
Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 241

BitCube: A Three-Dimensional Bitmap Indexing for XML
Documents

Jong P. Yoon, Vijay Raghavan, Venu Chakilam

Ctr. for Advanced Computer Studies
University of Louisiana, Lafayette, LA 70504-4330

{jyoon, raghavan, vmc0583}@cacs.louisiana.edu

Larry Kerschberg
Department of Information and Software Engineering
George Mason University, Fairfax, VA 22030-4444

kersch@gmu.edu

ABSTRACT
In this paper, we describe a new bitmap indexing based technique to cluster XML documents.
XML is a new standard for exchanging and representing information on the Internet. Documents
can be hierarchically represented by XML-elements. XML documents are represented and indexed
using a bitmap indexing technique. We define the similarity and popularity operations available in
bitmap indexes and propose a method for partitioning a XML document set.
Furthermore, a 2-dimensional bitmap index is extended to a 3-dimensional bitmap index, called
BitCube. We define statistical measurements in the BitCube: mean, mode, standard derivation, and
correlation coefficient. Based on these measurements, we also define the slice, project, and dice
operations on a BitCube. BitCube can be manipulated efficiently and improves the performance of
document retrieval.
Keywords
XML Document Retrieval, Bitmap indexing, Bit-wise Operations.

1. Introduction

EXtensible Markup Language (XML) is a standard for representing and exchanging information on
the Internet. As such, documents can be represented in XML and therefore content-based retrieval
is possible. However, because the size of XML documents is very large and the types vary, typical
information retrieval techniques such as LSI (Latent Semantic Index) [7] are not satisfactory.
Information retrieval on the Web is not satisfactory due to partly poor usage of structure and
content information available in XML documents[5].

We consider a document database (D). Each document (d) is represented in XML. So, d contains
XML-elements (p), where p has zero or more terms (w) bound to it. Typical indexing requires a
frequency table that is a two-dimensional matrix indicating the number of occurrence of the terms
used in documents. By generalizing this idea, we use a three-dimensional matrix that consists of
(d, p, w). We also treat a pair (p, w) as a query. Given a pair (p, w), we want to find d from a
document database that is a triplet (d, p, w). In many cases on the Internet, this query answering is
often too slow. A simple way to speed up query answering is to speed up the distance calculations
from well-organized document clusters. In this paper, we propose a bitmap indexing technique,
which we call the “BitCube,” that represents (d, p, w), and operations that can cluster such
documents efficiently. Before going further, consider the following examples.

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 242

1.1 Motivating Examples

EXAMPLE 1: Suppose that a query Q1 is posed to find all documents that describe Image in
“any” figure caption(s) of subsections. This type of queries cannot easily be processed in relational
document databases or object-oriented document databases due to inflexible modeling of
irregularity of documents and unacceptable performance. However, in XML, irregularity of
elements can be flexibly represented as shown in Figure 1. To increase performance, bitmap
indexing of XML documents will be used.

EXAMPLE 2: Suppose that a query Q2 is posed to find all documents that describe Image in
“more than one” sub-subsection. Notice that this type of queries asks for a specific document
structure, that is, not for section, nor for subsection, but for sub-subsections. Searching an entire
XML database is costly because XML documents in a database may not have a regular structure in
terms of which XML elements are used and how. To resolve this irregularity, bitmap indexes
generated in the previous example, EXAMPLE 1, will be clustered. In this way, searching can be
restricted within only a cluster, instead of all documents in order to improve the performance.

1.2 Related Work

The conventional techniques used for document retrieval systems include stop lists, word stems,
and frequency tables. The words that are deemed “irrelevant” to any query are eliminated from
searching. The words that share a common word stem are replaced by the stem word. A frequency
table is a matrix that indicates the occurrences of words in documents. The occurrence here can be
simply the frequency of a word or the ratio of word frequency with respect to the size of a
document.

However, the size of frequency table increases dramatically as the size of the document database
increases. To reduce frequency tables, the latent semantic indexing (LSI) technique has been
developed [7]. LSI retains only “most significant” of the frequency table. Although the SVD trick
reduces the size of the original frequency table, finding such a singular matrix is not trivial. Instead,
this paper considers a more complex frequency table that represents terms (or values) according to
an XML element ePath used in an XML document. We describe a novel approach to decompose a
frequency table, if the table is a sparse matrix.

In addition, a new data structure, called X-tree, has been introduced for storing very high
dimensional data [1]. Inverted indexes have been studied extensively [8]. Fast insertion
algorithms on inverted indexes have been proposed [9].

Numerous document clustering algorithms appear in the literature [10]. Agglomerative
Hierarchical Clustering algorithms are probably the most commonly used. Linear time clustering
algorithms, e.g., K-Means algorithm [4], are also used for on-line clustering. An ordered sequence
of words is used to cluster documents available on the Internet [13]. On the Internet, there are
some attempts, e.g., Alta Vista, to handle the large number of documents returned by query
refinement features.

The collection of bitmaps in a bitmap index forms a 2-dimensional bit matrix [2]. A bitmap index
has been used to optimize queries [2,6,11]. In this paper, we propose a 3-dimensional bit matrix.
Bit-wise operations developed in the earlier work will also be generalized to the 3-dimensional bit
matrix context.

1.3 Organization

The remainder of this paper is as follows. Section 2 describes preliminaries such as element paths
in XML documents, and bit-wise operations in bitmap indexes. Section 3 describes the similarity of
XML documents, the popularity of XML-elements, and partitioning techniques. Section 4
introduces a BitCube that represents a set of triplets (document d, XML-element p, terms or
contents w). The operations of a BitCube are developed: horizontal and vertical slice and dice.

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 243

Section 5 describes the experimental results. Interestingly enough, we find that once a BitCube is
constructed, bit-wise operations on XML documents are executed in constant time. Section 6
concludes our work by summarizing our contributions and providing directions for future work.

2. Preliminaries

This section defines technical terms.

Definition 2.1 (Element Content) An XML-element contains (1) simple content, (2) element
content, (3) empty content, or (4) reference content.

As an example, consider an XML document as shown in Figure 1. The element <section> in line (9)
has a simple content. The element <section> in line (1) has element content, meaning that it contains
two subsections as shown in lines (2) and (9). Of course, two content types can be mixed, e.g., the
element <section> in line (2) contains a simple content in line (2) and also elements in lines (3)-(8).
The element <verticalskip> contains empty content. The content <figure> has reference content that
hyperlinks to a site.

 (1) <section>
 (2) <section> XML is originated from …
 (3) <section> It is a new standard … </section>
 (4) <section> An application to multimedia data is SVG as shown in
 (5) <figure> http://www.a.b.c/syntax.xml </figure>
(6) <caption> XML Syntax </caption>
(7) <verticalskip />

 (8) </section>
 (9) <section> SGML was invented … </section>
(10) </section>

Figure 1: XML Document

Definition 2.2 (ePath) Element Path, called “ePath,” is a sequence of nested elements where the
most nested element is simple content element.

For example, in Figure 1, section.section.section.figure is an ePath, but section itself is not an ePath
due to the top element <section> does not have simple content.

An XML document is defined as a sequence of ePaths with associated element contents. An XML
document database contains a set of XML documents. In this paper, we propose a bitmap index for
an XML document database. A bitmap index is 2-dimensional. In a document-ePath bitmap index,
a bit column represents an ePath, and a row represents an XML document. Of course, element
contents, that is, values or words, need to be taken into account. In doing so, we need to consider 3-
dimensional bitmap index, which will be discussed in detail in Section 4. In this section, we
consider only a 2-dimensional bitmap index. As an example of a bitmap index, assume those XML
documents in Figure 2.

 d1: d2: d3: <e0> <e0> <e0>
 <e1> V1 </e1> <e1> V1 </e1> <e1> V11 </e1>
 <e2> <e2> <e2>
 <e3> V2 V3 V5 </e3 <e3> V3 V7 </e3> <e3> V2 V7 </e3>
 <e4> V3 V8 </e4> <e4> V9 <e4> V3 V9 </e4>
 <e5 /> <e6> V4 </e6> <e5 />
 </e2> <e7> V6 </e7> </e2>
 </e0> </e4> <e9> V5 </e9>
 </e2> </e0>
 <e8> V6 V12 </e8>
 </e0>

Figure 2: Example of XML Documents
Figure 2 is a set of simple XML documents. First, we need to define ePaths as follows:

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 244

p0=e0.e1, p1=e0.e2.e3, p2=e0.e2.e4, p3=e0.e5, p4=e0.e2.e4.e6, p5=e0.e2.e4.e7, p6=e0.e8, p7=e0.e9, Vi is a
(key) word that is chosen from simple content to be used for search.

Now, we are ready to construct a bitmap index. If a document has ePath, then set the corresponding
bit to 1. Otherwise, all bits are set to 0. For each ePath, documents can be represented as shown in
Figure 3.

Definition 2.3 (Size of Bitmap) |bi| denotes the size of a bitmap bi, which is the number of 1’s in a
bitmap bi, and [bi] denotes the cardinality of a bitmap bi, which is the number of 1’s or 0’s.

Figure 3: A Bitmap Index for Figure 2

Definition 2.4 (Distance) The distance between two documents can be defined: dist(di, dj) =
|xOR(di, dj)|, where xOR is a bit-wise exclusive or operator.

For example, the distance of two documents d1 and d2 in Figure 3 is |xOR(d1, d2)| = 4. Notice that in
a bitmap index, if a bit represents a word, then the document distance in terms of word can be
obtained. Documents di and dj are the same if |xOR(di, dj)|=0.

3. Bit-wise Operations
3.1 Similarity of Bitmap

In practice, on the Internet, documents can be represented in the form of a bitmap index, and can be
retrieved by similarity matching, unless a user wants the exact copy of the original. To retrieve
similar documents, the similarity of XML documents is defined.

Definition 3.1 (Similarity) The similarity of two XML documents (or bitmap rows), di and dj,
sim(di, dj) = 1- |xOR(di, dj)|/MAX([di],[dj]). Two documents, di and dj are ξ-similar if sim(di, dj) ≥ ξ,
where 0 ≤ ξ ≤1, and ξ is given.

For example, in Figure 3, the similarity of d1 and d2 is 1-4/8 = 1/2, while the similarity of d1 and d3
is 1-1/8=7/8. That is, d1 is closer to d3 than d2 in terms of ePath. This similarity check can be
applied to a bit vectors (ePath-wise in this case). Again, if a bitmap takes element contents or words
into account, the similarity in terms of words will be obtained.

3.2 Mode: Popularity of Bit Column

A bit column in a bitmap index can be described by its popularity. It is popular if used frequently
enough. The index for the most popular bit column is mode in a bitmap index.

Definition 3.2 (Popularity) The popularity of a bit column is pop(pi) = |pi|/[pi]. A bit column pi is
n-popular if pop(pi) ≥ n, where 0 ≤ n ≤1 for a given n. A bit column pi is m-unpopular if pop(pi) ≤
m, (0 ≤ m ≤ 1).
For example, in Figure 3, p3 is 67 % popular because popl(p3) = .67, while p4 is 33 % popular.
Given a bitmap index, using this notion, we can determine whether a ePath is popular or unpopular.

1

1

1

p0

1 0 0 0 1 1 1 d3

0 1 1 1 0 1 1 d2

0 0 0 0 1 1 1 d1

p7 p6 p5 p4 p3 p2 p1

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 245

It is likely that popular bit columns are more often involved in similarity matching than unpopular
bit columns.

Given a threshold n (0.5 ≤ n ≤1) for popularity, and a bitmap index corresponding to a cluster of
XML documents, a bitmap (row) for an XML document to be added. We can classify bit columns
into three cases. Now, consider a bitmap index (for convenience, call it “the new bitmap index”)
after including the new “input bitmap” in the target bitmap index. (1) If pop(pi) ≥ n in the new
bitmap index, then such pis of the input bitmap are called “popular bit columns”; (2) If pop(pi) ≤ 1-
n, then pi of the input bitmap is a so called “weakening unpopular bit column”; (3) If 1-n < pop(pi)
< n, then pi is called “strengthening unpopular bit column.”

For example, consider a new input bitmap to be added to the bitmap index in Figure 3.
d5=11110110. Suppose the threshold n=0.67. The bit columns, p0- p2, are popular bit columns, p3
is a strengthening unpopular bit column, and p4- p8 are weakening popular bit columns.

3.3 Variance and Mean: Radius and Center

This section describes two features of bitmap indexes: Radius and Center. Radius is a variance
while center is a mean in statistics.

Definition 3.3 (Center) In a cluster of XML documents, the center is a bit vector where bits
corresponding to all popular bit columns and strengthening unpopular bit columns are to be set to
1, and all weakening unpopular bit column indexes that are to be set to 0.

Notice that only popular and strengthening unpopular bits are considered for determining the
“center” because the clustering should occur based on the popularity of the document-features.

1

1

1

1

1

p0

100011111010000011d4

110101011100000111d3

0

0

1

p13

0

0

1

p12

0

0

0

p11

0

0

0

p10

0

0

0

p9

0000001111111d5

0011011011111d2

1000110000111d1

p18p17p16p15p14p8p7p6p5p4p3p2p1

1

1

1

1

1

p0

100011111010000011d4

110101011100000111d3

0

0

1

p13

0

0

1

p12

0

0

0

p11

0

0

0

p10

0

0

0

p9

0000001111111d5

0011011011111d2

1000110000111d1

p18p17p16p15p14p8p7p6p5p4p3p2p1

Figure 4: A Bitmap Index

0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 d 2
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 d 5
1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 d 3

0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 d 4
1

p 18
1

p 13
1
p 8

1
p 0

1
p 12

0
p 11

0
p 10

0
p 9

0 0 0 1 0 0 0 0 1 1 1 d 1
p 17 p 16 p 15 p 14 p 7 p 6 p 5 p 4 p 3 p 2 p 1

0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 d 2
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 d 5
1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 d 3

0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 d 4
1

p 18
1

p 13
1
p 8

1
p 0

1
p 12

0
p 11

0
p 10

0
p 9

0 0 0 1 0 0 0 0 1 1 1 d 1
p 17 p 16 p 15 p 14 p 7 p 6 p 5 p 4 p 3 p 2 p 1

Figure 5: A Bitmap Index after Shifting Popular Bits to Left

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 246

Definition 3.4 (Radius) The radius of a cluster c is defined as radius(c) =MAX{dist(dc, dj)}, where
dc is the center of the bitmap index for the cluster and dj is a bitmap for jth document in the cluster
c.

For example, in Figure 3, the center of the bitmaps d1, d2, and d3, in the bitmap index, dc, is
11110000. The radius is dist(dc, d5) = 2, if d5=11110110.

3.4 Standard Deviation and Correlation Coefficient

The standard deviation (S) is a measure of the difference from the mean. Large value for S means
the data is spread widely around the mean. Units are the same as the data itself.

 ()()

[] 1

, 2

−
=

∑

i
i

ii
i d

dcenterddist
S

The statistical definition of “relatedness” of two documents, di and dj, is called correlation. We can
calculate a “correlation coefficient” F as follows:

3.5 Document Partitioning

A set of XML documents can be partitioned into n clusters. The number of partitions depends on
the characteristics of documents; that is ePath and words used in the documents. In this section, for
simplicity, we consider bitmap indexes representing documents and ePath.

The steps of document partitioning are as follows:

(1) Rearrange rows and columns: Identifying popular bit columns by checking pop(pi); Shifting all
similar bit columns together to left by checking sim(pi, pj). For example, a bitmap index in

1010011100001101111d3

0001111000001110111d4

1

p18

1

p13

1

p8

1

p0

1

p12

0

p11

0

p10

0

p9

00010000111d1

p17p16p15p14p7p6p5p4p3p2p1

1010011100001101111d3

0001111000001110111d4

1

p18

1

p13

1

p8

1

p0

1

p12

0

p11

0

p10

0

p9

00010000111d1

p17p16p15p14p7p6p5p4p3p2p1

0110000010110011111d2

0000000011110001111d5

p18p13p8p0 p12p11p10p9 p17p16p15p14p7p6p5p4p3p2p1

0110000010110011111d2

0000000011110001111d5

p18p13p8p0 p12p11p10p9 p17p16p15p14p7p6p5p4p3p2p1

Figure 6: Two Partitioned Bitmap Indexes before Eliminating 0 Bits

1

1

p0

0001111111d5

1111011111d2

p16p15p8p7p6p5p4p3p2p1

1

1

p0

0001111111d5

1111011111d2

p16p15p8p7p6p5p4p3p2p1

1

1

1

p0

1001111101011d4

1110101110111d3

1

p13

1

p12

0

p11

0

p10

0

p9

10011111d1

p18p17p15p14p8p3p2p1

1

1

1

p0

1001111101011d4

1110101110111d3

1

p13

1

p12

0

p11

0

p10

0

p9

10011111d1

p18p17p15p14p8p3p2p1

Figure 7: Bitmap Indexes partitioned from Figure 4

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 247

Figure 4 is considered. Assume the thresholds for pop and sim are 0.6. Bit columns, p0-p3, p8,
p13, and p18 are popular bit columns. The result after shifting them to left is shown in Figure 5.

(2) Identify similar bitmaps by checking sim(di, dj) for popular bits. Back to the previous example,
two document pairs, (d1, d4) and (d2, d5), are similar.

(3) If still more bitmaps to be clustered from the above step, identify similar bitmaps by checking
sim(di, dj) for unpopular bit columns. As the same example again, d3 is similar to the partition of
(d1,d4). Hence, the two partitions are (d1,d3,d4) and (d2,d5) as shown in Figure 6. Notice that
documents in a cluster are higher correlation coefficient than those in different clusters.

(4) Eliminate bit columns, pi, if the pop(pi) = 0, meaning 0 bit columns. Back to the previous
example again, two partitions are obtained and they are shown in Figure 7.

So far, the sim operation is based on pair-wise computation. We can modify this operation to some
extent. Instead of using two bitmaps, we can use the centers of those bitmap indexes. In summary,
there are three approaches of identifying similarity:

• Clustering by computing sim for pairs of documents at a time.
• Clustering by computing sim of a bitmap with the center of a target bitmap index. We

already discussed about the center of bitmap indexes.

• Clustering by computing radius of a bitmap from the center of a target bitmap index. All
bitmaps within a given radius are in the same partition.

4. Three-Dimensional Indexing

In this section, we describe a 3-dimensional bitmap index, called “BitCube.” A BitCube is

extended from a bitmap index we discussed in Section 3 by considering one more dimension. A
BitCube represents a set of documents together with both (1) a set of ePaths (or XML-elements)
and (2) a set of words (or element contents) for each ePath. For a BitCube, we propose two types of
slice (slice of ePath and slice of Content) and project (of documents).

4.1 BitCube

We revisit the representation of documents. XML document is defined as a set of (p, v) pairs,
where (1) p denotes an element path (or ePath) described from the root element, and (2) v denotes a
word or a content for an ePath. Typical methods of handling text-based documents use a frequency
table or inverted (or signature) file that represents words for documents. However, since XML
documents are represented by XML elements (or XML tags), the typical methods are not sufficient.
We propose in this section a 3-dimensional bitmap representation, called BitCube.

A BitCube for XML documents is defined as BitCube = (d, p, v, b), where d denotes XML
document, p denotes ePath, v denotes word or content for ePath, and b denotes 0 or 1, the value for
a bit in BitCube (if ePath contains a word, the bit is set to 1, and 0 otherwise).

For example, consider XML documents similar to those documents shown in Figure 2. 5 XML
documents are represented in Figure 8. A BitCube for a set of documents: {d1, d2, d3, d4, d5}.
Each documents d1={(p0, v1), (p1, v2), (p1, v3), (p1, v5), (p2, v3), (p2, v8) }, .., d3={(p0,v11), (p1, v2),
(p1, v7), (p2, v3), (p2, v9) …, (pi,vi2), (pi,vi3), (pi,vi4), …, (pi,vij)}, and so on.

The approximate size of the BitCube is (docs*words*paths)/8 bytes, where docs being the number
of documents that are indexed, and paths in the chosen documents.

jSiSjdidMAXiccenteriddisticcenterid
ji
distjdidF ⋅⋅⋅⋅= ∑])[],([))(,())(,

,
(),(

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 248

Bit columns for ePath are initially organized in the same order as the order in which the documents
are processed. Later, when a BitCube is partitioned, ePath bits can be shifted as shown in Section
3.

Bit columns for words may be organized in many ways that are well known.

• Novice word organization. All words used in the given XML documents are shown in a
BitCube.

• Keyword organization. Only words importantly meaningful in the given XML documents
are shown in a BitCube. The size of word list in this way is smaller than the previous
organization.

• Signature word organization. This is similar to keyword organization, but those
meaningful words are shown in the order of significance.

4.2 BitCube Operations

Three operations are described in this section: (1) ePath slice, (2) word slice, and (3) document
project. The outcome of these operations, if applied against a BitCube, is a bitmap index.
Furthermore, these operations will be extended to “dicing” and “querying.”

4.2.1 ePath Slice
Each bit for a particular ePath is sliced. This operation takes a Path as input and returns a set of
documents with words associated with it.

P_Slice(ePath) = {(doc, word) | ePath is used in doc, and word is associated with the ePath}.

The outcome of this slicing is a bitmap index that represents a set of documents with a set of words.
Typical web searches may not possible for ePath.

4.2.2 Word Slice
Each bit for a particular word can be sliced. This operation takes a (search key) word as input and
returns a set of documents.

W_Slice(word) = {(doc, ePath) | word is associated with the ePath which is in turn used in doc}.

The outcome is a bitmap index that represents a set of documents with a set of ePath with which the
word is associated. Bitmap indexes illustrated in Section 3 are this type of bitmap index. Typical
web searches are based on this word slice operation if they search XML documents.

Multiple word slices can be combined together. The outcome of multiple word slices is a
combination of the outcomes of each word slices. The way of combination depends on the way the
words are requested. For example, if they are conjunctive, the outcomes need to be combined by
conjunction.

w0
w1

w2
w3

w4

wj

0

1

1

1

0

0

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

0

0

1

1

1

0

1

1

1

1

1

p0

10000011d4

00000111d3

0

1

0

pi

1111111d5

1011111d2

0000111d1

…p7p6p5p4p3p2p1 w0
w1

w2
w3

w4

wj

0

1

1

1

0

0

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

0

0

1

1

1

0

1

1

1

1

1

p0

10000011d4

00000111d3

0

1

0

pi

1111111d5

1011111d2

0000111d1

…p7p6p5p4p3p2p1

Figure 8: A BitCube: Example

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 249

4.2.3 Document Project
Each row of a BitCube can be projected. This operation takes a document as input and returns a set
of ePaths with words associated with those ePaths.

Project(doc) = {(ePath, word) | entire content and ePath pairs appeared in doc}.

The outcome is a bitmap index that represents a set of ePaths with their content (or words). A
typical method for this project operation is a web browsing.

4.2.4 Dice: A Mixed Operation
The operations “Slice” and “Project” can be applied multiple times. Multiple operations can be
treated as an operation that specifies a range. If we mix those three operations, each of which
specifies a range, the outcome is again a BitCube that is smaller or equal to the original BitCube.

Dice([ds..de],[ps..pe],[ws..we]) = {(doc, ePath, word) | doc∈[ds..de], ePath∈[ps..pe], and
word∈[ws..we]}, where x∈[xs..xe] implies that xs≤x≤xe.

This operation is useful to generate document views [3]. An example of using views is to explore
queries in EXAMPLE 2 in Section 1.1. An example of the reediting by the “Dice” operation is a
customized publication.

5. Experimental Results

In order to evaluate the construction and manipulation of bitmap indexes and BitCubes, we
generated document collections with the help of a tool. Sample documents generated with the tool
are illustrated in Figure 2. We measured the execution time (in milliseconds) of all the BitCube
operations with the increasing number of documents. The BitCube’s performance is compared with
the results obtained by performing the similar operations on other existing XML indexing tools.
We have selected XQEngine [14] and XYZFind [15] for the performance comparisons. These are
two of the prominent existing XML indexing tools. All the primitive query operations are
performed with these two tools and the results are depicted in graphs. The same operations are
performed on two other indexing tools. The experimental environment is on Windows 2000 with
256M Byte Memory.

5.1 Scalability of BitCube Construction
We measured the construction time for BitCubes for various number of ePaths associated with a
document. Figure 9 show the construction time for the various scenarios of ePaths per document.
We found that the construction time increases reasonably with the increase in the document set
size. But once the indexing of XML is done, and then all the benefits of a BitCube can reaped from
it.

Figure 9: The effects of BitCube Creation with respect to ePath/document

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 250

5.2 Execution Time of BitCube Operations

We measured the execution time for the three operations: word-Slice, path-Slice, and document-
Project with the increasing document set size for various tools. The experimental results are then
compared with the help of graphs drawn. The experimental results for word-Slice for the BitCube
and the XQEngine are comparatively depicted in figure-10. It can be easily read from the graph that
the BitCube word-Slice operation is scalable and the performance of BitCube is better than the
XQEngine. The execution time of path-Slice is depicted in Figure-11 for the tools BitCube,
XQEngine and XYZFind. The comparative graph in figure-11 conveys that BitCube outperforms
the other tools in path-Slice operation in terms of execution time. Similarly, the execution time of
the document-Project operation is shown in Figures-12 for the selected tools with the increasing
document set size. BitCube’s performance in document-Projection is also good.

Figure 10: The comparison of word slice times for various tools

Figure 11: The comparison of path slice times for various tools

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 251

We found that the execution time of all the BitCube operators is very less when compared to the
other tools and is scalable. This is partly because they are executed using bit-wise operations that
require less execution time once the BitCube is constructed.

6. Conclusion

The main contributions of this paper are (1) the application of bitmap indexing to represent XML
document collection as a 3-Dimensional data structure: XML document, XML-element path, and
terms or words, (2) the definition of BitCube index based schemes to partition documents into
clusters in order to efficiently perform BitCube operations, and (3) a document retrieval technique
based on application of BitCube operations to subcubes resulting from the clustering phase.
Experiments to show that our bitmap approach improves document clustering and performance of
document retrieval on the Internet over alternative approaches are in progress. (4) Even for big
XML document collections, the indexing is done in considerable amount of time. The time taken
for various BitCube operations remained constant.

Acknowledgement

This research was in part supported by the U.S. Department of Energy grant DE-FG02-97ER1220
and La LEQSF research grant No LEQSF(2000-03)-RD-A-42. We thank B. Kim for his
comments.

REFERENCES

[1] S. Berchtold, D. A. Keim, and H. P. Kriegel, The X-tree: An Index Structure for High-
Dimensional Data, Proc. Intl. Conf. On Very Large Data Bases, Bombay, India, 1996, 28-39.

[2] C. Chan and Y. Ioannidis, Bitmap Index Design and Evaluation, Proc. of Int’l ACM SIGMOD
Conference, 1998, 355-366

[3] A. Gupta and I. Mumick, eds, Matrialized Views, Cambridge, MA: MIT Press, 2000.

Figure 12: The comparison of doc-projection times for various tools

Jong Yoon, et. al., BitCube, Journal of Intelligent Information Systems, Vol. 17, November 2001.

 252

[4] D. Hill, A Vector Clustering Technique, Mechanised Information Storage, Retrieval and
Dissemination, North-Holland, Amsterdam, 1968.

[5] M. Kobayashi and K. Takeda, Information Retrieval on the Web, ACM Computing Surveys,
32(2):144-173, 2000.

[6] P. O’Neil and D. Quass, Improved Query Performance with Variant Indexes, Proc. of Int’l
ACM SIGMOD Conference, 1997, 38-49.

[7] C. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala, Latent Semantic Indexing: a
Probabilistic Analysis, Proc. of the 17th ACM Symposium on Principles of Database Systems,
1998, 159-168.

[8] G. Salton and M. McGill, Introduction to Modern Information Retrieval, New York, McGraw-
Hill, 1983.

[9] A. Tomasic, H. Garcia-Molina, and K. Shoens, Incremental Updates of Inverted Lists for Text
Retrieval, Proc. ACM SIGMOD Conf. On Management of Data, Minneapolis, 1994, 289-300.

[10] P. Willet, Recent Trends in Hierarchical Document Clustering: a Critical Review, Information
Processing and Management, 24:577-97, 1988.

[11] M. Wu, Query Optimization for Selections using Bitmaps, Proc. Int’l ACM SIGMOD
Conference, 1999, 227-238.

[12] J. Yoon and S. Kim, A Three-Level User Interface to Multimedia Digital Libraries with
Relaxation and Restriction, IEEE Conf. on Advanced Digital Libraries, Santa Barbara, 1998,
206-215.

[13] O. Zamir and O. Etzioni, Web Document Clustering: A Feasibility Demostration, Proc. of
ACM SIGIR Conf. on Research and Development in Information Retrieval, 1998, 46-54.

[14] http://www.fatdog.com, “XML Query Engine”, XQEngine-1.0.
[15] http://www.xyzfind.com, “XML Database – Repository, search, and query –

XYZFind”, xyzfind-2.0.

