
KMIP 64-bit Binary Alignment Proposal

To: OASIS KMIP Technical Committee
From: Matt Ball, Sun Microsystems, Inc.
Date: May 6, 2009
Version: 2
Purpose: To propose a change to the binary encoding such that each part is aligned to an 8-byte
boundary

Revision History
• Version 1, 2009-05-01: Initial version
• Version 2, 2009-05-06: Fixed typos (it appears that there is a style in the current draft that turns off

“Check spelling and grammar” for certain styles, which is why these typos were missed the first time).
Changed length of boolean from 4 to 8 bytes.

Introduction
The binary encoding as defined in the 1.0 version of the KMIP draft does not maintain alignment to 8-byte
boundaries within the message structure. This causes problems on hard-aligned processors, such as the
ARM, that are not able to easily access memory on addresses that are not aligned to 4 bytes.
Additionally, it reduces performance on modern 64-bit processors. For hard-aligned processors, when
unaligned memory contents are requested, either the compiler has to add extra instructions to perform
two aligned memory accesses and reassemble the data, or the processor has to take a ‘trap’ (i.e., an
interrupt generated on unaligned memory accesses) to correctly assemble the memory contents. Either
of these options results in reduced performance. On soft-aligned processors, the hardware has to make
two memory accesses instead of one when the contents are not properly aligned.

This proposal suggests ways to improve the performance on hard-aligned processors by aligning all data
structures to 8-byte boundaries.

Summary of Proposed Changes
This proposal includes the following changes to the KMIP 0.98 draft submission to the OASIS KMIP TC:

• Change the alignment of the KMIP binary encoding such that each part is aligned to an 8-byte
boundary. This is done by:
• Change the Tag field to occupy 3 bytes. In this way, the combined size of the Tag, Type, and

Length fields is 8 bytes.
• Require that all Item Value fields be padded with zero to seven bytes of the value 00 such that

the length of the Value field is a multiple of 8 bytes. The Item Length still contains the correct,
unpadded length of the Item.

• Change the length of the Item Value for Binary types to be 4 bytes (instead of 1 byte), with hex values
00000000 for false and 00000001 for true.

• Change the format of the Big Integer Item Type to require that the Item Value be padded with sign-
extended bytes on the left (i.e., most significant bytes) such that the total length is a multiple of 8
bytes.

Proposed Changes
The following text shows proposed changes to the KMIP 1.0 draft as published on April 30, 2009, with
underline to indicate additions and to indicate deletions.

9 Message Encoding
To support different transport protocols and different client capabilities, a number of message-encoding
mechanisms are supported.

9.1 TTLV Encoding
In order to minimize the resource impact on potentially low-function clients, one encoding
mechanism to be used for protocol messages is a simplified TTLV (Tag, Type, Length, Value)
scheme.

The scheme is designed to minimize the CPU cycle and memory requirements of clients that
must encode or decode protocol messages, and to provide optimal alignment for both 32-bit and
64-bit processors. Minimizing bandwidth over the transport mechanism is considered to be of
lesser importance.

9.1.1 TTLV Encoding Fields
Every Data object encoded by the TTLV scheme consists of 4 items, in order:

9.1.1.1 Item Tag
An Item Tag is a 3-byte binary unsigned integer, transmitted big endian, which contains a
number that designates the specific Protocol Field or Object that the TTLV object
represents. To ease debugging, and to ensure that malformed messages are detected
more easily, all tags must contain either the value 42 in hex or the value 54 in hex as the
high order (first) byte. Tags defined by this specification contain hex 42 in the first byte.
Extensions, which are permitted, but not defined in this specification, contain the value 54
hex in the first byte. A list of defined Item Tags is in Section 9.1.3.1 .

9.1.1.2 Item Type
An Item Type is a byte containing a coded value that indicates the data type of the data
object. The allowed values are:

Data Type Coded Value in Hex

Structure 01

 Integer 02

 Long Integer 03

 Big Integer 04

 Enumeration 05

 Boolean 06

 Text String 07

 Octet String 08

Date-Time 09

Interval 0A

9.1.1.3 Item Length
An Item Length is a 32-bit binary integer, transmitted big-endian, containing the number
of bytes in the Item Value.

Allowed values are:

Data Type Length

 Integer 4

 Long Integer 8

 Big Integer Varies, multiple of 8

 Enumeration 4

 Boolean 8

 Text String Varies

 Octet String Varies

 Date-Time 8

 Interval 4

 Structure Varies, multiple of 8

If the Item Type is a Text String or Octet String, then the Item Length must be the number
of unpadded bytes in the string. Strings must not be null-terminated, but must be padded
such that the transmitted length of the Item Value is a multiple of 8 bytes (see 9.1.1.4). If
the Item Type is a structure, then the Item Length is the total length of all of the sub-items
contained in the structure, including any padding. If the Item Type is a Big Integer, then

the Item Length must be the number of bytes in the string after padding with leading
bytes to make the length a multiple of 8 bytes.

9.1.1.4 Item Value
The item value is a sequence of bytes containing the value of the data item, depending
on the type:

• Integers are encoded as 4-byte long (32 bit) binary signed numbers in 2's
complement notation, transmitted big-endian.

• Long Integers are encoded as 8-byte long (64 bit) binary signed numbers in 2's
complement notation, transmitted big-endian.

• Big Integers are encoded as a sequence of 8-bit bytes, in 2's complement
notation, transmitted big-endian. If the length is not a multiple of 8 bytes, then the
Big Integer shall be padded with enough leading sign-extended bytes to make
the length a multiple of 8 bytes.

• Enumerations are encoded as 4-byte long (32 bit) binary unsigned numbers
transmitted big-endian. Extensions, which are permitted, but not defined in this
specification, contain the value 8 hex in the first nibble of the first byte.

• Booleans are encoded as an 8-byte value that must either contain the
hexadecimal value 00000000 00000000, indicating the boolean value False, or
the hexadecimal value 00000000 00000001, transmitted big-endian, indicating
the boolean value True.

• Text Strings are sequences of bytes encoding character values according to the
UTF-8 encoding standard. There must be no null-termination at the end of such
strings.

• Octet Strings are sequences of bytes containing individual unspecified 8 bit
binary values.

• Date-Time values are encoded as 8-byte long (64 bit) binary signed numbers,
transmitted big-endian. They are POSIX Time values (described in IEEE
Standard 1003.1) extended to a 64 bit value to eliminate the “Year 2038
problem”. The value is expressed as the number of seconds from a time epoch,
which is 00:00:00 GMT January 1st, 1970. This value has a resolution of 1
second. All Date-Time values are expressed as UTC values.

• Intervals are encoded as 4-byte long (32 bit) binary unsigned numbers,
transmitted big-endian. They have a resolution of 1 second.

• Structure Values are encoded as the concatenated encodings of the elements of
the structure. All structures defined in this specification must have all of their
fields encoded in the order in which they appear in their respective structure
descriptions.

9.1.2 If the Item Length contains a value that is not a multiple of 8,
then the contents of the Item Value shall be padded with the minimal
quantity of trailing ‘00’ bytes such that the transmitted length is a
multiple of 8 bytes.Examples
These examples are assumed to be encoding a Protocol Object whose tag is 420020. The
examples are shown as a sequence of bytes in hexadecimal notation:

• An Integer containing the decimal value 8:

42 00 20 | 02 | 00 00 00 04 | 00 00 00 08 00 00 00 00

• A Long Integer containing the decimal value 123456789000000000:

42 00 20 | 03 | 00 00 00 08 | 01 B6 9B 4B A5 74 92 00

• A Big Integer containing the decimal value 1234567890000000000000000000:

42 00 20 | 04 | 00 00 00 10 | 00 00 00 00 03 FD 35 EB 6B C2 DF 46
18 08 00 00

• An Enumeration with value 255:

42 00 20 | 05 | 00 00 00 04 | 00 00 00 FF 00 00 00 00

• A Boolean with the value True:

42 00 20 | 06 | 00 00 00 04 | 00 00 00 00 00 00 00 01

• A Text String:

42 00 20 | 07 | 00 00 00 0B | 48 65 6C 6C 6F 20 57 6F 72 6C 64 00
00 00 00 00

• An Octet String:

42 00 20 | 08 | 00 00 00 03 | 01 02 03 00 00 00 00 00

• A Date-Time, containing the value for Friday, March 14, 2008, 11:56:40 GMT:

42 00 20 | 09 | 00 00 00 08 | 00 00 00 00 47 DA 67 F8

• An Interval, containing the value for 10 days:

42 00 20 | 0A | 00 00 00 04 | 00 0D 2F 00 00 00 00 00

• A Structure containing an Enumeration, value 254, followed by an Integer, value 255,
having tags 42000004 and 42000005 respectively:

42 00 20 | 01 | 00 00 00 20 | 42 00 04 | 05 | 00 00 00 04 | 00 00
00 FE 00 00 00 00 | 42 00 05 | 02 | 00 00 00 04 | 00 00 00 FF 00
00 00 00

9.1.3 Defined Values
This section specifies the values that are defined by this specification. In all cases where an
extension mechanism is allowed, this extension mechanism may only be used for communication
between parties that have pre-agreed understanding of the specific extensions.

9.1.3.1 Tags
The following table defines the tag values for the objects and primitive data values for the
protocol messages.

Tag
Object Tag Value
(Unused) 000000 - 420000

Activation Date 420001

Application Identifier 420002

Application Name Space 420003

Application Specific
Identification

420004

Archive Date 420005

Asynchronous Correlation
Value

420006

Asynchronous Indicator 420007

Attribute 420008

Tag
Object Tag Value
Attribute Index 420009

Attribute Name 42000A

Attribute Value 42000B

Authentication 42000C

Batch Count 42000D

Batch Error Continuation
Option

42000E

Batch Item 42000F

Batch Order Option 420010

Block Cipher Mode 420011

Cancellation Result 420012

Certificate 420013

Certificate Issuer 420014

Certificate Request 420015

Certificate Request Type 420016

Certificate Subject 420017

Certificate Subject Alternative
Name

420018

Certificate Subject
Distinguished Name

420019

Certificate Type 42001A

Certificate Value 42001B

Common Template-Attribute 42001C

Compromise Date 42001D

Compromise Occurrence Date 42001E

Contact Information 42001F

Credential 420020

Credential Type 420021

Credential Value 420022

Criticality Indicator 420023

CRT Coefficient 420024

Cryptographic Algorithm 420025

Cryptographic Length 420026

Cryptographic Parameters 420027

Cryptographic Usage Mask 420028

Custom Attribute 420029

D 42002A

Deactivation Date 42002B

Derivation Data 42002C

Tag
Object Tag Value
Derivation Method 42002D

Derivation Parameters 42002E

Destroy Date 42002F

Digest 420030

Digest Value 420031

Encryption Key Information 420032

G 420033

Hashing Algorithm 420034

Initial Date 420035

Initialization Vector 420036

Issuer 420037

Iteration Count 420038

IV/Counter/Nonce 420039

J 42003A

Key 42003B

Key Block 42003C

Key Material 42003D

Key Part Identifier 42003E

Key Value 42003F

Key Value Type 420040

Key Wrapping Data 420041

Key Wrapping Specification 420042

Last Changed Date 420043

Lease Time 420044

Link 420045

Link Type 420046

Linked Object Identifier 420047

MAC/Signature 420048

MAC/Signature Key
Information

420049

Maximum Items 42004A

Maximum Response Size 42004B

Message Extension 42004C

Modulus 42004D

Name 42004E

Name Type 42004F

Name Value 420050

Object Group 420051

Tag
Object Tag Value
Object Type 420052

Offset 420053

Opaque Data Type 420054

Opaque Data Value 420055

Opaque Object 420056

Operation 420057

Operation Policy Name 420058

P 420059

Padding Method 42005A

Policy Template 42005B

Prime Exponent P 42005C

Prime Exponent Q 42005D

Prime Field Size 42005E

Private Exponent 42005F

Private Key 420060

Private Key Template-Attribute 420061

Private Key Unique Identifier 420062

Process Start Date 420063

Protect Stop Date 420064

Protocol Version 420065

Protocol Version Major 420066

Protocol Version Minor 420067

Public Exponent 420068

Public Key 420069

Public Key Template-Attribute 42006A

Public Key Unique Identifier 42006B

Put Function 42006C

Q 42006D

Q String 42006E

Query Function 42006F

Recommended Curve 420070

Replaced Unique Identifier 420071

Request Header 420072

Request Message 420073

Request Payload 420074

Response Header 420075

Response Message 420076

Response Payload 420077

Tag
Object Tag Value
Result Message 420078

Result Reason 420079

Result Status 42007A

Revocation Message 42007B

Revocation Reason 42007C

Revocation Reason Code 42007D

Role Type 42007E

Salt 42007F

Secret Data 420080

Secret Data Type 420081

Serial Number 420082

Server Information 420083

Split Key 420084

Split Key Method 420085

Split Key Parts 420086

Split Key Threshold 420087

State 420088

Storage Status Mask 420089

Symmetric Key 42008A

Template 42008B

Template Name 42008C

Template-Attribute 42008D

Time Stamp 42008E

Unique Identifier 42008F

Unique Message ID 420090

Usage Limits 420091

Usage Limits Byte Count 420092

Usage Limits Object Count 420093

Usage Limits Total Bytes 420094

Usage Limits Total Objects 420095

Validity Date 420096

Validity Indicator 420097

Vendor Extension 420098

Vendor Identification 420099

Wrapping Method 42009A

X 42009B

Y 42009C

(Reserved) 42009D – 42FFFF

Tag
Object Tag Value
(Unused) 430000 – 53FFFF

Extensions 540000 – 54FFFF

(Unused) 550000 - FFFFFF

