
WS Choreography

Version 0-1, 13 June 2003

This version:
TBD

Latest version:
TBD

Previous Version:
Not Applicable

Authors (alphabetically):
David Burdett, Commerce One
Dan Gannon, Commerce One

Contributors (alphabetically):
Qiming Chen, Commerce One

Copyright © 2003 Commerce One Operations Inc

Copyright

Commerce One Operations, Inc. (“Commerce One”) hereby grants you a nonexclusive,
royalty-free, worldwide license to a) publish, copy and distribute this specification; b) use the
documentation in the design, development and operation of software solutions that conform to
this specification. If you publish, copy or distribute all or a portion of the specifications, you
must insert the above copyright notice in acknowledgment of Commerce One’s intellectual
property interest in the specifications. No other rights are granted.

These specifications are provided "as is" without any express or implied warranty. Commerce
One expressly disclaims any and all warranties regarding this specification, including the
warranty that this specification and/or implementations thereof do not violate the rights of
others, fitness for a particular purposes and any other statutory warranties which would
otherwise apply.

In no event will Commerce One be liable to you or any party for any direct, indirect, special or
consequential damages for any use of this specification, including, without limitation, any lost
profits, business interruption, loss of programs or other data on your information handling
system or otherwise, even if Commerce One is expressly advised of the possibility of such
damages.

http://www.commerceone.com/developers/download/
http://www.commerceone.com/

 Web Services - Choreography

Abstract

This specification describes a formal method of defining a Choreography using a
Choreography Definition Language. Choreographies describe the sequence and conditions in
which messages are exchanged between independent processes, parties or organizations in
order to realize some useful purpose, for example placing an order.
This differs from a Process Execution Language that can be used when there is a single
organization or process in control that can issue commands to other processes to carry out all
the actions or activities required.
If Choreographies are not defined and agreed between the organizations or processes
involved, then those organizations and processes will not be able to successfully interoperate
to realize their shared objectives.
(Note that this specification is a draft with some sections omitted.)

Status of this Document

This is the first version of the WS Choreography specification. Comments on this document
are welcome …
This document may be updated, replaced or obsoleted by other documents at any time.

Table of Contents
1 Introduction... 5

1.1 Notational Conventions ... 5
1.2 Namespaces ... 6
1.3 What's missing .. 6
1.4 Contents of this Document .. 6

2 Overview .. 7
2.1 The Problem.. 7
2.2 Features .. 7

2.2.1 Reusability of Choreography Definitions .. 8
2.2.2 State Driven Choreography Definitions .. 9
2.2.3 Interactions, Reliable Messaging and Signals.. 10
2.2.4 Cooperative Organizations... 11
2.2.5 Checking Choreography Progress ... 11
2.2.6 Multi-party Choreographies.. 12
2.2.7 Importing Definitions .. 12
2.2.8 Extending Choreography Definitions.. 12

Copyright © 2003, Commerce One, Inc Page 2

 Web Services - Choreography

2.2.9 Choreography Dependencies .. 12
2.3 Semantic Definitions.. 13

3 Choreography XML Structure... 13
4 Processing Rules.. 15
5 Schema Description ... 15

5.1 Choreography ... 15
5.1.1 Choreography@defaultLanguage .. 16
5.1.2 Example ... 16

5.2 ChoreographyDefinition... 16
5.2.1 ChoreographyDefinition@name... 17
5.2.2 ChoreographyDefinition@urn... 17
5.2.3 Example ... 17

5.3 ConditionalEnd.. 17
5.3.1 ConditionalEnd@state ... 18
5.3.2 Example ... 18

5.4 DependsOnChoreography .. 18
5.4.1 DependsOnChoreography@urn .. 18
5.4.2 Example ... 18

5.5 Description .. 18
5.5.1 Description@language... 19
5.5.2 Description@ref ... 19
5.5.3 Example ... 19

5.6 End.. 19
5.6.1 End@state ... 20
5.6.2 Example ... 20

5.7 ExtendsChoreography... 20
5.7.1 ExtendsChoreography@urn... 20
5.7.2 Example ... 20

5.8 Import .. 20
5.8.1 Import@namespace... 21
5.8.2 Import@location... 21
5.8.3 Example ... 21

5.9 Interaction ... 21
5.9.1 Interaction@name.. 22
5.9.2 Example ... 22

5.10 InteractionDef.. 22
5.10.1 InteractionDef@name .. 22
5.10.2 InteractionDef@fromRole... 22
5.10.3 InteractionDef@toRole... 22
5.10.4 InteractionDef@messageFamily .. 23
5.10.5 Example ... 23

5.11 InteractionEndStates ... 23
5.11.1 InteractionEndStates@fromState... 23
5.11.2 InteractionEndStates@toState... 23
5.11.3 Example ... 24

5.12 MessageFamily ...24

Copyright © 2003, Commerce One, Inc Page 3

 Web Services - Choreography

5.12.1 MessageFamily@name ... 24
5.12.2 MessageFamily@urn ... 24
5.12.3 Example ... 24

5.13 PreCondition ... 25
5.13.1 PreCondition@condition .. 25
5.13.2 Example ... 25

5.14 Process ... 25
5.14.1 Process@name ... 25
5.14.2 Process@role .. 26
5.14.3 Example ... 26

5.15 ProcessEndState. ... 26
5.15.1 ProcessEndState@state .. 26
5.15.2 Example ... 26

5.16 Role... 26
5.16.1 Role@name ... 27
5.16.2 Example ... 27

5.17 Start... 27
5.17.1 Start@state .. 27
5.17.2 Example ... 27

5.18 StartEndStates .. 27
5.18.1 Example ... 28

5.19 State.. 28
5.19.1 State@name .. 28
5.19.2 Example ... 29

6 References ...29
Appendix A Choreography Schema (Normative) ... 29

A.1 Choreography Schema ... 29
A.2 Description Schema .. 34
A.3 ImportType Schema.. 35
A.4 InteractionDefType Schema.. 35
A.5 MessageFamilyType Schema ... 36
A.6 RoleType Schema... 37

Appendix B Example Choreography Definition (non-normative)...................................... 39
B.1 Order Management 1 .. 39
B.2 Order Management 2 .. 40
B.3 Check Order Status... 40
B.4 Resend Order Response... 41
B.5 Example XML.. 41

Copyright © 2003, Commerce One, Inc Page 4

 Web Services - Choreography

1 Introduction

This specification describes a formal method of defining a Choreography using a
Choreography Definition Language. Choreographies describe the sequence and conditions in
which messages are exchanged between independent processes, parties or organizations in
order to realize some useful purpose, for example placing an order.
Choreographies need to be defined when two or more organizations or processes need to
cooperate as no single organization or process controls or manages the complete process.
For example a Buyer cannot directly control what a Seller does and vice versa.
Note that this differs from a Process Execution Language that can be used when there is a
single organization or process in control that can issue commands to other processes to carry
out all the actions or activities required.
If Choreographies are not defined and agreed between the organizations or processes
involved, then those organizations and processes will not be able to successfully interoperate
to realize their shared objectives.
By providing a formal representation of a Choreography in an XML format, this specification
allows the definition to be shared and therefore followed by all the organizations or processes
that use it.
This specification is in two main parts:

• The first part describes how to define a Choreography in an abstract way that is
independent of:
− The format and packaging of the messages being exchanged, and
− The technology used at each end to send and receive messages

• The second part describes how to bind the messages in a Choreography to WSDL and
SOAP (Ed: required but not included in this version spec).

Although bindings to WSDL and SOAP are provided, other bindings to other messaging
technologies are possible although not described. This means that the abstract Choreography
definition could be used to bind to messages in other formats such voice, paper or fax. These
types of bindings are outside the scope of this specification.

1.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Copyright © 2003, Commerce One, Inc Page 5

 Web Services - Choreography

1.2 Namespaces
The namespaces used within this specification are as follows

Prefix Namespace Definition
tns com.commerceone.schemas/choreography/chor

eographydefinitions/choreographydefinitio
ns.xsd

Namespace for the WS Choreography
schema definitions

xsd http://www.w3.org/2001/XMLSchema XML Schema Namespace

1.3 What's missing
Ed: The following is a partial list of items missing from this draft of the specification:

• Bindings to WSDL and SOAP

• Generalized error handling, e.g. Message (document) errors, Process timeouts,
transmission errors

• Composing new choreographies out of existing choreographies

• Relationships to Reliable Messaging and other protocols such as BTP and WS
Transaction.

1.4 Contents of this Document
The remainder of the specification provides:

• An Overview of the problems that this specification solves and the features of the WS-
Choreography specification that help solve them

• An overview of the Choreography XML Structure. This provides a high-level overview of
each of the components of a Choreography

• A description of the Processing Rules that apply

• A description of the type and semantics of each element and attribute in the Choroegraphy
Schema

Appendices contain:

• The Choreography XML Schema definition

• An example XML Choreography Definition

Copyright © 2003, Commerce One, Inc Page 6

http://www.w3.org/2001/XMLSchema

 Web Services - Choreography

2 Overview

2.1 The Problem
Two or more processes that need to co-operate by exchanging messages, must exchange
messages in the same sequence if interoperability is to occur.
For example if a buyer sends a seller an order, the seller needs to know how to respond.
Should they: a) return an order response message indicating the extent to which they can
meet the order, b) just ship the goods and send an invoice or c) do something different.
Interoperability problems will occur if the buyer is expecting an order response but gets an
invoice instead.
This Choreography specification solves this problem by defining in an exchangeable XML
format, the sequence, conditions and dependencies of sending one or more messages
between the two or more processes or organizations involved in order to support some useful
purpose.

2.2 Features
This rest of this section describes how to define choreographies that have the following
features:

• Reusability. The same choreography definition is usable by different organizations
operating in different contexts (industry, locale, etc) with different software (e.g. application
software) and different message formats.

• State Driven. The specification defines how processes or organizations that take part in
choreographies maintain where they are in the choreography by recording their state

• Cooperative Organizations. Choreographies define the sequence of exchanging messages
between two (or more) independent organizations or processes by describing how they
should cooperate

• Verifiable. The organizations or processes involved in a Choreography can use the
Choreography definition to verify that a Choreography is being followed correctly. (Ed: not
defined in this spec but needed)

• Multi-Party. The specification allows Choreography Definitions with any number of
organizations or processes involved

• Modular. The Choreography specification includes an "import" facility that allows
components of a specification that are defined separately to be imported

Each of these features is discussed in more detail in the following sections.

Copyright © 2003, Commerce One, Inc Page 7

 Web Services - Choreography

2.2.1 Reusability of Choreography Definitions

In an actual implementation messages flow between real services operated by real
organizations. However this specification describes choreography definitions in a more
abstract way that allows the choreography to be reused. The abstract concepts used include:

• Roles. A Role describes the type of behavior taken by the processes or organizations
involved. For example an organization could take the role of a Buyer or a Seller when
goods are being purchased.

• States. A State identifies the condition of a Role at a point in time. For example a Buyer
State could be OrderSent after sending an Order message to a Seller.

• Interactions. An Interaction is the act of communicating information from one Role to
another for a reason. For example sending an Order message from a Buyer to a Seller to
request a purchase of goods or services

• Message Families. Message Families identify the set of messages that serve the same or
similar purpose. For example a RosettaNet Order, a UBL Order, an EDI Order, all contain
a request to purchase goods or services

• Processes. A process occurs as a result of some event such as a change of State. For
example if a Seller's State becomes OrderReceived as a result of receiving an Order
Message from a Buyer, then the change in state would trigger the Seller to carry out a
process to check the Order.

Using these terms provides for reuse in multiple different contexts as follows:

• Roles can be mapped to specific organizations and processes, such as a specific Web
Service.

• States can be mapped to specific conditions that occur in an organization, process or
perhaps to specific values of an element in a message.

• Interactions allow the same message to be sent for multiple different reasons in multiple
different choreographies. For example an Order could be sent to a Seller to request a
purchase. It could also be sent to an archiving service for long-term retention. In both
instances, the format of the message could be the same.

• Message Families can be mapped to specific message formats, for example the "Order"
message family could be mapped to either a UBL or a RosettaNet Order Message

• Processes can be mapped to specific Web Services implemented by an organization
Without this type of abstraction, it will be necessary to define different choreographies for each
implementation even if the basic purpose and the sequence of exchanging messages is the
same, for example placing an Order.

Copyright © 2003, Commerce One, Inc Page 8

 Web Services - Choreography

2.2.2 State Driven Choreography Definitions

This specification assumes that:

• Each Role (e.g. a process or organization) participating in a choreography keeps records
of their progress through the choreography by maintaining State information.

• The States values and their associated semantics, that each Role can take are defined in
the Choreography definition and therefore can be shared by the organizations and roles
involved

• State Changes can drive activities, for example: sending a message, or carrying out a
process

• Changes in State are caused by events, for example: sending or receiving a message, or,
carrying out a process.

The following example provides an illustration.

SellerBuyer

Check OrderSend Order

Send Order Error
Process Order

Error

New Order
Created

Order Error
Message Checked

Order
Checked OK

Order Checked
Rejected

Order Checked
Error

Order
Sent

Order
Received

Order Error
Received

Order Error
Sent

Legend
Interaction ProcessState

Figure 1: Illustration of the use of Roles, States, Processes and Interactions
This example illustrates the three main components of a choreography: Interactions,
Processes and States in an example where a Buyer Role places an order with a Seller Role.
In this example there are just two Interactions:

• SendOrder. The Buyer sends an order to a seller, and

• SendOrderError. The Seller sends the Buyer an order error if there is a problem.
A more detailed explanation follows:

• The Buyer identifies a need to place an order. This results in a NewOrderCreated state
occurring at the Buyer. How this state arrives is beyond the scope of this specification.

• The occurrence of a NewOrderCreated state results in the sending of a SendOrder
message (called an Interaction) from the Buyer to the Seller.

Copyright © 2003, Commerce One, Inc Page 9

 Web Services - Choreography

• Once the SendOrder message is sent, the following state changes occur:
− The Buyer state is changed to OrderSent once the SendOrder message is sent
− The Seller state is changed to OrderReceived once the SendOrder message is

received

• The occurrence of an OrderReceived state at the Seller causes the CheckOrder process to
be executed by the Seller

• Once the CheckOrder process is complete, the Seller state is changed to one of the
following:
− OrderCheckedOK which means that no problems were found with the order and the

Seller can satisfy the order,
− OrderCheckedRejected which means that technically the Order was OK but it could not

be satisfied by the Seller, or
− OrderCheckedError which means there was some technical error with the Order that

prevented the Order from being successfully processed.

• The occurrence of an OrderCheckedError state at the Seller causes the Seller to send a
SendOrderError message to the Buyer

• Once the SendOrderError message is sent, the following state changes occur:
− The Seller state is changed to OrderErrorSent once the SendOrderError message is

sent
− The Buyer state is changed to OrderErrorReceived once the SendOrderError message

is received

• The occurrence of an OrderErrorReceived state at the Buyer causes the
ProcessOrderError process to execute at the Buyer

• Once the ProcessOrderError process is complete, the Buyer state is changed to
OrderErrorMessageChecked.

At this point the choreography is complete.
Note that the XML Choreography definition for this example is provided in Appendix B.1

2.2.3 Interactions, Reliable Messaging and Signals

Interactions describe the sending of a Message from one Role to another that result in a
change of State. In practice, multiple additional messages may be exchanged between the
roles as part of the binding of the choreography to a particular technology. Examples of these
additional messages include:

• Reliable Messaging – These protocols involve the recipient of a message sending an
acknowledgement to indicate the message was received as well as the sender re-sending
the original message if no acknowledgement occurs.

• Signals – These are additional messages sent by the recipient of a message that indicate
the processing of a message, for example that it has been validated or that processing has

Copyright © 2003, Commerce One, Inc Page 10

 Web Services - Choreography

started. They are general-purpose messages in that the same type of message can be
sent as a response to many different Interactions.

Examples of these types of additional messages are shown in the diagram below.

SellerBuyer

Check OrderSend OrderOrder
Sent

Order
Received

Reliable Messaging Ack.

Message Checked OK

Message Processing Started

Message Processing Complete

Signals

Reliable
Messaging

Interaction

SellerBuyer

Check OrderSend OrderOrder
Sent

Order
Received

Reliable Messaging Ack.

Message Checked OK

Message Processing Started

Message Processing Complete

Signals

Reliable
Messaging

Interaction

Figure 2: Interactions, Reliable Messaging and Signals
In this specification, only the first message – in this example the Send Order message – is
defined as part of the Choreography. The other messages are part of the binding to the
choreography to an implementation.

2.2.4 Cooperative Organizations

Internal Processes are executed by a single "Domain of Control" i.e. they are executed under
single management control. Examples of single "Domains of Control" include:

• The processes running on a single hardware system or application

• A set of processes running on different hardware but controlled by a single set of rules
defined in a Process Execution Language and executed by some Business Process
Management software operated by an organization.

Choreographies differ from Internal Processes in that there are multiple Domains of Control.
For example a Buyer would not normally allow a Seller to control how the Buyer's systems
work and vice versa.
The consequence of this is that Choreographies specify how organizations must co-operate
where no single organization is control.

2.2.5 Checking Choreography Progress

As no single organization or process is in control of a choreography it means each participant
or process in a choreography must check that the choreography is progressing correctly by
monitoring the messages that are being exchanged to ensure that they are being exchanged
in the correct sequence.
This is achieved by:

Copyright © 2003, Commerce One, Inc Page 11

 Web Services - Choreography

• Carrying additional metadata in a message that identifies the interaction in a
Choreography that is being sent

• Allowing one Role to inquire of another Role the state that they have reached.
If a Role discovers that a Choreography is not being followed correctly, then successful
completion of the Choreography is not possible. In this case the Role that discovers a
Choreography is not being followed informs the other Role(s) of the error.
(Ed: Note, none of this is defined in this spec but all are needed)

2.2.6 Multi-party Choreographies

Although many Choreographies involve just two organizations or processes, for example a
Buyer and a Seller, this specification allows any number of different organizations or
processes to take part.

2.2.7 Importing Definitions

The Choreography specification defines an Import facility that allows separately defined
Roles, Message Families and Interactions to be imported and reused. This makes it easier to
import choreography definitions defined elsewhere, for example by other organizations or
standards bodies. (Ed: We should probably include Process Definitions as something that can
be imported as well)

2.2.8 Extending Choreography Definitions

The Choreography specification allows one Choreography Definition to reference another
Choreography Definition that it extends. The extension consists of adding additional
Interactions and Processes to an existing Choreography definition. An example of an
"extended" Choreography Definition is given in Appendix B.2 (Ed: Not sure that this type of
extensibility is the ideal way to go. Some type of Choreography composition would probably
be a better alternative)

2.2.9 Choreography Dependencies

The Choreography Specification describes how Choreography Definition can specify that it
can only be used if some earlier Choreography Definition has been followed. For example,
you could specify that an Order Status Inquiry Choreography can only be followed if an earlier
Order Placement Choreography had been followed that the Order Status Inquiry could
reference. An example of this type of Choreography dependency is given in Appendix B.3

Copyright © 2003, Commerce One, Inc Page 12

 Web Services - Choreography

2.3 Semantic Definitions
One of the features of this specification is to allow Choreography reuse by allowing the
Choreography to be bound to solutions implemented by multiple different organizations using
multiple different technologies.
For this to succeed an implementer needs clear definitions of what each part of the
Choreography means otherwise the risk of incorrect implementations will significantly
increase.
To solve this problem, this specification uses a Description element in many places so that the
semantics of the Choreography are clear.
Full and proper use of the Description element is strongly recommended.

3 Choreography XML Structure

The following diagram illustrates the structure of a Choreography definition. It expands on the
ideas of Roles, States, Interactions, Message Families and Processes described earlier.
The cardinality of each element or attribute is indicated as, for example, 0..n. Cardinalities of
1..1 are the default. Note that this is not valid XML and is designed solely to provide an
overview of the structure of a Choreography definition.

<Choreography defaultLanguage="Default language"
 <Description language="The language of the content of the description"0..1
 ref="URL of more detailed documentation"0..1 >0..n
 Description of the choreography in specified language
 </Description>
 <Description language="Alternate language for content of the description"0..1
 ref="URL of more detailed documentation"0..1 >
 Description of the choreography in an alternate language
 </Description>
 ...
 <!-- IMPORTS -->
 <!-- Imports, Roles, Message Families and Interactions - can occur in any order -->
 <Import namespace="URI of namespace of imported definitions"
 location="URL to be used as a hint to retrieve imports" 0..1/>0..n
 <Import ... />
 ...
 <!-- ROLES -->
 <Role name="Name of the role">0..n
 <Description>Semantics of the role</Description>0..n
 <State name="The name of a state the role can take">0..n
 <Description>Semantics of the state</Description>0..n
 </State>
 <State ... >
 ...
 </State>
 ...
 </Role>
 <Role ... >
 ...
 </Role>
 ...

Copyright © 2003, Commerce One, Inc Page 13

 Web Services - Choreography

 <!-- MESSAGE FAMILIES--> <MessageFamily name="Name of the Message Family"
 urn="URN of the Message Family">
 <Description>Semantics of the Message Family</Description>0..n
 </MessageFamily>
 <MessageFamily ... >
 ...
 </MessageFamily>
 ...
 <!-- INTERACTION DEFINITIONS -->
 <InteractionDef name="Name of the Interaction Definition"
 fromRole="Name of Role of sender of message"
 toRole="Name of Role of receiver of message"
 messageFamily="Name of the Message Family in the interaction">0..n
 <Description>Semantics of the Interaction Definition</Description>0..n
 <InteractionEndStates
 fromState="State of the sending Role after message sent"
 toState="State of the receiving Role after message received"/>
 </InteractionDef>0..n
 <InteractionDef ... >
 ...
 </InteractionDef>
 ...
 <!-- CHOREOGRAPHY DEFINITIONS -->
 <!-- One or more Choreography definitions are defined after definitions of roles, message
families and interactions -->
 <ChoreographyDefinition name="Name of the Choreography Definition"
 urn="URN for the Choreography Definition">0..n
 <Description>Semantics/explanation of the Choreography Definition</Description>0..n
 <ExtendsChoreography urn="URN of the Choreography Definition being extended"/>0..1
 <DependsOnChoreography urn="URN of another Choreography Definition of which must have
occurred before this Choreography Definition can start"/>0..1
 <StartEndStates>
 <Start state="Name of a Start State"/>1..n
 <ConditionalEnd state="Name of a Conditional End State"/>0..n
 <CondtionalEnd .../>
 ...
 <End state="Name of an End State"/>0..n
 <End .../>
 ...
 </StartEndStates>
 <-- Interactions and Processes can occur in any order -->
 <Interaction name="Name of an Interaction Definition">0..n
 <Description>Semantics of the Interaction</Description>0..n
 <PreCondition Condition="Boolean combination of states which if present, cause Interaction
to occur."/>
 </Interaction>
 <Process name="Name of the process"
 role="Name of the role that executes the process">0..n
 <Description>Semantics of the process</Description>0..n
 <PreCondition condition="Boolean combination of states which if present, cause the Process
to occur."/>
 <ProcessEndState state="State of the Role after the process is complete"/>1..n
 </Process>
 <Process ... >
 ...
 </Process>
 <Interaction ... >
 ...
 </Interaction>
 ...
 </ChoreographyDefinition>
 <ChoreographyDefinition ...>

Copyright © 2003, Commerce One, Inc Page 14

 Web Services - Choreography

 <!-- Multiple Choreography Definitions are allowed in one Choreography description --> ...
 </ChoreographyDefinition>
 ...
</Choreography>

4 Processing Rules

(Ed: To be completed. Sections to include:

• Validation rules – over and above the schema validation

• How imports work

• How bindings work.
Also need a section on WSDL binding.)

5 Schema Description

This section describes the elements within the Choreography Schema in alphabetical order.

5.1 Choreography
A single Choreography XML document contains definitions of common Roles, Message
Families and Interactions that are used by one or more Choreography Definitions.
Recording more than one Choreography Definition in a Choreography file allows multiple
Choreography Definitions to share the same Roles, Message Families and Interactions.
For example a simple order placement choreography could consist of sending an order from a
Buyer to a Supplier with the Supplier just returning an error if the order could not be
processed.
A more complex example could consist of the same messages but optionally followed by a
ChangeOrder message that allows the Buyer to change the order after it was originally
placed.
Both these variations of placing an order could accept the same Message Families, and use
the same Interactions between the same Roles.
At a high level a Choreography contains:

• A required defaultLanguage attribute that specifies the default language used within
Description elements within the Choreography

• Zero or more Description elements that provide an overall description of the complete
Choreography

• Zero or more of the following elements in any order:

Copyright © 2003, Commerce One, Inc Page 15

 Web Services - Choreography

− An Import element that allows Role, Message Family or Interaction definitions to be
included from a remote location

− A Role element that defines the Roles that take part in the Choreographies being
defined and the States that the Roles are allowed to take

− A MessageFamily element that defines a Message Family that is used within the
Choreography

− An InteractionDef element that defines an interaction between the Roles
A valid Choreography file must have at least two Roles, one Message Family and one
InteractionDef.

5.1.1 Choreography@defaultLanguage

The detaultLanguage attribute is of type xsd:language. It defines the default language to be
used by all the Description elements within the Choreography document unless over-ridden by
the language attribute in a Description element.

5.1.2 Example

The following is an example of a Choreography element.

<Choreography defaultLanguage="us-en" xmlns="..."
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 ...
</Choreography>

5.2 ChoreographyDefinition
The Choreography Definition element defines a single Choreography. The Choreography
Definition element contains:

• A required name attribute that is a unique identifier for the Choreography Definition within
the Choreography. This can be used as an abbreviation when referencing the
Choreography Definition from elsewhere in the Choreography

• A required urn attribute that contains a URI that uniquely identifies the Choreography
Definition

• Zero or more Description elements that SHOULD contain definitions of the semantics of
the Choreography Definition

• An optional ExtendsChoreography element that identifies another Choreography Definition
that this Choreography Definition extends

• An optional DependsOnChoreography element that identifies another Choreography
Definition that must have been followed before this Choreography Definition can be
followed.

Copyright © 2003, Commerce One, Inc Page 16

mailto:Choreography@defaultLanguage

 Web Services - Choreography

• A required StartEndStates element that defines the States that cause the start or indicate
the end of the Choreography Definition

• One or more Interaction and Process elements in any order that indicate the sequence and
conditions of sending and processing of the messages in the Choreography Definition

It is strongly RECOMMENDED that every Choreography Definition should include a clearly
worded Description element to define the semantics.

5.2.1 ChoreographyDefinition@name

The name attribute is of type xsd:ID. It uniquely identifies the Choreography Definition within
the Choreography.

5.2.2 ChoreographyDefinition@urn

The urn attribute is of type xsd:uri. It contains a URI that uniquely identifies the
Choreography Definition.

5.2.3 Example

The following is an example of the ChoreographyDefinition element.

<ChoreographyDefinition name="OrderManagementChoreography1"
 urn="http://example.com/choreographies/OrderManagement1">
 <Description>A simple Order Management Choreography that includes the sending of an order from
a Buyer to a Seller and the Seller returning an error if a problem is found.</Description>
 <StartEndStates>
 ...
 </StartEndStates>
</ChoreographyDefinition>

5.3 ConditionalEnd
The ConditionalEnd element is a child of the StartEndStates element.
The ConditionalEnd element identifies a State that may be the final State for a Role in a
choreography.
For example, if a Buyer sends an Order to a Seller (see Figure 1:) then the Buyer's state
becomes OrderSent. This may be the final state for the Buyer unless the seller discovered a
problem with the Order Message. In this case, OrderSent is a "Conditional" end state for the
Buyer as the state might but need not change. See also the End element.

Copyright © 2003, Commerce One, Inc Page 17

mailto:ChoreographyDefinition@name
mailto:ChoreographyDefinition@urn

 Web Services - Choreography

5.3.1 ConditionalEnd@state

The state attribute is of type xsd:IDref. It contains the value of a name attribute on a State
element of a role.

5.3.2 Example

The following is an example of the ConditionalEnd element.

<ConditionalEnd state="OrderSent"/>

5.4 DependsOnChoreography
The DependsOnChoreography element identifies another Choreography Definition that must
have been followed before this Choreography Definition can be followed.
For example, you can specify that an Order Status Inquiry Choreography can only be followed
if an earlier Order Placement Choreography had been followed that could be referenced. An
example of this type of dependency is given in Appendix B.3

5.4.1 DependsOnChoreography@urn

The urn attribute is of type xsd:uri. It contains the value of a urn attribute on a
Choreography Definition.

5.4.2 Example

The following is an example of the DependsOnChoreography element.

<DependsOnChoreography urn=" http://example.com/choreographies/OrderManagement1"/>

5.5 Description
The Description element is used to provide descriptions and semantics of the following
elements in a Choreography: Choreography, Roles, States, Message Families, Interaction
Definitions, Choreography Definitions, Interactions and Processes.
The Description element contains:

• An optional language attribute that specifies the language used in the element content

• An optional ref attribute that contains a URL to a more detailed human readable
description or specification of the choreography component

Copyright © 2003, Commerce One, Inc Page 18

mailto:ConditionalEnd@state
mailto:DependsOnChoreography@urn

 Web Services - Choreography

• Element content that contains human readable description of the element
If no language attribute is present then the content of the Description element MUST contain a
description in the language specified by the defaultLanguage attribute on the Choreography
element.
Whenever the Description element is included in the definition of a component, it can occur
zero or more times. The inclusion of at least one Description element is strongly
recommended. If more than one Description element is present within a Choreography
component, then each Description element should have a different value for the language
attribute.

5.5.1 Description@language

The language attribute is of type xsd:language. It defines the language to be used by the
element content of the Description element.

5.5.2 Description@ref

The ref attribute is of type xsd:uri. It contains a URL to a more detailed human readable
description or specification of the Choreography component.
If present, the ref attribute should also reference a human readable document in the same
language as the element content.

5.5.3 Example

The following is an example of the Description element.

<Description language="en-uk"
 ref="http://www.example.com/ChoreographySpecs/en-uk/OrderManagement.htm">
 This section contains a set of choreographies for Order Management
</Description>

5.6 End
The End element is a child element of the StartEndStates element.
The End element identifies a state that is a final state for a role in a choreography.
For example, if a Seller processes a SendOrder message received from a Buyer (see Figure
1:) and the SendOrder is valild, then the Seller's state becomes OrderCheckedOK. This is an
"end" state as no further processes are dependent on it. See also the ConditionalEnd
element.

Copyright © 2003, Commerce One, Inc Page 19

mailto:Description@language
mailto:Description@ref

 Web Services - Choreography

5.6.1 End@state

The state attribute is of type xsd:IDref. It contains the value of a name attribute on a State
element of a role.

5.6.2 Example

The following is an example of the End element.

<End state="OrderCheckedOK"/>

5.7 ExtendsChoreography
The ExtendsChoreography element identifies another Choreography Definition that this
Choreography Definition extends. An extended choreography works by:

• Including the Roles, States, Interactions and Processes of the referenced Choreography
Definition

• Specifying additional Roles, States, Interactions and Processes that extend the original
Choreography Definition

• Specifying a new set of StartEndStates that applies to the combined Choreography
Definitions.

An example of this type of dependency is given in Appendix B.2.

5.7.1 ExtendsChoreography@urn

The urn attribute is of type xsd:uri. It contains the value of a urn attribute on a
Choreography Definition.

5.7.2 Example

The following is an example of the ExtendsChoreography element.

<ExtendsChoreography urn="http://example.com/choreographies/OrderManagement1"/>

5.8 Import
The Import element allows Role, Message Family or Interaction Definitions to be imported into
a Choreography. It works in essentially the same way as the Import capability of WSDL. The
Import element contains:

Copyright © 2003, Commerce One, Inc Page 20

mailto:Ebd@state
mailto:ExtendsChoreography@urn

 Web Services - Choreography

• A namespace attribute that identifies the namespace used for the imported definitions, and

• A location attribute that provides a hint for the physical location of the definitions.
(Ed: Issue, how do you handle conflicts when the name attribute on an imported definition is
the same as the name attribute on another imported definition or directly included definition)

5.8.1 Import@namespace

The namespace attribute is of type xsd:uri. It contains the namespace of the imported
definitions.

5.8.2 Import@location

The location attribute is of type xsd:uri. It contains a hint for the physical location of the
definitions.

5.8.3 Example

The following is an example of the Import element.

<Import namespace="http://example.com/choreographies/OrderManagement/Roles"
 location="http://example.com/choreographies/OrderManagement/Roles"/>

5.9 Interaction
An Interaction element describes:

• The sending of a message in a Message Family from one Role to another, and

• The PreConditions that must exist before the Interaction can occur.
An Interaction always results in a change of state of the Roles that send and receive the
message. Interactions do not include additional messages associated with the binding of an
Interaction to an implementation. See section 2.2.3
It contains:

• A required name attribute that identifies the InteractionDefinition that describes the
Message Family of the message being sent as well as the resulting states of the FromRole
and the ToRole of the roles that send and receive the message

• Zero or more Description elements that provide a description of the semantics of the
Interaction.

• A required PreCondition element that defines the conditions that must exist before the
Interaction can occur.

Copyright © 2003, Commerce One, Inc Page 21

mailto:Import@namespace
mailto:Import@location

 Web Services - Choreography

5.9.1 Interaction@name

The urn attribute is of type xsd:uri. It contains the value of a urn attribute on a
Choreography Definition.

5.9.2 Example

The following is an example of the Interaction element.

<Interaction name="SendOrder">
 <Description>Send the order to the seller</Description>
 <PreCondition condition="NewOrderCreated"/>
</Interaction>

5.10 InteractionDef
An InreractionDef element provides a reusable definition of an Interaction – i.e. the sending of
a message from one role to another. It contains:

• The sending and receiving Roles, using the fromRole and toRole attributes

• The Message Family of the message being sent using the messageFamily attribute,

• Zero or more Description elements that provide a description of the semantics of the
Interaction Definition

• The state of the sending and receiving roles using the InteractionEndStates element.

5.10.1 InteractionDef@name

The name attribute is of type xsd:ID. It uniquely identifies the Interaction Definition within the
Choreography.

5.10.2 InteractionDef@fromRole

The fromRole attribute is of type xsd:IDref. It contains a reference to the Role that is
sending the message.

5.10.3 InteractionDef@toRole

The toRole attribute is of type xsd:IDref. It contains a reference to the Role that is to
receive the message.

Copyright © 2003, Commerce One, Inc Page 22

mailto:Interaction@name

 Web Services - Choreography

5.10.4 InteractionDef@messageFamily

The messageFamily attribute is of type xsd:IDref. It contains a reference to the Message
Family that is being sent in the Interaction.

5.10.5 Example

The following is an example of the InteractionDef element.

<InteractionDef name="SendOrder" fromRole="Buyer" toRole="Seller" messageFamily="Order">
 <Description>Send the order From the Buyer to the Seller</Description>
 <InteractionEndStates fromState="OrderSent" toState="OrderReceived"/>
</InteractionDef>

5.11 InteractionEndStates
The InteractionEndStates element defines the state of the fromRole and toRole that result
from the Interaction occurring. It contains:

• A required fromState attribute that defines the state of the fromRole, and

• A required toState attribute that defines the state of the toRole.
(Ed: We might want to extend the idea of InteractionEndStates to include additional "error"
states, such as: TransmissionErrorState, i.e. the Message could not be sent,
DeliveryErrorState, i.e. the message could not be delivered with certainty as, for example, a
reliable messaging acknowledgement was not received, and TimeoutErrorState, i.e. the
expected response message was not received within some time.)

5.11.1 InteractionEndStates@fromState

The fromState attribute is of type xsd:IDref. It contains a reference to the State the
fromRole takes after the message has been sent.
The fromState must be a state that belongs to the fromRole.

5.11.2 InteractionEndStates@toState

The toState attribute is of type xsd:IDref. It contains a reference to the State the toRole
takes after the message has been received.
The toState must be a state that belongs to the toRole.

Copyright © 2003, Commerce One, Inc Page 23

mailto:InteractionEndStates@fromState

 Web Services - Choreography

5.11.3 Example

The following is an example of the InteractionEndStates element.

<InteractionEndStates fromState="OrderSent" toState="OrderReceived"/>

5.12 MessageFamily
A Message Family identifies a set of messages that serve the same purpose. For example a
RosettaNet Order, a UBL Order, an EDI Order, etc are all requests to purchase goods or
services.
Interaction Definitions use Message Families as they allow the same Choreography Definition
to be reused with different detailed message content.
The Message Family element contains:

• A required name attribute that is a unique identifier for the Message Family within the XML
Choreography Document. This can be used as an abbreviation for the Message Family
elsewhere

• A required urn attribute that contains a URI that uniquely identifies the Message Family

• Zero or more Description elements that SHOULD contain definitions of the semantics of
the Message Family.

5.12.1 MessageFamily@name

The name attribute is of type xsd:ID. It uniquely identifies the Message Family within the
Choreography XML document.

5.12.2 MessageFamily@urn

The urn attribute is of type xsd:uri. It contains a URN that uniquely identifies the Message
Family.

5.12.3 Example

The following is an example of the MessageFamily element.

<MessageFamily name="Order" urn="http://example.com/MessageFamilies/OrderManagement/Order">
 <Description>Messages in this family contain information to convey a request to purchase goods
or services</Description>
</MessageFamily>

Copyright © 2003, Commerce One, Inc Page 24

 Web Services - Choreography

5.13 PreCondition
The PreCondition element describes the conditions that must exist before an Interaction or a
Process can occur. It contains a Boolean expression consisting of a combination of States
that must be true. For example "OrderSent and OrderStatusCheckRequired".

(Ed: need to provide a precise grammar of what Boolean operations, parentheses, etc, are
allowed)

5.13.1 PreCondition@condition

The condition attribute is of type xsd:string. It contains a Boolean expression consisting of
a combination of States.

5.13.2 Example

The following is an example of the PreCondition element.

<PreCondition condition="OrderSent and OrderStatusCheckRequired"/>

5.14 Process
A Process element describes an activity or other process carried out by a Role. Processes
occur as a result of a change of State. For example if a Seller's state becomes OrderReceived
as a result of receiving an Order Message, then the Seller would carry out a process to check
the Order.
The Process element contains:

• A required name attribute that identifies the Process within the Choreography

• A required role attribute that identifies the Role that carries out the process

• Zero or more Description elements that provide the semantics of the process

• A required PreCondition element that describes the conditions that must exist before the
process can start, and

• One or more ProcessEndState elements that describe the possible states of the Role once
the Process is complete.

5.14.1 Process@name

The name attribute is of type xsd:ID. It uniquely identifies the Process within the
Choreography XML document.

Copyright © 2003, Commerce One, Inc Page 25

 Web Services - Choreography

5.14.2 Process@role

The role attribute is of tyle xsd:IDref. It identifies the Role that carries out the Process.

5.14.3 Example

The following is an example of the Process element.

<Process name="ProcessOrderStatusRequest" role="Seller">
 <Description>Process the Order Status Request and check if it is OK or in error</Description>
 <PreCondition condition="OrderStatusRequestReceived"/>
 <ProcessEndState state="OrderStatusRequestProcessedOK"/>
 <ProcessEndState state="OrderStatusRequestProcessedError"/>
 ...
</Process>

5.15 ProcessEndState.
The ProcessEndState element defines one of the possible states of a Process once it is
complete. It consists of a single required state attribute.
(Ed: Do we want to extend ProcessEndState to include error states such as
ProcessFailedState – the state of the Choreography if the process failed or crashed, and
ProccessTimeoutError – the state of the Choreography if the process did not respond after
some time.)

5.15.1 ProcessEndState@state

The state attribute is of type xsd:IDref. It references the name attribute on a State element.
The State element referenced must be one of the states of the Role that executes the Process

5.15.2 Example

The following is an example of the ProcessEndState element.

<ProcessEndState state="OrderStatusRequestProcessedError"/>

5.16 Role
A Role identifies the type of activity taken by one of the organizations or processes that are
participating in the Choreography Definition, for example a Buyer or Seller.
A Role consists of:

Copyright © 2003, Commerce One, Inc Page 26

mailto:ProcessEndState@state

 Web Services - Choreography

• A required name attribute that identifies a Role within the Choreography

• Zero or more Description elements that defines the semantics of the Role

• One or more State elements that list the possible states that the Role may take.

5.16.1 Role@name

The name attribute is of type xsd:ID. It uniquely identifies the Role within the Choreography.

5.16.2 Example

The following is an example of a Role element.

<Role name="Seller">
 <Description>This role represents the seller of goods or services</Description>
 <State name="OrderReceived"/>
 <State name="OrderCheckedOK"/>
 ...
</Role>

5.17 Start
The Start element identifies a State that, if it occurs, causes the Choreography to start. There
must be at least one Start State in every Choreography Definition.

5.17.1 Start@state

The state attribute is of type xsd:IDref. It references a name attribute of a State element.

5.17.2 Example

The following is an example of a Start element.

<Start state="NewOrderCreated"/>

5.18 StartEndStates
The StartEndStates element identifies the states that indicate when the Choreography
Definition must start as well as the states that indicate the Choreography Definition is
complete.
It contains:

Copyright © 2003, Commerce One, Inc Page 27

 Web Services - Choreography

• Zero or more Description elements, to provide additional explanation about the Start and
End States

• One or more Start elements that indicate the states that cause the Choreography
Definition to start

• Zero or more ConditionalEnd elements that indicate a state that may be the final state of
the Choreography Definition, and

• Zero or more End elements that indicate a state that, if reached, is a final state of the
Choreography Definition.

Note that there must be at least one ConditionalEnd or End state for each Role that
participates in the Choreography.

5.18.1 Example

The following is an example of the StartEndStates element.

<StartEndStates>
 <Start state="NewOrderCreated"/>
 <ConditionalEnd state="AcceptOrderSent"/>
 <ConditionalEnd state="RejectOrderSent"/>
 ...
 <End state="OrderErrorSent"/>
 <End state="OrderCheckedOK"/>
 ...
</StartEndStates>

5.19 State
A State element describes one of the states or conditions that a Role can take when
participating in a Choreography Definition. For example a Buyer could have the state
OrderSent after they send an order to a Seller.
It contains:

• A name attribute that uniquely identifies the State within the Choreography

• Zero or more Description elements that provide the semantics of the State.

5.19.1 State@name

The name attribute is of type xsd:ID. It uniquely identifies the State within the Choreography.

Copyright © 2003, Commerce One, Inc Page 28

 Web Services - Choreography

5.19.2 Example

The following is an example of the State element.

<State name="OrderSent"/>

6 References

 [RFC2119] IETF RFC 2119. Key words for use in RFCs to Indicate Requirement Levels.
S. Bradner, Harvard University, March 1997 http://www.ietf.org/rfc/rfc2119.txt

To be completed

Appendix A Choreography Schema (Normative)

The definitions for the Choreography Schema follow. The Schema Definition is in six parts:

• Choreography

• Description

• ImportType

• InteractionDefType

• MessageFamilyType

• RoleType
The last three "type" schema definitions are designed so that InteractionDefTypes,
MessageFamilyTypes and RoleTypes can be independently defined and included using
Import definitions.
The DescriptionType is separately defined so that a common Description element definition
can be included in all the Schema definitions.

A.1 Choreography Schema
The following contains the Choreography Schema definition.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by David Burdett (Commerce One) -->
<!-- David Burdett & Daniel Gannon (Commerce One) -->
<!-- Copyright Commerce One Operations Inc. (c) 2003. All rights reserved -->

Copyright © 2003, Commerce One, Inc Page 29

http://www.ietf.org/rfc/rfc2119.txt

 Web Services - Choreography

<xsd:schema
targetNamespace="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefini
tions.xsd"
xmlns="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefinitions.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Schema for Choreographies.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="Description.xsd"/>
 <xsd:include schemaLocation="RoleType.xsd"/>
 <xsd:include schemaLocation="MessageFamilyType.xsd"/>
 <xsd:include schemaLocation="InteractionDefType.xsd"/>
 <xsd:complexType name="ImportType">
 <xsd:annotation>
 <xsd:documentation>Schema for importing external definitions of Roles and Message
Families</xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="location" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
 <xsd:element name="Choreography">
 <xsd:annotation>
 <xsd:documentation>A Choreography can contain one or more Choreography Definitions
describing the interactions that can occur sent between roles.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="ChoreographyType">
 <xsd:attribute name="defaultLanguage" type="xsd:language" use="required">
 <xsd:annotation>
 <xsd:documentation>Default language for all Description elements unless overidden on
the individual element</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="ChoreographyType">
 <xsd:annotation>
 <xsd:documentation>Contains the high level definitions of Roles, Message Families and
Interactions. There must be at least two Roles and one Message Family in a Choreography file.
Role and Message Family definitions can be "imported" from files referenced by an Import
element.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Describes information regarding the whole definition of the complete
choreography file.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Import" type="ImportType" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>Import specifies a file containing either Role, Message Family or
Interaction definitions.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="Role" type="RoleType" minOccurs="0">
 <xsd:annotation>

Copyright © 2003, Commerce One, Inc Page 30

 Web Services - Choreography

 <xsd:documentation>Contains the Roles that can take part in the choreographies.
</xsd:documentation> </xsd:annotation>
 </xsd:element>
 <xsd:element name="MessageFamily" type="MessageFamilyType" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>Contains definitions of the message families, e.g. an Order Message
Family. A Message Family is a general name that can represent messages of different structures
that serve the same purpose. .</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="InteractionDef" type="InteractionDefType" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>An Interaction defines the sending of a message from one role to
another.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 <xsd:element name="ChoreographyDefinition" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Contains definitions of sequences of exchanges of interactions
(messages) between Roles and the processes that create or process them.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="ChoreographyDefinitionType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ChoreographyDefinitionType">
 <xsd:annotation>
 <xsd:documentation>Defines: a) the start and end states of the choreography, b) the
interactions between the roles and c) the processes executed by the roles</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>A narrative that explains the purpose of the Choreography
Definition.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ExtendsChoreography" type="ExtendsChoreographyType" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>Identifies another choreography that this choreography definition
extends. All the interactions and processes in the identified choreography are automatically
included in this choreography.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="DependsOnChoreography" type="DependsOnChoreographyType" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>Identifies another choreography an instance of which must have
occurred before this choreography can start.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="StartEndStates" type="StartEndStatesType">
 <xsd:annotation>
 <xsd:documentation>Identifies the states that causes the Choreography to start and the
states which indicate the Choreography is finished</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:choice maxOccurs="unbounded">

Copyright © 2003, Commerce One, Inc Page 31

 Web Services - Choreography

 <xsd:element name="Interaction"> <xsd:annotation>
 <xsd:documentation>An interaction sends a message between two roles identifying the
MessageFamily exchanged. An interaction only occurs if certain preconditions
exist.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="PreCondition" type="PreConditionType">
 <xsd:annotation>
 <xsd:documentation>Contains a logical expression consisting of a combination of
role states that, if they evaluate to true, then the Interaction should
occur</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Process" type="ProcessType">
 <xsd:annotation>
 <xsd:documentation>Describes a process executed by a role in terms of the preconditions
that must exist before the process can occur and the states that the role may have once the
process is complete</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required">
 <xsd:annotation>
 <xsd:documentation>Is a descriptive name for the choreography. Choreography Names must be
unique within the Choreography File</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="urn" type="xsd:anyURI" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="ExtendsChoreographyType">
 <xsd:annotation>
 <xsd:documentation>Identifies a choreography that this choreography
extends</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="urn" type="xsd:anyURI" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="DependsOnChoreographyType">
 <xsd:annotation>
 <xsd:documentation>Identifies a choreography that an instance of this choreography is
dependent on</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="urn" type="xsd:anyURI" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="StartEndStatesType">
 <xsd:annotation>
 <xsd:documentation> Defines the start and end states of a Choreography
Definition</xsd:documentation>
 </xsd:annotation>

Copyright © 2003, Commerce One, Inc Page 32

 Web Services - Choreography

 <xsd:sequence> <xsd:element name="Description" type="DescriptionType" minOccurs="0" max
="Start" ma

Occurs="unbounded"/>
 <xsd:element name xOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Identifies a state which, if it exists, will trigger the start of the
choreography</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="state" type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ConditionalEnd" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Identifies a state which MAY be a final or end state of the
choreography. Additional interactions or processes can occur once this state is reached but need
not.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="state" type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="End" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Identifies a state which is a final or end state of the choreography.
No additional interactrions or process can validly occur once this state is
reached.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="state" type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ProcessType">
 <xsd:annotation>
 <xsd:documentation>Defines a process</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Describes the process executed by the role</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="PreCondition">
 <xsd:annotation>
 <xsd:documentation>Contains a logical expression consisting of a combination of role
states that, if they evaluate to true, then the Process should be executed by the
role</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="PreConditionType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ProcessEndState" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>References an internal state the role that executed the process can
have once the process is complete</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Description" minOccurs="0" maxOccurs="unbounded"/>

Copyright © 2003, Commerce One, Inc Page 33

 Web Services - Choreography

 </xsd:sequence> <xsd:attribute name="state" type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required"/>
 <xsd:attribute name="role" type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="PreConditionType">
 <xsd:annotation>
 <xsd:documentation>Describes the pre-conditions that apply to an Interaction or
Process</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="condition" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:schema>

A.2 Description Schema
he following contains the Description Schema.

T

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by David Burdett (Commerce One) -->
<!-- Copyright Commerce One Operations Inc. (c) 2003. All rights reserved -->
<xsd:schema
targetNamespace="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefini
tions.xsd"
xmlns="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefinitions.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xsd:complexType name="DescriptionType" mixed="true">
 <xsd:annotation>
 <xsd:documentation>Describes a component of the Choreography</xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="language" type="xsd:language" use="optional">
 <xsd:annotation>
 <xsd:documentation>Overides the default language for the content of the
Description</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="ref" type="xsd:anyURI" use="optional">
 <xsd:annotation>
 <xsd:documentation>Contains the URL that can be resolved to discover further information
about what is being described</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
</xsd:schema>

Copyright © 2003, Commerce One, Inc Page 34

 Web Services - Choreography

A.3 ImportType Schema
The following contains the ImportType Schema.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by Daniel Gannon (Commerce One) -->
<!-- Copyright Commerce One Operations Inc. (c) 2003. All rights reserved -->
<xsd:schema
targetNamespace="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefini
tions.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="com.commerceone.schemas/choreography/import/importtype.xsd"
elementFormDefault="qualified">
 <xsd:complexType name="ImportType">
 <xsd:annotation>
 <xsd:documentation>Schena for importing external definitions</xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="location" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
</xsd:schema>

A.4 InteractionDefType Schema
The following contains the InteractionDefType Schema.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by David Burdett (Commerce One) -->
<!-- Copyright Commerce One Operations Inc. (c) 2003. All rights reserved -->
<xsd:schema
targetNamespace="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefini
tions.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefinitions.xsd"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xsd:include schemaLocation="Description.xsd"/>
 <xsd:element name="InteractionDefList">
 <xsd:annotation>
 <xsd:documentation>A list of Interaction Definitions in a Choreography that may be Imported
into a Choreography Definition</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="InteractionDef" type="InteractionDefType" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Describes an Interaction in a Choreography. </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="InteractionDefType">
 <xsd:annotation>
 <xsd:documentation>Defines an interaction between two roles.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="InteractionEndStates">
 <xsd:annotation>

Copyright © 2003, Commerce One, Inc Page 35

 Web Services - Choreography

 <xsd:documentation>Defines the states that the from and to roles have once the
interaction is complete</xsd:documentation> </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="fromState" type="xsd:IDREF" use="required"/>
 <xsd:attribute name="toState" type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required">
 <xsd:annotation>
 <xsd:documentation>This is the identifier for the interaction. It must be unique within a
Choreography File</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="fromRole" type="xsd:IDREF" use="required">
 <xsd:annotation>
 <xsd:documentation>Indicates the role that is sending the message by referencing the Name
attribute for the role</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="toRole" type="xsd:IDREF" use="required">
 <xsd:annotation>
 <xsd:documentation>Indicates the role that is receiving the message by referenceing the
Name attribute for the Role</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="messageFamily" type="xsd:IDREF" use="required">
 <xsd:annotation>
 <xsd:documentation>Indicates the MessageFamily that is used in the interaction by
referencing the name attribute of the Message Family</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
</xsd:schema>

A.5 MessageFamilyType Schema
The following contains the MessageFamilyType Schema.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by David Burdett (Commerce One) -->
<!-- Copyright Commerce One Operations Inc. (c) 2003. All rights reserved -->
<xsd:schema
targetNamespace="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefini
tions.xsd"
xmlns="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefinitions.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xsd:include schemaLocation="Description.xsd"/>
 <xsd:element name="MessageFamilyList">
 <xsd:annotation>
 <xsd:documentation>A list of Message Families in a Choreography that may be Imported into a
Choreography Definition</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="MessageFamily" type="MessageFamilyType">
 <xsd:annotation>

Copyright © 2003, Commerce One, Inc Page 36

 Web Services - Choreography

 <xsd:documentation>A Message Family is used to group together messages that serve a
similar purpose. For example various different XML schema that each define an order would all be
part of the "Order" Message Family</xsd:documentation> </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="MessageFamilyType">
 <xsd:annotation>
 <xsd:documentation>The Message Family Type defines the structure of the Message
Family</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This describes information regarding the MessageFamily, and what type
of information is included in the message</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required">
 <xsd:annotation>
 <xsd:documentation>This is a descriptive name of the MessageFamily. It must be unique
within all Message Families within the Choreography.</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="urn" type="xsd:anyURI" use="required">
 <xsd:annotation>
 <xsd:documentation>This is the unique identifier for this MessageFamily</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
</xsd:schema>

A.6 RoleType Schema
The following contains the RoleType Schema.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by David Burdett (Commerce One) -->
<!-- Copyright Commerce One Operations Inc. (c) 2003. All rights reserved -->
<xsd:schema
targetNamespace="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefini
tions.xsd"
xmlns="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefinitions.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xsd:include schemaLocation="Description.xsd"/>
 <xsd:element name="RoleList">
 <xsd:annotation>
 <xsd:documentation>A list of Roles in a Choreography that may be Imported into a
Choreography Definition</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Role" type="RoleType" maxOccurs="unbounded">
 <xsd:annotation>

Copyright © 2003, Commerce One, Inc Page 37

 Web Services - Choreography

 <xsd:documentation>Describes a Role in a Choreography Definition and the states it may
possess. </xsd:documentation> </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="RoleType">
 <xsd:annotation>
 <xsd:documentation>Contains the structure of the Role</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="DescriptionType" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>Describes the role, e.g. a buyer role is an organization or individual
that purchases goods or services</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="State" type="StateType" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>A state identifies the progress that has been reached in a
choreography. States arise as a result of sending, receiving or processing a
message.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required">
 <xsd:annotation>
 <xsd:documentation>Name is a descriptive name for the role, e.g Buyer. RoleNames MUST be
unique within a Choreography</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
 <xsd:complexType name="StateType">
 <xsd:sequence minOccurs="0">
 <xsd:element name="Description" type="DescriptionType"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required">
 <xsd:annotation>
 <xsd:documentation>The names of a state must be unique within a Choreography
File.</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>
</xsd:schema>

Copyright © 2003, Commerce One, Inc Page 38

 Web Services - Choreography

Appendix B Example Choreography Definition
(non-normative)

This appendix provides an example of a Choreography. It consists of four related
Choreography Definitions in one XML document.
The following diagrams illustrate each of these choreographies using the following
conventions.

Legend

Interaction

Process State Other
Choreography

Legend

Interaction

Process State Other
Choreography

Note that these conventions are purely illustrative. Other alternative graphical representations
of the choreographies may be used.

B.1 Order Management 1

SellerBuyer

Check OrderSend Order

Send Order Error
Process Order

Error

New Order
Created

Order Error
Message Checked

Order
Checked OK

Order Checked
Rejected

Order Checked
Error

Order
Sent

Order
Received

Order Error
Received

Order Error
Sent

Figure 3: Order Create and Error Response
Order Management 1 consists of the sending of a single Order with an Error Message sent in
reply only if a problem is detected.

Copyright © 2003, Commerce One, Inc Page 39

 Web Services - Choreography

B.2 Order Management 2

SellerBuyer

Send Accept Order

Send Reject Order

Check
Accept Order

Send Accept Order Error
Process Accept

Order Error

Accept Order
Checked OK

Accept Order
Checked Error

Order
Checked OK

Order Checked
Rejected

Accept Order
Error Checked

Accept Order
Received

Accept Order
Sent

Reject Order
Received

Reject Order
Sent

Accept Order
Error Sent

Accept Order
Error Received

Check
Reject Order

Reject Order
Checked OK

Reject Order
Checked Error

Send Reject Order Error
Process Reject

Order Error
Reject Order

Error Checked
Reject Order

Error Sent
Reject Order

Error Received

Order
Management

1

SellerBuyer

Send Accept Order

Send Reject Order

Check
Accept Order

Send Accept Order Error
Process Accept

Order Error

Accept Order
Checked OK

Accept Order
Checked Error

Order
Checked OK

Order Checked
Rejected

Accept Order
Error Checked

Accept Order
Received

Accept Order
Sent

Reject Order
Received

Reject Order
Sent

Accept Order
Error Sent

Accept Order
Error Received

Check
Reject Order

Reject Order
Checked OK

Reject Order
Checked Error

Send Reject Order Error
Process Reject

Order Error
Reject Order

Error Checked
Reject Order

Error Sent
Reject Order

Error Received

Order
Management

1

Figure 4: Order Create and Single Order Response – Extends Order Management 1
Order Management 2 "extends" Order Management 1 by adding the sending of either an
“Accept Order” or a “Reject Order” message and associated error messages. As it is an
“extension” it means that all the messages in Order Management 1 are included by reference.

B.3 Check Order Status

SellerBuyer

AND Process Order
Status RequestSend Status Request

Order Status
Check Required

Order
Sent

Order Status
Request Received

Order Status
Request Sent

Order Status
Request

Processed OK
Send Order Status Response

Order Status
Response
Received

Order Status
Response Sent

Order Status
Request

Processed Error

Process Order
Status

Response

Order Status
Response
Processed

Order Status
Error Processed Send Order Status ErrorOrder Status

Error Received
Order Status

Error Sent

Process Order
Status Error

Order
Management

1 or 2

Copyright © 2003, Commerce One, Inc Page 40

 Web Services - Choreography

Figure 5: Check Order Status – Depends on Order Management 1 or Order Management
2

Check Order Status is a separate Choreography that is “dependent” on Order Management 1
or Order Management 2 choreography being followed earlier. It is used to determine the
status of an order. As it is “dependent” on another choreography, it means that it can only be
followed if an instance of the other choreography has already occurred.

B.4 Resend Order Response

SellerBuyer SellerBuyer

AND
Process Resend
Order Response

RequestResend Order Response Request
Order Response

Not Received

Order
Sent

Resend Order
Response

Request Sent

Resend Accept
Order

Resend Order
Response

Request Error

Order
Management

2

Resend Order
Response Error

Processed
Resend Order Response Error

Resend Order
Response Error

Received

Resend Order
Response Error

Sent

Process
Resend Order

Response Error

Send Accept Order

Send Reject Order

Send Order Error

Accept Order
Received

Accept Order
Sent

Reject Order
Received

Reject Order
Sent

Order Error
Received

Order Error
Sent

Resend Reject
Order

Resend Order
Error

Order
Management

2

Resend Order
Response

Request Received

Figure 6: Resend Order Response – depends on Order Management 2
Resend Order Response is also a dependent Choreography that depends on Order
Management 2. It is used to request the resending of the message sent by the seller in
response to the original order.

B.5 Example XML
This section contains sample XML for the four related choreographies described above.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by David Burdett (Commerce One) -->
<!-- Copyright Commerce One Operations Inc, (c) 2003. All rights reserved. -->

Copyright © 2003, Commerce One, Inc Page 41

 Web Services - Choreography

<Choreography defaultLanguage="us-en"
xmlns="com.commerceone.schemas/choreography/choreographydefinitions/choreographydefinitions.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="com.commerceone.schemas/choreography/choreographydefinitions/choreographydef
initions.xsd C:\XML\TestSchemas\Schemas\CHOREO~1\Choreography.xsd">
 <Description>This section contains a set of choreographies for Order Management</Description>
 <!-- ROLES -->
 <Role name="Buyer">
 <Description>This role represents the purchaser of goods or services</Description>
 <!-- Order Placement States -->
 <State name="NewOrderCreated">
 <Description>Each definition of a state can have a description which can be used to
precisely explain the semantics of the state. They have been omitted from this
example.</Description>
 </State>
 <State name="OrderSent"/>
 <State name="AcceptOrderReceived"/>
 <State name="AcceptOrderCheckedOK"/>
 <State name="AcceptOrderCheckedError"/>
 <State name="AcceptOrderErrorSent"/>
 <State name="RejectOrderReceived"/>
 <State name="RejectOrderCheckedOK"/>
 <State name="RejectOrderCheckedError"/>
 <State name="RejectOrderErrorSent"/>
 <State name="OrderErrorReceived"/>
 <State name="OrderErrorMessageChecked"/>
 <!-- Order Status States -->
 <State name="OrderStatusCheckRequired"/>
 <State name="OrderStatusRequestSent"/>
 <State name="OrderStatusResponseReceived"/>
 <State name="OrderStatusResponseProcessed"/>
 <State name="OrderStatusErrorReceived"/>
 <State name="OrderStatusErrorProcessed"/>
 <!-- Resend Order Response States -->
 <State name="OrderResponseNotReceived"/>
 <State name="ResendOrderResponseRequestSent"/>
 <State name="ResendOrderResponseErrorReceived"/>
 <State name="ResendOrderResponseErrorProcessed"/>
 </Role>
 <Role name="Seller">
 <Description>This role represents the seller of goods or services</Description>
 <!-- Order Placement States -->
 <State name="OrderReceived"/>
 <State name="OrderCheckedOK"/>
 <State name="AcceptOrderSent"/>
 <State name="AcceptOrderErrorReceived"/>
 <State name="AcceptOrderErrorChecked"/>
 <State name="OrderCheckedRejected"/>
 <State name="RejectOrderSent"/>
 <State name="RejectOrderErrorReceived"/>
 <State name="RejectOrderErrorChecked"/>
 <State name="OrderCheckedError"/>
 <State name="OrderErrorSent"/>
 <!-- Order Status States -->
 <State name="OrderStatusRequestReceived"/>
 <State name="OrderStatusRequestProcessedOK"/>
 <State name="OrderStatusResponseSent"/>
 <State name="OrderStatusRequestProcessedError"/>
 <State name="OrderStatusErrorSent"/>
 <!-- Resend Order Response States -->
 <State name="ResendOrderResponseRequestReceived"/>
 <State name="ResendAcceptOrder"/>

Copyright © 2003, Commerce One, Inc Page 42

 Web Services - Choreography

 <State name="ResendRejectOrder"/> <State name="ResendOrderError"/>
 <State name="ResendOrderResponseRequestError"/>
 <State name="ResendOrderResponseErrorSent"/>
 </Role>
 <!-- MESSAGES-->
 <!-- ORDER MANAGEMENT MESSAGES -->
 <MessageFamily name="Order"
urn="rrn:org.xcbl/messagefamilies/xcblmessagefamilies/v1_0/OrderMessageFamily.xml">
 <Description>Messages in this family contain information to convey a request to purchase goods
or services</Description>
 </MessageFamily>
 <MessageFamily name="OrderResponse"
urn="rrn:org.xcbl/messagefamilies/xcblmessagefamilies/v1_0/OrderResponseMessageFamily.xml">
 <Description>Messages in this family contain information that is a response to a request to
purchase goods or services</Description>
 </MessageFamily>
 <!-- ORDER STATUS MESSAGES -->
 <MessageFamily name="OrderStatusRequest"
urn="rrn:org.xcbl/messagefamilies/xcblmessagefamilies/v1_0/OrderStatusRequestMessageFamily.xml">
 <Description>Messages in this family request the status of the processing of an Order Message
sent earlier</Description>
 </MessageFamily>
 <MessageFamily name="OrderStatusResponse"
urn="rrn:org.xcbl/messagefamilies/xcblmessagefamilies/v1_0/OrderStatusResponseMessageFamily.xml"
>
 <Description>Messages in this family provide information on the status of the processing of an
Order Message sent earlier</Description>
 </MessageFamily>
 <!-- RESEND AN EARLIER REQUEST MESSAGES -->
 <MessageFamily name="ResendMessageRequest"
urn="rrn:org.xcbl/messagefamilies/xcblmessagefamilies/v1_0/ResendMessageRequestMessageFamily.xml
">
 <Description>Messages in this family request the resending of a message sent
earlier</Description>
 </MessageFamily>
 <!-- ERROR MESSAGES -->
 <MessageFamily name="ErrorMessage"
urn="rrn:org.xcbl/messagefamilies/xcblmessagefamilies/v1_0/ErrorResponseMessageFamily.xml">
 <Description>Messages in this family report errors detected in other messages which prevent
that message from being proccessed properly</Description>
 </MessageFamily>
 <!-- INTERACTION DEFINITIONS -->
 <!-- ORDER MANAGEMENT INTERACTIONS -->
 <InteractionDef name="SendOrder" fromRole="Buyer" toRole="Seller" messageFamily="Order">
 <Description>Send the order From the Buyer to the Seller</Description>
 <InteractionEndStates fromState="OrderSent" toState="OrderReceived"/>
 </InteractionDef>
 <InteractionDef name="SendAcceptOrder" fromRole="Seller" toRole="Buyer"
messageFamily="OrderResponse">
 <Description>The order is OK - send Order Response</Description>
 <InteractionEndStates fromState="AcceptOrderSent" toState="AcceptOrderReceived"/>
 </InteractionDef>
 <InteractionDef name="SendRejectOrder" fromRole="Seller" toRole="Buyer"
messageFamily="OrderResponse">
 <Description>The order was rejected - send Order Response</Description>
 <InteractionEndStates fromState="RejectOrderSent" toState="RejectOrderReceived"/>
 </InteractionDef>
 <InteractionDef name="SendOrderError" fromRole="Seller" toRole="Buyer"
messageFamily="ErrorMessage">
 <Description>The order was in error - send Error Message</Description>
 <InteractionEndStates fromState="OrderErrorSent" toState="OrderErrorReceived"/>
 </InteractionDef>

Copyright © 2003, Commerce One, Inc Page 43

 Web Services - Choreography

 <InteractionDef name="SendAcceptOrderError" fromRole="Buyer" toRole="Seller"
messageFamily="ErrorMessage"> <Description>Accept Order Response in error - send Error Message</Description>
 <InteractionEndStates fromState="AcceptOrderErrorSent" toState="AcceptOrderErrorReceived"/>
 </InteractionDef>
 <InteractionDef name="SendRejectOrderError" fromRole="Buyer" toRole="Seller"
messageFamily="ErrorMessage">
 <Description>Reject Order Response in error - send Error Message</Description>
 <InteractionEndStates fromState="RejectOrderErrorSent" toState="RejectOrderErrorReceived"/>
 </InteractionDef>
 <!-- ORDER STATUS REQUEST INTERACTIONS -->
 <InteractionDef name="SendOrderStatusRequest" fromRole="Buyer" toRole="Seller"
messageFamily="OrderStatusRequest">
 <InteractionEndStates fromState="OrderStatusRequestSent"
toState="OrderStatusRequestReceived"/>
 </InteractionDef>
 <InteractionDef name="SendOrderStatusResponse" fromRole="Seller" toRole="Buyer"
messageFamily="OrderStatusResponse">
 <InteractionEndStates fromState="OrderStatusResponseSent"
toState="OrderStatusResponseReceived"/>
 </InteractionDef>
 <InteractionDef name="SendOrderStatusError" fromRole="Seller" toRole="Buyer"
messageFamily="ErrorMessage">
 <InteractionEndStates fromState="OrderStatusErrorSent" toState="OrderStatusErrorReceived"/>
 </InteractionDef>
 <!-- RESEND ORDER RESPONSE INTERACTIONS -->
 <InteractionDef name="ResendOrderResponseRequest" fromRole="Buyer" toRole="Seller"
messageFamily="ResendMessageRequest">
 <InteractionEndStates fromState="ResendOrderResponseRequestSent"
toState="ResendOrderResponseRequestReceived"/>
 </InteractionDef>
 <InteractionDef name="ResendOrderResponseError" fromRole="Seller" toRole="Buyer"
messageFamily="ErrorMessage">
 <InteractionEndStates fromState="ResendOrderResponseErrorSent"
toState="ResendOrderResponseErrorReceived"/>
 </InteractionDef>
 <!-- CHOREOGRAPHY DEFINITIONS -->
 <!-- ORDER MANAGEMENT 1 -->
 <ChoreographyDefinition name="OrderManagementChoreography1"
urn="rrn:org.xcbl:choreographies/ordermanagement/v1_0/ordermanagementchoreography1.xml">
 <Description>In this Choreography Definition, a Buyer sends an Order to a Seller. The Seller
returns an Error Message, if the Order cannot be processed</Description>
 <StartEndStates>
 <Start state="NewOrderCreated"/>
 <ConditionalEnd state="OrderSent"/>
 <End state="OrderCheckedOK"/>
 <End state="OrderCheckedRejected"/>
 <End state="OrderErrorSent"/>
 <End state="OrderErrorMessageChecked"/>
 </StartEndStates>
 <Interaction name="SendOrder">
 <Description>Send the order to the seller</Description>
 <PreCondition condition="NewOrderCreated"/>
 </Interaction>
 <Process name="CheckOrder" role="Seller">
 <Description>The seller checks the order.</Description>
 <PreCondition condition="OrderReceived"/>
 <ProcessEndState state="OrderCheckedOK"/>
 <ProcessEndState state="OrderCheckedRejected"/>
 <ProcessEndState state="OrderCheckedError"/>
 </Process>
 <Interaction name="SendOrderError">
 <Description>The order was in error - send an error</Description>

Copyright © 2003, Commerce One, Inc Page 44

 Web Services - Choreography

 <PreCondition condition="OrderCheckedError"/> </Interaction>
 <Process name="ProcessOrderErrorMessage" role="Buyer">
 <Description>Buyer Processes Order Error Message</Description>
 <PreCondition condition="OrderErrorReceived"/>
 <ProcessEndState state="OrderErrorMessageChecked"/>
 </Process>
 </ChoreographyDefinition>
 <!-- ORDER MANAGEMENT 2 -->
 <ChoreographyDefinition name="OrderManagementChoreography2"
urn="rrn:org.xcbl:choreographies/ordermanagement/v1_0/ordermanagementchoreography1.xml">
 <Description>This choreography allows a Buyer to send an Order message to a Seller and receive
either an Order Response Message or an Error Message in return. If the Order Response Message is
in error, then the Buyer sends an Error Message to the Seller.</Description>
 <ExtendsChoreography
urn="rrn:org.xcbl:choreographies/ordermanagement/v1_0/ordermanagementchoreography1.xml"/>
 <StartEndStates>
 <Start state="NewOrderCreated"/>
 <ConditionalEnd state="AcceptOrderSent"/>
 <ConditionalEnd state="RejectOrderSent"/>
 <End state="OrderErrorSent"/>
 <End state="OrderCheckedOK"/>
 <End state="OrderCheckedRejected"/>
 <End state="RejectOrderErrorSent"/>
 <End state="AcceptOrderErrorSent"/>
 <End state="RejectOrderErrorChecked"/>
 <End state="AcceptOrderErrorChecked"/>
 </StartEndStates>
 <Interaction name="SendAcceptOrder">
 <Description>Accept the Order</Description>
 <PreCondition condition="OrderCheckedOK"/>
 </Interaction>
 <Interaction name="SendRejectOrder">
 <Description>Reject the Order</Description>
 <PreCondition condition="OrderCheckedRejected"/>
 </Interaction>
 <Process name="CheckAcceptOrder" role="Buyer">
 <Description>Buyer Checks Accept Order Response</Description>
 <PreCondition condition="AcceptOrderReceived"/>
 <ProcessEndState state="AcceptOrderCheckedOK"/>
 <ProcessEndState state="AcceptOrderCheckedError"/>
 </Process>
 <Process name="CheckRejectOrder" role="Buyer">
 <Description>Buyer Checks Reject Order Response</Description>
 <PreCondition condition="RejectOrderReceived"/>
 <ProcessEndState state="RejectOrderCheckedOK"/>
 <ProcessEndState state="RejectOrderCheckedError"/>
 </Process>
 <Interaction name="SendAcceptOrderError">
 <PreCondition condition="CheckAcceptOrderError"/>
 </Interaction>
 <Process name="ProcessAcceptOrderError" role="Seller">
 <Description>Seller processes the Send Accept Order Error Message</Description>
 <PreCondition condition="AcceptOrderErrorReceived"/>
 <ProcessEndState state="AcceptOrderErrorChecked"/>
 </Process>
 <Interaction name="SendRejectOrderError">
 <PreCondition condition="CheckRejectOrderError"/>
 </Interaction>
 <Process name="ProcessRejectOrderError" role="Seller">
 <Description>Seller processes the Send Reject Order Error Message</Description>
 <PreCondition condition="RejectOrderErrorReceived"/>
 <ProcessEndState state="RejectOrderErrorChecked"/>

Copyright © 2003, Commerce One, Inc Page 45

 Web Services - Choreography

 </Process> </ChoreographyDefinition>
 <!-- CHECK ORDER STATUS-->
 <ChoreographyDefinition name="OrderManagementCheckOrderStatus"
urn="rrn:org.xcbl:choreographies/ordermanagement/v1_0/ordermanagementcheckorderstatus.xml">
 <Description>This choreography allows a Buyer to check on the status of the processing of an
order sent to the seller earlier.</Description>
 <DependsOnChoreography
urn="rrn:org.xcbl:choreographies/ordermanagement/v1_0/ordermanagementchoreography1.xml"/>
 <StartEndStates>
 <Start state="OrderStatusCheckRequired"/>
 <End state="OrderStatusResponseSent"/>
 <End state="OrderStatusErrorSent"/>
 <End state="OrderStatusResponseProcessed"/>
 <End state="OrderStatusErrorProcessed"/>
 </StartEndStates>
 <Interaction name="SendOrderStatusRequest">
 <Description>The sending of an Order Status is also dependent on an Order being
sent.</Description>
 <PreCondition condition="OrderSent and OrderStatusCheckRequired"/>
 </Interaction>
 <Process name="ProcessOrderStatusRequest" role="Seller">
 <PreCondition condition="OrderStatusRequestReceived"/>
 <ProcessEndState state="OrderStatusRequestProcessedOK"/>
 <ProcessEndState state="OrderStatusRequestProcessedError"/>
 </Process>
 <Interaction name="SendOrderStatusResponse">
 <PreCondition condition="OrderStatusRequestProcessedOK"/>
 </Interaction>
 <Interaction name="SendOrderStatusError">
 <PreCondition condition="OrderStatusRequestProcessedError"/>
 </Interaction>
 <Process name="ProcessOrderStatusResponse" role="Buyer">
 <PreCondition condition="OrderStatusResponseReceived"/>
 <ProcessEndState state="OrderStatusResponseProcessed"/>
 </Process>
 <Process name="ProcessOrderStatusError" role="Buyer">
 <PreCondition condition="OrderStatusErrorReceived"/>
 <ProcessEndState state="OrderStatusErrorProcessed"/>
 </Process>
 </ChoreographyDefinition>
 <!-- RESEND ORDER RESPONSE-->
 <ChoreographyDefinition
urn="rrn:org.xcbl:choreographies/ordermanagement/v1_0/ordermanagementrecovery.xml"
name="OrderManagementRecovery">
 <Description>This choreography allows a Buyer to recover the processing of an order if a
message is not received. It includes: checking the state of the processing at the seller
followed by a request to resend the latest order information.</Description>

 <DependsOnChoreography
urn="rrn:org.xcbl:choreographies/ordermanagement/v1_0/ordermanagementchoreography2.xml"/>
 <StartEndStates>
 <Start state="OrderResponseNotReceived"/>
 <End state="AcceptOrderSent"/>
 <End state="RejectOrderSent"/>
 <End state="OrderErrorSent"/>
 <End state="ResendOrderResponseErrorSent"/>
 <End state="ResendOrderResponseErrorProcessed"/>
 </StartEndStates>
 <Interaction name="ResendOrderResponseRequest">
 <Description>This interaction is dependent on an order being sent with no message received
in response</Description>
 <PreCondition condition="OrderSent and OrderResponseNotReceived"/>

Copyright © 2003, Commerce One, Inc Page 46

 Web Services - Choreography

 </Interaction> <Process name="ProcessResendOrderResponseRequest" role="Seller">
 <PreCondition condition="ResendOrderResponseRequestReceived"/>
 <ProcessEndState state="ResendAcceptOrder"/>
 <ProcessEndState state="ResendRejectOrder"/>
 <ProcessEndState state="ResendOrderError"/>
 <ProcessEndState state="ResendOrderResponseRequestError"/>
 </Process>
 <Interaction name="SendAcceptOrder">
 <PreCondition condition="ResendAcceptOrder"/>
 </Interaction>
 <Interaction name="SendRejectOrder">
 <PreCondition condition="ResendRejectOrder"/>
 </Interaction>
 <Interaction name="SendOrderError">
 <PreCondition condition="ResendOrderError"/>
 </Interaction>
 <Interaction name="ResendOrderResponseError">
 <PreCondition condition="ResendOrderResponseRequestError"/>
 </Interaction>
 </ChoreographyDefinition>
</Choreography>

Copyright © 2003, Commerce One, Inc Page 47

	Introduction
	Notational Conventions
	Namespaces
	What's missing
	Contents of this Document

	Overview
	The Problem
	Features
	Reusability of Choreography Definitions
	State Driven Choreography Definitions
	Interactions, Reliable Messaging and Signals
	Cooperative Organizations
	Checking Choreography Progress
	Multi-party Choreographies
	Importing Definitions
	Extending Choreography Definitions
	Choreography Dependencies

	Semantic Definitions

	Choreography XML Structure
	Processing Rules
	Schema Description
	Choreography
	Choreography@defaultLanguage
	Example

	ChoreographyDefinition
	ChoreographyDefinition@name
	ChoreographyDefinition@urn
	Example

	ConditionalEnd
	ConditionalEnd@state
	Example

	DependsOnChoreography
	DependsOnChoreography@urn
	Example

	Description
	Description@language
	Description@ref
	Example

	End
	End@state
	Example

	ExtendsChoreography
	ExtendsChoreography@urn
	Example

	Import
	Import@namespace
	Import@location
	Example

	Interaction
	Interaction@name
	Example

	InteractionDef
	InteractionDef@name
	InteractionDef@fromRole
	InteractionDef@toRole
	InteractionDef@messageFamily
	Example

	InteractionEndStates
	InteractionEndStates@fromState
	InteractionEndStates@toState
	Example

	MessageFamily
	MessageFamily@name
	MessageFamily@urn
	Example

	PreCondition
	PreCondition@condition
	Example

	Process
	Process@name
	Process@role
	Example

	ProcessEndState.
	ProcessEndState@state
	Example

	Role
	Role@name
	Example

	Start
	Start@state
	Example

	StartEndStates
	Example

	State
	State@name
	Example

	References

