413
element is always required, implementers must ensure to provide the full XPath identity so that 414
only a single unique match occurs. An example is a reference to “//ZIPCode” which will match 415
any occurrence, whereas “/BillingAddress/ZIPCode” will only match that item. 416
 417
Figure 4.3.2: Syntax example for BusinessUseContext 418
 419
<BusinessUseContext> 420
<Rules> 421
 <default> 422
 <context> <!-- default structure constraints --> 423
 <constraint action="makeRepeatable(//SoccerGear)" /> 424

<!—type 1 Xpath--> 425
 <constraint action="makeMandatory(//SoccerGear/Items/*)" /> 426

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 16 of 16

<constraint action="makeOptional(//Description)" /> 427
<constraint action="makeMandatory(//Items@CatalogueRef)" /> 428
<constraint action="makeOptional(//DistributorID)" /> 429
<constraint action="makeOptional(//SoccerGear/DeliveryAddress)" /> 430

 </context> 431
 </default> 432
 <context condition="//SoccerGear/SupplierID = 'SuperMaxSoccer'"> 433

<!—type 2 Xpath--> 434
 <constraint action="makeMandatory(//SoccerGear/DeliveryAddress)"/> 435
 </context> 436
 <context condition="$DeliveryCountry = 'USA'"> 437

<!—type 3 Xpath--> 438
 <constraint action="useTree(//SoccerGear/DeliveryAddress/USA)"/> 439
 </context> 440
</Rules> 441
</BusinessUseContext> 442
 443
Referring to the XPath expressions in figure 4.3.2, examples of all three types of expression are 444
given to show how the XPath expressions are determined and used. For external control values 445
the special leading $ indicator followed by the variable name denotes a substitution value from a 446
context reference variable that is declared in the CAM template header. 447
 448
Referring to figure 4.3.3 below, the following applies: 449
 450
//elementpath XPath expression resolving to an element(s) in the structure. This

parameter is not required when predicate is used in-line, since then it is
implicit.

//memberpath XPath expression resolving to either an element(s) or an attribute(s) in the
structure

//treepath XPath expression resolving to parent element with children in the structure
//StructureID reference to an in-line ID assignment within the structure, or ID value

assigned using setID() predicate.

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 17 of 17

//elementpath@
attributename

XPath expression resolving to an attribute or attributes in the structure

//attributepath This can be used interchangeably with //elementpath when //memberpath is
an allowed parameter of a predicate. Either a single XPath expression
resolving to an attribute in the structure, or a collection of XPath
expressions referencing more than one attribute for the given element of the
form //elementpath@[attributename1, attributename2, attributename3,…],
or //elementpath@[*] to reference all attributes for that element.

IDvalue String name used to identify structure member
UIDreference Valid UID and optional associated registry and taxonomy that points to an

entry in a Registry that provides contextual metadata content such as a
[valuelist] or other information

value, valuelist,
count, mask

String representing parameter. When lists are required then group with
paired brackets [a, b, c, …], and when group of groups use nested brackets
[[a, b, d, f],[d, e, g, m]]
Note: groups are required for collections of attributes in in-line predicate
assertions.

 451

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 18 of 18

 452
Figure 4.3.3: Matrix of predicates for BusinessUseContext declarations. 453
 454
Predicate Parameter(s) Description
excludeAttribute() //elementpath@attributename Conditionally exclude

attribute from structure
excludeElement() //elementpath Conditionally exclude

element from structure
excludeTree() treepath Conditionally exclude a

whole tree from
structure

makeOptional() //elementpath Conditionally allow part
of structure to be
optional

makeMandatory() //elementpath Conditionally make part
of structure required

makeRepeatable() //elementpath Conditionally make part
of structure occur one or
more times in the
content

setChoice() //elementpath Indicate that the first
level child elements
below the named
elementpath are actually
choices that are
conditionally decided
with a useChoice()
predicate action

setId() //elementpath,IDvalue Associate an ID value
with a part of the
structure so that it can
be referred to directly by
ID

setLength() //memberpath, value Control the length of
content in a structure
member

setLength() //memberpath, [value-value] Control the length of
content in a structure
member, allows two
factors for range of
lengths.

setLimit() //elementpath, count For members that are
repeatable, set a count
limit to the number of
times they are repeatable

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 19 of 19

Predicate Parameter(s) Description
setMask() //memberpath, datatype, [mask

| masklist]

or

//memberpath, [mask |

masklist]

Assign a CAM picture
mask to describe the
content. The mask can
also set explicit datatype
of an item as well using
the first parameter of the
mask accordingly
(default is string if
datatype parameter
omitted). Masklist
allows an optional list of
masks to be provided as
well as one single mask.

datatype()

or

setDatetype()

//memberpath, value associate datatype with
item, valid datatypes are
same as W3C datatypes.
If a setMask() statement
is present for the item,
this statement will be
ignored.

setRequired() //elementpath,value For members that are
repeatable, set a
required occurrence for
the number of members
that must at least be
present (nnnn must be
greater than 1)3.

setValue() //memberpath, value Place a value into the
content of a structure

setValue() //memberpath, [valuelist] Place a set of values into
the content of a structure
(allows selection of
multiple values of
member items).

setUID() //memberpath, alias, value Assign a UID value to a
structure element. Alias
must be declared in
registry addressing
section of
ContentReferences).

restrictValues()

or

//memberpath,

[valuelist],[defaultValue]
Provide a list of allowed
values for a member
item

3 Design note: makeRepeatable(), makeMandatory() is the preferred syntax over the alternate:
makeRepeatable() as:setRequired="1".

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 20 of 20

Predicate Parameter(s) Description
member()

restrictValuesByUID()

or

memberByUID()

//memberpath, UIDreference,

[defaultValue]
Provide a list of allowed
values for a member
item from a registry
reference

useAttribute() //elementpath@attributename,

or //attributepath
Require use of an
attribute for a structure
element and exclude
other attributes

useChoice() //elementpath Indicate child element to
select from choices
indicated using a
setChoice() predicate.

useElement() //elementpath Where a structure
definition includes
choices indicate which
choice to use (this
function is specific to an
element path, and does
not require a prior
setChoice() predicate to
be specified).

useTree() //treepath Where a structure
member tree is optional
indicate that it is to be
used. Note: the
//treepath points directly
to the parent node of the
branch and implicitly
the child nodes below
that, that are then
selected.

useAttributeByID() StructureID As per useAttribute but
referenced by structure
ID defined by SetId or
in-line ID assignment

useChoiceByID() StructureID As per useChoice but
referenced by structure
ID defined by SetId or
in-line ID assignment

useTreeByID() StructureID As per useTree but
referenced by structure
ID defined by SetId or
in-line ID assignment

useElementByID() StructureID As per useElement but

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 21 of 21

Predicate Parameter(s) Description

referenced by structure
ID defined by SetId or
in-line ID assignment

checkCondition() conditionID conditionID is required
and references the ID of
the conditional block in
the data validation
section (defined in
attribute – conditioned).
The validation block
will be performed at that
point in the structure
processing flow.

makeRecursive() StructureID Denote that the specified
parent element can
occur recursively as a
child of this parent.

startBlock()

Advanced Option

StartBlock, [StructureID] Denote the beginning of
a logical block of
structure content. The
StructureID is an
optional reference. This
function is provided for
completeness. It should
not be required for XML
structures, but may be
required for non-XML
content; basic CAM
conformance at Level 1
does not require this
function.

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 22 of 22

Predicate Parameter(s) Description
endBlock()

Advanced Option

endBlock, [StructureID] Denote the end of a
logical block of
structure content. The
StructureID is an
optional reference, but if
provided must match a
previous startBlock()
reference. This function
is provided for
completeness. It should
not be required for XML
structures, but may be
required for non-XML
content; basic CAM
conformance at Level 1
does not require this
function.

lookup ()

Advanced Option

lookup (valuelist, ’call

address’)

Conditionally check for
a string being located in
a list referenced by a
call address. Note: call
address is defined in
ContentReference
section. More than one
value may be passed for
associated codelists.

memberReplace ()

Advanced Option

member (valuelist,

‘[value,value,value,…]’,

‘[replace,replace,replace,…]’)

As with member(), but
returns a matching
replacement value from
the same position in the
third parameter.

 455
The predicates shown in figure 4.3.3 can also be used as in-line statements within an assembly 456
structure, refer to the section on advanced usage to see examples of such use. 457
 458
 459
 460

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 23 of 23

 461
4.3.1 XPath syntax functions 462
The W3C XPath specification provides for extended functions. The CAM XPath usage exploits 463
this by following the same conditional evaluations as used in the open source project for the jaxen 464
parser (this is used as the reference XPath implementation). The base XPath provides the 465
“contains” function for examining content, the jaxen functions shown in figure 4.3.4 extend this 466
to provide the complete set of familiar logical comparisons. 467
 468
Figure 4.3.1.1 XPath Comparator functions. 469
 470
Comparator Syntax Description
Equal to $variable = 'testValue' Conditionally check for a

matching value
Not equal to not(value1,'value') Conditionally check for a non-

matching value
Greater than value > value or value

> value
Conditionally check for a
greater value

Less than value < value or value

< value
Conditionally check for a lesser
value

Greater than or

equal

value >= value or value

>= value
Conditionally check for a
greater than or equal to value

Less than or equal Value <=value or value

<= value
Conditionally check for a lesser
or equal value

begins starts-with(value,value) Conditionally check for a string
matching the front part of value,
equal or longer strings match.

ends ends-with(value,value) Conditionally check for a string
matching the end part of value,
equal or longer strings match.

String length string-length() Conditional check for the length
of a string.

Count count() Conditionally check for the
occurrence of an element

Contains contains (value,‘value’) Conditional check for an
occurance of one string within
another.

concat Concat(//elementpath,

//elementpath,

‘stringvalue’)

The ‘+’ operator concatenates
the values from locators
together as a string, or constant
string values. This allows
evaluations where the content
source may separate related
fields; e.g. Month, Day, Year.

 471
 472

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 24 of 24

 473
 474
Using these capabilities provides sufficient expressive capability to denote structural 475
combinations for context driven assembly and also for basic data validation (see following 476
applicable sections). 477
 478
The next section shows how to associate a reference to a dictionary of content model metadata, or 479
to provide the content model directly for members of the structure content. 480
 481
4.3.2 Handling CDATA content with XPath 482
 483
An XML element parent may enclose a CDATA section of embedded information. When 484
outputting such information there are two choices, the CDATA markup may be stripped off and 485
the data processed, or the CDATA section, including the markup, is passed through “as-is” into 486
the output. The XPath expression can only reference the parent element and not any markup 487
within the CDATA itself. 488

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 25 of 25

 489

4.4 CAM character mask syntax 490

 491
In order to provide a base-line character mask set, and also to provide a character mask set that is 492
accessible to business technical users as well as programming staff, the following is provided as a 493
default character mask system. This mask system is based on that used by typical program 494
generator tools available today and is designed to provide a neutral method that can be mapped to 495
specific program language syntax as needed. The mask system syntax is provided in Addendum 496
section A.1.6 and usage details are also provided there and can be found by studying the 497
examples provided in the example tables. (Note: consideration of alternate mask systems being specified in 498
other syntaxes such as SQL, Perl, and so on will be added for later versions of CAM). 499
 500
Description 501
Picture masks are categorized by the basic data-typing element that they can be used in 502
combination with. Content that already conforms to the mask is not modified but simply placed in 503
the DOM as is. Content that does not conform to the mask (such as text in a numeric field) results 504
in ‘*’ characters being placed in the DOM to the full length of the mask, so ‘ABC’ in a field 505
defined as #6.## would result in ‘*********’, and so on. 506
 507
The first parameter of the mask indicates the types. Valid values are any W3C data type such as: 508
string, decimal, integer, datetime, time, date, binary and three additional CAM data types of email 509
(a valid email address format), logical (Boolean), and filepath (a valid operating system file 510
path). 511
 512
Note for items of arbitrary length and no mask – use the datatype() function instead of setmask(). 513
 514
String Pictures 515
The positional directives and mask characters for string pictures are as follows: 516
X - any character mandatory 517
? – any character optional, * - more than one character, arbitrary occurrence of – (equivalent to 518
CDATA). 519
U - a character to be converted to upper case 520
^ - uppercase optional 521
L - a character to be converted to lower case 522
_ - Lowercase optional 523
 524
0 - a digit (0-9 only) 525
- a digit (0-9 only), trailing and leading zeros shown as absent 526
Examples of string pictures are shown in the following table: 527
 528

String value Picture mask
(shorthand)

 Full expanded mask Resulting string value

portability X6 XXXXXX portab

portability UX3 UXXX Port

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 26 of 26

portability XXXXing XXXXing porting

realtime XXXX-XXXX XXXX-XXXX real-time

BOLD! L5 LLLLL bold!

 529
 530
Numeric Pictures 531
The positional directives and mask characters for numeric pictures are as follows: 532
0 - a digit (0-9 only) 533
- a digit (0-9 only), trailing and leading zeros shown as absent 534
. – indicates the location of the decimal point. For example, '0000.000' defines a numeric variable 535
of four whole digits and three decimal digits 536
 537
Examples of numeric pictures are shown in the following table (the ^ symbol represents one 538
space character): 539
 540
Numeric value Picture Resulting numeric value
-1234.56 ######.## -1234.56

-1234.56 000000.## -001234.56

-1234.56 N######.## ^^-1234.56

-1234.56 N###,###.##C ^^-1,234.56

 -1234.56 N######.##L -1234.56^^

 -1234.56 N######.##P* -**1234.56

0 N######.##Z* *********

-13.5 N##.##-DB; DB13.50

45.3 N##.##+CR; CR45.30

-13.5 N##.##-(,); (13.50)

4055.3 $######.## $^^4055.30

 541

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 27 of 27

Date Pictures 542
The typical date formats are DD/MM/YYYY (European), MM/DD/YYYY (American), or 543
YYYY/MM/DD (Scandinavian). When you define the attribute Date for a variable, you must also 544
select the format for the date item (see below). You can change this default picture and place in it 545
any positional directives and mask characters you need. 546
DD—A place holder for the number of the day in a month 547
DDD—The number of the day in a year 548
DDDD—The relative day number in a month 549
MM—A place holder for the number of the month in a year 550
MMM...—Month displayed in full name form (up to 10 'M's in a sequence). e.g. January, 551
February. If the month name is shorter than the number 'M's in the string, the rest of the 'M' 552
positions are filled with blanks. 553
YY—A place holder of the number of the year 554
YYYY—A place holder for the number of the year, represented in full format (e.g. 1993) 555
W—Day number in a week 556
WWW...—Name of day in a week. The string can be from 3 to 10 'W's. If the name of the day is 557
shorter than the number of 'W's in the string, the rest is filled with blanks. 558
/—Date separator position. 559
-—Date separator position (alternate). 560
Examples of date pictures are shown in the following table, using the date of 21 March 1992 (the 561
^ symbol represents one space character – used to show spaces for this document only): 562
 563
Picture Result and notes
MM/DD/YYYY 03/21/1992

##/##/## Note: 21/03/92, when XML parser default is set to
European, 03/21/92, when XML parser is set to American

MMMMMMMMMM^DDDD, ^YYYY March^^^^^^21st,^1992

MMMMMMMMMM^DDDD, ^YYYYT March^21st,^1992 with trimming directive (see below)

WWWWWWWWWW^-^W Saturday^^^-^7

WWWWWWWWWW^-^WT Saturday^-^7 with trimming directive (see below)

"Trimming directive" is invoked by adding the directive T to the variable picture. This directive instructs XML parser to 564
remove any blanks created by the positional directives 'WWW...' (weekday name), 'MMM...' (month name), or 'DDDD' 565
(ordinal day, e.g. 4th, 23rd). Since these positional directives must be specified in the picture string using the maximum 566
length possible, unwanted blanks may be inadvertently created for names shorter than the specified length. The Trim Text 567
directive will remove all such blanks. If a space is required nevertheless, it must be explicitly inserted in the picture string 568
as a mask character, (the ^ symbol is used to indicate a blank character), e.g., 'TWWWWWWWWW^DDDD 569
MMMMMMMMM,^YYYY' 570

"Zero fill" is invoked by adding the functional directive Z to the variable picture. This directive instructs XML parser to fill 571
the entire displayed variable, if its value is zero, with the "Character" value. If you don't specify a Character the variable is 572
filled with blanks. 573

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 28 of 28

 574
Time Pictures 575
The XML parser defines the default picture mask HH/MM/SS for an element of datatype Time. 576
Examples of time pictures are shown in the following table: 577
 578
Picture Result Comments
HH:MM:SS 08:20:00 Time displayed on 24-hour clock.

HH:MM:SS 16:40:00 Time displayed on 24-hour clock.

HH:MM PM 8:20 am Time displayed on 12-hour clock.

HH:MM PM 4:40 pm Time displayed on 12-hour clock.

HH-MM-SS 16-40-00 Using Time Separator of '-'

 579

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 29 of 29

 580
 581

4.5 Content Referencing 582

The purpose of content referencing is to provide additional information about the metadata of 583
each item of the structure, the content model, and associated data typing when applicable. It also 584
provides crosswalk information to a dictionary of noun definitions, and thus potentially from your 585
physical implementation to the logical aggregate component themselves. This ability to provide 586
crosswalk implementation details is vital to maximizing interoperability and re-use within the 587
optimal e-business architecture and also allowing the use of modelling tools and object-oriented 588
technologies. 589
 590
The example in figure 4.4.1 shows the content referencing for the structure in figure 4.2.2, and 591
shows how multiple dictionary domains (namespaces) can be accommodated in blending a 592
composite structure together, while also allowing extensions using locally defined content items 593
that are not part of any dictionary. The use cases for content referencing can be summarized as: 594

1. No registry dictionary is available so all content referencing is locally defined 595
2. A default content model can be defined using the predicates, (these however will not take 596

precedence over explicit rules in the BusinessContext section), but will override any 597
inline predicates within AssemblyStructure 598

3. A single registry and industry domain is referenced only 599
4. Multiple registry domains are referenced 600
5. Combinations of all of the above 601

 602
Further notes on aspects of the particular syntax instructions for content referencing are given 603
below. 604
 605

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 30 of 30

Figure 4.4.1: Example of Content Referencing for AssemblyStructure 606
 607
<ContentReference> 608
 <Addressing> 609

<registry name="SGIR" access="registry.sgir.org:1023" method="URL" 610
 description="Sporting Goods Industry Registry"/> 611

<registry name="SGIRWSDL" access="registry.sgir.org:1025" method="WSDL" 612
 description="Sporting Goods Industry Registry"/> 613

<registry name="UN" access="registry.un.org:9090" method="ebXML" 614
 description="United Nations EDIFACT Registry"/> 615
<registry name="UPS" access="registry.ups.com:7001" method="URL" 616

 description="United Parcels Service Registry"/> 617
<registry name="USPS" access="registry.usps.gov:8080" method="URL" 618

 description="United States Postal Service Registry"/> 619
<registry name="LocalSQL" access="rdbms.mybusiness.com:4040" method="SQL" 620

 description="Local Product Database stored procedures"/> 621
 622
 </Addressing> 623
 624
 <item type="noun" name="RefCode" 625

UIDReference="SGIR010027" taxonomy="UID" registry="SGIR"/> 626
 <item type="noun" name="Description" 627

UIDReference="SGIR010050" taxonomy="UID" registry="SGIR"/> 628
 <item type="noun" name="Style" 629

UIDReference="SGIR010028" taxonomy="UID" registry="SGIR"/> 630
 <item type="noun" name="SupplierID" 631

UIDReference="SGIR010029" taxonomy="UID" registry="SGIR"/> 632
 <item type="noun" name="CatalogueRef" UIDReference="none" taxonomy="none" 633

datatype="string" setlength="4" setMask="p\d\d\d\d" /> 634
 <item type="noun" name="DistributorID" UIDReference="none" taxonomy="none" 635

datatype="string" setlength="30" /> 636
 <item type="noun" name="UnitPrice" 637

UIDReference="070010" taxonomy="EDIFACT" registry="UN"/> 638
 <item type="noun" name="QuantityOrdered" 639

UIDReference="070011" taxonomy="EDIFACT" registry="UN"/> 640
 <item type="noun" name="OrderDelivery" 641

UIDReference="UPS050050" taxonomy="UID" registry="UPS"/> 642
 <item type="defaultAssembly" name="DeliveryAddress" 643

UIDReference="USPS090081:01:05" taxonomy="UID" registry="USPS"/> 644
 </ContentReference> 645

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 31 of 31

 646
Each of the modes of determining a content reference is shown in figure 4.4.1, along with the use 647
of the Registry addressing section to link between the logical and physical addresses of Registry 648
content. Notice that with locally defined items (UIDReference="none" taxonomy="none"), then 649
one of the optional predicate4 parameters is used to further define the content model (e.g.: 650
setlength="4"). 651
 652
Typically references are to nouns within the assembly structure, but can also be to a composite 653
item as a defaultAssembly, as is the case with the DeliveryAddress example (such 654
defaultAssembly items can equate to aggregate components, and have an <as:include> for their 655
structure content, see details in the advanced techniques section below). 656
 657
Similarly the taxonomy preferred is that of the UID system, however where legacy schemes exist 658
such as EDI element dictionary numbering, then the UIDReference can accommodate such values 659
accordingly. The UID values themselves are composed of an alpha prefix representing an 660
acronym for the domain organization, followed by a simple 6-digit numeric. Optionally a UID 661
can also have a suffix of colon, major version, and colon, minor version, to provide version 662
control. When the version information is omitted then the UID reference points to the latest 663
current information from the registry by default. 664
 665
If an item refers to a registry acronym that is not defined in the //Addressing/registry statement, 666
then a warning should be issued, but processing can continue. Similarly, warnings should be 667
generated for assembly structure members that do not have ContentReference entries, but all such 668
items will have a default content model of type="text" as a simple string type. Notice that 669
type="[datatype]" supports the W3C Schema data types by default. 670
 671
The content referencing is intended to provide assembly metadata for the information content 672
model during assembly. The next section can handle post-assembly processing and validation 673
requirements on receipt of content, as well as on creation of content. 674
 675

4.6 Data Validations 676

This section provides the means to verify information content of transaction instances built from 677
CAM structure and context rules. This is an advanced option. This verification can occur at 678
design/runtime during creation of a content instance, and also some verification can occur after 679
post-content creation, typically upon content receipt by some other party. The DataValidation 680
section is thus more likely to be tied to a particular production implementation and environment, 681
particularly for post-content creation checks. However, users can choose to provide generic 682
CAM formulas that apply to all implementations within a domain using XPath expressions as 683
allowed within CAM, and then allow implementers to extend these for particular local instances. 684
 685
Validation rules are allowed only using CAM compatible XPath expressions or calls via the 686
Registry call mechanism defined within the Content Reference section. 687
 688

4 Implementation note: the XPath parameter for the predicate defaults to the name value to
identify the item within the assembly structure

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 32 of 32

Execution of data validations occurs after processing of all the preceding sections in the CAM 689
template. However, processing of data validation conditions may occur during structure 690
processing if an explicit checkCondition() instruction is used inline (see advanced techniques 691
section below) and that references a condition block by conditionID. Any checks in the data 692
validation section itself that are labelled with a conditionID will be skipped when processing 693
proceeds to the DataValidation section itself. This allows data validations to be invoked where 694
needed; either inline within a structure, or from the business context rules section, or at the end of 695
processing of an XML record block (the normal sequence). 696
 697
Figure 4.5.1: Example of Data Validations for AssemblyStructure 698
<DataValidations> 699
 <Conditions 700
 conditionID="testOrderDetail" 701

condition="$DeliveryCountry = 'USA'"> 702
 <conditional 703

expression="’//UnitPrice’ and greaterthan(value,’0.00’)" 704
syntax="XPath" outcome="fail" 705
message="Item price not valid / missing" test="always"/> 706

<conditional 707
expression="’//RefCode + //UnitPrice’ and 708
lookup(value,’SGIRWSDL:unitprice_check’)” outcome="report" 709
message="Unit price value does not match catalog" test="always"/> 710

<conditional 711
expression="’//SupplierID’ and 712
lookup(value,’SGIRWSDL:supplierID_check’)” outcome="fail" 713
message="Unknown Supplier ID" test="always"/> 714

<conditional 715
expression="’//DistributorID’ and 716
lookup(value,’SGIRWSDL:distributor_check’)” outcome="fail" 717
message="Unknown distributor ID" test="postcheck"/> 718

<conditional itemRef="//QuantityOrdered" 719
expression="’//QuantityOrdered’ and 720
lookup(value,’LocalSQL:quantityOnHand()’)” outcome="report" 721
message="Item not available / backordered" test="postcheck"/> 722

 </Conditions> 723
</DataValidations> 724
The conditional section shown in figure 4.5.1 shows a variety of methods, from in-line XPath 725
expressions, remotely executed ‘verbs’ from a registry as a web service, to SQL stored 726
procedures. Notice that WSDL is used as the interface example to web services, and the WSDL 727
description may involve passing of parameters (such as the //RefCode to verify the //UnitPrice). 728

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 33 of 33

These details can be determined through the programmatic interface to the particular lookup 729
reference service5. 730
 731
Again, support for these methods is dependent on the business agreements between parties and 732
the capabilities and requirements of parties. Some parties may simply opt to not support 733
DataValidation conditions, or only those using XPath, and so on. Because of this, it is anticipated 734
that the DataValidation section will provide useful hints to parties on requirements for a complete 735
and accurate business exchange. How far they will be able to support these, and how many local 736
extensions are built using the base mechanisms provided in the syntax methods of DataValidation 737
will depend on the maturity of the information systems of the implementers. Since these 738
mechanisms and section are least accessible to business users, and most accessible to 739
programmers the initial intent here is to provide basic functionality that is useful to a broad range 740
of business use. It is not intended to replace extensive, proprietary and complex application logic 741
in backend systems. 742
 743
For a simple implementation it is suggested that basic information checks are instituted using the 744
provided XPath syntax and comparator functions. Then later more extended checks can be 745
supported via external calls. Similarly if the outcome is marked as ‘ignore’ or ‘report’, this 746
means that early implementers can treat these checks simply as documentation notes as to the 747
checking that backend complex application logic will perform, until they are more fully able to 748
support the recovery and post-processing required via their business processing service 749
components. 750
 751
4.6.1 Discrete Value List Support (“Codelists”) 752
This note discusses support for code list functionality. Over 50% of traditional EDI transaction 753
content is comprised of code values that are referenced and shared between trading partners. 754
CAM provides two XPath functions to directly implement these capabilities. Firstly is the 755
member() function that allows specific code values to be specified in the CAM template itself. 756
Second is the lookup() function that supports the use of code values external to the template 757
itself, where one or more parameters are passed into it. Configuration of the lookup function 758
external access is achieved through the Content Reference section Registry definition statements. 759
See the examples provided in that section, and in the validation examples in figure 4.5.1 above. 760
Nested code list lookups can be configured using nested <conditions> expressions. 761
 762
Also versioning of codelist lookups can be achieved through the version mechanism on the UID 763
reference mechanism when using codelists retrieved from a registry system. When codelist 764
values are provided as in-line static lists, then selection can be achieved by providing choices of 765
structure items driven off a context variable and the use of choiceID() predicates. 766
 767
Similarly if context driven selection of codelist values is required it can also be implemented with 768
choiceID() predicates selecting lookup() functions with static lists of values. 769
The next section details further advanced features that can be used to augment the basic CAM 770
functionality. 771

5 Note: OASIS Registry support for CAM services through this specification is covered
separately in the addendum of this specification document.

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 34 of 34

 772

4.7 External Business Content Mapping 773

 774
The business content mapping is an optional component to the base assembly functionality, and is 775
primarily intended to bridge between the neutral assembly approach and specific domain 776
implementations. The business content mapping script instructions are designed to provide non-777
procedural hints to implementation systems. Implementers can choose to use these to drive 778
specific back-end application systems, or simply as documentation to constructing such 779
application system linkages within their own systems. This can then provide useful hints to the 780
assembly process itself or to implementations integrating multiple application systems and 781
requiring extended crosswalk information. Included in this is the ability to merge content into a 782
static target structure by using a set of merge commands for token replacements. In this instance 783
the external mapping rules bridge between the input source data and the target merge structure 784
replacement token names (or “mail-merge” style replacement). 785
 786
This initial release is a simple non-procedural system that allows specification of statements that 787
can bridge between the assembly transaction and the business application. It is not intended to 788
provide a complete full-function computation engine, but does provide the ability to simply 789
equate between application content and structure content members with some ability to 790
manipulate the content (it should be noted to that XPath statements contain some limited content 791
manipulation functionality as well). 792
 793
There are two styles that external content mapping therefore supports. The first is illustrated by 794
example 4.10.1 where the content output is in formal location (table) / columnar / row formatting 795
typical of database SQL processing. The other approach is for semi-structured output based on 796
tokenised fields into some target structure format, and multiple such fixed formats may be 797
specified based on a context variable choice as required. This second approach is designed to 798
accommodate outputting into formats such as xhtml, XForm, or a transaction structure such as 799
XML or EDI targets. 800
 801
Figure 4.6.1: Example of business content mapping script to a columnar output format 802
 803
<ExternalMapping> 804
 <ContentAssociation> 805
<Description>Product List</Description> 806
<Context/> 807

 <InputSource/> 808
 <OutputStore type=”SQL” location=”product_table”/> 809
 <RulesSet> 810
 <MapRule output="Products_List" input="@STARTGRP()"/> 811
 <MapRule output="type" input="Sales/Company/Year/Qtr/Product@type"/> 812
 <MapRule output="name" 813

input="@trim(Sales/Company/Year/Qtr/Product/Item@name)"/> 814
 <MapRule output="manufacturer" 815

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 35 of 35

input="Sales/Company/Year/Qtr/Product/Item@manufacturer"/> 816
 <MapRule output="value" 817

input="Sales/Company/Year/Qtr/Product/Item@value"/> 818
 <MapRule output="sold" 819

input="Sales/Company/Year/Qtr/Product/Item@sold"/> 820
 <MapRule output="Products_List" input="@ENDGRP()"/> 821
 </RulesSet> 822
 </ContentAssociation> 823
</ExternalMapping> 824
 825
 826
The syntax for this section is summarized in the table shown in figure 4.10.2. These predicates 827
are designed as a simple set of sparse commands that augment the XPath statements to provide a 828
core of content string based functionality. 829
 830
 831
Figure 4.6.2: Summary of business content mapping script commands 832
 833
 834
Predicate Parameter(s) Description
@concat(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Combine two strings together.
Predicates can be combined to
derive resultant string content.

@trim(p1) //memberpath Remove trailing and leading
white space from content.

@startgrp() [//memberpath] Start of a loop of recurring
content. Optional memberpath
reference denotes when ‘next
record’ condition occurs on
change of value / occurance in the
input structure.

@endgrp() None End of a loop of recurring content
@multiply(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of calculation; see
arithmetic note at end of table.

@divide(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of calculation; see
arithmetic note at end of table.

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 36 of 36

Predicate Parameter(s) Description
@add(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of calculation; see
arithmetic note at end of table.

@subtract(p1,p2) [//memberpath | string |

predicate()],

[//memberpath | string |

predicate()]

Compute result of calculation; see
arithmetic note at end of table.

@if(p1,p2,p3) Expression,

[//memberpath | predicate()],

[//memberpath | predicate()]

Logical expression, if the
conditional expression is true,
then p2, else p3.

@upper(p1) [//memberpath | string |

predicate()]
Change all characters to their
uppercase equivalent (works only
for a string of Latin, Cyrillic or
Greek characters: for most other
languages
case is irrelevant. See ISO
10646 as reference behaviour
here).

@lower(p1) [//memberpath | string |

predicate()]
Change all characters to their
lowercase equivalent, (works only
for a string of Latin, Cyrillic or
Greek characters: for most other
languages
case is irrelevant. See ISO
10646 as reference behaviour
here).

@len(p1) [//memberpath | string |

predicate()]
Returns length of string item.

@left(p1,p2) [//memberpath | string |

predicate()],[numeric |

//memberpath | predicate()]

Return p2 number of leftmost
characters from a string p1.

@right(p1,p2) [//memberpath | string |

predicate()],[numeric |

//memberpath | predicate()]

Return p2 number of rightmost
characters from a string p1.

@mid(p1,p2,p3) [//memberpath | string |

predicate()],[numeric |

//memberpath |

predicate()],[numeric |

//memberpath | predicate()]

Return p3 number of characters
from a string p1 starting from
position p2.

 835

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 37 of 37

Note on parameters to arithmetic functions: p1 and p2 must be valid datatypes of either integer, or 836
decimal. If one factor is decimal, that precision will be used for the result. If one or both of the 837
parameters are not valid numeric values, then the function will cause any conditional expression 838
to evaluate to ‘false’. 839
 840

4.8 Advanced Features 841

This section details extended uses of the basic features. For this first release this is focused on 842
three aspects, in-line use of predicates within structures, non-XML structure content referencing, 843
and external content inclusion into a CAM. To help with configuring and controlling advanced 844
features the properties section has now been added to the CAM structure. This allows 845
programmatic control syntax to be added easily in the future to support advanced feature 846
configuration options. 847
 848
4.8.1 In-line use of predicates and references 849
Figure 4.8.1.1 shows an extended example for an AssemblyStructure using two different 850
structures for content and the in-line statements indicating those content selections. The in-line 851
commands are inserted using the “as:” namespace prefix, to allow insertion of the command 852
statements wherever they are required. These in-line commands compliment the predicates used 853
within the <BusinessUseContext> section of the assembly. The table in figure 4.7.1.2 gives the 854
list of these in-line statements and the equivalent predicate form where applicable. 855
 856
Figure 4.7.1.1: Example of Multiple substitution structures for AssemblyStructure 857
<CAM CAMlevel="1" version="1.0" 858
 xmlns:as="http://www.oasis-open.org/committees/cam"> 859
 <AssemblyStructure> 860
 861
 <Structure as:choiceID="FirstOne" taxonomy=’XML’> 862

 <!-- the physical structure of the required content goes here --> 863
 </Structure > 864

 865
 <Structure as:choiceID="SecondOne" taxonomy=’XML’> 866

 867
 <createTroubleTicketByValueResponse as:choiceID="OptionA"> 868
 <!-- the physical structure of the required content goes here --> 869
 </createTroubleTicketByValueResponse> 870
 871
 <createTroubleTicketByValueResponse as:choiceID="OptionB"> 872

<!-- the physical structure of the required content goes here --> 873
 </createTroubleTicketByValueResponse> 874

 </Structure > 875
 876
 </AssemblyStructure> 877
</CAM> 878

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 38 of 38

 879
Reviewing figure 4.7.1.1 there are two main substitution structures, and within the second there 880
are also two sub-structure choices. The actual behaviour and which structure content is included 881
in the physical content is controlled by predicate statements within the <BusinessUseContext> 882
section of the assembly. 883
 884
The in-line statements available are detailed in the table shown in figure 4.5.1.2. In-line command 885
entries marked as “not applicable” can only be used within the <BusinessUseContext> section. 886
Also where there is both a predicate statement and an in-line command, then the predicate 887
statement overrides and takes precedent. 888
 889
Figure 4.7.1.2: Matrix of in-line statement commands and predicate commands. 890
 891
Predicate In-line Command Notes
excludeAttribute() Not applicable
excludeElement() Not applicable
excludeTree() Not applicable
makeOptional() as:makeOptional="true" Make part of structure optional,

or make a repeatable part of the
structure optional (e.g.
occurs=zero)

makeMandatory() as:makeMandatory="true" Make part of the structure
required

makeRepeatable() as:makeRepeatable="true"

as:setLimit="5"

as:setRequired="3"

Make part of the structure occur
one or more times in the content;
the optional as:setLimit="nnnn"
statement controls the maximum
number of times that the repeat
can occur6. The optional
as:setRequired="nnnn"
statement controls the required
occurrences that must at least be
present.

setChoice() Not applicable
setId() as:choiceID="label" Associate an ID value with a part

of the structure so that it can be
referred to directly by ID

setLength() as:setLength="nnnn" Control the length of content in a
structure member

6 Design note: the setLimit / setRequired are deliberately optional. It is intended they only be
used sparingly, when exceptional constraints are really needed. In W3C schema max/min are
used as required factors. This impairs the ability to know when an exceptional constraint is
present and therefore is an inhibitor to engineering robust interoperable systems.

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 39 of 39

Predicate In-line Command Notes
setLimit() as:setLimit="nnnn" For members that are repeatable,

set a count limit to the number of
times they are repeatable

setRequired() as:setRequired="nnnn" For members that are repeatable,
set a required occurrence for the
number of members that must at
least be present (nnnn must be
greater than 1)7.

setMask() as:setMask=

"x’Mask’"
Assign a regular expression or
picture mask to describe the
content. First character of the
mask indicates the type of mask.

setValue() as:setValue="string" Place a value into the content of
a structure

restrictValues() as:restrictValues=

"[valuelist]"
Provide a list of allowed values
for a member item

restrictValuesByUID() as:restrictValuesByUID=

"UID"
Provide a list of allowed values
for a member item from an
registry reference

useAttribute() Not applicable
useChoice() Not applicable
useElement() as:useElement="true" Where a structure definition

includes choices indicate which
choice to use.

useTree() as:useTree="true" Where a structure member tree is
optional indicate that it is to be
used.

useAttributeByID() Not applicable
useChoiceByID() Not applicable
useTreeByID() Not applicable
useElementByID() Not applicable
Not applicable <include>URL

</as:include>
Allows inclusion of an external
source of assembly instructions
or structure. The URL is any
single valid W3C defined URL
expression that resolves to
physical content that can be
retrieved. Note: can only be
used in the <Structure> section
of assembly.

7 Design note: makeRepeatable(), makeMandatory() is the preferred syntax over the alternate:
makeRepeatable() as:setRequired="1".

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 40 of 40

Predicate In-line Command Notes
checkCondition() as:checkCondition=

"conditionID”
Points to the condition to be
tested in the data validation
section.

makeRecursive() as:makeRecursive="true" Denotes element as a recursive
structure member, so can appears
as child of this parent.

 892
The next figure 4.8.1.3 shows some examples of using these in-line commands within a structure. 893
 894
Figure 4.7.1.3: Use of in-line commands with a well-formed XML structure 895
 896
<AssemblyStructure xmlns:as="http://www.oasis-open.org/committees/cam"> 897
 <Structure taxonomy=’XML’> 898
 <Items CatalogueRef=”2002”> 899
 <SoccerGear> 900
 <Item as:makeRepeatable="true"> 901

<RefCode as:makeMandatory="true" as:setLength="10">%%</RefCode> 902
<Description>%%</Description> 903
<Style>WorldCupSoccer</Style> 904
<UnitPrice as:setMask="q999.9">%%</UnitPrice> 905

 </Item> 906
<QuantityOrdered as:setMask="q999">%%</QuantityOrdered> 907
<SupplierID as:makeMandatory="true">%%</SupplierID> 908
<DistributorID>%%</DistributorID> 909
<OrderDelivery>Normal</OrderDelivery> 910
<DeliveryAddress/> 911

 </SoccerGear> 912
 </Items> 913
 </Structure> 914
</AssemblyStructure> 915
 916
The next section shows the use of non-XML structure. It should be noted that in-line commands 917
cannot be used with non-XML structures; all such structures require the use of predicates within 918
the <BusinessUseContext> section of the assembly instead. 919

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 41 of 41

4.8.2 Non-XML structure referencing 920
 921
This section shows how the CAM system supports referencing to non-XML content as shown in 922
figure 4.8.2.1 for a legacy EDI structure definition. The XPath system can reference nodes within 923
such structures using an appropriate node-referencing scheme that is pre-determined, (for 924
example in an EDI transaction this would be segment identifier and field number within the 925
segment as the node name). 926
 927
Figure 4.7.2.1: An EDI example of referencing non-XML content structures 928
 929
<AssemblyStructure xmlns:as="http://www.oasis-open.org/committees/cam"> 930
 <Structure as:choiceID="EDI850" as:structureType="X12EDI" taxonomy=’XML’> 931
 932
 <EDI Type="ASCII" Version="4040" Standard="X12"> 933
 <TransactionSet ID="850" Name="Purchase Order" Note=""> 934
 <Segment ID="ST" Name="Transaction Set Header" Req="M" MaxUse="1"> 935
 <Element ID="01" Name="Transaction Set Identifier Code" Req="M" 936

Type="ID" MinLength="3" MaxLength="3" 937
Note="The transaction set identifier 'ST01' is used by the 938
translation routines of the interchange partners to select the 939
appropriate transaction set definition 'e.g., 810 select the 940
Invoice Transaction Set'."/> 941

 <Element ID="02" Name="Transaction Set Control Number" Req="M" 942
Type="AN" MinLength="4" MaxLength="9"/> 943

 <Element ID="03" Name="Implementation Convention Reference" Req="O" 944
Type="AN" MinLength="1" MaxLength="35" 945
Note="The implementation convention reference 'ST03' is used by 946
the translation routines of the interchange partners to select 947
the appropriate implementation convention to match the 948
transaction set definition."/> 949

 </Segment> 950
 <!-- then more segments follow here... --> 951
 952
 </TransactionSet> 953
 </EDI> 954
 </Structure > 955
</AssemblyStructure> 956
 957
The EDI structure definition in figure 4.8.2.1 is one system for describing an EDI structure; 958
another example would be the IGML system (http://www.igml.org) or similar systems, or a very 959
simple system using substitution tokens as shown in figure 4.8.2.2, and then the UN/EDIFACT 960

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 42 of 42

transaction IMPDEF system. Another alternate to using well-formed XML as the structure 961
example is to use a DTD or Schema instance itself. 962
 963
All these may be considered for use with assembly as the business needs require. 964
 965
Figure 4.7.2.2: Tokens EDI example of referencing non-XML content structures 966
 967
<AssemblyStructure> 968
 <Structure as:choiceID="Healthcare Transaction" as:structureType="Tokens" 969
taxonomony=’EDI’ xml:space=”preserve”> 970
<!-- # 971
ISA*00*%%*00*%%*01*%%*01*Interchange Rec*010404*1031*U*00200*000025331*0*I*:~ 972
GS*AA*%%*%%*20010404*1031*000000000*T*004010X097~ 973
ST*276*0001~ 974
BHT*0010*13**%%~ 975
HL*1**%%*1~ 976
NM1*PR*2*%%*****PI*%%~ 977
HL*2*1*%%*1~ 978
NM1*41*2*%%*****46*X67E~ 979
HL*3*2*%%*1~ 980
NM1*1P*2*%%*****SV*987666~ 981
HL*4*3*22*0~ 982
DMG*D8*%%*M~ 983
NM1*QC*1*%%*%%****MI*%%~ 984
TRN*1*%%~ 985
REF*BLT*%%~ 986
AMT*T3*%%~ 987
REF*1K*%%~ 988
REF*BLT*%%~ 989
AMT*T3*%%~ 990
SE*%%*0001~ 991
GE*1*000000000~ 992
IEA*1*%%~ 993
--> 994
 </Structure > 995
</AssemblyStructure> 996
 997

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 43 of 43

The tokens method using “%%” for the replacement items as shown in figure 4.8.2.2 is easily 998
adapted to suit a wide variety of non-XML content structures. 999
 1000
An example of an XPath predicate reference would makeRepeatable(\\HL::NM1) for a block 1001
of lines, and makeOptional(\\REF) to indicate a segment line or 1002
makeMandatory(\\AMT\01) to indicate a field within a segment. 1003
 1004
The comment mechanism is used to allow the EDI syntax to be placed into the XML itself, along 1005
with the XML command to preserve the white space formatting. 1006
 1007
In each case partners using these systems must agree on the processing rules for the non-XML 1008
content they are intending to process. Industry standards bodies can also define such rules as 1009
extensions to the base CAM system for legacy payloads within their own domain. Implementers 1010
may provide a generic tokens method as a default for non-XML content since it can handle a 1011
broad range of such content. 1012
 1013
4.8.3 Including External Structures into CAM 1014
 1015
In the first release of CAM, the inclusion of external structure definitions is restricted to the 1016
<structure> section of the document. This ensures a reasonable level of complexity for 1017
implementations, while allowing use of existing structure definitions such as DTD or Schema 1018
specifications easily and simply. The external structure can also be a CAM aggregate component 1019
structure emitted from a modelling tool or similar means of allowing combinations of structure 1020
components together to make a complete whole. Such tools can easily use in-line commands 1021
within the structure to align the assembly process with the model definitions. 1022
 1023
The example in figure 4.8.3.1 shows syntax for including an external structure or composite 1024
fragments of structure together for use within assembly. The business rules within the 1025
<BusinessUseContext> section can then reference these structure items to complete the 1026
functionality required. 1027
 1028
Figure 4.7.3.1: Use of <as:include> commands within an assembly XML structure 1029
 1030
<CAM CAMlevel="1" version="1.0" 1031
 xmlns:as="http://www.oasis-open.org/committees/cam"> 1032
 <AssemblyStructure> 1033
 <Structure taxonomy=’XML’> 1034
 <BusinessInvoice> 1035
 <as:include> 1036

http://www.oasis-open.org/strct/invoice.xml 1037
</as:include> 1038
<billingAddress> 1039
<as:include> 1040

http://www.oasis-open.org/strct/address.xml 1041
</as:include> 1042

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 44 of 44

</billingAddress> 1043
 </BusinessInvoice> 1044
 </Structure> 1045
 </AssemblyStructure> 1046
 <BusinessUseContext/> 1047
 <ContentReference/> 1048
 <DataValidations/> 1049
</CAM> 1050
 1051
Include statements are assumed to retrieve consistent pieces of content, and not fragments that do 1052
not parse as a contiguous whole. 1053
 1054
The document referenced by an <as:include> statement may contain one or more further 1055
<as:include> statements, however, if this contains a circulatory reference, then processing of the 1056
include statements should fail and stop with an appropriate error message. Nested including 1057
provides direct support for core component mechanisms and aggregate component components 1058
that can be assembled together. 1059
 1060
Referencing into include structures using anchor references. 1061
 1062
Since URL location references support it, an include reference may be in a format that includes 1063
reference to a standard XML element location via an Id_ref within the target structure. This 1064
would result in only that part of the structure being returned by the include. An example would 1065
be: 1066
 <as:include> 1067

http://www.oasis-open.org/strct/components.xml#us_address 1068
</as:include> 1069

 1070
A similar approach can be used for HTML or other merge structure components (see use of 1071
Merge feature for more details) 1072
. 1073

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 45 of 45

 1074
4.8.4 Object Oriented Includes Support 1075
 1076
In order to augment the ability of modelling tools to generate CAM structure objects, the include 1077
statement has optional parameters attached to it of extends=" " and implements=" ". 1078
 1079
Figure 4.7.4.1 Example of CAM include with OO extensions 1080
 1081
<CAM CAMlevel="1" version="1.0" 1082
 xmlns:as="http://www.oasis-open.org/committees/cam"> 1083
 <AssemblyStructure> 1084
 <Structure taxonomy=’XML’> 1085
 <BusinessInvoice> 1086
 <as:include extends="SGIR:UN034500" implements="SGIR:UN034750"> 1087

http://www.oasis-open.org/strct/invoice.xml 1088
</as:include> 1089
<billingAddress> 1090
<as:include extends="SGIR:CIQ010100" implements="SGIR:CIQ010350"> 1091

http://www.oasis-open.org/strct/address.xml 1092
</as:include> 1093
</billingAddress> 1094

 </BusinessInvoice> 1095
 </Structure> 1096
 </AssemblyStructure> 1097
 <BusinessUseContext/> 1098
 <ContentReference/> 1099
 <DataValidations/> 1100
</CAM> 1101
 1102
 1103
The extends and implements parameters are optional, and the CAM processor does not parse the 1104
information contained in them. Essentially they are external notes for use in modelling tools. 1105
 1106
Typical values may consist of a registry alias prefix with UID reference values that denote 1107
semantic content. 1108
 1109
The next section reviews the requirements of the last step of the assembly process, which bridges 1110
to the physical business application and data content. It provides the means to formalize that step 1111
beyond the assembly and the linkage to the physical systems. 1112

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 46 of 46

 1113
4.8.4.1 Support for import style functionality 1114
 1115
To enhance the ability to include and re-use CAM template logic, the properties section of the 1116
CAM template has been extended to allow referencing to external CAM template logic. When 1117
using this capability, then XPath references may include an alias prefix, as in [alias::XPath] that 1118
then refers the CAM processor to explicit content in an imported CAM template for the 1119
equivalent section of the CAM template pointed to by the import reference. 1120
 1121
Examples of this use are including sections of structure from another CAM template; referencing 1122
to BusinessContext rules from another CAM template, and DataValidation rules (note: in all such 1123
referencing this must point to a unique reference path, as the CAM processor will always return 1124
the first occurrence in the imported document that matches the path specified). 1125
 1126
Figure 4.7.4.1.1 Example of CAM import style XPath referencing 1127
 1128
<CAM CAMlevel="1" version="1.0" 1129
 xmlns:as="http://www.oasis-open.org/committees/cam"> 1130
 <AssemblyStructure> 1131
 <Structure taxonomy=’XML’> 1132
 <BusinessInvoice as:useTree="SGIRimport:://BusinessInvoice/Detail/"> 1133

<billingAddress as:useTree="SGIRimport:://Address/"> 1134
</billingAddress> 1135

 </BusinessInvoice> 1136
 </Structure> 1137
 </AssemblyStructure> 1138
 <BusinessUseContext/> 1139
 <ContentReference/> 1140
 <DataValidations/> 1141
</CAM> 1142
 1143
Similarly in the business use context section a constraint action can be specified that instead of 1144
specifying the behaviour – provides the import XPath expression. If there is a context condition, 1145
then the CAM processor can apply its local context values to see if any imported conditions 1146
apply, and if so, can then action any for that matching XPath expression. Any Content 1147
referencing section item references will automatically be imported and will apply, unless they are 1148
overridden by item declarations in the CAM template. 1149

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 47 of 47

 1150
4.8.5 Merge Structure Handling and External Content Mapping 1151
 1152
When processing a merge structure as an external mapping this requires three components of the 1153
CAM template to be used. The first two reside in the <AssemblyStructure> section and provide 1154
an input (source) and an output (target) structure layout. The merge structure itself is indicated 1155
by using the type attribute set to MERGE, and an IDreference so that the structure can be directly 1156
referenced. The third part is then provided by the <ExternalMapping> section and a cross-1157
referencing that tallies the source field to the target field token names. Notice that the 1158
ExternalMapping section now includes Context rules also so that these can be context driven 1159
mappings. Therefore a single CAM template can produce multiple outputs as necessary, and the 1160
<location> element of the <ExternalMapping> section can be used to output to each such targets 1161
to different post-processing options. 1162
 1163
To facilitate this functionality the following is required. An <AssemblyStructure> <Structure> 1164
section provides the Output Template File that defines the layout to be used in the operation – 1165
typically this will be a format such as HTML, xhtml or XML, but there is no restriction, except 1166
that the file contains a substitution structure of the required output. This structure will be part of 1167
the AssemblyStructure section, but with a special type of ‘MERGE’ to denote its use with the 1168
ExternalMapping section. 1169
 1170
Embedded in the syntax of the substitution structure are merge tags. This works very similar to 1171
the embedded function statements already used in the <Structure> section of the 1172
<AssemblyStructure> for parsing an incoming target source structure. 1173
 1174
[Note: this potentially means you can do a three way merge – where the input is from a structure 1175
incoming in say from a transaction in XML, the ExternalMapping refers to a SQL table in read-1176
mode, not update-mode, and then the output structure in HTML contains references to both sets 1177
of information. (The caveat here is that there is a one-to-one correspondence between input 1178
records and the SQL table).] 1179
 1180
Merge tags have the following generic form: { Token Prefix } { Token[_name] } { Token Suffix 1181
} where Token Prefix and Suffix are defined using attributes in the preamble of the <Structure> 1182
declaration. By default the Token Prefix and Suffix are defined as “#” and “#;” respectively. The 1183
‘#’ can be escaped using ‘\#’ when output of a ‘#’ is required. 1184
 1185
The Token[_name] part of the tag is one of the following: 1186
 1187
·CAM field name 1188
 1189
#as:fieldname#; is a data tag that is matched during runtime with a data element defined in the 1190
<ExternalMapping> section of the CAM template. 1191
 1192
If a match is found, the value replaces the tag during the <ExternalMapping> Output operation. 1193
 1194
·as:REPEAT 1195
The #as:REPEAT#; tag defines the beginning of a repeated area. The repeated area is duplicated 1196
and processed during each matching output operation of a repeating group within an input record 1197

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 48 of 48

structure, thereby allowing for an unknown number of data rows. 1198
The tag is removed from the output. 1199
 1200
·as:ENDREPEAT 1201
The #as:ENREPEAT; tag defines the end of a repeated area. 1202
The tag is removed from the output. 1203
 1204
·as:IF (expression) 1205
The #as:IF (XPath Expression)#; tag defines the start of an IF block. The expression specified is 1206
parsed and matched against values from the input structure and or with a data element defined in 1207
the ExternalMapping section. The data is assumed to be a valid logical XPath expression and is 1208
evaluated. If the expression is True the rest of the IF block is processed. Otherwise the ELSE 1209
block is processed. 1210
If the expression does not evaluate to a logical value, it is assumed to be False. 1211
The tag is removed from the output. 1212
 1213
·as:ELSE 1214
The #as:ELSE#; tag defines the start of an ELSE block and the end of an IF block, which must 1215
precede the ELSE block. The ELSE block is processed if the XPath expression value of the IF 1216
block evaluates to False. 1217
This tag is optional. 1218
The tag itself is removed from the output. 1219
 1220
·as:ENDIF 1221
The #as:ENDIF#; tag defines the end of an IF block, or an ELSE block if one exists. 1222
This tag is mandatory if an #as:IF(expression)#; exists. 1223
The tag is removed from the output. 1224
 1225
·as:INCLUDE 1226
The #as:INCLUDE(URL)#; tag allows you to include an entire additional external file during the 1227
Merge process. This begin tag is followed by the URL of the file to be included. The file name 1228
can be a tag itself. The Include process will take place after the file is fully merged, therefore it 1229
should not contain recursive references. 1230
 1231
Examples: 1232
 1233
#as:INCLUDE(http:/camdemo.com/tmp/t1.html)#; 1234
 1235
Will include the file t1.html in the current output template file. 1236
 1237
 #as:INCLUDE(#as:_T1#;)#; 1238
Will include the file referred to by the #as:_T1#; field value in the current input record. 1239
 1240
Syntax Rules 1241
 1242
The number and order of the #as:REPEAT#; and #as:ENREPEAT#; tags must match. 1243
 1244
The number and order of the #as:ELSE#;, and #as:ENDIF#; tags must match. 1245

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 49 of 49

 1246
#as:ELSE#; tags may only be placed between a pair of #as:IF_name#; and #as:ENDIF#;. 1247
 1248
REPEAT and IF-ELSE-ENDIF blocks can be nested. 1249
 1250
 1251
The following two figures, 4.7.5.1 and 4.7.5.2 now illustrate an example of using this 1252
functionality. 1253
 1254
Figure 4.7.5.1: Example of mapping script to a semi-structured output format (merge) 1255
 1256
<ExternalMapping> 1257
 <ContentAssociation> 1258
<Description>Orders Report Monthly Detail</Description> 1259
<Context/> 1260

 <InputSource type=”XML” structureID=”#myReportData”/> 1261
 <OutputStore structureID=”#htmlReport” type=”MERGE” 1262
location=”orders_report.html”/> 1263
 <RulesSet> 1264
 <MapRule output="Order Month" 1265

input="@STARTGRP(Sales/Company/Year/Qtr/Month)"/> 1266
 <MapRule output="Month" input="Sales/Company/Year/Qtr/Month"/> 1267
 1268
 <MapRule output="Order Items" 1269

 input="@STARTGRP(/Company/Year/Qtr/Product@type)"/> 1270
 <MapRule output="type" input="Sales/Company/Year/Qtr/Product@type"/> 1271
 <MapRule output="name" 1272

input="@trim(Sales/Company/Year/Qtr/Product/Item@name)"/> 1273
 <MapRule output="manufacturer" 1274

input="Sales/Company/Year/Qtr/Product/Item@manufacturer"/> 1275
 <MapRule output="value" 1276

input="Sales/Company/Year/Qtr/Product/Item@value"/> 1277
 <MapRule output="sold" 1278

input="Sales/Company/Year/Qtr/Product/Item@sold"/> 1279
 <MapRule output="Order Items" input="@ENDGRP()"/> 1280
 <MapRule output="Order Month" input="@ENDGRP()"/> 1281
 </RulesSet> 1282
 </ContentAssociation> 1283
</ExternalMapping> 1284
 1285
Then associated with this content mapping is the following merge structure in the 1286
<AssemblyStructure> section; note that the sequence of the @STARTGRP() statements in the 1287

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 50 of 50

external mapping section should correspond to the sequence of the #as:REPEAT#; groups in the 1288
merge target. 1289
 1290
Figure 4.7.5.2: Merge target structure example 1291
 1292
<Structure ID==”#htmlReport”> 1293
<![CDATA[1294
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 1295
<!--last modified on Friday, November 21, 2003 04:20 PM --> 1296
<HTML> 1297
<HEAD> 1298
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;CHARSET=iso-8859-1"> 1299
 <META NAME="GENERATOR" Content="OASIS CAM V1.0"> 1300
 <META NAME="Author" Content="OASIS CAM"> 1301
 <TITLE>Monthly Orders Report</TITLE> 1302
</HEAD> 1303
<BODY> 1304
<H1>Monthly Orders Report</H1> 1305
<P> 1306
#as:REPEAT#; 1307
<H2>Month: #as:Month#;</H2> 1308
<P> 1309
<TABLE BORDER="0" WIDTH="100%"> 1310
 <TR> 1311
 <TD WIDTH="20%" HEIGHT="42" BGCOLOR="#FFFFCC"><FONT 1312
FACE="Arial">Item</TD> 1313
 <TD WIDTH="20%" HEIGHT="42" BGCOLOR="#FFFFCC"><FONT 1314
FACE="Arial">Type</TD> 1315
 <TD WIDTH="20%" HEIGHT="42" BGCOLOR="#FFFFCC"><FONT 1316
FACE="Arial">Manufacturer</TD> 1317
 <TD WIDTH="20%" HEIGHT="42" BGCOLOR="#FFFFCC"><FONT 1318
FACE="Arial">Units sold</TD> 1319
 <TD WIDTH="20%" HEIGHT="42" BGCOLOR="#FFFFCC"><FONT 1320
FACE="Arial">Value</TD> 1321
 </TR> 1322
#as:REPEAT#; 1323
 <TR> 1324

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 51 of 51

 <TD WIDTH="20%">#as:name#;</TD> 1325
 <TD WIDTH="20%">#as:type#;</TD> 1326
 <TD WIDTH="20%">#as:manufacturer#;</TD> 1327
 <TD WIDTH="20%">#as:sold#;</TD> 1328
 <TD WIDTH="20%">#as:value#;</TD> 1329
 </TR> 1330
#as:ENDREPEAT#; 1331
#as:IF (Sales/Company/Year/Qtr/Month < "12")#; 1332
 </TABLE> 1333
#as:ENDIF#; 1334
#as:ENDREPEAT#; 1335
 <TR> 1336
 <TD WIDTH="20%" BGCOLOR="#FFFFCC"> </TD> 1337
 <TD WIDTH="20%" BGCOLOR="#FFFFCC"> </TD> 1338
 <TD WIDTH="20%" BGCOLOR="#FFFFCC"> </TD> 1339
 <TD WIDTH="20%" BGCOLOR="#FFFFCC"> </TD> 1340
 <TD WIDTH="20%" BGCOLOR="#FFFFCC"> </TD> 1341
 </TR> 1342
</TABLE> 1343
</BODY> 1344
</HTML> 1345
]]> 1346
</Structure> 1347
 1348
 1349
The section completes the processing requirements for the assembly system; the addendum now 1350
provides reference examples. 1351

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 52 of 52

 1352

4.9 Predicate Format Options 1353

 1354
There are several ways in which predicates can be referenced with a CAM template. The tables 1355
below show the different forms to be used and when. The first table shows the 1356
BusinessUseContext Rules format when a constraint is applying one and only one action to an 1357
element or attribute. The second table is for when a constraint is applying several actions to one 1358
item (specified by a path). The third table shows the inline functions when applied to elements. 1359
The fourth shows a proposed extension for the inline definitions to be used with attributes. 1360
 1361
TABLE 1: Possible functions for constraint action attribute:
<as:constraint action=”functiondefn”/>
excludeAttribute(xpath)
excludeElement(xpath)
excludetree(xpath)
makeMandatory(xpath)
makeOptional(xpath)
makeRepeatable(xpath)
restrictValues(xpath,valuesList)
setChoice(xpath)
setDateMask(xpath,dateMask)
setID(xpath,idValue)
setLength(xpath,lengthDescription)
setLimit(xpath,limitValue)
setMask(xpath,datatype,Mask)
setValue(xpath,value)
useAttribute(xpath)
useChoice(xpath)
useElement(xpath)
useTree(xpath)
 1362
TABLE 2: Possible function for constraint action element:
<as:constraint item=”xpath”>
 <as:action>functiondefn</as:action>
</asconstraint>
excludeAttribute()
excludeElement()
excludetree()
makeMandatory()
makeOptional()
makeRepeatable()
restrictValues(valuesList)
setChoice()
setDateMask(dateMask)
setID(idValue)
setLength(lengthDescription)
setLimit(limitValue)
setMask(datatype,Mask)
setValue(value)

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 53 of 53

useAttribute()
useChoice()
useElement()
useTree()
 1363
 1364
TABLE 3: Inline Element functions – used alongside structure example - all are attributes
as:makeMandatory="true"
as:makeOptional="true"
as:makeRepeatable="true"
as:restrictValues="valuesList"
valuesList ::= value|value|... value ::= string with or without quotes
as:setChoice="idValue"
all elements in choice have same idValue
as:setDateMask="dateMask"
as:setID="idValue"
as:setLength="lengthDescription" : lengthDescription = min-max or max
as:setLimit="limitValue"
as:setMask="Mask" – must be used with a as:datatype attribute for non
string masks
as:setValue="value"
 1365
TABLE 4: Inline attribute functions – used alongside structure example all are attributes.
Assumed to be for an attribute called ‘example’ - <element example=”value”/>
as:makeMandatory-example="true"
as:makeOptional-example ="true"
as:restrictValues-example ="valuesList"
valuesList ::= value|value|... value ::= string with or without quotes
as:setMask-example =”Mask" – must be used with a as:datatype attribute
for non string masks
as:setID-example ="idValue"
as:setLength-example ="lengthDescription" : lengthDescription = min-max
or max
as:setNumberMask-example ="numberMask"
as:setValue-example ="value"
 1366
 1367
 1368

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 54 of 54

 1369

4.10 Conformance Levels and Feature Sets 1370

 1371
One goal of CAM is to provide the means for simple implementations of a limited base 1372
functionality for implementers. To facilitate this goal the implementation has been separated into 1373
three levels, where level 1 contains the minimum functionality, level 2 contains extended 1374
functionality and level 3 contains advanced features. 1375
 1376
To aid implementers and conformance testing the following matrix shows by section those 1377
features that apply to each level. Also it should be noted that the CAM header section contains 1378
processing rules for header information relating to level control for CAM processor 1379
implementations. 1380
 1381
Figure 4.9.1.1: CAM conformance matrix. 1382
 1383
Feature Document

reference
Level 1 Level 2 Level 3

Header section processor required required required
Structure processor, simple XML required required required
Structure processor, inline predicates partial complete required
Structure processor for schemas none none required

Structure processor for non-XML
targets

 none none required

Include sub-assembly mechanism partial required required
XPath Context rules required required required

Lookup() function support none required required

Reference section – local definitions required required required
Reference section – external registry
interfacing

 Simple URL
based

accessing only

Simple URL and
ebXML registry

complete

Validation section – simple checks none required required
Validation section – extended checks none required required
Validation section – external
functions

 none required required

External Mapping section none none required
Picture mask support input validate

functionality
only

required required

External context system support required required required
CAM import feature none none required
CAM merge feature of External
Mapping

 none none required

 1384

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 55 of 55

A CAM conformance test suite will be developed and made available from the website. Also, a 1385
CAM processor when encountering CAM namespaced syntax in-line, or within the CAM 1386
template itself, that it cannot recognize should report this as a warning, and then continue to 1387
parse. 1388
 1389

4.11 Future Feature Extensions 1390

 1391
This section is provided as a holding area for potential extensions to the base CAM specifications. 1392
 1393
RDF support 1394
The ability to use RDF syntax to provide metadata and semantics in the ContentReference section 1395
for elements. 1396
 1397
Registry based noun semantics 1398
This is currently under development with the Registry SCM group and will be referenced here 1399
when complete. 1400
 1401
WSDL support for CAM processor 1402
A draft WSDL interface has been posted for discussion and is available. Implementers may use 1403
this as a basis for deploying a CAM processor as a web service. 1404
 1405
Accessing content in ebXML Registry 1406
The ebXML Registry Services Specification (RSS) describes this capability. 1407
Typical functions include the QueryManager's getRegistryObject, and getRepositoryItem 1408
operations. Also there is the HTTP interface and also the SQL or Filter query interface as 1409
described by AdhocQueryRequest. 1410
 1411
This also includes the possibility of running external library functions offered by a registry. 1412
 1413
The registry specifications may be found at: 1414
 1415
[3] ebXML Registry specifications 1416
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ 1417
 1418
Import Feature 1419
Some basic IMPORT functionality is available in this V1.0 of CAM, however this is not intended 1420
to be comprehensive or complete. Subsequent versions of CAM will enhance the basic functions 1421
available in V1.0 and allow more sophisticated sub-assembly techniques.1422

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 56 of 56

 1423
A Addendum 1424
 1425
The addendum contains some sample CAM XML instances, and the formal documented schema 1426
structure for CAM. These examples are provided both in the addendum and as standalone items 1427
as separate XML instance files8. 1428
 1429

A1.1 Example of an Address assembly 1430

 1431
The first example is a complete assembly bringing together the examples used in each section of 1432
this document. The focus is on the address details and the selection and control of the structure 1433
content given that address details are highly variant depending on the delivery country. 1434
 1435
Figure A.1.1: Sample CAM template of Address content with embedded context expressions 1436
 1437
<!-- Example Assembly for Address and Order items --> 1438
<CAM CAMlevel="1" version="1.0" 1439
 xmlns:as=http://www.oasis-open.org/committees/cam > 1440
 <Header> 1441
 <Description>WorldCup Soccer Order Transaction</Description> 1442
 <Version>1.20</Version> 1443
 <DateTime>02/12/2003</DateTime> 1444
 <Declaration parameter='$DeliveryCountry' default='USA' datatype='string' 1445
use='external'/> 1446
</Header> 1447
 1448
<AssemblyStructure > 1449
 <Structure taxonomy=’XML’> 1450
 <Items CatalogueRef="2002"> 1451
 <SoccerGear> 1452
 <Item as:makeRepeatable="true"> 1453
 <RefCode as:makeMandatory="true" as:setLength="10">%%</RefCode> 1454
 <Description>%%</Description> 1455
 <Style>WorldCupSoccer</Style> 1456
 <UnitPrice as:setMask="q999.99">%%</UnitPrice> 1457
 </Item> 1458
 <QuantityOrdered as:setMask="q999">%%</QuantityOrdered> 1459
 <SupplierID as:makeMandatory="true">%%</SupplierID> 1460

8 Implementers seeking the very latest details should reference the schema and DTD structures for CAM directly from the Internet
location for developer’s resources (http://cam.swiki.net) and not rely completely on the printed instance, since corrections and

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 57 of 57

 <DistributorID>%%</DistributorID> 1461
 <OrderDelivery>Normal</OrderDelivery> 1462
 <DeliveryAddress as:choiceID="USA-Street"> 1463
 <FullName>%%</FullName> 1464
 <Street>%%</Street> 1465
 <City>%%</City> 1466
 <State as:setLength="2" as:makeMandatory="true">%%</State> 1467
 </DeliveryAddress> 1468
 <DeliveryAddress as:choiceID="USA-APObox"> 1469
 <FullName>%%</FullName> 1470
 <APOBox>%%</APOBox> 1471
 <City>%%</City> 1472
 <State as:setLength="2">%%</State> 1473
 <Country>%%</Country> 1474
 </DeliveryAddress> 1475
 1476
 <DeliveryAddress as:choiceID="Canada"> 1477
 <PersonName>%%</PersonName> 1478
 <Street1>%%</Street1> 1479
 <Street2>%%</Street2> 1480
 <TownCity>%%</TownCity> 1481
 <PostCode>%%</PostCode> 1482
 <Province>%%</Province> 1483
 <Country>Canada</Country> 1484
 </DeliveryAddress> 1485
 </SoccerGear> 1486
 </Items> 1487
 </Structure> 1488
</AssemblyStructure> 1489
 1490
<BusinessUseContext> 1491
 <Rules> 1492
 <default> 1493
 <context> <!-- default structure constraints --> 1494
 <constraint action="makeRepeatable(//SoccerGear)" /> 1495
 <constraint action="makeMandatory(//SoccerGear/Items/*)" /> 1496
 <constraint action="makeOptional(//Description)" /> 1497
 <constraint action="makeMandatory(//Items@CatalogueRef)" /> 1498

extensions to the printed formal published implementation reference documentation can lag behind. Participation in the online

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 58 of 58

 <constraint action="makeOptional(//DistributorID)" /> 1499
 <constraint action="makeOptional(//SoccerGear/DeliveryAddress)" /> 1500
 </context> 1501
 </default> 1502
 <context condition="token='//SoccerGear/SupplierID = ' and 1503
contains(value,'SuperMaxSoccer')"> 1504
 <constraint action="makeMandatory(//SoccerGear/DeliveryAddress)"/> 1505
 </context> 1506
 <context condition="token='$DeliveryCountry = ' and contains(value,'USA'"> 1507
 <constraint 1508

 action="useChoiceByID(//SoccerGear/DeliveryAddress(#USA-Street))"/> 1509
 </context> 1510
 <context condition="token='$DeliveryCountry' DeliveryCountry =and 1511
contains(value ,'APO'"> 1512
 <constraint 1513

 action="useChoiceByID(//SoccerGear/DeliveryAddress(#USA-APObox))"/> 1514
 </context> 1515
 <context condition="token='$DeliveryCountry ' 1516
and co=ntains(valu e,'CANADA'"> 1517
 <constraint 1518

 action="useChoiceByID(//SoccerGear/DeliveryAddress(#Canada))"/> 1519
 </context> 1520
 </Rules> 1521
</BusinessUseContext> 1522
 1523
<ContentReference> 1524
 <Addressing> 1525
 <registry name="SGIR" access="registry.sgir.org:1023" method="URL" 1526
 description="Sporting Goods Industry Registry"/> 1527
 <registry name="SGIRWSDL" access="registry.sgir.org:1025" method="WSDL" 1528
 description="Sporting Goods Industry Registry"/> 1529
 <registry name="UN" access="registry.un.org:9090" method="ebXML" 1530
 description="United Nations EDIFACT Registry"/> 1531
 <registry name="UPS" access="registry.ups.com:7001" method="URL" 1532
 description="United Parcels Service Registry"/> 1533
 <registry name="USPS" access="registry.usps.gov:8080" method="URL" 1534
 description="United States Postal Service Registry"/> 1535
 <registry name="Local" access="rdbms.mybusiness.com:4040" method="SQL" 1536

technical discussion groups is strongly recommended.

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 59 of 59

 description="Local Product Database stored procedures"/> 1537
 </Addressing> 1538
 1539
 <item type="noun" name="RefCode" 1540
 UIDReference="SGIR010027" taxonomy="UID" registry="SGIR"/> 1541
 <item type="noun" name="Description" 1542
 UIDReference="SGIR010050" taxonomy="UID" registry="SGIR"/> 1543
 <item type="noun" name="Style" 1544
 UIDReference="SGIR010028" taxonomy="UID" registry="SGIR"/> 1545
 <item type="noun" name="SupplierID" 1546
 UIDReference="SGIR010029" taxonomy="UID" registry="SGIR"/> 1547
 <item type="noun" name="CatalogueRef" UIDReference="none" taxonomy="none" 1548
 datatype="text" setlength="4" setmask="p\d\d\d\d " /> 1549
 <item type="noun" name="DistributorID" UIDReference="none" taxonomy="none" 1550
 datatype="text" setlength="30" /> 1551
 <item type="noun" name="UnitPrice" 1552
 UIDReference="070010" taxonomy="EDIFACT" registry="UN"/> 1553
 <item type="noun" name="QuantityOrdered" 1554
 UIDReference="070011" taxonomy="EDIFACT" registry="UN"/> 1555
 <item type="noun" name="OrderDelivery" 1556
 UIDReference="UPS050050" taxonomy="UID" registry="UPS"/> 1557
 <item type="defaultAssembly" name="DeliveryAddress" 1558
 UIDReference="USPS090081:01:05" taxonomy="UID" registry="USPS"/> 1559
 </ContentReference> 1560
 <DataValidations> 1561
 <Conditions 1562

condition="token='$DeliveryCountry' = and contains(va lue,'USA'"> 1563
 <conditional 1564

expression="’//UnitPrice’ and greaterthan(value,’0.00’)" 1565
syntax="XPath" outcome="fail" 1566
message="Item price not valid / missing" test="always"/> 1567

<conditional 1568
expression="’//RefCode + //UnitPrice’ and lookup(//RefCode + 1569
//UnitPricevalue,’SGIRWSDL:unitprice_check’)” outcome="report" 1570
message="Unit price value does not match catalog" test="always"/> 1571

<conditional 1572
expression="’//SupplierID’ and 1573

lookup(//SupplierIDvalue,’SGIRWSDL:supplierID_check’)” 1574
outcome="fail" 1575
message="Unknown Supplier ID" test="always"/> 1576

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 60 of 60

<conditional 1577
expression="’//DistributorID’ and 1578

lookup(//DistributorIDvalue,’SGIRWSDL:distributor_check’)” 1579
outcome="fail" 1580
message="Unknown distributor ID" test="postcheck"/> 1581

<conditional itemRef="//QuantityOrdered" 1582
expression="’//QuantityOrdered’ and 1583

lookup(//QuantityOrderedvalue,’LocalSQL:quantityOnHand()’)” 1584
 outcome="report" 1585
message="Item not available / backordered" test="postcheck"/> 1586

 </Conditions> 1587
</DataValidations> 1588
</CAM> 1589
 1590
In this particular example the three different address formats, USA street address, USA APO box 1591
and Canadian address are selected depending on the business use context. Notice from the 1592
business perspective this effectively controls where the company will physically deliver its 1593
products. 1594
 1595
See the main document for details on the techniques illustrated in each section of this example. 1596
The overall business capability demonstrated is the ability to use a single assembly to manage the 1597
content variants for the business process and to tie those to the context variables that determine 1598
the actual content structure for a given business scenario. 1599
 1600

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 61 of 61

 1601

A1.2 Example of UBL Part Order OP70 and an OAGIS BOD assembly 1602

 1603
The examples for both UBL and for the OAGIS BOD syntax (see 1604
http://www.openapplications.org) are available for download from the CAM resource site 1605
(http://www.xmlassembly.com). The OAG example is also for a parts order and shows how the 1606
base BOD mechanism expressed simply as a W3C XSD schema fails to cover the business need 1607
(see discussion in section 1 – Introduction), while the assembly for the BOD is able to provide the 1608
required business context rules and content linkage references completely. 1609
 1610
Figure A.1.2.1: Sample of a CAM template for OAGIS BOD content 1611
 1612
<CAM CAMlevel="1" version="1.0"> 1613
 <!— Download available from http://www.xmlassembly.com --> 1614
</CAM> 1615
 1616
 1617
See the main document for details on the techniques illustrated in each section of this example. 1618
The overall business capability demonstrated is the ability to use a single assembly to manage the 1619
content variants for the business process and to tie those to the context variables that determine 1620
the actual content structure for a given business scenario. 1621
 1622

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 62 of 62

A1.3 CAM schema (W3C XSD syntax) 1623

 1624
This section is provided for implementers wishing a formal specification of the XML structure 1625
definition for the assembly itself. However specific implementation details not captured by the 1626
XSD syntax should be referenced by studying the specification details provided in this document 1627
and clarification of particular items can be obtained by participating in the appropriate on-line e-1628
business developer community discussion areas and from further technical bulletins 1629
supplementing the base specifications. Also a CAM template for a CAM template is being 1630
developed. 1631
 1632
For specific details of the latest XSD documentation please see the OASIS CAM TC documents 1633
area where the latest approved XSD version is available. This is also mirrored to the open source 1634
jCAM site as well (http://jcam.org.uk). 1635
 1636
 1637
 1638
See document download area from OASIS website : http://www.oasis-open.org/committees/cam 1639
 1640
 1641
 1642

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 63 of 63

 1643

A1.4 Business Process Mechanism (BPM) Context Support 1644

 1645
This section provides an overview of the mechanism for providing context variables between the 1646
CAM processor and the remainder of the eBusiness architecture stack (see figure 2.7.2). 1647
 1648
The CAM template provides the %parameter% mechanism to accept values from external 1649
processes. However the need is to provide a consistent mechanism in XML syntax for the 1650
propagation and specifying of context variables and their values throughout the components that 1651
make up the architecture stack. 1652
 1653
Figure A1.4.1 shows a basic XML structure for carrying such values and it is anticipated that 1654
further development of this will continue with other OASIS TC groups to reach agreement on 1655
exact details of this mechanism. Also support for the UBL / CCTS specialized context 1656
mechanism is inherent in this generalized mechanism, and an example of such context use is also 1657
provided here, see figure A1.5.3 below. 1658
 1659
When an <ebContext> structure is associated directly with a CAM template it can rely on the 1660
content referencing and data typing from the template to direct parsing of conditions. However, 1661
to facilitate standalone use of the <ebContext> structures, re-use can be made of CAM functions 1662
in conjunction with the xmlns:as namespace declaration. Most conditions are anticipated to be 1663
denominated lists, so the as:member() function can be used for that. Alternatively for string 1664
values such as part numbers, as:setLength() and as:setMask() can be used to specify the data 1665
constraints, while standard data types can be used for numeric and date values. 1666
Some condition examples are shown in Figure A1.4.1 and these equate to the conceptual semantic 1667
model using parameters for category, classification, industry, type and language labelling. 1668
 1669
This approach provides a lightweight implementation, while stopping short of requiring a 1670
complete CAM template to describe the ebContext structure itself. Instead a subset of the CAM 1671
features should be adequate for the anticipated constrained use cases of context documents (see 1672
Figure A1.4.2 below). 1673
 1674

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 64 of 64

Figure A1.4.1 XML structure for eBusiness context variable exchange. 1675
 1676
<ebContext UIDref='SDIR03400' interchangeID='123456789' BPMref='ABC123456:01' 1677
CPAref='ABC012345' 1678
xmlns:as="http://www.oasis-open.org/committees/cam"> 1679
<header> 1680
 <description>An example context instance</description> 1681
 <version>1.0</version> 1682
 <language refcode='eng' codelist='ISO639-2' name='English'/> 1683
 <usage>CAM</usage> 1684
 <usage>BPM</usage> 1685
</header> 1686
<conditions> 1687
 <condition name="Country" value="USA" as:member="USA,CA,MX" 1688

as:context="GP"/> 1689
 <condition name="itemType" value="nonperishable" label="Item type:" 1690

as:member="nonperishable,perishable,refridgerated,fragile,heavy" 1691
as:context="PC"/> 1692

 <condition name="partnerType" value="wholesale" label="Partner type:" 1693
as:member="wholesale,retail,distributor,oem,service"/> 1694

 <condition name="Catalogue" value="A2003-Q1" as:setLength="8" 1695
as:setMask="sXNNNN-QN" as:UIDreference="SGIR:030451"/> 1696

</conditions> 1697
</ebContext> 1698
 1699

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 65 of 65

Figure A1.4.2. Table of CAM features subset for ebContext usage 1700
 1701
Function name Required?

member() Yes
setLength() Yes
setMask() Yes
UIDreference() Optional
datatype() Yes

 1702
 1703
This table contains a suggested selection of functions that will provide the bulk of typical 1704
functionality in configuring context instances. Notice that implementers may also choose to 1705
allow additional functions to be inserted as annotations that are simply ignored by the processor, 1706
but will act of notes for reference. 1707
 1708
The UBL / CCTS mechanism further categorizes context variables using the following 1709
classifications. 1710
 1711
Figure A1.4.3 UBL / CCTS context classifications 1712
 1713
Business process (BP) Process, collaboration, or transaction.
Business process role (BPR) Sender and receiver roles.
Supporting role (SR) Third party supporting role.
Industry classification (IC) Vertical industry sector
Product classification (PC) Type of product or service
Geopolitical (GP) Trading region
Official constraints (OC) Legal or contractual requirements
System capabilities (SC) Restrictions of physical system or compliance

constraints.
 1714
The examples previously provided give constraint examples in the area of geopolitical and 1715
supporting role contexts. The use of the optional in-line attribute as:context allows provision 1716
for use of this classification of context.1717

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 66 of 66

 1718

A1.5 CAM Processor Notes (Non-Normative) 1719

 1720
CAM processor notes assist implementers developing assembly software, these are non-1721
normative. Within an assembly implementation the processor examines the assembly document, 1722
interprets the instructions, and provides the completed content structure details given a particular 1723
set of business context parameters as input. This content structure could be stored as an XML 1724
DOM structure for XML based content, or can be stored in some other in-memory structure 1725
format for non-XML content. Additionally the memory structure could be temporarily stored and 1726
then passed to a business application step for final processing of the business content within the 1727
transaction. 1728
 1729
Since typical development environments already contain linkage between the XML parser, the 1730
DOM, an XPath processor, a scripting language such as JavaScript, the data binding toolset such 1731
as XSLT or a comparable mapping tool. The assembly approach based on an XML script fits 1732
naturally into this environment. 1733
 1734
Some suggested uses and behaviours for CAM processors include: 1735
 1736

· Design time gathering of document parts to build a context sensitive assembly service 1737
that can be called via an API or webservice interface. 1738

 1739
· Design time generation of validation scripts and schemas for the run time environment 1740

that is not CAM savvy or that does not provide any context flexibility. Think of this as a 1741
CAM compiler. This would mean that context parameters would be passed in as input to 1742
this. 1743

 1744
· Runtime validation engine based on context parameters and controlled via a Business 1745

Process engine with BPM script definitions running within the gateways of trading 1746
partners. 1747

 1748
 1749
Processing modes and sequencing 1750
 1751
Context elements can have conditions. These conditions can either be evaluated against variables 1752
(parameters) or XPath statements. These conditions can be evaluated in two modes: 1753
 1754

1) A standalone CAM template - i.e. on the basis of external parameters values passed to the 1755
CAM processor to evaluate the conditionals. 1756

2) CAM template and XML instance - check the XML instance to evaluate the condition 1757
and then proceed (this is the normal mode for a CAM processor). 1758

 1759
The first mode is typically used when you are trying to produce documentation about what is 1760
allowed for a transaction and it is useful to pre-process (precompile) the structure rules without 1761
the existence of an XML instance file. This means that any condition that falls into the second 1762
category can not be evaluated (these conditions then behave equivalent of having Schematron 1763
asserts, and are documented but not actioned). 1764

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 67 of 67

A1.6 Deprecated DTD 1765

Figure 1.6.1: Deprecated CAM structure definition in DTD syntax – this is provided for 1766
reference only, and is not being maintained. 1767
 1768
<!-- CAM structure for OASIS CAM. February 10th, thru February 2004 1769
This DTD structure is provided for reference only as it is more compact to read 1770
and comprehend; the schema definition is for preferred normative use. 1771
 1772
Modification history: 1773
1.0 Initial 1774
Revision 0.12 1775
Revision 0.13 1776
Revision 0.14 1777
Revision 0.15 1778
Copyright (c) 2003/2004 OASIS. All rights reserved. 1779
Redistribution and use in source and binary forms, with or without 1780
modification, are permitted provided that such redistributions retain this 1781
copyright notice. 1782
This CAM structure is provided "as is" and there are no expressed or implied 1783
warranties. In no event shall OASIS be liable for any damages arising out of 1784
the use of this structure. --> 1785
 1786
<!ELEMENT CAM (Header, AssemblyStructure, BusinessUseContext?, 1787
ContentReference?, DataValidations?, ExternalMapping?) > 1788
<!ATTLIST CAM 1789
 CAMlevel (1 | 2 | 3) #REQUIRED 1790

 version (CDATA) #IMPLIED > 1791
 1792
<!ELEMENT AssemblyStructure (Structure+)> 1793
<!ELEMENT Header (Description?, Owner?, Version?, DateTime, ContextStatements?, 1794
Properties?)> 1795
<!ELEMENT Description (#PCDATA) > 1796
<!ELEMENT Owner (#PCDATA) > 1797
<!ELEMENT Version (#PCDATA) > 1798
<!ELEMENT DateTime (#PCDATA) > 1799
 1800
<!ELEMENT ContextStatements (ContextURL?, Declaration*)> 1801
<!ELEMENT ContextURL (#PCDATA) > 1802
<!ELEMENT Declaration EMPTY > 1803

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 68 of 68

<!ATTLIST Declaration 1804
 name CDATA #REQUIRED 1805
 values CDATA #IMPLIED 1806
 default CDATA #IMPLIED 1807
 datatype CDATA #IMPLIED 1808
 use (local | global | override) #REQUIRED > 1809
 1810
<!ELEMENT Structure ANY > 1811
<!ATTLIST Structure 1812
 ID CDATA #IMPLIED 1813
 reference CDATA #IMPLIED 1814
 taxonomy (XSD | DTD | RNG | XML | EDI | HTML | MERGE | OTHER) 1815
#REQUIRED > 1816
 1817
<!ELEMENT BusinessUseContext (Rules)> 1818
<!ELEMENT Rules (default?, context*)> 1819
<!ELEMENT default (context+ | constraint+)> 1820
<!ELEMENT context (context+ | constraint+)> 1821
<!ATTLIST context 1822
 condition CDATA #REQUIRED > 1823
 1824
<!ELEMENT ContentReference (Addressing,item*)> 1825
<!ELEMENT Addressing (registry+)> 1826
 1827
<!ELEMENT constraint (action+) > 1828
<!ATTLIST constraint 1829
 condition CDATA #IMPLIED 1830
 action CDATA #REQUIRED > 1831
<!-- predicates (excludeAttribute | excludeElement | excludeTree | 1832
 makeOptional | makeMandatory | makeRepeatable | 1833
 setChoice | setId | setLength | setLimit | setMask | 1834
 setValue | restrictValues | restrictValuesByUID | 1835
 useAttribute | useChoice | useElement | useTree | 1836
 useAttributeByID | useChoiceByID | useElementByID | 1837
 useTreeByID) --> 1838
 1839
<!ELEMENT DataValidations (Conditions+)> 1840
<!ELEMENT Conditions (conditional+)> 1841
<!ATTLIST Conditions 1842
 conditionID CDATA #IMPLIED 1843

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 69 of 69

 condition CDATA #IMPLIED > 1844
<!ELEMENT conditional EMPTY > 1845
<!ATTLIST conditional 1846
 expression CDATA #REQUIRED 1847
 syntax (XPath | JavaScript | VB | Perl | Other) #IMPLIED 1848
 outcome (fail | ignore | report) #REQUIRED 1849
 message CDATA #IMPLIED 1850
 test (always | postcheck | precheck) #REQUIRED > 1851
 1852
<!ELEMENT registry EMPTY> 1853
<!ATTLIST registry 1854
 name CDATA #REQUIRED 1855
 access CDATA #REQUIRED 1856
 method (URL | http | SOAP | ebXML | UDDI | Other) #REQUIRED 1857
 description CDATA #IMPLIED 1858
> 1859
 1860
<!ELEMENT item EMPTY> 1861
<!ATTLIST item 1862
 type (noun | corecomponent | BIE | aggregate | defaultAssembly | 1863
identifier | verb | schema | documentation) #REQUIRED 1864
 name CDATA #IMPLIED 1865
 UIDReference CDATA #REQUIRED 1866
 taxonomy CDATA #REQUIRED 1867
 registry CDATA #IMPLIED 1868
 datatype CDATA #IMPLIED 1869
 setlength CDATA #IMPLIED 1870
 setmask CDATA #IMPLIED 1871
> 1872
 1873
<!ELEMENT ExternalMapping (ContentAssociation+) > 1874
<!ELEMENT ContentAssociation 1875
(Description?,Context,InputSource,OutputChoice,RulesSet) > 1876
<!ELEMENT InputSource EMPTY > 1877
<!ATTLIST InputSource 1878

 structureID CDATA #IMPLIED 1879
 type (SQL | XML | EDI | TXT | ODBC | OTHER) #IMPLIED 1880
 location CDATA #IMPLIED > 1881
<!ELEMENT OutputChoice (OutputStore+)> 1882
<!ELEMENT OutputStore EMPTY > 1883

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 70 of 70

<!ATTLIST OutputStore 1884
 structureID CDATA #IMPLIED 1885
 type (SQL | XML | EDI | TXT | ODBC | XHTML | XFORM| MERGE | OTHER) 1886
#IMPLIED 1887
 location CDATA #IMPLIED > 1888
 1889
<!ELEMENT RulesSet (MapRule+) > 1890
<!ELEMENT MapRule EMPTY > 1891
<!ATTLIST MapRule 1892
 output CDATA #REQUIRED 1893
 input CDATA #REQUIRED > 1894
<!ELEMENT properties (annotation?, using?) > 1895
<!ELEMENT using (use+) > 1896
<!ELEMENT use (CAMlocationURL, relatedStructureID?, Description?, import+) > 1897
<!ELEMENT CAMlocationURL (#PCDATA) > 1898
<!ELEMENT relatedStructureID (#PCDATA) > 1899
<!ELEMENT import EMPTY > 1900
<!ATTLIST import 1901
 CAMmember CDATA #REQUIRED 1902
 CAMalias CDATA #REQUIRED 1903
 comment CDATA #IMPLIED > 1904
 1905
<!ELEMENT annotation (documentation+) > 1906
 1907
<!ELEMENT documentation (#PCDATA) > 1908
 1909
<!ATTLIST documentation 1910
 type (description | note | license | usage | other) #REQUIRED 1911
> 1912
 1913
 1914
 1915

CAM Specifications and Description Document

Copyright© OASIS Open, 2003/2004. All Rights Reserved

Version: 1.00, revision 0.17C Date: 15/03/04
Status: OASIS CAM TC – Committee Draft
Page: 71 of 71

 1916
5 References 1917
 1918
- XML Path Language (XPath) specifications document, version 1.0, W3C Recommendation 1919

16 November 1999, http://www.w3.org/TR/xpath/ 1920
 1921
- Extensible Markup Language (XML) specifications document, version 1.1, W3C Candidate 1922

Recommendation, 15 October 2002, http://www.w3.org/TR/xml11/ 1923
 1924
- XNL: Specifications and Description Document, OASIS CIQ TC, http://www.oasis-1925

open.org/committees/ciq 1926
 1927
- XAL: Specifications and Description Document, OASIS CIQ TC, http://www.oasis-1928

open.org/committees/ciq 1929
 1930
- ISO 16642 – Representing data categories http://www.loria.fr/projets/TMF/ 1931
 1932
- CEFACT – Core components specifications - http://webster.disa.org/cefact-groups/tmg/ 1933
 1934
- UN – eDocs resource site - http://www.unece.org/etrades/unedocs/ 1935
 1936
- UN – Codelists reference site for eDocs - http://www.unece.org/etrades/unedocs/codelist.htm 1937
 1938
- Jaxen reference site - http://jaxen.org/ 1939
 1940
 1941

