

AUTO-ID CENTER

Physical Markup Language Version 1.0

David Brock, Director Auto-ID Center Massachusetts Institute of Technology University of Cambridge

AUTO-ID CENTER

Objective of PML

Common language for describing physical objects, systems, processes and environments.

Generality

- Addresses largest numbers of industries
- Encourages software development
- Describes common characteristics of physical objects
- Encourages inter-industry cooperation and information transfer.

Simplicity

• Simple standards encourage adoption, reduce learning curves and increase audience.

Pathway

- •Rather than a single standard, PML will proceed through a series of planned iterations.
- A complex language will limit learning and a simple language would be insufficient.
- A series of increasing sophisticated releases will allow familiarity to grow with capability.

Timestamps

- Static, temporal and dynamic are time dependent views of generic data.
- Time stamps, durations and frequencies will be provided for all data elements in the Physical Markup Language.

Nomenclature

- PML will avoid verbose names for data types.
- Efficient mnemonics designed by and for software developers.

Robust

- PML will operate effectively with incomplete or intermittent information.
- The language will have to support alternatives and approximations to inaccessible data

Units

- PML will adopt a single standard for weights and measures.
- Translation software in both the PML editors and viewers will provide the necessary conversion to familiar standards.

Syntax

- PML will use the Extensible Markup Language (XML) as the method to store and transmit data.
- General XML utilities, viewers and validating software exist to parse, modify and access XML files.

PML Version o.1 beta Field Trial

Table of Contents

1	Measurements	6	Image
1.1	VAL Element	6.1	IMG Element
2	Date	7	Datum
2.1	DATE Element	7.1	DATUM
3	Location	Element	
3.1	LOC Element	8	Reading
4	Ownership	8.1	READ Element
4.1	OWNER	9	Node
Elemen ^a		9.1	NODE Element
5	ePC	10	PML
5.1	EPC Element	10.1	PML Element

Single representation

PML uses a single representation for information elements

Exact not abstract representation

• PML specifies an exact representation of data types.

Developers Tool

• PML is designed and implemented primarily as a tool for software developers.

Modular building blocks

 PML contains modular elements that can be mixed and matched in higher-level data structures.