
Indexing and Querying XML Data for
Regular Path Expressions�

Quanzhong Li Bongki Moon

Dept. of Computer Science
University of Arizona, Tucson, AZ 85721
flqz ,bkmoong@cs.arizona.edu

Abstract

With the advent of XML as a standard for data
representation and exchange on the Internet,
storing and querying XML data becomes more
and more important. Several XML query lan-
guages have been proposed, and the common
feature of the languages is the use of regu-
lar path expressions to query XML data. This
poses a new challenge concerning indexing and
searching XML data, because conventional ap-
proaches based on tree traversals may not meet
the processing requirements under heavy ac-
cess requests. In this paper, we propose a
new system for indexing and storing XML data
based on a numbering scheme for elements.
This numbering scheme quickly determines the
ancestor-descendant relationship between ele-
ments in the hierarchy of XML data. We also
propose several algorithms for processing regu-
lar path expressions, namely, (1)EE-Join for
searching paths from an element to another,
(2) EA-Join for scanning sorted elements and
attributes to find element-attribute pairs, and
(3) KC-Join for finding Kleene-Closure on re-
peated paths or elements. TheEE-Join algo-
rithm is highly effective particularly for search-
ing paths that are very long or whose lengths
are unknown. Experimental results from our
prototype system implementation show that the
proposed algorithms can process XML queries
with regular path expressions by up to an or-
� This work was sponsored in part by National Science Foundation

CAREER Award (IIS-9876037) and Research Infrastructure program
EIA-0080123. The authors assume all responsibility for the contents
of the paper.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

der of magnitude faster than conventional ap-
proaches.

1 Introduction
The extensible markup language XML has recently
emerged as a new standard for information representa-
tion and exchange on the Internet [4]. Since XML data
is self-describing, XML is considered one of the most
promising means to define semi-structured data, which is
expected to be ubiquitous in large volumes from diverse
data sources and applications on the web. XML allows
users to make up any new tags for descriptive markup
for their own applications. Such user-defined tags on
data elements can identify the semantics of data. The
relationships between elements can be defined by nested
structures and references. For example, XML metadata
can be used to describe a web site structure to facilitate
navigation by generating interactive site maps [19].

To retrieve XML and semi-structured data, several
query languages have been proposed. Examples are
Lorel [1], XML-QL [10], XML-GL [5], Quilt [7],
XPath [8], and XQuery [6]. The XQuery is the first pub-
lic working draft of a query language for XML released
recently from the World Wide Web Consortium (W3C).
The XQuery language is designed to be broadly appli-
cable across all types of XML data sources from docu-
ments to databases and object repositories. The common
features of these languages are the use of regular path
expressions and the ability to extract information about
the schema from the data [14]. Users are allowed to nav-
igate through arbitrary long paths in the data by regular
path expressions. For example, XPath uses path nota-
tions as in URLs for navigating through the hierarchical
structure of an XML document.

Despite the past research efforts, it is widely believed
that the current state of the art of the relational database
technology fails to deliver all necessary functionalities
to efficiently store XML and semi-structured data. Fur-
thermore, when it comes to processing regular path ex-
pression queries, only a few straightforward approaches
based on conventional tree traversals have been reported
in the literature (e.g., [20]). Such approaches can be
fairly inefficient for processing regular path expression
queries, because the overhead of traversing the hierarchy
of XML data can be substantial if the path lengths are

very long or unknown.
In this paper, we propose a new system calledXISS

for indexing and storing XML data based on a new num-
bering scheme for elements and attributes. The index
structures ofXISS allow us to efficiently find all ele-
ments or attributes with the same name string, which
is one of the most common operations to process reg-
ular path expression queries. The proposed numbering
scheme quickly determines the ancestor-descendant rela-
tionship between elements and/or attributes in the hierar-
chy of XML data. We also propose several algorithms for
processing regular path expression queries, namely, (1)
EE-Join for searching paths from an element to another,
(2) EA-Join for scanning sorted elements and attributes
to find element-attribute pairs, and (3)KC-Join for find-
ing Kleene-Closure on repeated paths or elements. The
EE-Join algorithm is highly effective particularly for
searching paths that are very long or whose lengths are
unknown.

Main contributions of the proposed solutions are:

� The proposed numbering scheme is designed based
on the notion ofextended preorderto accommo-
date future insertions gracefully. This number-
ing scheme allows us to determine the ancestor-
descendant relationship between elements and at-
tributes in constant time.

� Three major index structures are proposed, namely,
element index, attribute indexandstructure index.
They are used to index and store XML data objects,
and support search by both name string and struc-
ture efficiently.

� The proposed join algorithms can process regular
path expression queries without traversing the hier-
archy of XML data. Experimental results from our
prototype system implementation show that the pro-
posed algorithms can process XML queries up to 10
times faster than conventional approaches.

The rest of this paper is organized as follows. In
Section 2, we present the numbering scheme and ma-
jor index structures of the proposedXISS system. In
Section 3, we discuss the potential inefficiency of con-
ventional query processing for regular path expressions.
Then, we describe the decomposition of regular path ex-
pressions and present the proposed join algorithms. Sec-
tion 4 presents the results of experimental evaluation of
the proposedXISS system and the join algorithms. We
overview related work briefly in Section 5. Finally, Sec-
tion 6 summaries the contribution of this paper and gives
outlook to future work.

2 XISS: XML Indexing and Storage Sys-
tem

XML data can be queried by a combination of value
search and structure search. Search by value can be done
by matching such XML values as document names, el-
ement names/values, and attribute names/values. Search
by structure can be done mostly by examining ancestor-
descendant relationships given in regular path expres-
sion queries. To facilitate XML query processing by

both value and structure searches, it is crucial to pro-
vide mechanisms to quickly determine the ancestor-
descendant relationship between XML elements as well
as fast accesses to XML values.

In this section, we propose a numbering scheme for
XML documents, elements and attributes, which enables
efficient search by value and structure. We then propose
a new XML Indexing and Storage System (XISS) com-
posed of three major index structures (namely,element
index, attribute index, andstructure index), a data loader
and a query processor.

2.1 Numbering Scheme

XML data objects are commonly modeled by a tree
structure, where nodes represent elements, attributes and
text data, and parent-child node pairs represent nesting
between XML data components. To speed up the pro-
cessing of regular path expression queries, it is important
to be able to quickly determine ancestor-descendant re-
lationship between any pair of nodes in the hierarchy of
XML data. For example, a query with a regular path ex-
pression “chapter3/ */figure ” is to find all fig-
ure elements that are included inchapter3 elements.
Once all chapter3 elements andfigure elements
are found, those two element sets can bejoined to pro-
duce all qualifiedchapter3 -figure element pairs.
This join operation can be carried out without traversing
XML data trees, if the ancestor-descendant relationship
for a pair ofchapter3 andfigure elements can be
determined quickly. This is the main idea of the proposed
algorithms, which will be presented in Section 3.

To the best of our knowledge, it was Dietz’s number-
ing scheme that was the first to use tree traversal order to
determine the ancestor-descendant relationship between
any pair of tree nodes [12]. His proposition was:for two
given nodesx and y of a treeT , x is an ancestor of y
if and only if x occurs before y in the preorder traversal
of T and after y in the postorder traversal.For example,
consider a tree in Figure 1(a) whose nodes are annotated
by Dietz’s numbering scheme. Each node is labeled with
a pair of preorder and postorder numbers. In the tree, we
can tell node (1,7) is an ancestor of node (4,2), because
node (1,7) comes before node (4,2) in the preorder (i.e.,
1 < 4) and after node (4,2) in the postorder (i.e., 7 > 2).

An obvious benefit from this approach is that the
ancestor-descendant relationship can be determined in
constant time by examining the preorder and postorder
numbers of tree nodes. On the other hand, the limitation
of this approach is the lack of flexibility. That is, the pre-
order and postorder may need to be recomputed for many
tree nodes, when a new node is inserted. To get around
this problem, we propose a new numbering scheme that
uses anextended preorderand arange of descendants.
The proposed numbering scheme associates each node
with a pair of numbers<order; size> as follows.

� For a tree nodey and its parentx, order(x) <
order(y) andorder(y) + size(y) � order(x) +
size(x). In other words, interval [order(y),
order(y) + size(y)] is contained in interval
[order(x), order(x) + size(x)].

� For two sibling nodesx andy, if x is the predeces-
sor ofy in preorder traversal,order(x)+size(x) <

 (4,2)

 (5,3)

 (2,4)

(1,7)

 (6,6)

 (7,5)(3,1)

(a) Dietz’s Numbering Scheme using
Preorder and Postorder

(10,30)

(1,100)

(41,10)

(45,5)(11,5) (25,5)

 (17,5)

(b) Proposed Numbering Scheme using
<order; size> pair

Figure 1: Numbering Scheme Examples

order(y).

Then, For a tree nodex, size(x) �
P

y size(y) for all
y’s that are a direct child ofx. Thus,size(x) can be
an arbitrary integer larger than the total number of the
current descendants ofx, which allows to accommodate
future insertions gracefully.

It is not difficult to show that the nodes ordered by
this proposed numbering scheme is equivalent to that
of preorder traversal. That is, the proposed numbering
scheme guarantees that for a pair of tree nodesx andy,
order(x) < order(y) if and only if x comes beforey in
preorder traversal. Furthermore, the ancestor-descendant
relationship for a pair of nodes can be determined by ex-
amining theirorder andsize values. In Figure 1(b), each
node is labeled by a<order; size> pair, which defines
an interval. The interval of a node is properly contained
in the interval of its parent node. For example, a node
(25,5) is contained in both (10,30) and (1,100). Hence,
the node with order 25 is a descendant of nodes with or-
der 10 and 1. This observation leads to the following
lemma.

Lemma 1 For two given nodesx andy of a treeT , x is
an ancestor ofy if and only iforder(x) < order(y) �
order(x) + size(x).

Proof. Proof by induction.

Compared with Dietz’s scheme, our numbering
scheme is more flexible and can deal with dynamic up-
dates of XML data more efficiently. Since extra spaces
can be reserved in what we call extended preorder to
accommodate future insertions, global reordering is not
necessary until all the reserved spaces (i.e., unused or-
der values) are consumed. Note that for both numbering
schemes, deleting a node does not cause renumbering the
nodes. However, it is easier for our numbering scheme
to recyclethe order values of deleted nodes.

Both elements and attributes use theorder of the
<order; size> pair as their unique identifier in the doc-
ument tree. As for attributes, additional care needs to

Query
Processor

Document
Loader

X
M
L

X
M
L

X
M
L

XML Raw Data

Paged File

Element
Index

Structure
Index

Attribute
Index

Name
Index

Value
Table

XISS

Query Result

Figure 2: Index Structure Overview

be exercised to ensure that attribute nodes are placed be-
fore their sibling elements in the order by the numbering
scheme. We will discuss later in Section 3.3 how this can
enable faster element and attribute join operations.

2.2 Index and Data Organization

As is mentioned above, theXISS system supports search
by element or attribute name and structure. To achieve
this goal, theXISS system provides mechanisms to pro-
cess the following operations efficiently.

� For a given element name string, sayfigure , find
a list of elements having the same name string (i.e.,
figure), grouped by documents which they be-
long to.

� For a given attribute name string, saycaption ,
find a list of attributes having the same name string
(i.e., caption), grouped by documents which they
belong to.

� For a given element, find its parent element and
child elements (or attributes). For a given attribute,
find its parent element.

The index structure ofXISS is composed of three ma-
jor components:element index, attribute indexandstruc-
ture index, which are shown in Figure 2. The other two
components in Figure 2 arename indexfor storing name
strings andvalue tablefor values.

Since all value entities in XML data are considered
variable-length character strings, all distinct name strings
are collected in thename index, which is implemented as
a B+-tree. Then, each distinct name string is uniquely
identified by aname identifier(or nid) returned from the
name index. The use of name index minimizes storage
and computational overhead by eliminating replicated
strings and string comparisons. For the same reason, all
string values (i.e. attribute value and text value) are col-
lected invalue table. Each XML document is also as-
signed a unique document identifier (did), which is an
index key to retrieve the document name. An element or
attribute can be uniquely identified by itsorder anddid
in the entire system.

Theelement index, attribute indexandstructure index
are the three indexes to support the three essential func-
tionalities listed above, respectively. Both the element
index and attribute index are implemented as a B+-tree
using name identifiers (nid) as keys. Each entry in a leaf
node points to a set of fixed-length records for elements
(or attributes) having an identical name string, grouped
by document they belong to. The element index allows
us to quickly find all elements with the same name string,

…………
Document ID ListElement nid

B+-tree

Element List with the
Same Name in the
Same Document

<Order, Size>,
Depth,
Parent ID

Element
Record

Figure 3: Element Index

Array of All Elements
and Attributes in the

Same Document

Document ID (did)

B+-tree

nid,
<Order, Size>,
Parent order,
Child order,
Sibling order,
Attribute order

Figure 4: Structure Index

which is one of the most common operations to process
regular path expression queries. Each element record
includes an<order; size> pair and other related infor-
mation of the element, and the element records are in a
sorted order by theorder values as shown in Figure 3.

The attribute index has almost the same structure as
the element index, except that the record in attribute in-
dex has a value identifiervid, which is a key used to ob-
tain the attribute value from the value table.

The organization of the structure index is shown in
Figure 4. It is a collection of linear arrays, each of which
stores a set of fixed-length records for all elements and
attributes from an XML document. Within an array, the
elements and attributes are together sorted by theirorder
value (i.e., in preorder traversal). Each record of the
structure index stores a name identifier (nid), order val-
ues of the first sibling, first child, and the first attribute
and so on.

3 Path Join Algorithms

In this section, we propose new path-join algorithms to
efficiently process regular path expression queries for
XML data. Consider the following sample query bor-
rowed from the XQuery working draft [6].

(Q1):/chapter/ */figure[@caption="Tree Frogs"]

Symbol Function of Symbol
Denotes any single node

/ Denotes a separator between nodes in a path
j Denotes a union of nodes
? Denotes zero or one occurrence of a node
+ Denotes one or more occurrences of a node
* Denotes zero or more occurrences of a node
[] Encloses a predicate expression
@ Denotes attributes
() Indicates precedence

Table 1: Notations for Regular Path Expressions

The queryQ1 is to find all figures with a captionTree
Frogs in all chapters. In this query,chapter and
figure are XML elements, andcaption is an XML
attribute. This query will be used as a running example
in the following sections. Note that the notations used
in this paper are slightly different from those used in
XQuery working draft. See Table 1 for the full notations
for regular path expressions that we use in this paper.

3.1 Conventional Approaches

Most straightforward approaches to processing regular
path expression queries likeQ1 is to traverse the hi-
erarchy of XML objects in eithertop-downor bottom-
up fashion [20]. To process the queryQ1 by a top-
down approach, for example, all downward paths starting
from achapter element should be followed to find out
whether there exists anyfigure element as a descen-
dant. This step needs to be repeated for allchapter
elements in XML database. This implies that it is ab-
solutely necessary to examine every possible path from
eachchapter elements to all leaf nodes in XML trees,
because it is not usually known wherefigure elements
will be found in the paths. If achapter element is the
root of an XML tree, then the entire tree will be traversed.

The cost of tree traversal may be reduced by a bottom-
up approach. For the same queryQ1, all figure el-
ements with a captionTree Frogs will be searched.
Then, from each of suchfigure elements, a corre-
sponding XML tree will be examined by traversing up
the tree to find out whether there exists anychapter
element as an ancestor. This upward traversal will be
simpler and less costly, because there exists always at
most one upward path. However, if there are manyfig-
ure elements with a captionTree Frogs and only a
few chapter elements, the cost of bottom-up approach
might be even higher than that of top-down approach.

A hybrid approach has been proposed that traverses
in both top-down and bottom-up fashions, meeting in
the middle of a path expression [20]. This hybrid ap-
proach can take advantages of top-down and bottom-up
approaches for XML data of certain structural character-
istics. However, its effectiveness is not always guaran-
teed. In the following sections, we describe the decom-
position of a regular path expression, and propose new
path-join algorithms to process regular path expression
queries without traversing XML trees.

3.2 Decomposition of Path Expressions

The main idea of the proposed path-join algorithms is
that a complex path expression is decomposed into sev-
eral simple path expressions. Each simple expression
produces an intermediate result that can be used in the
subsequent stage of processing. The results of the simple
path expressions are then combined or joined together to
obtain the final result of a given query. There is an in-
teresting analogy between the way a regular path expres-
sion is decomposed, processed and combined, and the
way a multi-way join operation is processed in a series of
two-way joins by a relational query processor. For exam-
ple, a regular path expression of the formE1/E 2/E 3/E 4

with four elementsE1 throughE4 can be decomposed to

EE-Join EA-Join

KC-Join

EE-Join

EE-Join

EE-Join

Union

E1 E2 E3 E4 @A=v E5 E6

/ [] /_*/

* |

/

/

Figure 5: Decomposition of a Path ExpressionQ2

E1/E 2 andE3/E 4. Then, the intermediate results from
E1/E 2 andE3/E 4 are joined together.

In general, a regular path expression can be decom-
posed to a combination of the following basic subexpres-
sions:

1. a subexpression with a single element or a single
attribute,

2. a subexpression with an element and an at-
tribute (e.g., figure[@caption = "Tree
Frogs"]),

3. a subexpression with two elements (e.g., chap-
ter/figure or chapter/ */figure),

4. a subexpression that is a Kleene closure (+,*) of
another subexpression, and

5. a subexpression that is a union of two other subex-
pressions.

Figure 5 illustrates a way of decomposing a compli-
cated regular path expressionQ2.

(Q2): (E 1/E 2)*/E 3/((E 4[@A=v])|(E 5/ */E 6))

The leaf nodes at the top of the figure are subexpressions
with a single element or attribute. Each circle represents
one of the other four subexpression types (2) through (5)
described above.

A subexpression with a single element or attribute can
be processed by accessing the element index or attribute
index of theXISS system described in Section 2.2. A
union of two subexpressions can be processed by merg-
ing two intermediate results and grouping by documents
in a straightforward way. For the other three subexpres-
sion types (2), (3) and (4), we propose three path-join
algorithms, namely,
� EA-Join for a subexpression type (2),
� EE-Join for a subexpression type (3), and
� KC-Join for a subexpression type (4).

Each of these three algorithms will be described in the
following sections.

3.3 EA-Join Algorithm

The EA-Join algorithm joins two intermediate results
from subexpressions, which are a list of elements and a
list of attributes. For example, a regular path expression
figure[@caption = "Tree Frogs"] searches
all figure elements with a captionTree Frogs
from all XML documents in theXISS system. The in-
termediate results as input toEA-Join algorithm are a

list of figure elements and a list ofcaption at-
tributes grouped by documents which they belong to.
TheEA-Join algorithm is described in Algorithm 1.

Algorithm 1: EA-Join: Element and Attribute Join

Input: fE1; : : : ; Emg: Ei is a set of elements
having a common document identifier;

fA1; : : : ; Ang: Aj is a set of attributes
having a common document identifier;

Output: A set of (e; a) pairs such that the elemente
is the parent of the attributea.

// Sort-mergefEig andfAjg by doc. identifier.
1: foreachEi andAj with the samedid do

// Sort-mergeEi andAj
// by PARENT-CHILD relationship.

2: foreache 2 Ei anda 2 Aj do
3: if (e is a parent ofa) then output(e; a);

end
end

Since the element (or attribute) index maintains the
element (or attribute) records in a sorted order by doc-
ument identifiers and thenorder values, the join of the
intermediate results can be obtained by atwo-stage sort-
mergeoperation without additional cost of sorting. That
is, element sets and attribute sets are merged by docu-
ment identifiers in the first stage. Then, in the second
stage, for a pair of element list and attribute list with
a matching document identifier (i.e., extracted from the
same document), the elements and attributes are merged
by examining the parent-child relationship based on their
order values by the numbering scheme.

As we mentioned briefly in Section 2.1, it is impor-
tant to ensure that attributes are placed before their sib-
ling elements in the order by the numbering scheme. Its
performance impact on theEA-Join operation is poten-
tially very high, because this additional requirement on
the numbering scheme guarantees that those elements
and attributes with a matching document identifier can
be merged in asingle scan. Specifically, both the lists
fEig andfAjg grouped by document are scanned once
by the outerforeach loop (line 1 in Algorithm 1), and
both the element listEi and attribute listAj are scanned
once by the innerforeach loop (line 2 in Algorithm 1).

This can be best explained by an example shown
in Figure 6. Note that tree nodes are annotated
by <order; size> pairs. Consider the XML tree at
the left hand side of Figure 6, where an attribute
name<4; 0> is numberedafter its sibling element
chapter <2; 1>. By the time the parent-child re-
lationship betweenchapter <1; 3> and name<4; 0>
is examined, the attributename<3; 0> has already
been passed over. Consequently, to examine the
parent-child relationship betweenchapter <2; 1> and
name<3; 0>, the attribute lists must be rescanned. In
contrast, in the XML tree at the right hand side, the
attribute name<2; 0> is numberedbefore its sibling
elementchapter <3; 1>. The parent-child relation-
ships forchapter <1; 3> and name<2; 0> pair and
chapter <3; 1> and name<4; 0> pair can be deter-
mined without rescans.

chapter < 2, 1>

chapter <1, 3>

name <3, 0>

name <4, 0>

Element Node

Attribute Node

chapter < 3, 1>

chapter <1, 3>

name <4, 0>

name <2, 0>

Figure 6: Examples of Correct and Incorrect Cases

3.4 EE-Join Algorithm

The EE-Join algorithm joins two intermediate results,
each of which is a list of elements obtained from a
subexpression. For example, a regular path expres-
sion chapter/ */figure searches allchapter -
figure pairs that are in ancestor-descendant relation-
ship from all XML documents in theXISS system. The
intermediate results as input toEE-Join algorithm are
a list of chapter elements and a list offigure ele-
ments grouped by documents which they belong to. The
EE-Join algorithm is described in Algorithm 2.

Algorithm 2: EE-Join: Element and Element Join

Input: fE1; : : : ; Emg andfF1; : : : ; Fng: Ei orFj
is a set of elements having a common
document identifier.

Output: A set of (e; f) pairs such that the elemente
is an ancestor of the elementf .

// Sort-mergefEig andfFjg by doc. identifier.
1: foreachEi andFj with the samedid do

// Sort-mergeEi andFj
// by ANCESTOR-DESCENDANTrelationship.

2: foreache 2 Ei andf 2 Fj do
3: if (e is an ancestor off) then output(e; f);

end
end

Like EA-Join algorithm,EE-Join algorithm can per-
form the join of two sets of elements by atwo-stage sort-
mergeoperation without additional cost of sorting. That
is, both element sets are merged by document identifiers
in the first stage. Then, in the second stage, for a pair of
element sets with a matching document identifier (i.e.,
extracted from the same document), both the element
sets are merged by examining the ancestor-descendant
relationship based on their<order; size> values by the
numbering scheme.

Unlike EA-Join algorithm, however, two sets of el-
ements with a matching document identifier cannot be
merged in a single scan byEE-Join algorithm. By
Lemma 1, for a pair of elementschapter andfigure
as an example, their ancestor-descendant relationship is
determined by examining whether theorder(figure)
(i.e., a point in extended-preorder) is contained in
[order(chapter); order(chapter) + size(chapter)]
(i.e., a range in extended-preorder). The join of two sets
of elements by ancestor-descendant relationship can be
viewed as a join of a range set and a point set. Just as a
point can be contained in more than a range, an element
figure can be a descendant of more than achapter

chapter <1, 90>

chapter <2, 80>

chapter <8, 20 >

chapter <9, 10>

figure <10, 0>

figure <11, 0> figure <19, 0>

Figure 7: An Extreme Case of Element-Element Join

element. See Figure 7 for an extreme case, where every
chapter element must match everyfigure element.
Thus, it may be necessary to scan the list offigure
elements more than once.

Despite the fact that an element set may have to be
scanned multiple times by the innerforeach loop (line 2
in Algorithm 2), EE-Join algorithm is still highly ef-
fective, particularly for searching paths that are long or
whose lengths are unknown. In Section 4, we compare
EE-Join algorithm with conventional approaches based
on tree traversal. The effectiveness ofEE-Join is corrob-
orated by the experimental results.

It is worth noting thatEE-Join algorithm can sup-
port an element-element join with a fixed-length path as
in chapter/ / /figure , which searcheschapter -
figure element pairs that are in great-grandparent re-
lationship. Coupled with the depth of each element in
an XML tree, the numbering scheme can determine the
great-grandparent relationship in constant time. Another
special case that can be processed byEE-Join algorithm
is a subexpression likechapter/ *[@caption] .
Although this subexpression contains a pair of element
and attribute,EA-Join algorithm cannot process it in
a single scan. Thus, this subexpression should be pro-
cessed byEE-Join algorithm.

3.5 KC-Join Algorithm

Algorithm 3: Kleene Closure Algorithm

Input: fE1; : : : ; Emg, whereEi is a group of
elements from an XML document.

Output: A Kleene closure offE1; : : : ; Emg.

// Apply EE-Join algorithm repeatedly.
1: seti 1;
2: setKC

i fE1; : : : ; Emg;
3: repeat
4: seti i+ 1;
5: setKC

i EE-Join(KC
i�1;K

C
1);

until (KC
i is empty);

6: output union ofKC
1 ;K

C
2 ; : : : ;K

C
i�1;

The KC-Join algorithm processes a regular path
expression that represents zero, one or more occur-
rences of a subexpression (e.g., chapter* or chap-
ter+). In each processing stage,KC-Join algo-
rithm appliesEE-Join to the result from the previ-
ous stage repeatedly until no more results can be pro-
duced. For example, to findchapter* , KC-Join
obtainschapter/chapter by self-joining a set of

Data Set Size (Byte) Files Elements Attributes
Shakespeare 7.9M 37 327K (22) 0 (0)
SIGMOD 3.5M 989 839K (47) 4775 (3)
NITF100 7.7M 100 63K (124) 263K (142)
NITF1 5.3M 1 38K (86) 171K (106)

Table 2: XML Data Set

chapter elements. In the next stage, it obtainschap-
ter/chapter/chapter by joining the results from
chapter/chapter andchapter . The final result
is the union of results from all previous stages. The
KC-Join algorithm is described in Algorithm 3.

4 Experiment
We implemented the prototype ofXISS to store the XML
data and index. A primitive query interface is provided in
C++. The Gnome XML parser was used to parse XML
data [23]. We also used the GiST C++ library [17] for
B+-tree indexing. Query processing is directly imple-
mented using the query interface.

Experiments were performed on a Sun Ultrasparc-II
workstation running on Solaris 2.7. This workstation has
256 MBytes of memory and 20 GBytes of disk storage
(Seagate ST320423A) with Ultra 10 EIDE interface. The
disk is locally attached to the workstation and used to
store XML data and index. We used the direct I/O feature
of Solaris for all experiments to avoid operating system’s
cache effects.

4.1 Data Sets and Performance Metrics

We have chosen two data sets (Shakespeare, SIGMOD)
from real-world applications and two synthetic data sets
generated by an XML Generator from IBM [11]. These
data sets are described in the following and the charac-
teristics of those data sets are summarized in Table 2. In
the last two columns, the two numbers in each entry rep-
resent the total number of elements (or attributes) and the
number of distinct elements (or attributes), respectively.

Shakespeare’s Plays:This data set is the Shakespeare’s
plays in XML format, which is marked up by Jon
Bosak and available in [9].

SIGMOD Record: This data set is the XML version of
ACM SIGMOD Record1. There are many small
files containing on-line issues of SIGMOD Record.

NITF100 and NITF1: Using XML Generator and the
NITF2.5 (News Industry Text Format) as the DTD,
we generated two different versions of XML data
sets: one data set stored in a single large document
file (NITF1) and the other data set stored in 100 sep-
arate document files (NITF100).

4.2 Performance of Query Processing

In this section, we present the performance measure-
ments and analyze the proposed algorithms mostly for

1http://www.acm.org/sigmod/record/xml

element-element join and element-attribute join opera-
tions. The conventional top-down and bottom-up meth-
ods are compared with the proposed algorithms. Because
the cost of output generation is the same regardless of al-
gorithms applied, the output cost is not included in the
measurements. We have not measured the performance
of KC-Join algorithm, because it is largely determined
by the performance ofEE-Join algorithm.

4.2.1 EE-Join Query

The queries we used for element-element join opera-
tions are of the formEA/ */E B. For example, a query
chapter/ */figure is to find allfigure elements
that are descendants ofchapter element. The actual
queries used in the experiments are shown in Table 3.

With all these queries, we comparedEE-Join with
a bottom-up method. A top-down method was not
used, because it was expected to be outperformed by
the bottom-up method for the data sets. The bottom-up
method processes queries in the following steps. First,
search all elements with nameEB . Second, starting from
each elementEB , traverse up the tree to findEA ele-
ments. Third, if an elementEA is found, output the path
from EA to EB .

Figure 8(a) and Figure 8(b) show the elapsed time
for real-world data sets (Shakespeare and SIGMOD) and
synthetic data sets (NITF100 and NITF1), respectively.
The EE-Join algorithm performs well even for a small
number of buffer pages. The bottom-up method takes
longer time to process the same query, especially for
synthetic data, if the size of buffer pool is small. This
is because theEE-Join algorithm accesses the sorted
elements from disk in a sequential manner, while the
bottom-up method accesses elements from the structure
index almost randomly. This results in a relatively low
rate of page faults forEE-Join algorithm, and a rela-
tively high rate of page faults for the bottom-up method.
The vertical lines in Figure 8(b) show the severely elon-
gated processing times by the bottom-up method in the
extreme case of using only one buffer page. Obviously,
beyond the point where more than enough buffer pages
are available, all performance measurements remain con-
stant irrespective of the number of buffer pages.

From all the experiments done with both real-world
and synthetic data sets,EE-Join algorithm outperformed
the bottom-up method by a wide margin. For real-world
data sets,EE-Join was an order of magnitude faster
than the bottom-up method. For synthetic data sets,
EE-Join wasabout 6 to 10 times fasterthan the bottom-
up method.

We measured IO time separately and observed the
same trend in performance as in Figure 8. Disk IO was
the dominant cost factor of query evaluations. In our
experiments, 60 to 90 percent of total elapsed time was
spent on disk accesses byEE-Join algorithm.

4.2.2 EA-Join Query

The queries we used for element-attribute join operations
are of the formE[@A] . For example, a queryfig-
ure[@caption] is to find allfigure elements with
a caption attribute. For this type of queries, we com-
pared the performance ofEA-Join algorithm with both

Data Set ElementEA ElementEB # ofEA’s # ofEB ’s # of Results
Shakespeare ACT SPEECH 185 31028 30951
SIGMOD articles author 483 9836 7440
NITF-100 body.content block 3476 3476 4411
NITF-1 body.content block 1946 2801 5174

Table 3: Summary ofEE-Join Queries

0

2

4

6

8

10

0 200 400 600 800 1000

T
im

e
(S

ec
on

d)

Number of Buffer Pages

Shakespeare Bottom-up
SIGMOD Bottom-up

Shakespeare EE-Join
SIGMOD EE-Join

0

1

2

3

4

5

0 200 400 600 800 1000

T
im

e
(S

ec
on

d)

Number of Buffer Pages

NITF100 Bottom-up
NITF1 Bottom-up
NITF100 EE-Join

NITF1 EE-Join

(a) Real-World Data Sets (b) Synthetic Data Sets

Figure 8: Total Elapsed Time of QueryEA= � =EB

top-down and bottom-up methods. The actual queries
used in the experiments are summarized in Table 4.
Shakespeare data set was not used, because the data set
contains no attribute.

The total elapsed times are shown in Figure 9. For
a data set with a relatively small number of attributes
such as SIGMOD data set, the bottom-up method was
expected to outperform the top-down method, because
traversing up the tree for a small number attributes can
be more efficient than traversing down the tree with many
branches. In our experiments, for the SIGMOD data set,
the bottom-up method was the best, followed byEE-Join
very closely, then by the top-down method in Figure 9(a).

For synthetic data sets, however, the number of at-
tributes was much larger than the number of elements.
For such data sets, the performance of the bottom-up
method degenerated substantially, because it had to look
up the parent elements for so many attributes. We can
see this from Figure 9(b)-(c). Since attributes are not al-
lowed to have child nodes, the scope of traversal from
an element to its child attributes is limited to one level
of a tree. Thus, the top-down method was fairly effi-
cient for the synthetic data sets. Nonetheless, the perfor-
mance ofEA-Join algorithm was still better than the top-
down method. The main reason is thatEA-Join needs to
scan the element list and attribute list only once without
traversing trees.

4.2.3 Scalability Test

We carried out scalability tests of the proposed algo-
rithms with a large data set generated for the NITF doc-
ument type definition. For both element-element and
element-attribute joins, we observed that the query pro-
cessing time increased almost linearly, as the size of
XML data increased. This result shows the linear scal-
ability of the proposed algorithms, and provides another

evidence that the proposed path-join algorithms can im-
prove the performance of query processing for XML path
expressions over the conventional methods by up to an
order of magnitude.

5 Previous Work
For XML databases with graph-based data models, path
traversals play a central role in query processing, and op-
timizing navigational path expressions is an important
issue. The optimal query plan depends not only on the
valuesin the database but also on theshapeof the graph
containing the data. Three query evaluation strategies
have been proposed for Lore’s cost-based query opti-
mizer [20]. They are a top-down strategy for exploit-
ing the path expression, a bottom-up strategy for exploit-
ing value predicates, and a hybrid strategy. To speed up
query processing in a Lore database, four different types
of index structures have been proposed [16, 21]. Value
index and text index are used to search objects that have
specific values; link index and path index provide fast ac-
cess to parents of an object and all objects reachable via
a given labeled path.

Keyword search is also important to query XML data,
if the structures of XML data are not known to users.
There have been efforts to integrate keyword search into
XML query processing [15, 22]. Florescu and Koss-
mann [15] propose to extend the XML-QL query lan-
guage [10] with keyword based search capabilities. To
use indexes to facilitate keyword searching, the struc-
ture of inverted files is also extended to support full-text
indexing with additional information such as the granu-
larity of XML elements, the type of keywords, and the
depth of the related element instances. Wolffet al. [22]
make use of structural information within XML docu-
ments in the retrieval process based on a probabilistic
model. They propose two index structures: astructure

Data Set Element Attribute # of Elements # of Attributes # of Results
SIGMOD author id 9836 8934 6099
NITF-100 block dir 3476 25757 2649
NITF-1 block dir 2801 17152 2127

Table 4: Summary ofEA-Join Queries

0

5

10

15

20

25

30

0 200 400 600 800 1000

T
im

e
(S

ec
on

d)

Number of Buffer Pages

SIGMOD Top-down
SIGMOD EA-Join

SIGMOD Bottom-up
0

5

10

15

20

25

30

0 200 400 600 800 1000
T

im
e

(S
ec

on
d)

Number of Buffer Pages

NITF100 Bottom-up
NITF100 Top-down

NITF100 EA-Join

0

5

10

15

20

25

30

0 200 400 600 800 1000

T
im

e
(S

ec
on

d)

Number of Buffer Pages

NITF1 Bottom-up
NITF1 Top-down

NITF1 EA-Join

(a) SIGMOD data (b) NITF100 data (c) NITF1 data

Figure 9: Total Elapsed Time of QueryE[@A]

indexthat preserves the hierarchical structure of the un-
derlying data, and atext indexthat supports the evalua-
tion of textual queries.

The problem of optimizing regular path expres-
sions has been studied in the context of navigating
semi-structured data in web sites [2, 13]. The semi-
structured data is modeled as an edge-labeled graph,
where nodes denote HTML pages and edges denote hy-
perlinks. Abiteboul and Vianu [2] deal with a path
query evaluation that takes advantage of local knowledge
(i.e., path constraints) about data graphs that may capture
structural information about a web site. They address the
issue of equivalence decidability of regular path queries
under such constraints. Fernandez and Dan Suciu [13]
propose two query optimization techniques to rewrite a
given regular path expression into another query that re-
duces the scope of navigation.

New index structures and search algorithms have been
proposed for performing efficient filtering of XML doc-
uments in the selective information dissemination envi-
ronments [3]. In such systems, the roles of queries and
data are reversed. To effectively target the right informa-
tion to the right users, user profiles are posed as stand-
ing queries that are applied to all incoming XML doc-
uments in order to determine which users the document
will be sent to. The standing queries are written in XPath
language [8], which allows regular path expressions in
queries.

To determine the ancestor-descendant relationships, a
document tree can be viewed as a complete k-ary tree
with many virtual nodes [24]. The identifier of each
node is assigned according to the level-order tree traver-
sal. Then, the ancestors and children of a node can be
calculated using just the identifier. The problem of this
approach is that when the arity and height of the com-
plete tree are getting large, the identifier may be a huge
number. For example, for a 10-ary complete tree with
a height of 10, the total node number will be around 11
billion, which is too large to store in a four-byte word in-
teger. This makes the approach unrealistic for large XML
documents. In [18], the “tree location address” locates a

node in a tree by selecting an ancestor node at each level
of the tree. So each identifier of an ancestor node is a
prefix of its descendants. Using this method will take
more space to store identifiers, and the time to determine
the ancestor-descendant relationship is not constant. It
depends on the length of identifiers.

A recent work has proposed to use the position and
depth of a tree node for indexing each occurrence of
XML elements [25]. For a non-leaf node, the position
is a pair of its beginning and end locations in a depth-
first traversal order. The containment properties based
on the position and depth are very similar to those of the
extended preorderindependently invented and proposed
in this paper.

6 Conclusion and Future Work
We have developed the XML Indexing and Storage Sys-
tem (XISS) to store and index XML data and to ef-
ficiently process regular path expression queries. The
proposed numbering scheme based on extended preorder
determines the ancestor-descendant relationship between
nodes in the hierarchy of XML data in constant time. The
numbering scheme can adapt gracefully to the dynamics
of XML data objects by allocating a numbering region
with extra space. We plan to investigate the use of doc-
ument type definition (DTD) to determine the size of a
numbering region for an element or an attribute.

The major drawback of the conventional methods
based on tree traversals is that they may often require
an extensive search of XML data trees. To avoid this
drawback, we have proposed an innovative approach to
processing a regular path expression query, which de-
composes a complex path expression into a collection
of basic path subexpressions. Each subexpression can
be processed either by directly accessing index struc-
tures of theXISS system or by applying one of the pro-
posedEA-Join, EE-Join andKC-Join algorithms. For
a subexpression having a pair of elements, for exam-
ple,EE-Join algorithm performs its processing by a two-
stage sort-merge operation. Experimental results from
our prototype implementation ofXISS show that the pro-

posed algorithms can achieve performance improvement
over the conventional methods by up to an order of mag-
nitude.

The new query processing paradigm proposed in this
paper poses an interesting issue concerning XML query
optimization. A given regular path expression can be de-
composed in many different ways. Since each decom-
position leads to a different query processing plan, the
overall performance may be affected substantially by the
way a regular path expression is decomposed. Therefore,
it will be an important optimization task to find the best
way to decompose an expression. We conjecture that
document type definitions and statistics on XML data
may be used to estimate the costs and sizes of intermedi-
ate results.

In the current prototype implementation ofXISS, all
the index structures are organized as paged files for effi-
cient disk IO. We have observed that trade-off between
disk access efficiency and storage utilization. It is worth
investigating the way to find the optimal page size or the
break-even point between the two criteria.

References
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.

Wiener. The Lorel query language for semistructured
data.International Journal on Digital Libraries, 1(1):68–
88, April 1997.

[2] Serge Abiteboul and Victor Vianu. Regular path queries
with constraints. Inthe 16th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems,
pages 122–133, Tucson, AZ, May 1997.

[3] Mehmet Altinel and Michael J. Franklin. Efficient filter-
ing of XML documents for selective dissemination of in-
formation. InProceedings of the 26th VLDB Conference,
pages 53–64, Cairo, Egypt, September 2000.

[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve
Maler. Extensible markup language (XML) 1.0 second
edition W3C recommendation. Technical Report REC-
xml-20001006, World Wide Web Consortium, October
2000.

[5] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Frater-
nali, Stefano Paraboschi, and Letizia Tanca. XML-GL: A
graphical language for querying and restructuring XML
documents. InProceedings of the 8th International World
Wide Web Conference, pages 93–109, Toronto, Canada,
May 1999.

[6] Don Chamberlin, Daniela Florescu, Jonathan Robie, Jrme
Simon, and Mugur Stefanescu. XQuery: A Query Lan-
guage for XML W3C working draft. Technical Report
WD-xquery-20010215, World Wide Web Consortium,
February 2001.

[7] Don Chamberlin, Jonathan Robie, and Daniela Florescu.
Quilt: An XML query language for heterogeneous data
sources. InInternational Workshop on the Web and
Databases (WebDB’2000), Dallas, TX, May 2000.

[8] James Clark and Steve DeRose. XML Path Language
(XPath) version 1.0 w3c recommendation. Technical
Report REC-xpath-19991116, World Wide Web Consor-
tium, November 1999.

[9] Robin Cover. The XML Cover Pages. http://xml.-
coverpages.org/xml.html, February 2001.

[10] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon
Levy, and Dan Suciu. A query language for XML. InPro-
ceedings of the 8th International World Wide Web Confer-
ence, pages 77–91, Toronto, Canada, May 1999.

[11] Angel Luis Diaz and Douglas Lovell. XML Genera-
tor. http://www.alphaworks.ibm.com/tech/xmlgenerator,
September 1999.

[12] Paul F. Dietz. Maintaining order in a linked list. In
Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, pages 122–127, San Francisco,
California, May 1982.

[13] Mary Fernandez and Dan Suciu. Optimizing regular path
expressions using graph schemas. InProceedings of the
14th Inter. Conference on Data Engineering, pages 14–
23, Orlando, FL, February 1998.

[14] Daniela Florescu and Donald Kossmann. A performance
evaluation of alternative mapping schemes for storing
XML data in a relational database. Technical Report
3680, INRIA, Rocquencourt, France, May 1999.

[15] Daniela Florescu, Donald Kossmann, and Ioana
Manolescu. Integrating keyword search into XML query
processing. InProceedings of the 9th International World
Wide Web Conference, Amsterdam, Netherlands, May
2000.

[16] Roy Goldman and Jennifer Widom. DataGuides: En-
abling query formulation and optimization in semistruc-
tured databases. InProceedings of the 23rd VLDB
Conference, pages 436–445, Athens, Greece, September
1997.

[17] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pf-
effer. Generalized search trees for database systems. In
Proceedings of the 21st VLDB Conference, pages 562–
573, Zurich, Switzerland, September 1995.

[18] W. Eliot Kimber. HyTime and SGML: Understanding the
HyTime HYQ Query Language. Technical Report Ver-
sion 1.1, IBM Corporation, August 1993.

[19] Olivier Liechti, Mark J. Sifer, and Tadao Ichikawa. Struc-
tured graph format: XML metadata for describing web
site structure. Computer Networks and ISDN Systems,
30:11–21, 1998.

[20] Jason McHugh and Jennifer Widom. Query optimization
for XML. In Proceedings of the 25th VLDB Conference,
pages 315–326, Edinburgh, Scotland, September 1999.

[21] Jason McHugh, Jennifer Widom, Serge Abiteboul, Qing-
shan Luo, and Anand Rajaraman. Indexing semistruc-
tured data. Technical report, Stanford University, Stan-
ford CA, February 1998.

[22] Jens E. Wolff, Holger Florke, and Armin B. Cremers.
Searching and browsing collections of structural informa-
tion. In IEEE Advances in Digital Libraries (ADL’2000),
pages 141–150, Bethesda, MD, May 1997.

[23] XMLsoft. The XML C library for Gnome. http://-
xmlsoft.org/, January 2001.

[24] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon. Index
structures for structured documents. InACM First Inter-
national Conference on Digital Libraries, pages 91–99,
Bethesda, Maryland, March 1996.

[25] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong
Luo, and Guy Lohman. On supporting containment
queries in relational database management systems. In
Proceedings of the 2001 ACM-SIGMOD Conference,
Santa Barbara, CA, May 2001.

