
74 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ 1089-7801/ 00/$10.00 ©2000 IEEE IEEE INTERNET COMPUTING

Extending Your Markup:
An XML Tutorial
André Bergholz • Stanford University

B y now, no doubt, you’ve heard the acronym XML.
You’ve probably also heard that XML (a) is simple
and (b) will solve all your problems. Sounds like

magic, doesn’t it? But then you look a little deeper and
encounter more three-letter acronyms, like DTD, XSL, RDF,
and DOM. You begin to doubt XML’s simplicity (and you
never believed XML could solve all your problems in the first
place). In this short tutorial I present what I think are the
essential concepts of XML, and hopefully will convince
you that despite the hype, XML is important for presenta-
tion, exchange, and management of information.

More Meaningful Markup
The Standard Generalized Markup Language (SGML) is
a rather complicated language that lets you define struc-
ture for documents. The Hypertext Markup Language is
an application of SGML that has a fixed set of markups.
HTML is primarily used for layout on the Web. It tells
nothing about the content of the data.

Both SGML and HTML heavily influenced the devel-
opment of the Extensible Markup Language (XML), a
semantic language that lets you meaningfully annotate
text. Meaningful annotation is, in essence, what XML is
all about. Figure 1a shows a bibliography entry in
HTML; Figure 1b shows that same entry written in
XML. Because the structure of the information in Figure
1b is more explicit, it is much easier for humans to read
and computers to process.

XML Syntax
Syntactically, XML documents look like HTML docu-
ments. A well-formed XML document—one that con-
forms to the XML syntax—starts with a prolog and con-
tains exactly one element. Additionally, an arbitrary
number of comments and processing instructions (which
are not explained in this tutorial) can be included. The
prolog looks something like this:

<?xml version=“1.0” standalone=“yes” encoding=“UTF-8”?>

It tells you that your document follows XML version 1.0,
is stand-alone (that is, not accompanied by a document
type definition, or DTD), and uses Unicode Trans-
formation Format 8-bit (UTF-8) encoding. If the docu-
ment was accompanied by a DTD, the DTD declaration
would also be part of the prolog.

The single element can be viewed as the root of the
document. Elements can be nested, and attributes can be
attached to them. Attribute values must be in quotes, and
tags must be balanced. Empty element tags must either
end with a /> or be explicitly closed.

Figure 2 expands on Figure 1b, adding attributes and a
comment. The id attribute assigns an identifier to an ele-
ment, and the idref attribute reuses the identifier.

For a complete description of the XML syntax, see the
W3C XML Recommendation (http://www.w3.org/TR/
1998/REC-xml-19980210).

Defining Structure
DTDs, which are also used in SGML, define the struc-
ture of XML documents. It’s easiest to think of a DTD as
a context-free grammar. In particular, DTDs let users
specify the set of tags, the order of tags, and the attributes
associated with each. A well-formed XML document that
conforms to its DTD is called valid. Figure 3 shows a
simple DTD for the bibliography example in Figure 2.

A DTD is declared in the XML document’s prolog
using the !DOCTYPE tag. The DTD can be included with-
in the XML document, or it can be contained in a sepa-
rate file. If the DTD is in a separate file, say document.dtd,
the XML document includes the statement:

<!DOCTYPE Document SYSTEM “document.dtd”>

You can also refer to an external DTD through a URI.

XML introduces a family of languages to provide a more
semantic management of information than HTML.

SP
O

TL
IG

H
T

SP
O

TL
IG

H
T

S P O T L I G H T O N X M L

75IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

DTD elements
Elements can be either nonterminal or terminal.
Nonterminal elements (BIB and BOOK in Figure
3) contain subelements, which can be grouped as
sequences or choices. A sequence defines the order
in which subelements must appear. A choice gives
a list of alternatives for subelements. Sequences
and choices can contain each other.

In Figure 3, both BIB and BOOK are sequences.
A BOOK element has to have at least one AUTHOR
(indicated by +), followed by a TITLE and, option-
ally, by a PUBLISHER and a YEAR (indicated by ?).
A choice is indicated by the logical operator |.
The example below shows a choice in which a
SECTION can either be a TITLE followed by at least
one PARAGRAPH, or a TITLE followed by zero or
more PARAGRAPHs (indicated by the wildcard *)
and at least one SUBSECTION.

<!ELEMENT SECTION ((TITLE, (PARAGRAPH+)) |
(TITLE, (PARAGRAPH*), (SUBSECTION+)))>

Terminal elements can be declared as parsed
character data (#PCDATA, as in Figure 3) or as
EMPTY. Elements can also be declared as ANY. An
element declared as ANY is a terminal element in
the grammar, but it can contain subelements of
any declared type, as well as character data.

DTD attributes
Elements can have zero or more attributes, which
are declared using the !ATTLIST tag. Unlike element
definitions, attribute definitions do not impose
order on when the attributes occur. Furthermore, if
several attributes are declared for the same element
type, they can be declared using multiple !ATTLIST
tags. Attributes can be optional (#IMPLIED), required
(#REQUIRED), or fixed (#FIXED). Optional attributes
can, and fixed attributes must, have a default value:

<!ATTLIST PROJECT url CDATA
“http://www.myserver.net/index.html”>

Attributes can have different data types.
Character data (CDATA) is the most common.
With types id, idref, and idrefs, element identifiers
can be declared and referenced. Every value of a
referencing attribute must be a value of another
attribute of type id. Attributes can also be enu-
merated as user-defined types:

<!ATTLIST PUBLICATION format (html | pdf | ps)
#REQUIRED>

Aho, A. V., Sethi, R., Ullman, J. D.: Compilers: Principles,
Techniques, and Tools , Addison-Wesley, 1985

(a)

<BOOK>
<AUTHOR> Aho, A. V. </AUTHOR>
<AUTHOR> Sethi, R. </AUTHOR>
<AUTHOR> Ullman, J. D. </AUTHOR>
<TITLE> Compilers: Principles, Techniques, and Tools </TITLE>
<PUBLISHER> Addison-Wesley </PUBLISHER>
<YEAR> 1985 </YEAR>

</BOOK>
(b)

Figure 1. A bibliography entry (a) in HTML and (b) in XML. The
HTML description is layout oriented, while the XML description
is structure oriented.

<?xml version=“1.0” standalone=“yes”>

<!– This is an example bibliography. –>
<BIB>

<BOOK nickname=“Dragon book”>
<AUTHOR id=“aho”> Aho, A. V. </AUTHOR>
<AUTHOR id=“sethi”> Sethi, R. </AUTHOR>
<AUTHOR id=“ullman”> Ullman, J. D. </AUTHOR>
<TITLE> Compilers: Principles, Techniques, and Tools </TITLE>
<PUBLISHER> Addison-Wesley </PUBLISHER>
<YEAR> 1985 </YEAR>

</BOOK>

<BOOK>
<AUTHOR idref=“ullman”/>
<TITLE> Principles of Database and Knowledge-Base Systems, Vol.

1 </TITLE>
</BOOK>

...
</BIB>

Figure 2. A short bibliography in XML. This example demon-
strates the use of attributes as well as referencing using the id
and idref attributes.

<!DOCTYPE bib [
<!ELEMENT BIB (BOOK+)>
<!ELEMENT BOOK (AUTHOR+, TITLE, PUBLISHER?, YEAR?)>
<!ATTLIST BOOK

isbn CDATA #IMPLIED
nickname CDATA #IMPLIED>

<!ELEMENT AUTHOR (#PCDATA)>
<!ATTLIST AUTHOR

id ID #IMPLIED
idref IDREF #IMPLIED>

<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT PUBLISHER (#PCDATA)>
<!ELEMENT YEAR (#PCDATA)>

]>
Figure 3. A DTD for the bibliography example. The DTD defines
a grammar for documents.

XML Examples (Figures 1–3)

T U T O R I A L

76 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Popular applications of DTDs include
XHTML (http://www.w3.org/TR/xhtml1/) and
the Chemical Markup Language (CML, http://
www.xmlcml.org/).

Extending Capabilities
Extensions to XML include namespaces as well as
more powerful addressing and linking abilities.
These extensions let you link more than one
source document to more than one target docu-
ment. Furthermore, with XML it is not necessary
to place an anchor in the target document.

Namespaces
Using namespaces avoids name clashes (that is,
situations where the same tag name is used in dif-
ferent contexts). For instance, a namespace can
identify whether an address is a postal address, an
e-mail address, or an IP address. Tag names with-
in a namespace must be unique. In an XML doc-
ument, namespaces are declared using the xmlns
attribute.

<BIB xmlns:mybib=“http://www.myserver.net/”>

This namespace can be referred to using the prefix
mybib. That means that mybib:AUTHOR refers to
the AUTHOR in the namespace. The URI http://
www.myserver.net/ identifies the namespace. The
URI is purely an identifier—it might not point to
anything. The prefix definition :mybib can also be
skipped, in which case the namespace identified
by http://www.myserver.net/ becomes the default
namespace for the document.

Namespaces can be defined in any element.
Their scope is the element in which they are
defined, plus all its descendants. To avoid confu-
sion, you should define all namespaces within the
root element and use unique prefixes.

Unfortunately, namespaces and DTDs do not
work well together. In a DTD, the element defin-
ition <!ELEMENT mybib:BIB...> is just that: an ele-
ment mybib:BIB is defined. It does not mean that
an element BIB is defined within the namespace
that the prefix mybib is mapped to. It does not
even mean that the colon separates a prefix from a
local name. Thus, depending on your application,
you must make your document both valid with
respect to some DTD and conform to the XML
namespaces recommendation.

Addressing and linking
In HTML, URLs point only to a document; it is
not possible, for example, to address the fifth item
in the second list in a document directly.
Moreover, HTML links are one-way, and external
link definitions are not possible. XML extends
HTML’s linking capabilities with three support-
ing languages.

� Xlink (http://www.w3.org/TR/xlink/), which
describes how two documents can be linked;

� XPointer, which enables addressing individual
parts of an XML document; and

� XPath, which is used by XPointer to describe
location paths.

A location path consists of location steps, which in
turn consist of an axis, a node test, and a predicate.
The expression below consists of two location
steps, evaluated left to right, one starting with child
and the other with attribute. It describes the id
attributes of the first two AUTHORs within some
externally defined initial context.

child::AUTHOR[position()<3]/attribute::id

A lot of material on XML is available online.
Of course, your first stop should always be the W3C XML page
(http://w3c.org/XML/). The XML-FAQ page (http://www.ucc.ie/
xml/) provides a simple introduction, and the XML Cover Pages
(http://www.oasis-open.org/cover/sgml-xml.html) offer a com-
prehensive online reference on every topic covered in this tutorial.

Anders Møller and Michael Schwartzbach have compiled an
excellent XML tutorial (http://www.brics.dk/~amoeller/XML/).
Ron Bourret has a collection of insightful pages, most notably on
DTDs, namespaces, and XML Schema (http://www.informatik.tu-
darmstadt.de/DVS1/staff/bourret/bourret.htm).

Three (interesting) sections of the XML Bible1 can be found at
http://metalab.unc.edu/xml/books/bible/, while a somewhat
severe criticism of the XML hype can be found at
http://www.interlog.com/ gray/markup-abuse.html. The xml-dev
mailing list (http://xml.org/xml-dev/) keeps you up-to-date on
current developments and lets you share your own ideas (“Ask
not what XML can do for you, ask what you can do for XML!”).

Of course, software that supports XML is essential. Because
existing standards continue to develop and new ones constantly
arise, many tools support only parts of some specifications. An
excellent overview of existing systems and tools can be found at
http://xmlsoftware.com.

Reference
1. E.R. Harold, XML Bible, IDG Book Worldwide, Foster City, Calif., 1999.

XML Resources on the on the
eb eb

S P O T L I G H T O N X M L

77IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

The axis (the part before the ::) helps you navi-
gate through the document. Possible axis values
include child, attribute, parent, and following-sib-
lings. The node test can be a tag or attribute name
(AUTHOR in the example) or the wildcard *. With
functions like text() or comment(), other subele-
ments can be addressed. The predicate in the
square brackets defines the filter.

XPointer uses XPath to define fragment identi-
fiers. A fragment identifier can be the value of an
attribute of type id, a sequence of numbers (for
example, /1/4/2/10), or a sequence of XPointer
expressions (xpointer(…)) as in the example:

http://www.myserver.net/#xpointer(//BOOK/AU
THOR[position()=1])

In the XPointer expression above (in parenthe-
ses), // is an abbreviation for the descendent-or-
self axis whereas AUTHOR comes without an axis:
child() is the default. XPointer also defines the ini-
tial context for the XPath expression. The most
important part of the initial context is the context
node, which is the root node of the document
specified by the fragment identifier.

With XLink you can link documents together.
Links can be either simple or extended. A simple
link is very similar to an HTML link.

XLink uses its own namespace, identified by the
URI http://www.w3.org/1999/xlink, and typically
associated with the prefix xlink. The attributes in
Figure 4 are all part of the XLink specification.

� href lets you specify a URI together with a
fragment identifier.

� role indicates the purpose of the linked docu-
ment (or, more accurately, the linked element)
in the linking document.

� show specifies what is to be done with the
linked document when it is loaded. For exam-
ple, show=“embed” dictates that the linked
document is to be embedded in the current
document. Other values for show are replace,
new, and undefined.

� actuate specifies when the action indicated by
show should occur. Values for actuate are
onLoad, indicating that the linked document is
to be embedded while the current document is
loading; onRequest, indicating that it is to be
embedded when requested; or undefined.

Extended links connect more than two docu-
ments (generally called resources)—that is, more

than one source document or more than one tar-
get document. The LINKS element in Figure 5 is a
linking element of type extended and consists of
the LINKS element’s children. A local resource has
the type resource, whereas a remote resource con-
fusingly has the type locator. Again, the role
attribute is used to describe the purpose of the
linked document.

Elements of type arc describe traversals
between resources. The example in Figure 6 (next
page) introduces two arcs, one from the resource
with the role home to the resource with the role
amazon, and another to the resource with the role
barnes_and_noble. By using the same role for mul-
tiple resources, arcs can have multiple sources and
targets. In the current specification, the applica-
tion decides how to handle arcs.

XLink also allows you to define and use link
databases in external documents.

Stylesheets and More
The Extensible Stylesheet Language (XSL) is
actually two languages: a transformation lan-

XML Examples (Figures 4–5)

<AUTHOR xmlns:xlink=http://www.w3.org/1999/xlink
xlink:type=“simple”
xlink:href=“http://www-cs-faculty.stanford.edu/ knuth/”
xlink:role=“don_~knuth_homepage”
xlink:show=“embed”
xlink:actuate=“onLoad”>

Donald Knuth </AUTHOR>

Figure 4. A simple Xlink. Simple XLinks are similar to HTML
links, but they also let you define the behavior of the link.

<BOOK>
<AUTHOR> Ullman, J. D. </AUTHOR>
<TITLE> Principles of Database and Knowledge-Base Systems, Vol. 1

</TITLE>
<LINKS xmlns:xlink=“http://www.w3.org/1999/xlink”

xlink:type=“extended”
xlink:title=“My Book World”>
<MYPAGE xlink:type=“resource”

xlink:role=“home”>
My Page on Ullman’s Book

</MYPAGE>
<AMAZON xlink:type=“locator”

xlink:href=“http://www.amazon.com/exec/obidos/...”
xlink:role=“amazon”/>

<BARNES_AND_NOBLE xlink:type=“locator”
xlink:href=“http://shop.barnesandnoble.com/booksearch/...”
xlink:role=“barnes_and_noble”/>

</LINKS>
</BOOK>

Figure 5. An extended Xlink. Extended XLinks let you define
collections of links.

T U T O R I A L

78 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

guage (called XSL transformations, or XSLT) and
a formatting language (XSL formatting objects).

XSLT allows you to transform XML into
HTML, thus bypassing the formatting language.
It also lets you restructure XML documents so
that different kinds of XML representations can
be mapped onto one another. This makes XSLT
very useful for electronic commerce and electron-
ic data interchange.

Figure 7 shows XSLT code for turning the bib-
liography entry in Figure 1b into an HTML rep-
resentation like the one in Figure 1a. XSLT uses
the namespace identified by http://www.w3.org/

1999/XSL/Transform (Internet Explorer 5.0,
which supports XSLT, references http://www.w3.
org/TR/WD-xsl).

The stylesheet element contains a collection of
template elements and can be included in the doc-
ument it is to be applied to. The match attribute
of a template element addresses the document
structures the template can be applied to.
Arbitrary XPath expressions can be incorporated
into valid values of the match attribute.

The template element indicates the output to be
produced. In Figure 7, the root template produces
an <HTML>...</HTML> frame, the template for BIB
elements produces an unordered list frame
(...), and the template for BOOK ele-
ments produces a list entry frame (...).
These templates all contain an <xsl:apply-tem-
plates/> element that causes the XSLT processor
to apply applicable templates on the subelements
of the current element recursively.

The templates for AUTHOR and TITLE elements
contain an <xsl:value-of select=“.”/> subelement,
which causes the value of the current element
(indicated by the path expression “.”) to be out-
put. Incidentally, the value of the select attribute
can be an arbitrary XPath expression. In the
example, the value of the TITLE element is empha-
sized in the generated HTML output.

For a more detailed discussion of XSL, see
http://www.w3.org/Style/XSL/.

XML Schema
Although DTDs were the first proposal to pro-
vide for a standardized data exchange between
users, they have disadvantages. Their expressive
power seems limited, and their syntax is not
XML. Several approaches address these disadvan-
tages by defining a schema language (rather than
a grammar) for XML documents:

� document definition markup language
(DDML), formerly known as XSchema,

� document content description (DCD),
� schema for object-oriented XML (SOX), and
� XML-Data (replaced by DCD).

The W3C’s XML Schema activity takes these four
proposals into consideration.

XML Schema is well-formed XML that allows
the user to define datatypes. The example in Figure
8 (on page 80) describes a datatype for BOOK ele-
ments described by a DTD in Figure 3.

Again, XML Schema uses its own namespace.

XML Examples (Figures 6–7)

<BOOK>
...

<LINKS xmlns:xlink=http://www.w3.org/1999/xlink
...

<ARC xlink:type=“arc”
xlink:from=“home”
xlink:to=“amazon”
xlink:show=“replace”
xlink:actuate=“onRequest”/>

<ARC xlink:type=“arc”
xlink:from=“home”
xlink:to=“barnes_and_noble”
xlink:show=“replace”
xlink:actuate=“onRequest”/>

</LINKS>
</BOOK>

Figure 6. Arcs in an extended Xlink. With arcs you can define
how to traverse extended XLinks.

<xsl:stylesheet version=“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=“/”>
<HTML><xsl:apply-templates/></HTML>

</xsl:template>

<xsl:template match=“BIB”>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match=“BOOK”>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match=“AUTHOR”>
<xsl:value-of select=“.”/>

</xsl:template>

<xsl:template match=“TITLE”>
<xsl:value-of select=“.”/>

</xsl:template>

</xsl:stylesheet>
Figure 7. A simple XSL stylesheet for transforming the XML bib-
liography into an HTML unordered list.

S P O T L I G H T O N X M L

79IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

The complexType element indicates a complex data-
type associated with the nonterminal element BOOK
and consisting of other elements and attributes.

XML Schema supports a variety of atomic
datatypes, such as string, decimal, and date.
Datatypes that have been defined to retain com-
patibility with DTDs, such as id and idref, should
only be used for attributes. The user can simulate
the +, *, and ? of DTDs or regular expressions
using the minOccurs and maxOccurs attributes.

Figure 9 shows the definition of a SECTION ele-
ment written (a) as a DTD and (b) in XML
Schema. XML Schema also distinguishes between
sequences and choices, which are instances of the
group element. Groups can be defined outside of
a type and referenced using the ref attribute.

XML Schema also supports inheritance as part
of the more general concept of derivation. A type
definition can be accompanied by a base (the
name of the base type) and a derivedBy (the kind
of derivation) attribute. Possible values for the
derivedBy attribute include extension and restric-
tion. As a further extension, a list element lets you
define a list of elements of some base type.

The ultimate goal of XML Schema can only be
to replace DTDs. Currently, its chances of doing
so remain unclear. For more information about
XML Schema, see http://www.w3.org/XML/
Schema.html.

Other Developments to Watch
To sum it up, the XML wave really introduces a
family of languages, which are dedicated to a more
semantic management of information.

In addition to the languages discussed here,
there are other important developments that affect
XML activity. Two such developments are the
resource description framework (RDF), which inte-
grates a variety of Web-based metadata activities;
and the document object model (DOM), which
provides an interface to allow programs to access
and update the content, structure, and style of doc-
uments dynamically. A future issue of IEEE Internet
Computing will include a tutorial on RDF. �

Acknowledgments
Katerina Cai, Stefan Decker, Felix Naumann, Dieter Scheffner,

and Jörg Schenk made numerous comments and proofread the

manuscript. I am currently supported by the German

Academic Exchange Service (DAAD program HSP III).

André Bergholz is a visiting postdoc in the Stanford University

database group. He received a diploma in 1996 and a PhD

in 2000, both from Humboldt University Berlin. His

research interests include the management of semistruc-

tured data and the application of database technology in

computational biology.

Readers can contact the author at bergholz@db.stanford.edu.

XML Examples (Figure 8–9)

<xsd:schema xmlns:xsd=“http://www.w3.org/1999/XMLSchema”>

<xsd:element name=“BOOK” type=“BOOKTYPE”/>

<xsd:complexType name=“BOOK_TYPE” >
<xsd:element name=“AUTHOR” type=“xsd:string”

minOccurs=“1” maxOccurs=“unbounded”/>
<xsd:element name=“TITLE” type=“xsd:string”/>
<xsd:element name=“PUBLISHER” type=“xsd:string”

minOccurs=“0” maxOccurs=“1”/>
<xsd:element name=“YEAR” type=“xsd:decimal”

minOccurs=“0” maxOccurs=“1”/>
<xsd:attribute name=“isbn” type=“xsd:string”/>
<xsd:attribute name=“nickname” type=“xsd:string”/>

</xsd:complexType>
</xsd:schema>

Figure 8. The XML Schema for the bibliography in Figure 2. Like
a DTD, the XML Schema defines a grammar for the document.
However, XML Schema uses XML syntax and is more expressive.

<!ELEMENT SECTION ((TITLE, (PARAGRAPH+)) |
(TITLE, (PARAGRAPH*), (SUBSECTION+)))>

(a)

<xsd:element name=“SECTION” type=“SECTION_TYPE”/>

<xsd:complexType name=“ SECTION_TYPE”>
<xsd:choice>

<xsd:group ref=“plainSection”/>
<xsd:group ref=“nestedSection”/>

</xsd:choice>
</xsd:complexType>

<xsd:group name=“plainSection”>
<xsd:sequence>

<xsd:element name=“TITLE” type=“xsd:string”/>
<xsd:element name=“PARAGRAPH” type=“xsd:string”

maxOccurs=“unbounded”/>
</xsd:sequence>

</xsd:group>

<xsd:group name=“nestedSection”>
<xsd:sequence>

<xsd:element name=“TITLE” type=“xsd:string”/>
<xsd:element name=“PARAGRAPH” type=“xsd:string”

minOccurs=“0” maxOccurs=“unbounded”/>
<xsd:element name=“SUBSECTION” type=“SUBSECTIONTYPE”

maxOccurs=“unbounded”/>
</xsd:sequence>

</xsd:group>
(b)

Figure 9. Sequences and choices in (a) a DTD and (b) XML
Schema.

