
Business Process Management Initiative (BPMI)

Business Process Modeling Notation

Working Draft (0.9) November 13, 2002

Copyright  2002, BPMI.org. All Rights Reserved

Abstract
The Business Process Modeling Notation (BPMN) specification provides a graphical
notation for expressing business processes in a Business Process Diagram (BPD). The
objective of BPMN is to support process management by both technical users and
business users by providing a notation that is intuitive to business users yet able to
represent complex process semantics. The BPMN specification also provides a mapping
between the graphics of the notation to underlying the constructs of execution languages,
such as BPEL4WS and BPML.

Status of this Document
This document is the first working draft of the BPMN specification submitted for comments
from the public by members of the BPMI initiative on November 13, 2002. It has been
produced based on the work of the members of the Notation Working Group. Comments on
this document and discussions of this document should be sent to BPMN-
PublicReview@bpmi.org. This is a draft document and may be updated, replaced, or made
obsolete by other documents at any time. It is inappropriate to refer to this document as
other than “work in progress.”

http://www.bpmi.org/
mailto:bpmn-publicreview@bpmi.org
mailto:bpmn-publicreview@bpmi.org

November 13, 2002 BPMN Working Draft
Acknowledgements
The members of the BPMI Notation Working Group contributed to the development of this
specification. The following were members of the committee for at least part of the time
from August 2001 until this version of the specification:

Michael Anthony International Performance Group
Ashish Agrawal Intalio
Assaf Arkin Intalio
Jeanne Baker Sterling Commerce
Steve Ball Sterling Commerce
Chuck Faris Popkin Software
Ismael Ghalimi Intalio
Jared Groth Sterling Commerce
Paul Harmon Individual Member
Brian James Proforma Corporation
Simon Johnston Rational Software
George Keeling Casewise
Antoine Lonjon MEGA International
Dave Madigan Glue Limited
Mike Marin FileNet
Martin Owen Popkin Software
Matthew Pryor Versata
Robert Shapiro Cape Visions
Howard Smith CSC
Don Stewart Genient
Bala Suryanarayanan Infosys Technologies
Stephen A. White SeeBeyond
Paul Wuethrich New Era of Networks (Sybase)

The primary author and editor of the main body of the specification was

Stephen A. White (swhite@seebeyond.com)

Additional contributions to its writing were made by

Ashish Agrawal (ashish@intalio.com)
Michael Anthony (manthony@ipgl.com)
Assaf Arkin (arkin@intalio.com)
George Keeling (george@casewise.co.uk)
Brian James (bjames@proformacorp.com)
Antoine Lonjon (alonjon@mega.com)
Martin Owen (martin.owen@popkin.co.uk)
2 / 158 Copyright  2002, BPMI.org All Rights Reserved

mailto:swhite@seebeyond.com
mailto:manthony@ipgl.com
mailto:arkin@intalio.com
mailto:george@casewise.co.uk
mailto:bjames@proformacorp.com
mailto:alonjon@mega.com
mailto:martin.owen@popkin.co.uk
mailto:ashish@intalio.com

BPMN Working Draft November 13, 2002
Notice of BPMI.org Policies on Intellectual Property Rights &
Copyright

BPMI.org takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Information on BPMI.org's procedures with respect to rights in BPMI.org
specifications can be found at the BPMI.org website. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result
of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification, can be obtained from the BPMI.org
Chairman.
BPMI.org invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights, which may cover technology that may be
required to implement this specification. Please address the information to the BPMI.org
Chairman.
This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to BPMI.org, except as needed for
the purpose of developing BPMI.org specifications, in which case the procedures for
copyrights defined in the BPMI.org Intellectual Property Rights document must be followed,
or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by BPMI.org
or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and
BPMI.org DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright © The Business Process Management Initiative [BPMI.org], November 13, 2002.
All Rights Reserved.
Copyright  2002, BPMI.org All Rights Reserved 3 / 158

November 13, 2002 BPMN Working Draft
Table of Contents
Abstract...1
Status of this Document...1
Acknowledgements ..2
Notice of BPMI.org Policies on Intellectual Property Rights & Copyright3
Table of Contents ...4
List of Figures...6
List of Tables ..8
List of Examples...9
1. Introduction..10

1.1 Conventions ...11
1.1.1 Typographical and Linguistic Conventions and Style ..11

1.2 Dependency on Other Specifications...11
1.3 Conformance ...12

2. BPMN Overview ..13
2.1 BPMN Scope..14

2.1.1 Uses of BPMN ..14
2.1.2 Diagram Point of View ..17
2.1.3 Extensibility of BPMN and Vertical Domains ...17

3. Business Process Diagram Concepts ..18
3.1 BPD Core Element Set ...18
3.2 BPD Complete Set...19
3.3 Use of Text, Color, and Lines in a Diagram ...24
3.4 Flow Object Connection Rules ..24

3.4.1 Sequence Flow Rules..24
3.4.2 Message Flow Rules ...25

4. Business Process Diagram Graphical Objects ..27
4.1 Events ...27

4.1.1 Start ...27
4.1.2 End ..33
4.1.3 Intermediate ..38

4.2 Activities ..44
4.2.1 Processes ...44
4.2.2 Sub-Process...46
4.2.3 Task...53

4.3 Decisions ..58
4.3.1 Exclusive...59
4.3.2 Inclusive..64
4 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
4.4 Pools and Lanes...64
4.4.1 Pool ...65
4.4.2 Lane ..68

4.5 Data Object..69
4.6 Text Annotation ..71

5. Connecting Objects..73
5.1 Graphical Connecting Objects ..73

5.1.1 Sequence Flow..73
5.1.2 Message Flow ...75
5.1.3 Association..78

5.2 Sequence Flow Mechanisms...80
5.2.1 Normal Flow ...80
5.2.2 Link Events ...95
5.2.3 Spawning and Synchronizing Activities...95
5.2.4 Exception Flow ...95
5.2.5 Transaction Compensation Flow ..99
5.2.6 Ad Hoc..101

6. BPMN by Example ..103
6.1 The Beginning of the Process ...103

6.1.1 Mapping to BPEL4WS ...104
6.1.2 Mapping to BPML ..107

6.2 The First Sub-Process...110
6.2.1 Mapping to BPEL4WS ...111
6.2.2 Mapping to BPML ..114

6.3 The Second Sub-Process...116
6.3.1 Mapping to BPEL4WS ...118
6.3.2 Mapping to BPML ..121

6.4 The End of the Process ...124
6.4.1 Mapping to BPEL4WS ...125
6.4.2 Mapping to BPML ..129

7. Mapping to Execution Languages ..133
8. References...134

8.1 Normative ..134
8.2 Non-Normative..135

9. Open Issues ...137
Appendix A: E-Mail Voting Process BPEL4WS ..138
Appendix B: E-Mail Voting Process BPML..146
Appendix C: Glossary ...151
Copyright  2002, BPMI.org All Rights Reserved 5 / 158

November 13, 2002 BPMN Working Draft
List of Figures
Figure 1: A Start Event ...27
Figure 2: Message Flow connected to a Start Event...31
Figure 3: Process Instantiation through Message Receiving Task..32
Figure 4: End Event...33
Figure 5: Message Flow leaving an End Event ...37
Figure 6: Message Flow from Task that precedes the End Event...37
Figure 7: Intermediate Event..39
Figure 8: Task with an Intermediate Event attached to its boundary..39
Figure 9: Collapsed Sub-Process ..46
Figure 10: Expanded Sub-Process..46
Figure 11: Collapse Sub-Process Marker Combinations ...47
Figure 12: A Task Object ..53
Figure 13: A Decision ..58
Figure 14: A Data-Based Decision Example..60
Figure 15: An Event-Based Decision Example..61
Figure 16: A Pool ...65
Figure 17: Message Flow connecting to the boundaries of two Pools ...66
Figure 18: Message Flow connecting to flow objects within two Pools...66
Figure 19: Two Lanes in a Pool ..68
Figure 20: A Data Object ..69
Figure 21: A Data Object associated with a Sequence Flow..70
Figure 22: Data Objects shown as inputs and outputs ...70
Figure 23: A Text Annotation...71
Figure 24: A Sequence Flow ...73
Figure 25: A Message Flow ...75
Figure 26: Message Flow connecting to the boundaries of two Pools ...75
Figure 27: Message Flow connecting to flow objects within two Pools...76
Figure 28: Message Flow connecting to boundary of Sub-Process and Internal objects............77
Figure 29: An Association ...79
Figure 30: A directional Association..79
Figure 31: An Association of Text Annotation..79
Figure 32: An Association connecting a Data Object with a Flow..79
Figure 33: A Process with Normal flow ...81
Figure 34: A Process with Expanded Sub-Process without a Start Event and End Event82
Figure 35: A Process with Expanded Sub-Process with a Start Event and End Event82
Figure 36: A Data-Based Decision Example..83
6 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Figure 37: An Event-Based Decision Example..83
Figure 38: Three variations of a Process ...84
Figure 39: Merging – the joining of alternative paths..85
Figure 40: The Split-Merge Relationship is not Fixed ...85
Figure 41: Forking – the creation of parallel paths ..86
Figure 42: Joining – the joining of parallel paths ...87
Figure 43: The Fork-Join Relationship is not Fixed...88
Figure 44: Flow Condition of One..89
Figure 45: Flow Condition of All..89
Figure 46: A Complex Flow Condition ..90
Figure 47: A Task with a Loop Marker...91
Figure 48: A Collapsed Sub-Process with a Loop Marker ..91
Figure 49: An Expanded Sub-Process with a Loop Marker..92
Figure 50: An Until Loop ..92
Figure 51: A While Loop...93
Figure 52: Potentially an invalid model ...94
Figure 53: Improper Looping...94
Figure 54: A Task with Exception Flow (Interrupts Event Context) ...96
Figure 55: A Sub-Process with Exception Flow (Interrupts Event Context)96
Figure 56: A Task with Transaction Compensation Flow ...99
Figure 57: A Collapsed Ad Hoc Sub-Process ..101
Figure 58: An Expanded Ad Hoc Sub-Process ...101
Figure 59: An Ad Hoc Process for Writing a Book Chapter ...102
Figure 60: E-Mail Voting Process ..103
Figure 61: The Start of the Process ..104
Figure 62: “Discussion Cycle” Sub-Process Details..110
Figure 63: “Collect Votes” Sub-Process Details..116
Figure 64: The last segment of the E-Mail Voting Process ..124
Copyright  2002, BPMI.org All Rights Reserved 7 / 158

November 13, 2002 BPMN Working Draft

8 / 158 Copyright  2002, BPMI.org All Rights Reserved

List of Tables
Table 1: BPD Core Element Set ...19
Table 2: BPD Complete Element Set ...23
Table 3: Sequence Flow Connection Rules..25
Table 4: Message Flow Connection Rules ...26
Table 5: Start Event Types ...29
Table 6: Start Event Attributes ..30
Table 7: End Event Types ...34
Table 8: End Event Attributes..36
Table 9: Intermediate Event Types ..40
Table 10: Intermediate Event Attributes...41
Table 11: Process Attributes ...46
Table 12: Sub-Process Attributes ...50
Table 13: Task Attributes ...56
Table 14: Decision Attributes ...62
Table 15: Pool Attributes ..67
Table 16: Lane Attributes ...68
Table 17: Data Object Attributes ...70
Table 18: Text Annotation Attributes..71
Table 19: Sequence Flow Attributes ..74
Table 20: Message Flow Attributes ..78
Table 21: Association Attributes ..80

BPMN Working Draft November 13, 2002

Copyright  2002, BPMI.org All Rights Reserved 9 / 158

List of Examples
Example 1: BPEL4WS Sample for Beginning of E-Mail Voting Process107
Example 2: BPML Sample for Beginning of E-Mail Voting Process..109
Example 3: BPEL4WS Sample of “Discussion Cycle” Sub-Process Details114
Example 4: BPML Sample of “Discussion Cycle” Sub-Process Details115
Example 5: BPEL4WS Sample that sets up the Access for the Second Sub-Process118
Example 6: BPEL4WS Sample of the Second Sub-Process ...121
Example 7: BPML Sample that sets up the Access for the Second Sub-Process121
Example 8: BPML Sample of the Second Sub-Process ..123
Example 9: Sample BPEL4WS code for the last section of the Process128
Example 10: Sample BPEL4WS code for derived process for repeated elements129
Example 11: Sample BPML code for the last section of the Process ..131
Example 12: Sample BPML code for derived nested process for repeated elements................132

November 13, 2002 BPMN Working Draft
1. Introduction
The Business Process Management Initiative (BPMI) has developed a standard
Business Process Modeling Notation (BPMN). The primary goal of BPMN is to provide a
notation that is readily understandable by all business users, from the business analysts
that create the initial drafts of the processes, to the technical developers responsible for
implementing the technology that will perform those processes. Thus, BPMN creates a
standardized bridge for the gap between the process analysis and process implementation.

Another goal, but no less important, is to ensure that XML languages designed for the
execution of business processes, such as BPEL4WS (Business Process Execution
Language for Web Services) and BPML (Business Process Modeling Language), can be
visualized with a common notation. We will consider that each of these execution
languages is equally relevant to BPMN. In the interest of consistency, however, they will be
listed in alphabetical order when both are being discussed.

This specification defines the notation and semantics of a Business Process Diagram
(BPD) and represents the amalgamation of best practices within the business modeling
community. BPMN is the standardization of many different modeling notations and
viewpoints and provides a simple means of communicating process information to other
business users, process implementers, customers, and suppliers.

The BPMN specification defines a mapping from BPMN to BPEL4WS and BPML, and is
comprised of the following topics:

BPMN Overview provides an introduction to BPMN, its requirements, and discusses the
range of modeling purposes that BPMN can convey.

Business Process Diagram Concepts provides a summary of the BPMN graphical elements
and their relationships.

Business Process Diagram Graphical Objects details the graphical representation and the
semantics of the behavior of BPMN diagram elements.

Connecting Objects defines the graphical objects used to connect two objects together (i.e.,
the connecting lines of the diagram) and how flow progresses through a Process (i.e.,
through a straight sequence or through the creation of parallel or alternative paths).

BPMN by Example provides a walkthrough of a sample Process using BPMN.

Mapping to Execution Languages provides the formal mechanism for converting a BPMN
diagram to a BPEL4WS or BPML document.

References provides a list of normative and non-normative references.

Open Issues provides a list of issues that will affect the future of the BPMN specification.

Appendix A: E-Mail Voting Process BPEL4WS provides a full sample of BPEL4WS code
based on the example business process described in the “BPMN by Example” section.

Appendix B: E-Mail Voting Process BPML provides a full sample of BPML code based on
the example business process described in the “BPMN by Example” section.

Appendix C: Glossary presents an alphabetical index of terms that are relevant to
practitioners of BPMN.
10 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
1.1 Conventions
The section introduces the conventions used in this document. This includes (text)
notational conventions and notations for schema components. Also included are
designated namespace definitions.

1.1.1 Typographical and Linguistic Conventions and Style
This specification incorporates the following conventions:

• The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this
document are to be interpreted as described in RFC-2119.

• A term is a word or phrase that has a special meaning. When a term is defined, the
term name is highlighted in bold typeface.

• A reference to another definition, section, or specification is highlighted with underlined
typeface and provides a link to the relevant location in this specification.

• A reference to an element, attribute, or BPMN construct is highlighted with a
capitalized word (e.g., Sub-Process).

• A reference to a BPEL4WS or BPML element, attribute, or construct is highlighted
with an italic lower-case word, usually preceded by the word “BPEL4WS” (e.g.,
BPEL4WS pick) or “BPML” (e.g., BPML choice).

• Non-normative examples are set of in boxes and accompanied by a brief explanation.

• XML and pseudo text is highlighted with mono-spaced typeface.

• The cardinality of any content part is specified using the following operators:

• (none) — exactly once

• ? — 0 or 1

• * — 0 or more

• + — 1 or more

• Properties separated by | and grouped within (and) — alternative values

• : <value> — default value

1.2 Dependency on Other Specifications
The BPMN specification supports for the following specifications is a normative part of the
BPMN specification: BPEL4WS and BPML.

The following abbreviations may be used throughout this document:

This abbreviation Refers to

BPEL4WS Business Process Execution Language for Web Services (see
BPEL4WS). This abbreviation refers specifically to version 1.0 of the
specification, but is intended to support future versions of the
BPEL4WS specification.
Copyright  2002, BPMI.org All Rights Reserved 11 / 158

November 13, 2002 BPMN Working Draft
BPML Business Process Modeling Language (see BPML). This
abbreviation refers specifically to version 1.0 of the specification, but is
intended to support future versions of the BPML specification.

WSCI Web Services Choreography Interface (see WSCI). This abbreviation
refers specifically to version 1.0 of the specification, but is intended to
support future versions of the WSCI specification.

WSDL Web Service Description Language (see WSDL). This abbreviation
refers specifically to the W3C Technical Note, 15 March 2001, but is
intended to support future versions of the WSDL specification.

XPath XML Path Language (see XPath). This abbreviation refers specifically
to the W3C Recommendation, 16 November 1999, but is intended to
support future versions of the XPath specification.

XQuery XML Query Language (see XQuery). This abbreviation refers
specifically to the W3C Working Draft, 20 December 2001, but is
intended to support future versions of the XQuery specification.

XSDL XML Schema structures and data types (see XML-Schema). This
abbreviation refers specifically to the W3C Recommendation, 2 May
2001, but is intended to support future versions of the XML Schema
specification.

1.3 Conformance
A BPMN processor is responsible to process XML documents that conform to the BPMN
schema and the rules set forth in this specification, and any related specification that must
be supported in order to fully conform to the requirements of the BPMN specification.

A BPMN implementation is responsible to perform one or more duties based on the
semantics conveyed by BPMN definitions. A BPMN implementation must understand the
semantics of BPMN definitions as set forth in this specification.

A conformant implementation is any BPMN implementation that can process BPMN
documents and perform one or more duties based on the semantics conveyed in BPMN
definitions, as set forth in this specification.

At the minimum, a fully conformant implementation of version 1.0 of the BPMN specification
must support for the following features. There is no need to specify these features in a
BPMN document.

Specification Feature

BPMN 0.9 http://www.bpmi.org/2002/11/bpmn
A conformant implementation is not required to process any extension elements or
attributes, or any BPMN document that contains them. Extension elements and attributes
are specified in a namespace that is other than the BPMN namespace and may only
appear where allowed.
12 / 158 Copyright  2002, BPMI.org All Rights Reserved

http://www.bpmi.org/2002/8/bpmn

BPMN Working Draft November 13, 2002
2. BPMN Overview
There has been much activity in the past two or three years in developing web service-
based XML execution languages for BPM systems. Languages such as BPEL4WS and
BPML provide a formal mechanism for BPM Systems to define and execute business
processes and to interoperate with each other. The key element of these languages is that
they are optimized for the operation and interoperation of BPM Systems. The optimization
of these languages for software operations renders them less suited for direct use by
humans to design and manage business processes. BPML is a block-structured language
and BPEL4WS is a combination block- and graph-structured language. In addition, these
languages define the behavior of a business process in a very compact and efficient
manner. Given the nature of these languages, a complex business process will be
organized in a potentially complex, disjointed, and unintuitive format that is handled very
well by a software system (or a computer programmer), but would be hard to understand by
the business analysts and managers tasked to develop and manage the business process.
Thus, there is a human level of interoperability that is not addressed by these web service-
based XML execution languages.

Humans tend to visualize business processes in a flow-chart format. There are thousands
of business analysts studying the way companies work and defining business processes
with simple flow charts. There is a technical gap between the format of the initial design of
business processes and the format of the languages that will execute these business
processes. This gap needs to be bridged with a formal mechanism that maps the
appropriate visualization of the business processes (a notation) to the appropriate
execution format (a BPM execution language) for these business processes.

Interoperation of business processes at the human level, rather than the software engine
level, can be solved with standardization of the Business Process Modeling Notation
(BPMN). BPMN provides a Business Process Diagram (BPD), which is a diagram designed
for use by the people who design and manage business processes. BPMN also provides a
formal mapping to execution languages of BPM Systems, such as BPEL4WS and BPML.
Thus, BPMN would provide a standard visualization mechanism for business processes
defined in an execution optimized business process language.

BPMN will provide businesses with the capability of understanding their internal business
procedures in a graphical notation and will give organizations the ability to communicate
these procedures in a standard manner. Furthermore, the graphical notation will facilitate
the understanding of the performance collaborations and business transactions between
the organizations. This will ensure that businesses will understand themselves and
participants in their business and will enable organizations to adjust to new internal and
B2B business circumstances quickly. To do this, BPMN will follow the tradition of
flowcharting notations for readability; yet still provide the mapping to the executable
constructs. BPMI is using the experience of the business process notations that have
preceded BPMN to create the next generation notation that combines readability, flexibility,
and expandability.

BPMN will also advance the capabilities of traditional business process notations by
inherently handling B2B business process concepts, such as public and private processes
and choreographies, as well as advanced modeling concepts, such as exception handling
and transaction compensation.
Copyright  2002, BPMI.org All Rights Reserved 13 / 158

November 13, 2002 BPMN Working Draft
2.1 BPMN Scope
BPMN will be constrained to support only the concepts of modeling that are applicable to
business processes. This means that other types of modeling done by organizations for
business purposes will be out of scope for BPMN. For example, the modeling of the
following will not be a part of BPMN:

• Organizational structures

• Functional breakdowns

• Data models

In addition, while BPMN will show the flow of data, it is not a data flow diagram.

2.1.1 Uses of BPMN
Business process modeling is used to communicate a wide variety of information to a wide
variety of audiences. BPMN is designed to cover this wide range of usage and allows
modeling of end-to-end business processes to allow the viewer of the diagram to be able to
easily differentiate between the sub-model sections of a BPMN diagram.

There are three basic types of sub-models within an end-to-end BPMN model:

• Private (internal) business processes

• Interface (public/abstract) processes

• Collaboration Processes

Some BPMN specification terms regarding the use of swimlanes (e.g., Pools and Lanes)
are used in the descriptions below. Refer to the section entitled “Pools and Lanes” on
page 64 for more details on how these elements are used in a BPD.

Private Business Processes
Private business processes are those internal to a specific organization and are the types
of processes that have been generally called workflow or BPM processes. A single private
business process will map to a single BPEL4WS or BPML document.

If swimlanes are used then a private business process will be contained within a single
Pool. The Sequence Flow of the Process is therefore contained within the Pool and cannot
cross the boundaries of the Pool. Message Flow can cross the Pool boundary to show the
interactions that exist between separate private business processes. Thus, a single BPMN
diagram may show multiple private business processes.

Interface Processes
This is also called an abstract process and this represents the interactions between a
private business process and another process or participant. Only those activities that are
used to communicate outside the private business process are included in the interface
process. All other “internal” activities of the private business process are not shown in the
interface process. Thus, the interface process shows to the outside world the sequence of
messages that are required to interact with that business process. A single interface
process may be mapped to a single WSCI document (however, this mapping will not be
done in this specification).
14 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Interface processes are contained within a Pool and can be modeled separately or within a
larger BPMN diagram to show the Message Flow between the interface process activities
and other entities. If the interface process is in the same diagram as its corresponding
private business process, then the activities that are common to both processes can be
linked together.

Note: The mechanisms for defining how the activities can be linked has not been
defined and is an open issue. Refer to the section entitled “Open Issues” on
page 137 for a complete list of the issues open for BPMN.

Collaboration Processes
A collaboration process depicts the interactions between two or more business entities.
These interactions are defined as a sequence of activities that represent the messages
being sent between the entities involved. A single collaboration process may be mapped to
an ebXML, RosettaNet, or WSCI global model process (however, these mappings are
outside the scope of this specification).

Collaboration processes are contained within a Pool and the different participant business
roles are shown as Lanes within the Pool. These processes can be modeled separately or
within a larger BPMN diagram to show the Message Flow between the collaboration
process activities and other entities. If the collaboration process is in the same diagram as
one of its corresponding private business process, then the activities that are common to
both processes can be linked together.

Note: The mechanisms for defining how the activities can be linked has not been
defined and is an open issue. Refer to the section entitled “Open Issues” on
page 137 for a complete list of the issues open for BPMN.

Types of BPD Diagrams
Within and between these three BPMN sub-models, many types of diagrams can be
created. The following are the types of business processes that can be modeled with
BPMN (those with asterisks will not map to an executable language):

• High-level private process activities (not functional breakdown)*

• Detailed private business process

• As-is or old business process*

• To-be or new business process

• Detailed private business process with interactions to one or more external entities (or
“Black Box” processes)

• Two or more detailed private business processes interacting

• Detailed private business process relationship to Interface Process
Copyright  2002, BPMI.org All Rights Reserved 15 / 158

November 13, 2002 BPMN Working Draft
• Detailed private business process relationship to Collaboration Process

• Two or more Interface Processes—not executable

• Interface Process relationship to Collaboration Process*

• Collaboration Process only (e.g., ebXML BPSS or RosettaNet)*

• Two or more detailed private business processes interacting through their Interface
Processes

• Two or more detailed private business processes interacting through a Collaboration
Process

• Two or more detailed private business processes interacting through their Interface
Processes and a Collaboration Process

BPMN is designed to allow all the above types of diagrams. However, it should be
cautioned that if too many types of sub-models are combined, such as three or more
private processes with message flow between each of them, then the diagram may become
too hard for someone to understand. Thus, we recommend that the modeler pick a focused
purpose for the BPD, such as a private process, or a collaboration process.

BPMN mappings
Since BPMN covers such a wide range of usage, it will map to more than one lower-level
specification language:

• BPEL4WS and BPML are the primary languages that BPMN will map to, but they only
cover a single executable private business process. If a BPMN diagram depicts more
than one internal business process, then there will a separate mapping for each on the
internal business processes.

• The interface sections of a BPMN diagram will be mapped to Web service interfaces
specifications, such as the abstract processes of BPEL4WS and WSCI.

• The Collaboration model sections of a BPMN will be mapped Collaboration models
such as ebXML BPSS and RosettaNet.

This specification will only cover the mappings to BPEL4WS and BPML. Mappings to other
specifications will have to be a separate effort, or perhaps a future direction of BPMN
(beyond Version 1.0 of the BPMN specification). It is hard to predict which mappings will be
applied to BPMN at this point, since process language specifications is a volatile area of
work, with many new offerings and mergings.

A BPD is not designed to graphically convey all the information required to execute a
business process. Thus, the graphic elements of BPMN will be supported by properties that
will supply the additional information required to enable a mapping to BPEL4WS and
BPML.
16 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
2.1.2 Diagram Point of View
Since a BPMN diagram may depict the Processes of different Participants, each Participant
may view the diagram differently. That is, the Participants have different points of view
regarding how the Processes will behave. Some of the activities will be internal to the
Participant (meaning performed by or under control of the Participant) and other activities
will be external to the Participant. Each Participant will have a different perspective as to
which are internal and external. At runtime, the difference is important in how a Participant
can view the status of the activities or trouble-shoot any problems. However, the diagram
itself remains the same.

Although the diagram point of view is important for a viewer of the diagram to understand
how the behavior of the Process will relate to that viewer, BPMN will not currently specify
any graphical mechanisms to highlight the point of view. It is open to the modeler or
modeling tool vendor to provide any visual cues to emphasize this characteristic of a
diagram.

2.1.3 Extensibility of BPMN and Vertical Domains
BPMN is intended to be extensible by modelers and modeling tools. This extensibility
allows modelers to add non-standard elements or artifacts to satisfy a specific need, such
as the unique requirements of a vertical domain. While extensible, BPMN diagrams should
still have the basic look-and-feel so that a diagram by any modeler should be easily
understood by any viewer of the diagram.

The graphical elements of BPMN are designed to be open to allow specialized markers to
convey specialized information. For example, the three types of Events all have open
centers for the markers that BPMN standardizes as well as user-defined markers.
Copyright  2002, BPMI.org All Rights Reserved 17 / 158

November 13, 2002 BPMN Working Draft
3. Business Process Diagram Concepts
This section provides a summary of the BPMN graphical objects and their relationships.
More details on the concepts will be provided in “Business Process Diagram Graphical
Objects” on page 27 and “Connecting Objects” on page 73.

One of the goals of BPMN is that the notation be simple and adoptable by business
analysts. Also, there is a conflicting requirement that BPMN provide the power to depict
complex business processes and map to BPM execution languages. To help understand
how BPMN can manage both requirements, the list of BPMN graphic elements is presented
in two groups.

First, there is the list of core elements that will support the requirement of a simple notation.
These are the elements that define the basic look-and-feel of BPMN. Most business
processes will be modeled adequately with these elements. Second, there is the entire list
of elements, including the core elements, which will help support requirement of a powerful
notation to handle more advanced modeling situations.

3.1 BPD Core Element Set
Table 1 displays a list of the core business process concepts that are depicted through the
notation:

Element Description Notation
Event (three types) An event is something that “happens” during

the course of a business process. These
events affect the flow of the process and
usually have a cause or an impact. There
are three types of events in terms of how
they affect the flow: start, intermediate, and
end.

Start

Intermediate

End
Task (atomic) A Task is an atomic activity that is included

within a Process. A Task is used when the
work in the Process is not broken down to a
finer level of Process Model detail.

Sub-Process
(Compound)

A Sub-Process is a compound activity that is
included within a Process. It is compound in
that it is broken down into a finer level of
detail through a set of sub-activities.

Decision Decisions are locations within a business
process where the flow of control can take
two or more alternative paths.

Sequence Flow A Sequence Flow is used to show the order
that activities will be performed in a Process.

Name

+
Name

Name

Name, Condition, or
Message
18 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Table 1 BPD Core Element Set

3.2 BPD Complete Set
Table 2 displays a more extensive list of the business process concepts that could be
depicted through a business process modeling notation.

Message Flow A Message Flow is used to show the flow of
messages between two entities that are
prepared to send and receive them. In
BPMN, two separate Pools in the diagram
will represent the two entities.

Pool A Pool is a “swimlane” and a graphical
container for partitioning a set of activities
from other Pools, usually in the context of
B2B situations.

Lanes A Lane is a sub-partition within a Pool and
will extend the entire length of the Pool,
either vertically or horizontally. Lanes are
used to organize and categorize activities
within a Pool.

Element Description Notation
Event An event is something that “happens”

during the course of a business
process. These events affect the flow
of the process and usually have a
cause or an impact. There are three
types of events in terms of how they
affect the flow: start, intermediate, and
end.

Flow Dimension (e.g.,
Start, Intermediate, End)

Start (Message,
Timer, Rule, Link,
Multiple)

Intermediate
(Message, Timer,
Process Error,
Compensate, Rule,
Link, Multiple)

End (Message,
Process Error,
Compensate, Link,
Multiple)

As the name implies, the Start Event
indicates where a particular process
will start.

Intermediate Events occur between a
Start Event and an End Event. This is
an event that occurs after a Process
has been started. It will affect the flow
of the process, but will not start or
(directly) terminate the process.

As the name implies, the End Event
indicates where a process will end.

Start

Intermediate

End

Name or
Message

N
am

e
N

am
e N
am

e
N

am
e

Name or
Source
Copyright  2002, BPMI.org All Rights Reserved 19 / 158

November 13, 2002 BPMN Working Draft
Type Dimension (e.g.,
Message, Timer,
Process Error,
Compensate, Rule, Link,
Multiple)

Start and Intermediate Events have
“Triggers” that define the cause for the
event. There are multiple ways that
these events can be triggered. End
Events may define a “Result” that is a
consequence of a Sequence Flow
ending.

Task (Atomic) A Task is an atomic activity that is
included within a Process. A Task is
used when the work in the Process is
not broken down to a finer level of
Process Model detail.

Process/Sub-Process (non-
atomic)

A Sub-Process is a compound activity
that is included within a Process. It is
compound in that it is broken down
into a finer level of detail through a set
of sub-activities.

See Next Two Figures

Collapsed Sub-Process The details of the Sub-Process are not
visible in the diagram.

Expanded Sub-Process The boundary of the Sub-Process is
expanded and the details of the Sub-
Process are visible within its
boundary.

Sequence Flow A Sequence Flow is used to show the
order that activities will be performed
in a Process.

See next three figures

Message

Timer

Process Error

Compensate

Rule

Link

Multiple

EndInter-
mediateStart

Name

+
Name

Name
20 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Normal flow Normal sequence flow refers to the
flow that originates from a Start Event
and continues through activities via
alternative and parallel paths until it
ends at an End Event.
Conditions (or guards) are only
available for Flows exiting a Decision.

Exception flow Exception flow occurs outside the
normal flow of the Process and is
based upon an event (an Intermediate
Event) that occurs during the
performance of the Process.

Transaction
Compensation flow

Transaction Compensation Flow
occurs outside the normal flow of the
Process and is based upon an event
(an Intermediate Event) that is
triggered during the rolling back of a
Process that has started, but is later
cancelled.

Message Flow A Message Flow is used to show the
flow of messages between two entities
that are prepared to send and receive
them. In BPMN, two separate Pools in
the diagram will represent the two
entities.

Data Object Data Objects are considered artifacts
because they do not have any direct
affect on the Sequence Flow or
Message Flow of the Process, but
they do provide information about
what the Process does.

?

Fork (AND-Split) BPMN uses the term forking to refer to
the dividing of a path into two or more
parallel paths (also known as an AND-
Split). It is a place in the Process
where activities can be performed
concurrently, rather than serially.

Join (AND-Join) BPMN uses the term joining to refer to
the combining of two or more parallel
paths into one path (also known as an
AND-Join). The Join mechanism is an
Open Issue.

Name, Condition,
Code, or Message

Name or Code

Name or Code

Name or
Message

Name

B

A C

D

Fork
AND-Split

C

D

F

Join
AND-Join
Copyright  2002, BPMI.org All Rights Reserved 21 / 158

November 13, 2002 BPMN Working Draft
Decision, Branching Point;
(OR-Split)

Decisions are locations within a
business process where the flow of
control can take two or more
alternative paths.

Data-Based Exclusive

Condition

Default

The set of Decision Alternatives for
Data-Based Exclusive Decisions are
based on condition expressions.
These expressions evaluate the
current values of process data to
determine which path should be
taken.
This means that if none of the other
condition expressions is true at
runtime, then the default expression
will be chosen.

Event-Based Exclusive This Decision represents a branching
point in the process where the
Alternatives are based on an
Intermediate Event that occurs at that
point in the Process. The specific
Intermediate Event, usually a
message type, determines which of
the paths will be taken.

Inclusive An Inclusive Decision is a hybrid
between a Fork (AND-Split) and a
Decision (OR-Split). In some sense it
is a grouping of related independent
Binary (Yes/No) Decisions. Since
each path is independent, all
combinations of the paths may be
taken, from one to all.

Notation TDB

Merging (OR-Join) BPMN uses the term merging to refer
to the combining of two or more
alternative paths into one path (also
known as an a OR-Join). The Merge
mechanism is an Open Issue.

Looping; Multiple Instances BPMN provides 2 (two) mechanisms
for looping within a Process.

See Next Two Figures

Activity Looping The properties of Tasks and Sub-
Processes will determine if they are
repeated or performed once. There
are two types of loops: Standard and
ForEach.

Name

BCondition 1

[Default]

A C

D

Condition 2

Decision
OR-Split

Decision
OR-Split

Message 1

Message 2

A

B

C

D

1 Day

C

D

E

Merge
OR-Join

Receive Vote
22 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Table 2 BPD Complete Element Set

Sequence Flow Looping Loops can be created by connecting a
Sequence Flow to an “upstream”
object. An object is considered to be
upstream if that object has an
outgoing Sequence Flow that leads to
a series of other Sequence Flows, the
last of which is an incoming Sequence
Flow to the original object.

Process Break (something
out of the control of the
process makes the process
pause)

A Process Break is a graphical marker
that shows where an expected delay
will occur within a Process.

Other Notation TBD
Transaction group/context Notation TBD

Nested Process (Inline
Block)

Notation TBD, if at all

Group (a box around a
group of objects for
documentation purposes)

A grouping of activities that does not
affect the Sequence Flow. The
grouping is generally for
documentation or analysis purposes.

Notation TBD, if at all

Off-Page Connector (used
within a page?)

Generally used for printing, this object
will show where the Sequence Flow
leaves one page and then restarts on
the next page.

Notation TBD, if at all

Association An Association is used to associate
information with flow objects. Text and
graphical non-flow objects can be
associated with the flow objects.

Text Annotation (attached
with an Association)

Text Annotations are a mechanism for
a modeler to provide additional
information for the reader of a BPMN
diagram.

Pool A Pool is a “swimlane” and a graphical
container for partitioning a set of
activities from other Pools, usually in
the context of B2B situations.

Lanes A Lane is a sub-partition within a Pool
and will extend the entire length of the
Pool, either vertically or horizontally.
Lanes are used to organize and
categorize activities within a Pool.

YesPass
Test?

No
<default>

Test Product Package ProductConfigure Product

Descriptive Text Here

N
am

e
N

am
e N
am

e
N

am
e

Copyright  2002, BPMI.org All Rights Reserved 23 / 158

November 13, 2002 BPMN Working Draft
3.3 Use of Text, Color, and Lines in a Diagram
Flow objects and Flows can have labels (e.g., its name) placed inside the shape, or above
or below the shape, in any direction or location, depending on the preference of the
modeler or modeling tool vendor. Text Annotation objects can be used by the modeler to
display additional information about a Process or properties of the objects within the
Process.

3.4 Flow Object Connection Rules
An incoming Sequence Flow can connect to any location on a flow object (left, right, top, or
bottom). Likewise, an outgoing Sequence Flow can connect from any location on a flow
object (left, right, top, or bottom). Message Flows also have this capability. BPMN allows
this flexibility, however, we also recommend that modelers use judgment in how flow
objects should be connected so that readers of the diagrams will find the behavior clear and
easy to follow. This is even more important when a diagram contains Sequence Flows and
Message Flows. In these situations it is best to pick a direction of Sequence Flow, either left
to right or top to bottom, and then direct the Message Flow at a 90° angle to the Sequence
Flow. The resulting diagrams will be much easier to understand.

3.4.1 Sequence Flow Rules
Table 3 displays the BPMN flow objects and shows how these objects can connect to one
another through Sequence Flows. The symbol indicates that the object listed in the row
can connect to the object listed in the column. The quantity of connections into an object is
specified in the column header with a code letter that precedes the graphical shape. The
quantity of connections out of an object is specified in the row header with a code letter that
follows the graphical shape. The code letters are: 0 (No Connections); 1 (One Connection);
M (Multiple Connections); and M(E) (Multiple Exclusive Connections). Note that if a sub-
process has been expanded within a diagram, the objects within the sub-process cannot be
connected to objects outside of the sub-process. Nor can Sequence Flows cross a Pool
boundary.
24 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Table 3 Sequence Flow Connection Rules

Note: Only those objects that can have incoming and/or outgoing Sequence Flow
are shown in the table. Thus, Pool, Lane, Data Object, and Text Annotation are not
listed in the table.

3.4.2 Message Flow Rules
Table 4 displays the BPMN modeling objects and shows how these objects can connect to
one another through Message Flows. The symbol indicates that the object listed in the
row can connect to the object listed in the column. The quantity of connections into an
object is specified in the column header with a code letter that precedes the graphical
shape. The quantity of connections out of an object is specified in the row header with a
code letter that follows the graphical shape. The code letters are: 0 (No Connections); 1
(One Connection in a single direction); M (Multiple Connections in a single direction). Note
that Message Flows cannot connect to objects that are within the same Participant Lane
boundary.

From\To
0 M M M

1 M

 M

 M

 M

 M(E)

 M

 0

+
Name Name Name(?)

+
Name

Name

Name(?)
Copyright  2002, BPMI.org All Rights Reserved 25 / 158

November 13, 2002 BPMN Working Draft
Table 4 Message Flow Connection Rules

Note: Only those objects that can have incoming and/or outgoing Message Flow
are shown in the table. Thus, Lane, Decision, Data Object, and Text Annotation are
not listed in the table.

From\To M M M 0-1

1 0

 0

 M

 M

 0-1

 0

M

N
am

e (Pool)
+

Name Name

N
am

e (Pool)

+
Name

Name
26 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
4. Business Process Diagram Graphical
Objects

This section details the graphical representation and the semantics of the behavior of BPD
elements.

4.1 Events
An Event is something that “happens” during the course of a business process. These
Events affect the flow of the Process and usually have a cause or an impact. The term
“event” is general enough to cover many things in a business process. The start of an
activity, the end of an activity, the change of state of a document, a message that arrives,
etc., all could be considered events. However, BPMN has restricted the use of events to
include only those types of events that will affect the sequence or timing of activities of a
process. BPMN further categorizes Events into three main types: Start, Intermediate, and
End.

Start and Intermediate Events have “Triggers” that define the cause for the event. There are
multiple ways that these events can be triggered (refer to the section entitled “Start Event
Triggers” on page 29 and “Intermediate Event Triggers” on page 39). End Events may
define a “Result” that is a consequence of a Sequence Flow ending. There are multiple
types of Results that can be defined (refer to the section entitled “End Event Results” on
page 34).

All Events share the same shape footprint, a small circle. Different line styles, as shown
below, distinguish the three types of flow Events. All Events also have an open center so
that BPMN-defined and modeler-defined icons can be included within the shape to help
identify the Trigger or Result of the Event.

4.1.1 Start
As the name implies, the Start Event indicates where a particular Process will start. In terms
of sequence flow, the Start Event starts the flow of the Process, and thus, will not have any
incoming Sequence Flows—no Sequence Flows can connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, a
circle, but is drawn with a single thin line (see Figure 1). Text associated with the Start
Event (e.g., its name) can be placed above or below the shape, in any direction or location,
or on the outgoing Sequence Flow, depending on the preference of the modeler or
modeling tool vendor.

Figure 1 A Start Event

Throughout this document, we will discuss how Sequence Flow proceeds within a Process.
To facillitate this discussion, we will employ the concept of a “Token” that will traverse the
Sequence Flows and pass through the flow objects in the Process. The behavior of the
Process can be described by tracking the path(s) of the Token through the Process. A
Copyright  2002, BPMI.org All Rights Reserved 27 / 158

November 13, 2002 BPMN Working Draft
Token will have a unique identity, called a TokenID set, that can be used to distinguish
multiple Tokens that may exist because of concurrent Process instances or the dividing of
the Token for parallel processing within a single Process instance. The parallel dividing of a
Token creates a lower level of the TokenID set. The set of all levels of TokenID will identify a
Token. The TokenID set for a Token will be in the following format: “TokenID.TokenID. …
TokenID,” each level being separated by a dot.

A Start Event generates a Token that must eventually be consumed at an End Event (which
may be implicit if not graphically displayed). Tokens can also be consumed through
exception handling Intermediate Events, which act like a forced end to a Process level.
Note: A Token does not traverse the Message Flows since it is a Message that is passed
down those Flows (as the name implies).

Semantics of the Start Event include:

This shape is optional—a Process level (a top-level Process or an expanded Sub-
Process) is not required to have this shape:

If there is a Start Event, then there has to be at least one End Event.

If the Start Event is used, then there can be no other flow elements that do not have
incoming Sequence Flow (of those elements that can accept Sequence Flow)—all
other flow objects must be a target of at least one Sequence Flow.

An exception to this is the Intermediate Event, which can be without an incoming
Sequence Flow.

If the Start Event is not used, then all flow objects that do not have an incoming
Sequence Flow (i.e., are not a target of a Sequence Flow) will be instantiated when
the Process is instantiated. There is an assumption that there is only one implicit
Start Event, meaning that all the starting flow objects will start at the same time.

There can be multiple Start Events for a given Process level. Each Start Event is an
independent event.

Note: A BPD may have more than one Process level (i.e., it can include Expanded
Sub-Processes). The use of Start and End Events is independent for each level of
the diagram.

That is, when the trigger for a Start Event occurs, Tokens will be generated for each
outgoing Sequence Flow from that event. The TokenID set for each of the Tokens will be
established such that it can be identified that the Tokens are all from the same parallel Fork
(AND-Split) and the number of Tokens in the group. These Tokens will begin their flow and
not wait for any other Start Event to be triggered.

If there is a dependency for more than one Event to happen before a Process can start
(e.g., two messages are required to start), then the Start Events must flow to the same
activity within that Process. The attributes of the activity would specify when the activity
could begin. If the attributes specify that the activity must wait for all inputs, then all Start
Events will have to be triggered before the Process begins (refer to the section entitled
“Attributes” on page 47 (for sub-processes) and “Attributes” on page 53 (for Tasks) for more
information about activity attributes). In addition, a correlation mechanism will be required
so that different triggered Start Events will apply to the same process instance. Correlation
28 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
will likely be handled through Event attributes, but this an open issue will be addressed in a
later version of the specification. Refer to the section entitled “Open Issues” on page 137
for a complete list of the issues open for BPMN.

A sub-process, which is a process within a process, if expanded to show its detail, can
also have Start Events.

Start Event Triggers
There are many ways that can business process can be started (instantiated). The Trigger
for a Start Event is designed to show the general mechanism that will instantiate that
particular Process. There are six types of Start Events in BPMN: None, Message, Timer,
Rule, Link, and Multiple.

Table 5 displays the types of Triggers and the graphical marker that will be used for each:

Table 5 Start Event Types

Attributes
The following are identified attributes of a Start Event:

Trigger Description Marker
None The modeler does not display the type of Event. It is

also used for a Sub-Process that starts when the flow
is triggered by its Parent Process.

Message A message arrives from a participant and triggers the
start of the Process.

Timer A specific time-date or a specific cycle (e.g., every
Monday at 9am) can be set that will trigger the start of
the Process.

Rule This type of event is triggered when the conditions for
a rule such as “S&P 500 changes by more than 10%
since opening,” or “Temperature above 300C” become
true.

Link A Link is a mechanism for connecting the end (Result)
of one Process to the start (Trigger) of another.
Typically, these are two Sub-Processes within the
same parent Process.

Multiple This means that there are multiple ways of triggering
the Process. Only one of them will be required to start
the Process. The attributes of the Start Event will
define which of the other types of Triggers apply.

Attribute Description
Name ? Name is an optional property that is text description of the Event.
Trigger (None | Message |
Timer | Rule | Link | Multiple)
: None

Trigger is a property (default None) that defines the type of
trigger expected for that Start.
Copyright  2002, BPMI.org All Rights Reserved 29 / 158

November 13, 2002 BPMN Working Draft
Table 6 Start Event Attributes

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how they may be source or targets of Sequence Flows.

A Start Event cannot be a target for a Sequence Flow; there can be no incoming
Sequence Flows.

A Start Event can be a source for a Sequence Flow; multiple Sequence Flows can
originate from a Start Event. For each Sequence Flow that has the Start Event as a
source, there will be a new parallel path generated.

When a Start Event is not used, then all flow objects that do not have an incoming
Sequence Flow will be the start of a separate parallel path.

Each path will have a separate unique Token that will traverse the Sequence Flow.

Message: MessageName If the Trigger is a Message, then the name of the Message must
be supplied.

Timer: (Timedate |
TimeCycle): Timedate

If the Trigger is a Timer, then a timedate or a timedatecycle must
be entered.

Rule: RuleExpression If the Trigger is a Rule, then an expression must be entered.
Link: LinkName If the Trigger is a Link, then the name of the Link must be

supplied.
Multiple: Trigger +
(except Multiple)

If the Trigger is a Multiple, then a list of the Trigger must have the
appropriate data.

Assign *: Expression Zero or more assignments can be made. Each assignment is an
expression.

OutgoingSequenceFlow +:
SequenceFlowName

One or more outgoing Sequence Flows can be idenitified for the
Start Event.

IncomingMessageFlow *:
MessageFlowName

Zero or more incoming Message Flows can be idenitified for the
Start Event, but the Trigger type must be Message or Multiple
(with Message as one of Trigger types). For a Message Flow
there will be an associated BPEL4WS receive or a BPML one-
way action to receive the message. For multiple Message Flows,
there will be BPEL4WS pick or BPML choice that will receive only
one of the messages.

Pool ?: PoolName If Pools are used, then the PoolName must be added to the Start
Event to identify its location.

Lane ?: LaneName If that Pool has more than one Lane, then the LaneName must
be added.

Association * Zero or more Associations can be associated with the Start
Event.

Documentation ? The modeler can add optional text documentation about the Start
Event.

Attribute Description
30 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how they may be source or targets of Sequence Flows.

Note: All Message Flows described here must connect two separate Pools. They
can connect to the Pool boundary or to flow objects within the Pool boundary. They
cannot connect two objects within the same Pool.

A Start Event can be the target for Message Flows; it can have 0 (zero) or more
incoming Message Flows. Each Message Flow arriving at a Start Event represents an
instantiation mechanism (a Trigger) for the process. to see how the incoming Message
Flows are mapped to BPEL4WS and BPML elements.

The trigger property of the Start Event must be set to Message or Multiple if there
are any incoming Message Flows.

A Start Event cannot be a source for a Message Flow; it can have no outgoing Message
Flows.

Mapping to Execution Languages
The following two sections describe how the use of Start Events will map to BPEL4WS and
BPML, respectively.

BPEL4WS
If the Start Event has an expression for the assign property, then this will map to a
BPEL4WS assign.

Each type of Start Event Trigger will have a different mapping to BPEL4WS:

None: this does not map to any BPEL4WS element.

Message: A receive will be associated with the message defined with the Message
Flow that arrives at the Start Event (see Figure 2).

Figure 2 Message Flow connected to a Start Event

If there is more than one connected to the Start Event, then a BPEL4WS pick will be
required to process the messages with a separate receive for each message. This
means that a single instance of the process will be instantiated when the first
message received through the pick receives arrives.

Verify Payment
Type is OK Approve?

Travel Order
Request
Copyright  2002, BPMI.org All Rights Reserved 31 / 158

November 13, 2002 BPMN Working Draft
Note: The modeler does not need to connect the Message Flows to the Start Event
to model this behavior, however. The receipt of the messages could be spelled out
through the modeling of the receiving Tasks as graphical objects (see Figure 3) and
using a None Start Event.

Figure 3 Process Instantiation through Message Receiving Task

Timer: TBD.

Rule: TBD.

Link: this will map to the receive element.

Multiple: this will map to a combination of receive elements.

BPML
If the Start Event has an expression for the assign property, then this will map to a
BPML assign.

Each type of Start Event Trigger will have a different mapping to BPML:

None: this does not map to any BPML element.

Message: A one-way action will be associated with the message defined with the
Message Flow that arrives at the Start Event (see Figure 2).

If there is more than one connected to the Start Event, then a BPML choice will be
required to process the messages with a separate one-way action for each
message. This means that a single instance of the process will be instantiated when
the first message received through the choice actions arrives.

Note: The modeler does not need to connect the Message Flows to the Start Event
to model this behavior, however. The receipt of the messages could be spelled out
through the modeling of the receiving Tasks as graphical objects (see Figure 3).

Approve?Verify Payment
Type is OK

Travel Order
Request

Recieve Request
32 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Timer: this will map to a faults case that is triggered by a schedule element within a
context.

Rule: TBD.

Link: this will map to the signal within an event element.

Multiple: this will map to a combination of action, schedule, signal, and TBD elements.

4.1.2 End
As the name implies, the End Event indicates where a process will end. In terms of
sequence flow, the End Event ends the flow of the Process, and thus, will not have any
outgoing Sequence Flows—no Sequence Flows can connect from an End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a
circle, but is drawn with a thick single line (see Figure 4). Text associated with the End
Event (e.g., its name) can be placed above or below the shape, in any direction or location,
or on the incoming Sequence Flow, depending on the preference of the modeler or
modeling tool vendor.

Figure 4 End Event

To continue the discussing how flow proceeds throughout the process, an End Event
consumes a Token that had been generated from a Start Event within the same level of
Process. If parallel Sequence Flows target the End Event, then the Tokens will be
consumed as they arrive. All the Tokens that were generated from the Start Events or
through forking during the Process must be consumed before the Process has been
completed.

There can be multiple End Events within a single level of a process.

This shape is optional—a given Process level (a top-level Process or an expanded Sub-
Process) is not required to have this shape:

If there is an End Event, then there has to be at least one Start Event.

If an End Event is used, then there can be no other flow elements that do not have
any outgoing Sequence Flows (of those elements that can generate Sequence
Flow)—all other flow objects must be a source of at least one Sequence Flow.

If the End Event is not used, then all flow objects that do not have any outgoing
Sequence Flows (i.e., are not a source of a Sequence Flow) mark the end of the
process. However, the process will not end until all parallel paths have completed.

Note: A BPD may have more than one Process level (i.e., it can include Expanded
Sub-Processes). The use of Start and End Events is independent for each level of
the diagram.

A Token entering the path-ending flow objects will be consumed when the processing
performed by those objects are completed (when the path has completed). When all
Copyright  2002, BPMI.org All Rights Reserved 33 / 158

November 13, 2002 BPMN Working Draft
Tokens for a given instance of the Process are consumed, then the Process will reach a
state of being completed.

End Event Results
A BPMN modeler can define the consequence of reaching an End Event. This will be
referred to as the End Event Result.

Table 7 displays the types of Results and the graphical marker that will be used for each:

Table 7 End Event Types

Result Description Marker
None The modeler does not display the type of Event. It is

also used for a Sub-Process that end and the flow
goes back to its Parent Process.

Message A message is sent to a participant at the conclusion of
the Process.

Process Error This particular End will inform the Process Engine that
named Error should be generated. This Error will be
caught by an Intermediate Event within the Event
Context.

Compensate This particular End will inform the Process Engine that
a Compensation is necessary. This Compensate
identifier will be used by an Intermediate Event when
the Process is rolling back.

Link A Link is a mechanism for connecting the end (Result)
of one Process to the start (Trigger) of another.
Typically, these are two Sub-Processes within the
same parent Process.

Multiple This means that there are multiple consequences of
ending the Process. All of them will occur. The
attributes of the End Event will define which of the
other types of Results apply.
34 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Attributes
The following are identified attributes of an End Event:

Attribute Description
Name ? Name is an optional property that is text description of the Event.

Result: (None | Message |
ProcessError | Compensate |
Rule | Link | Multiple) : None

Result is a property (default None) that defines the type of result
expected for that End.

Message: MessageName If the Result is a Message, then the name of the Message
must be supplied.

ProcessError: ErrorCode If the Result is a Process Error, then the error code must be
supplied.

Compensate:
CompensateCode

If the Result is a Compensate, then the compensation code must
be supplied.

Link: LinkName If the Result is a Link, then the name of the Link must be
supplied.

Multiple: Trigger +
(except Multiple)

If the Result is a Multiple, then a list of the Results must have the
appropriate data.

Assign *: Expresssion Zero or more assignments can be made. Each assignment is an
expression.

IncomingSequenceFlow +:
SequenceFlowName

One or more incoming Sequence Flows can be idenitified for the
End.

FlowCondition: (One | All |
Complex) : All

If there is more than one, or if there are more than one End
Events, then a Flow Condition must be set. The Flow Condition
will apply to all End Events for that level of the Process. A Flow
Condition of One means that flow will continue up to the Parent
Process when one Token arrives. The process will continue and
all other Tokens arriving at will be consumed, but no other Token
will proceed up to the Parent Process. A Flow Condition of All
means that all Tokens generated at that level of the Process must
be consumed before a Token is passed back up to the Parent
Process.

Complex: Expression A complex Flow Condition can be set by the modeler. This will
consist of an expression that can reference Sequence Flow
names and or Process data.

PassThrough: (True |
False): False

The definition of the PassThrough property is an open issue that
will be handled in a later version of the specification. Refer to the
section entitled “Open Issues” on page 137 for a complete list of
the issues open for BPMN.

OutgoingMessageFlow *:
MessageFlowName

Zero or more outgoing Message Flows can be idenitified for the
End, but the Result type must be Message or Multiple (with
Message as one of Result types). For each Message Flow there
will be an associated BPEL4WS reply or asynchronous invoke or
a BPML notification action to send the message.
Copyright  2002, BPMI.org All Rights Reserved 35 / 158

November 13, 2002 BPMN Working Draft
Table 8 End Event Attributes

Sequence flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how they may be source or targets of Sequence Flows.

An End Event can be a target for a Sequence Flow; there can be multiple incoming
Flows. The Flows can come from either alternative or parallel paths. For modeling
convenience, each path can connect to a separate End Event object or one End Event
can be used.

Thus, the End Event is used as a Sink for all Tokens that arrive at the Event. All Tokens that
are generated at the Start Event for that Process must eventually arrive at an End Event or
consumed through an exception handling Intermediate Event. The Process will be in a
running state until all Tokens are consumed.

An End Event cannot be a source for a Sequence Flow; there can be no outgoing
Flows.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how they may be source or targets of Sequence Flows.

Note: All Message Flows described here must connect two separate Pools. They
can connect to the Pool boundary or to flow objects within the Pool boundary. They
cannot connect two objects within the same Pool.

An End Event cannot be the target for Message Flows; it can have no incoming
Message Flows.

An End Event can be a source for a Message Flow; it can have one outgoing Message
Flow.

However, if there is more than one End Event in the Process, then each of the End
Events can have a different outgoing Message Flow.

Mapping to Execution Languages
The following two sections describe how the use of End Events will map to BPEL4WS and
BPML, respectively.

Pool ?: PoolName If Pools are used, then the PoolName must be added to the End
Event to identify its location.

Lane ?: LaneName If that Pool has more than one Lane, then the LaneName must
be added.

Association * Zero or more Associations can be associated with the End Event.

Documentation ? The modeler can add optional text documentation about the End
Event.

Attribute Description
36 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
BPEL4WS
If the End Event has an expression for the assign property, then this will map to a
BPEL4WS assign.

Each type of End Event Result will have a different mapping to BPML:

None: this does not map to any BPEL4WS element. However, it marks the end of a
path within the Process and will be used to define the boundaries of complex
BPEL4WS elements.

Message: A graphically hidden BPEL4WS reply will be associated with the message
defined with the Message Flow that leaves the End Event (see Figure 5).

Figure 5 Message Flow leaving an End Event

Note: The modeler does not need to connect the Message Flows from the End
Event to model this behavior, however. The sending of the messages could be
modeled through the modeling of the sending Tasks as graphical objects (see
Figure 6)

Figure 6 Message Flow from Task that precedes the End Event

Type of
Customer?

Default
(New)

Established with
good Credit

Established with
poor Credit

Include Apology
Text

Include History of
Transactions Rejection

Message

Include Standard
Text

Type of
Customer?

Default
(New)

Established with
good Credit

Established with
poor Credit

Include Apology
Text

Include History of
Transactions

Send Rejection
Response

Rejection
Message

Include Standard
Text
Copyright  2002, BPMI.org All Rights Reserved 37 / 158

November 13, 2002 BPMN Working Draft
Process Error: this will map to a throw element.

Compensate: this will map to a compensate element.

Link: this will map to the invoke element.

Multiple: this will map to a combination of invoke, throw, fault, and compensate
elements.

BPML
If the End Event has an expression for the assign property, then this will map to a BPML
assign.

Each type of End Event Result will have a different mapping to BPML:

None: this does not map to any BPML element. However, it marks the end of a path
within the Process and will be used to define the boundaries of complex BPML
elements.

Message: A notification action will be associated with the message defined with the
Message Flow that leaves the End Event (see Figure 5).

Note: The modeler does not need to connect the Message Flows from the End
Event to model this behavior, however. The sending of the messages could be
modeled through the modeling of the sending Tasks as graphical objects (see
Figure 6).

Process Error: this will map to a fault element.

Compensate: this will map to a compensate element.

Link: this will map to the raise element.

Multiple: this will map to a combination of action, raise, fault, and compensate elements.

4.1.3 Intermediate
Intermediate Events occur between a Start Event and an End Event. This is an event that
occurs after a Process has been started. It will affect the flow of the process, but will not
start or (directly) terminate the process. Intermediate Events can be used to:

• Show where messages or delays are expected within the Process,

• Disrupt the normal flow through exception handling, or

• Show the extra work required for compensating a transaction.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a
circle, but is drawn with a thin double line (see Figure 7). Text associated with the
Intermediate Event (e.g., its name) can be placed above or below the shape, in any
direction or location, or on the outgoing Sequence Flow, depending on the preference of
the modeler or modeling tool vendor.
38 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Figure 7 Intermediate Event

One use of Intermediate Events is to represent exception or transaction compensation
handling. This will be shown by placing the Intermediate Event on the boundary of a Task or
Sub-Process (either collapsed or expanded). Figure 8 displays an example of an
Intermediate Event attached to a Task. The Intermediate Event can be attached to any
location of the activity boundary and the outgoing Sequence Flow can flow in any direction.
However, in the interest of clarity of the diagram, we recommend that the modeler choose a
consistent location on the boundary. For example, if the diagram orientation is horizontal,
then the Intermediate Events can be attached to the bottom of the activity and the
Sequence Flow directed down and then to the right. If the diagram orientation is vertical,
then the Intermediate Events can be attached to the left or right side of the activity and the
Sequence Flow directed to the left or right and then down.

Figure 8 Task with an Intermediate Event attached to its boundary

Intermediate Event Triggers
There are seven types of Intermediate Events in BPMN: Message, Timer, Process Error
(exception), Compensate, Rule, Link, and Multiple. These Event types indicate the different
ways that a Process may be interrupted or delayed after it has started. Each type of
Intermediate Event will have a different icon placed in the center of the Intermediate Event
shape to distinguish one from another.

Review Status of
Discussion

Moderate E-mail
Discussion

7 Days
Copyright  2002, BPMI.org All Rights Reserved 39 / 158

November 13, 2002 BPMN Working Draft
Table 9 displays the types of Triggers and the graphical marker that will be used for each:

Table 9 Intermediate Event Types

Attributes
The following are identified attributes of an Intermediate Event:

Trigger Description Marker
Message A message arrives from a participant and triggers the

Event. This causes the Process to continue if it was
waiting for the message, or changes the flow for
exception handling.

Timer A specific time-date or a specific cycle (e.g., every
Monday at 9am) can be set that will trigger the Event.
If used within the main flow it acts as a delay
mechanism. If used for exception handling it will
change the normal flow into an exception flow.

Process Error This is only used for exception handling. It reacts to a
named Error (e.g., thrown from an End Event) or to
any error if a name is not specified.

Compensate This is only used for transaction handling. It reacts to a
named Compensate (e.g., thrown from an End Event).

Rule This is only used for exception handling. This type of
event is triggered when a named Rule becomes true.
A Rule is an expression that evaluates some Process
data.

Link A Link is a mechanism for connecting the end (Result)
of one Process to the start (Trigger) of Event-Based
Exclusive Decision.

Multiple This means that there are multiple ways of triggering
the Event. Only one of them will be required. The
attributes of the Intermediate Event will define which of
the other types of Triggers apply.

Attribute Description
Name ? Name is an optional property that is text description of the Event.

Trigger: (Message | Timer |
ProcessError | Compensate |
Rule | Multiple) : Message

Trigger is a property (default Message) that defines the type of
trigger expected for that Intermediate Event.

Message: MessageName If the Trigger is a Message, then the name of the Message must
be supplied.

Timer: (Timedate |
TimeCycle): Timedate

If the Trigger is a Timer, then a timedate or a timedatecycle must
be entered.
40 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Table 10 Intermediate Event Attributes

ProcessError: (ErrorCode
| None): ErrorCode

If the Trigger is a Process Error, then the error code can be
supplied. If there is no error code, then any Error will trigger the
Event.

Compensate:
CompensateCode

If the Trigger is a Compensate, then the compensation code
must be supplied.

Rule: RuleName If the Trigger is a Rule, then an expression must be entered.
Link: LinkName If the Trigger is a Link, then the name of the Link must be

supplied.
Multiple: Trigger +
(except Multiple)

If the Trigger is a Multiple, then a list of the Trigger must have the
appropriate data.

Interrupt: (True | False):
True

Interrupt is a property that has a default of True. The property
defines how the Intermediate Event will affect the Event Context
if the Intermediate Event is attached to the boundary of an
activity. If the property is True, then the Intermediate Event will
interrupt the processing of all the activities within the Event
Context. The flow would then be diverted through the outgoing
Sequence Flow from the Intermediate Event. If the property is
False, all processing of all the activities within the Event Context
will continue and the flow will also be sent through the outgoing
Sequence Flow from the Intermediate Event.

Assign *: Expression Zero or more assignments can be made. Each assignment is an
expression.

IncomingSequenceFlow *:
SequenceFlowName

Zero or more incoming Sequence Flows can be idenitified for the
Intermediate Event.

OutgoingSequenceFlow +:
SequenceFlowName

One or more outgoing Sequence Flows can be idenitified for the
Intermediate Event.

IncomingMessageFlow *:
MessageFlowName

Zero or more incoming Message Flows can be idenitified for the
Intermediate Event, but the Trigger type must be Message or
Multiple (with Message as one of Trigger types). For a Message
Flow there will be an associated BPEL4WS receive BPML action
to receive the message. For multiple Message Flows, there will
be BPEL4WS pick or BPML choice that will receive only one of
the messages.

Pool ?: PoolName If Pools are used, then the PoolName must be added to the
Intermediate Event to identify its location.

Lane ?: LaneName If that Pool has more than one Lane, then the LaneName must
be added.

Association * Zero or more Associations can be associated with the
Intermediate Event.

Documentation ? The modeler can add optional text documentation about the
Intermediate Event.

Attribute Description
Copyright  2002, BPMI.org All Rights Reserved 41 / 158

November 13, 2002 BPMN Working Draft
Note: BPMN may include a Process Break element in a future version of the
Specification. The Process Break would be used in conjunction with a Timer
Intermediate Event and highlights the location of a delay in the Process. This is an
open issue. Refer to the section entitled “Open Issues” on page 137 for a complete
list of the issues open for BPMN.

Note: the graphical depiction of a false Interrupt property has not been defined. This
is an open issue. Refer to the section entitled “Open Issues” on page 137 for a
complete list of the issues open for BPMN.

Sequence flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how the may be source or targets of Sequence Flows.

An Intermediate Event can be a target for a Sequence Flow; it can have one incoming
Flow.

An Intermediate Event can be a source for a Sequence Flow; it can have one outgoing
Flow.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Note: All Message Flows described here must connect two separate Pools. They
can connect to the Pool boundary or to flow objects within the Pool boundary. They
cannot connect two objects within the same Pool.

An Intermediate Event of type Message can be the target for Message Flows; it can
have one incoming Message Flows.

An Intermediate Event cannot be a source for a Message Flow; it can have no outgoing
Message Flows.

Mapping to Execution Languages
The Mapping to Execution Languages will depend on the type of Intermediate Event. Each
of the seven types will be mapped differently.

BPEL4WS
If the Intermediate Event has an expression for the assign property, then this will map to
a BPEL4WS assign.
42 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Each type of Intermediate Event will have a different mapping to BPML:

Message:

If the Intermediate Event follows a Decision (e.g., is part of a pick): this will map to
an onMessage element within a pick.

If the Intermediate Event is within the normal flow of the Process (but does not
follow a Decision): this will map to a receive.

If the Intermediate Event is attached to the boundary of an activity: this will map to
an onMessage element within a scope.

Timer:

If the Intermediate Event follows a Decision (e.g., is part of a pick): this will map to
an onAlarm element within a pick.

If the Intermediate Event is within the normal flow of the Process (but does not
follow a Decision): this will map to a wait.

If the Intermediate Event is attached to the boundary of an activity: this will map to a
wait element, followed by a throw. A scope is also created that has a catch to
correspond with the throw.

Process Error: this will map to a catch element within a scope

Compensate (must be attached to the boundary of an activity): this will map to an
compensationHandler element within a scope.

Rule (must be attached to the boundary of an activity): TBD.

Link (must follow a Decision): this will map to the onMessage element of a pick.

Multiple (must be attached to the boundary of an activity): this will map to a combination
of onMessage, onAlarm, compensationHandler, onSignal, throw, catch, and wait
elements within a context.

BPML
If the Intermediate Event has an expression for the assign property, then this will map to
a BPML assign.

Each type of Intermediate Event will have a different mapping to BPML:

Message:

If the Intermediate Event follows a Decision (e.g., is part of a choice): this will map to
an action within an event element within a choice.

If the Intermediate Event is within the normal flow of the Process (but does not
follow a Decision): this will map to an action (that expects a message).

If the Intermediate Event is attached to the boundary of an activity: this will map to
an action within an event element within an exception element within a context.

Timer:

If the Intermediate Event follows a Decision (e.g., is part of a choice): this will map to
a delay within an event element within a choice.
Copyright  2002, BPMI.org All Rights Reserved 43 / 158

November 13, 2002 BPMN Working Draft
If the Intermediate Event is within the normal flow of the Process (but does not
follow a Decision): this will map to a delay.

If the Intermediate Event is attached to the boundary of an activity: this will map to
an schedule element within a context that will create a fault code that will be
captured by a faults case within the context.

Process Error:

If the Intermediate Event is attached to the boundary of an activity: this will map to
an faults case within a context.

Compensate (must be attached to the boundary of an activity): this will map to an
compensation process within a context.

Rule (must be attached to the boundary of an activity): TBD.

Link (must follow a Decision): this will map to a signal within an event element of a
choice.

Multiple (must be attached to the boundary of an activity): this will map to a combination
of actions, events, faults, schedules, exceptions, and contexts elements within a
context.

4.2 Activities
4.2.1 Processes

A Process is an activity performed within a company or organization. In BPMN a Process
is depicted as a network of flow objects, which are a set of other activities and the controls
that sequence them. The concept of process is intrinsically hierarchical. Processes may be
defined at any level from enterprise-wide processes to processes performed by a single
person. Low-level processes may be grouped together to achieve a common business
goal.

Attributes
The following are identified attributes of a Process:

Attribute Description
Name Name is a text description of the Process.
Nested:(True | False): False The Nested property defines whether or not the Process is

nested within another Process (thus sharing the Parent
Process properties).

ParentProcess:
ProcessName

If Nested, then the Parent Process must be identified.
44 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Property *: Modeler-defined Properties can be added to a Process.
These Properties are “local” to the Process. All Tasks, Sub-
Process objects, and Sub-Processes that are nested have
access to these Properties. The fully delineated name of
these properties are “<process name>.<property name>”
(e.g., “Add Customer.Customer Name”). If a process is
nested within another Process, then the fully delineated
name would also be preceded by the Parent Process name
for as many Parents there are until the top level Process.

Name: Each Property has a Name (e.g., name=”Customer
Name”).

Type: Each Property has a Type (e.g., type=”String”).
AdHoc: (True | False): False AdHoc is a Boolean property, which has a default of False.

This specifies whether the Process is Ad Hoc or not. The
activities within an Ad Hoc Process are not controlled by a
process engine, they are completely controlled by the
performers of the activities. The Process Engine may be
able to track the actual instances on the activities within.

CompletionCondition:
Expression

If the Process is Ad Hoc, then a Completion Condition must
be included, which defines the conditions when the
Process will end. The Ad Hoc marker will be placed at the
bottom center of the Process or the Sub-Process shape for
Ad Hoc Processes.

Assign *: Expression Zero or more assignments can be made. Each assignment
is an expression.

AssignTime: (Start | End):
Start

For each assignment the modeler can specify whether the
assignment will take place at the start or end of the
Process.

IncomingMessageFlow *:
MessageFlowName

Zero or more incoming Message Flows can be idenitified
for the Process.

Target: (Boundary |
Internal): Boundary

Each Message Flow must be associated with the Process
itself (Pool Boundary) or with flow objects that the Process
contains (Internal). To create a mapping to BPEL4WS or
BPML, all the Message Flows should be connected to
objects within the Process.

OutgoingMessageFlow *:
MessageFlowName

Zero or more outgoing Message Flows can be idenitified for
the Process.

Source: (Boundary |
Internal): Boundary

Each Message Flow must be associated with the Process
itself (Pool Boundary) or with flow objects that the Sub-
Process contains (Internal). To create a mapping to
BPEL4WS or BPML, all the Message Flows should be
connected to objects within the Process.

Attribute Description
Copyright  2002, BPMI.org All Rights Reserved 45 / 158

November 13, 2002 BPMN Working Draft
Table 11 Process Attributes

4.2.2 Sub-Process
A Sub-Process is a compound activity in that it has detail that is defined as a flow of other
activities. A Sub-Process is a graphical object within a Process Flow, but it also references
another Process (either nested or independent). A Sub-Process shares the same shape as
the Task, which is a rectangle that has rounded corners. The Sub-Process can be in a
collapsed view that hides its details (see Figure 9) or a Sub-Process can be in an expanded
view that shows its details within the view of the Process in which it is contained (see Figure
10). In the collapsed form, the Sub-Process object uses a marker to distinguish it as a Sub-
Process, rather than a Task. The marker is a small square with a plus sign (+) inside. The
square is positioned at the bottom center of the shape. Text associated with the Sub-
Process (e.g., its name) can be placed inside the shape, or above or below the shape, in
any direction or location, depending on the preference of the modeler or modeling tool
vendor.

Figure 9 Collapsed Sub-Process

Figure 10 Expanded Sub-Process

Pool ?: PoolName If Pools are used, then the PoolName must be added to the
Process to identify its location. There is a one-to-one
relationship between a Process and a Pool.

Partner *: PartnerName Zero or more Partner’s can be identified for the Process. A
Partner is also equivalent to the other Pools of the diagram.
Thus, all the other Pool Names in the diagram will be listed
in as Partners for the current Process. Additional Partners
that are not shown as Pools can also be identified. This will
map to the partner element of BPEL4WS.

Association * Zero or more Associations can be associated with the
Process.

Documentation ? The modeler can add optional text documentation about
the Process.

Attribute Description

+
Name

Name
46 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
BPMN specifies three types of markers for Sub-Processes. The (Collapsed) Sub-Process
Marker, seen in Figure 9, can be combined with two other markers: a Loop Marker and an
Ad Hoc Marker. A Sub-Process may have one or both of these markers. All the markers
that are present will be grouped and the whole group will be centered at the bottom of the
shape (see Figure 11).

Figure 11 Collapse Sub-Process Marker Combinations

Note: The positioning of the Loop and Ad Hoc Markers is subject to change in a
later release of the BPMN specification. This is an open issue. Refer to the section
entitled “Open Issues” on page 137 for a complete list of the issues open for BPMN.

Note: An additional graphical marker may be included in BPMN for parallel ForEach
types of loops. This is an open issue. Refer to the section entitled “Open Issues” on
page 137 for a complete list of the issues open for BPMN.

Attributes
The following are identified attributes of a Sub-Process:

Attributes Description
Name Name is a text description of the Sub-Process.
SubProcessType: (Nested |
Independent): Nested

SubProcessType is a property that defines whether the
Sub-Process details are embedded within the higher level
Process (nested) or refers to another, re-usable Process.
The default is Nested.

Process: ProcessName If the type is Independent, then the name of the referenced
Process must be included.

InputMap +: Expression For Independent, multiple input mappings can be made
between Parent Process properties and the properties of
the referenced Process. These mappings are in the form of
an expression (although a modeling tool can present this to
a modeler in any number of ways).

OutputMap +: Expression For Independent, multiple output mappings can be made
between Parent Process properties and the properties of
the referenced Process. These mappings are in the form of
an expression (although a modeling tool can present this to
a modeler in any number of ways).

+
Name Name

+~
Name

+~
Name
Copyright  2002, BPMI.org All Rights Reserved 47 / 158

November 13, 2002 BPMN Working Draft
Property * Modeler-defined Properties can be added to a
Sub.Process. These Properties are “local” to the Sub-
Process object—not the Process that the Sub-Process
object represents. These Properties are only for use within
the processing of the Sub-Process object. The fully
delineated name of these properties are “<process
name>.<sub-process name>.<property name>” (e.g., “Add
Customer.Review Credit.Status”).

Name Each Property has a Name (e.g., name=”Customer
Name”).

Type Each Property has a Type (e.g., type=”Text”).
Transaction: (True | False):
False

Transaction is a Boolean property, which has a default of
False. This value automatically becomes True when a
Compensate Intermediate Event is attached to the
boundary of the Sub-Process.

Compensate: Intermediate
Event

The Compensate property lists the name of the
Intermediate Event.

EventContext: (True |
False): False

EventContext is a Boolean property, which has a default of
False. This value automatically becomes True when one or
more a Timer, Message, or Process Error Intermediate
Events is attached to the boundary of the Sub-Process.

Exception: Intermediate
Event

The Exception property lists the names of the Intermediate
Events.

LoopType: (None | Standard
| ForEach) : None

LoopType is a property and is by default None, but can be
set to Standard or ForEach, which means that the Loop
marker will be placed at the bottom center of the Sub-
Process shape. ForEach Loops require an expression,
which specifies the number of instances.

LoopCondition:
Expression

Standard Loops required an expression to be evaluated,
plus the timing when the expression will be evaluated.

Counter: Number The Counter property is used at runtime to count the
number of loops.

Maximum: Number The Maximum property is a simple way to add a cap to the
number of loops. This gets added to the expression when
mapped to BPEL4WS or BPML.

EvaluateCondition:
(Before | After) : After

Standard Loops expressions evaluated Before the Sub-
Process begins are while loops and expressions evaluated
After the Sub-Process finishes are while loops for
BPEL4WS and until loops for BPML.

Timing: (Serial | Parallel) :
Serial

The Timing property defines whether the ForEach
instances will be performed serially or in parallel. A parallel
ForEach is equivalent to multi-instance specifications that
other notations, such as UML Activity Diagrams use.

Attributes Description
48 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
LoopFlowCondition: (One
| All | Complex): All

The LoopFlowCondition, applied only to Parallel ForEach
loops, acts the similarly to the FlowCondition for the Sub-
Process. A Loop Flow Condition of One means that the
Token will continue past the Sub-Process after only on of
the Sub-Process instances has completed. The Sub-
Process will continue its other instances, but no other
Tokens will be passed from the Sub-Process. A Loop Flow
Condition of All means that all Sub-Process instances must
be completed before the Token can move from the Sub-
Process.

Complex: Expression A complex Loop Flow Condition can be set by the modeler.
This will consist of an expression that can reference
Process data. The expression will determine the Token will
continue past the Sub-Process.

Assign *: Expression Zero or more assignments can be made. Each assignment
is an expression.

AssignTime: (Start | End):
Start

For each assignment the modeler can specify whether the
assignment will take place at the start or end of the Sub-
Process.

IncomingSequenceFlow +:
SequenceFlowName

One or more incoming Sequence Flows can be idenitified
for the Sub-Process.

FlowCondition: (One | All |
Complex): All

If there is more than one, then a Flow Condition must be
set. A Flow Condition of One means that the Sub-Process
will be started when one Token arrives on any of the Flows.
The process will continue and all other Tokens arriving at
the Sub-Process will be consumed. A Flow Condition of All
means that a Token must arrive from all incoming Flows
before the Sub-Process can start.

Complex: Expression A complex Flow Condition can be set by the modeler. This
will consist of an expression that can reference Sequence
Flow names and or Process data. The expression will
determine when the Sub-Process will start.

OutgoingSequenceFlow +:
SequenceFlowName

One or more outgoing Sequence Flows can be idenitified
for the Sub-Process.

IncomingMessageFlow *:
MessageFlowName

Zero or more incoming Message Flows can be idenitified
for the Sub-Process.

Target: (Boundary |
Internal): Boundary

Each Message Flow must be associated with the Sub-
Process itself (Boundary) or with flow objects that the Sub-
Process contains (Internal). For a Boundary Message Flow,
it is equivalent to connecting the Message Flows to the
Start Event of the Sub-Process.

OutgoingMessageFlow *:
MessageFlowName

Zero or more outgoing Message Flows can be idenitified for
the Sub-Process.

Attributes Description
Copyright  2002, BPMI.org All Rights Reserved 49 / 158

November 13, 2002 BPMN Working Draft
Table 12 Sub-Process Attributes

Sequence flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Sub-Process can be a target for a Sequence Flow; it can have multiple incoming
Flows. An incoming Flow can be from an alternative path or a parallel path. The Flow
Condition will determine when the Sub-Process will start.

If the Sub-Process does not have an incoming Sequence Flow, and there is no Start
Event for the Process, then the Sub-Process will be instantiated when the process
is instantiated.

A Sub-Process can be a source for a Sequence Flow; it can have multiple outgoing
Flows. If there are multiple outgoing Sequence Flows, then this means that a separate
parallel path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from Sub-Process. The
TokenIDs for each of the Tokens will be set such that it can be identified that the Tokens are
all from the same parallel Fork (AND-Split) and the number of Tokens in the group

If the Sub-Process does not have an outgoing Sequence Flow, and there is no End
Event for the Process, then the Sub-Process marks the end of one or more paths in
the Process. When the Sub-Process ends and there are no other parallel paths
active, then the Process will be completed.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Source: (Boundary |
Internal): Boundary

Each Message Flow must be associated with the Sub-
Process itself (Boundary) or with flow objects that the Sub-
Process contains (Internal). For a Boundary Message Flow,
it is equivalent to connecting the Message Flows to the End
Event of the Sub-Process.

Pool ?: PoolName If Pools are used, then the PoolName must be added to the
Sub-Process to identify its location.

Lane ?: LaneName If that Pool has more than one Lane, then the LaneName
must be added.

Association * Zero or more Associations can be associated with the Sub-
Process.

Documentation ? The modeler can add optional text documentation about
the Sub-Process.

Attributes Description
50 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Note: All Message Flows described here must connect two separate Pools. They
can connect to the Pool boundary or to flow objects within the Pool boundary. They
cannot connect two objects within the same Pool.

A Sub-Process can be the target for Message Flows; it can have zero or more incoming
Message Flows.

A Sub-Process can be a source for a Message Flow; it can have zero or more outgoing
Message Flows.

Mapping to Execution Languages
The following two sections describe how the use of Sub-Processes will map to BPEL4WS
and BPML, respectively.

BPEL4WS
There are four possibilities, depending on the Message Flows that attach to the Sub-
Process boundary:

A Sub-Process that has no Message Flows attached to its boundary will map to the
BPEL4WS invoke. This will invoke another web service, which is another process.

A Sub-Process that has an incoming Message Flow attached to its boundary will map to
a BPEL4WS receive followed by a BPEL4WS invoke.

A Sub-Process that has an outgoing Message Flow attached to its boundary will map to
the BPEL4WS invoke followed by a BPEL4WS reply.

A Sub-Process that has both an incoming and an outgoing Message Flow attached to
its boundary will map to a BPEL4WS receive followed by a BPEL4WS invoke followed
by a BPEL4WS reply.

Sub-Process properties will map as follows:

For a Reference Sub-Process type the modeler will have to create the referenced
Process independently (with a different name) and then assign the Process to the Sub-
Process object. The referenced process will be called with the BPEL4WS invoke.

InputMap will be mapped to the parameter passing elements of the call.

OutputMap will be mapped to the parameter passing elements of the call.

The mapping for the Transaction property is TBD.

If the LoopType is Standard then the Sub-Process will be wrapped by a BPEL4WS
while or until.

A Before EvaluateCondition will map to the BPEL4WS while.

An After EvaluateCondition will map to the BPEL4WS while. However, to ensure
that the Sub-Process is performed at least once, the activity(s) appropriate for the
Sub-Process Type will be performed first in a sequence, which includes the while

Any value in Maximum will be appended to the LoopCondition. For example with a
LoopCondition of “x < 0” and Maximum of 5 (loops), the final expression would be
Copyright  2002, BPMI.org All Rights Reserved 51 / 158

November 13, 2002 BPMN Working Draft
“(x < 0) and (<Sub-ProcessName>.Counter <= 5).” An BPEL4WS assign will be
used to update the Counter property.

If the LoopType is ForEach then the TBD.

Editor’s Note: We have not determined how the Ad Hoc Sub-Process will be
mapped to BPEL4WS.

BPML
There are four possibilities, depending on the Message Flows that attach to the Sub-
Process boundary:

A Sub-Process that has no Message Flows attached to its boundary will map to the
BPML call.

A Sub-Process that has an incoming Message Flow attached to its boundary will map to
a BPML one-way action followed by a BPML call.

A Sub-Process that has an outgoing Message Flow attached to its boundary will map to
the BPML call followed by a BPML one-way action.

A Sub-Process that has both an incoming and an outgoing Message Flow attached to
its boundary will map to the BPML request-response action.

If the Sub-Process type is Independent, then a BPML call will be used within the
action.

If the Sub-Process type is Nested, then the activities within the Sub-Process will be
mapped as appropriate and then inserted within the action.

Sub-Process properties will map as follows:

For a Reference Sub-Process type the modeler will have to create the referenced
Process independently (with a different name) and then assign the Process to the Sub-
Process object. The referenced process will be called with the BPML call.

InputMap will be mapped to the parameter passing elements of the call.

OutputMap will be mapped to the parameter passing elements of the call.

The mapping for the Transaction property is TBD.

If the LoopType is Standard then the Sub-Process will be wrapped by a BPML while or
until.

A Before EvaluateCondition will map to the BPML while.

An After EvaluateCondition will map to the BPML until.

Any value in Maximum will be appended to the LoopCondition. For example with a
LoopCondition of “x < 0” and Maximum of 5 (loops), the final expression would be
“(x < 0) and (<Sub-ProcessName>.Counter <= 5).” An BPML assign will be used to
update the Counter property.
52 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
If the LoopType is ForEach then the Sub-Process will be wrapped by a BPML foreach.

If the Time is Parallel, then the Sub-Process will be accessed through BPML spawn
for each instance and then a BPML synch will synchronize them.

Mapping the LoopFlowCondition TBD.

Editor’s Note: We have not determined how the Ad Hoc Sub-Process will be
mapped to BPML.

4.2.3 Task
A Task is an atomic activity that is included within a Process. A Task is used when the work
in the Process is not broken down to a finer level of Process Model detail. Generally, an
end-user and/or an application are used to perform the Task when it is executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has
rounded corners (see Figure 12). Text associated with the Task (e.g., its name) can be
placed above or below the shape, in any direction or location, depending on the preference
of the modeler or modeling tool vendor.

Figure 12 A Task Object

Attributes
The following are identified attributes of a Task:

Attributes Description
Name Name is a text description of the Task.
Type (Send | Receive |
Service | User): Service

Type is a property that has a default of Service, but can be
set to Send, Receive, or User. The type of Task will depend
on the Message Flows to and/or from the Task, if Message
Flows are used. If there is only an incoming Sequence
Flow, then the type must be Receive. If there is only an
outgoing Sequence Flow, then the type must be Send. If
there is both an incoming and outgoing Sequence Flow,
then the type must be Service. User Tasks are necessary
to create an asynchronous mechanism of notification and
response to handle the long-lived nature of User Tasks.
Since a BPML solicit-response action is synchronous, this
means that a set of BPML elements will be required to
create an asynchronous situation that handles complexities
of the interactions between a User and a BPM Engine (this
is detailed below in the section on “Mapping to Execution
Languages”).

Name
Copyright  2002, BPMI.org All Rights Reserved 53 / 158

November 13, 2002 BPMN Working Draft
(Receive) Instantiate
(True | False): False

Receive Tasks can be defined as the instantiation
mechanism for the Process with the Instantiate property.
This property can only be set to true if the Task is the first
activity after the Start Event or a starting activity if there is
no Start Event.

Property * Modeler-defined Properties can be added to a Task. These
Properties are “local” to the Task object. These Properties
are only for use within the processing of the Task object.
The fully delineated name of these properties are
“<process name>.<task name>.<property name>” (e.g.,
“Add Customer.Review Credit Report.Score”).

Name Each Property has a Name (e.g., name=”Customer
Name”).

Type Each Property has a Type (e.g., type=”Text”).

Input *: Attribute Input is an optional property that defines which of the
Parent Process attributes are used as either an input for or
an output from the Task.

Output *: Attribute Output is an optional property that defines which of the
Parent Process attributes are used as either an input for or
an output from the Task.

Transaction: (True | False):
False

Transaction is a Boolean property, which has a default of
False. This value automatically becomes True when a
Compensate Intermediate Event is attached to the
boundary of the Task.

Compensate: Intermediate
Event

The Compensate property lists the name of the
Intermediate Event.

EventContext: (True |
False): False

EventContext is a Boolean property, which has a default of
False. This value automatically becomes True when one or
more a Timer, Message, or Process Error Intermediate
Events is attached to the boundary of the Task.

Exception: Intermediate
Event

The Exception property lists the names of the Intermediate
Events.

LoopType: (None | Standard
| ForEach) : None

LoopType is a property and is by default None, but can be
set to Standard or ForEach, which means that the Loop
marker will be placed at the bottom center of the Task
shape. ForEach Loops require an expression, which
specifies the number of instances.

LoopCondition:
Expression

Standard Loops required an expression to be evaluated,
plus the timing when the expression will be evaluated.

Counter: Number The Counter property is used at runtime to count the
number of loops.

Maximum: Number The Maximum property is a simple way to add a cap to the
number of loops. This gets added to the expression when
mapped to BPEL4WS or BPML.

Attributes Description
54 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
EvaluateCondition:
(Before | After) : After

Standard Loops expressions evaluated Before the Sub-
Process begins are while loops and expressions evaluated
After the Task finishes are while loops for BPEL4WS and
until loops for BPML.

Timing: (Serial | Parallel) :
Serial

The Timing property defines whether the ForEach
instances will be performed serially or in parallel. A parallel
ForEach is equivalent to multi-instance specifications that
other notations, such as UML Activity Diagrams use.

LoopFlowCondition: (One
| All | Complex): All

The LoopFlowCondition, applied only to Parallel ForEach
loops, acts the similarly to the FlowCondition for the Sub-
Process. A Loop Flow Condition of One means that the
Token will continue past the Task after only on of the Sub-
Process instances has completed. The Task will continue
its other instances, but no other Tokens will be passed from
the Task. A Loop Flow Condition of All means that all Task
instances must be completed before the Token can move
from the Task.

Complex: Expression A complex Loop Flow Condition can be set by the modeler.
This will consist of an expression that can reference
Process data. The expression will determine the Token will
continue past the Task.

Assign *: Expression Zero or more assignments can be made. Each assignment
is an expression.

AssignTime: (Start | End):
Start

For each assignment the modeler can specify whether the
assignment will take place at the start or end of the Task.

IncomingSequenceFlow +:
SequenceFlowName

One or more incoming Sequence Flows can be idenitified
for the Task.

FlowCondition: (One | All |
Complex): All

If there is more than one, then a Flow Condition must be
set. A Flow Condition of One means that the Task will be
started when one Token arrives on any of the Flows. The
process will continue and all other Tokens arriving at the
Task will be consumed. A Flow Condition of All means that
a Token must arrive from all incoming Flows before the
Task can start.

Complex: Expression A complex Flow Condition can be set by the modeler. This
will consist of an expression that can reference Sequence
Flow names and or Process data. The expression will
determine when the Task will start.

OutgoingSequenceFlow +:
SequenceFlowName

One or more outgoing Sequence Flows can be idenitified
for the Task.

IncomingMessageFlow *:
MessageFlowName

Zero or more incoming Message Flows can be idenitified
for the Task.

OutgoingMessageFlow *:
MessageFlowName

Zero or more outgoing Message Flows can be idenitified for
the Task.

Attributes Description
Copyright  2002, BPMI.org All Rights Reserved 55 / 158

November 13, 2002 BPMN Working Draft
Table 13 Task Attributes

Sequence flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Task can be a target for a Sequence Flow; it can have multiple incoming Flows. An
incoming Flow can be from an alternative path or a parallel path. The Flow Condition
will determine when the Task will start.

If the Task does not have an incoming Sequence Flow, and there is no Start Event
for the Process, then the Task will be instantiated when the process is instantiated.

A Task can be a source for a Sequence Flow; it can have multiple outgoing Flows. If
there are multiple outgoing Sequence Flows, then this means that a separate parallel
path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from the Task. The TokenIDs
for each of the Tokens will be set such that it can be identified that the Tokens are all from
the same parallel Fork (AND-Split) and the number of Tokens in the group

If the Task does not have an outgoing Sequence Flow, and there is no End Event for
the Process, then the Task marks the end of one or more paths in the Process.
When the Task ends and there are no other parallel paths active, then the Process
will be completed.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Note: All Message Flows described here must connect two separate Pools. They
can connect to the Pool boundary or to flow objects within the Pool boundary. They
cannot connect two objects within the same Pool.

A Task can be the target for Message Flows; it can have zero or one incoming Message
Flows.

A Task can be a source for a Message Flow; it can have zero or more outgoing
Message Flows.

Pool ?: PoolName If Pools are used, then the PoolName must be added to the
Task to identify its location.

Lane ?: LaneName If that Pool has more than one Lane, then the LaneName
must be added.

Association * Zero or more Associations can be associated with the Task.
Documentation ? The modeler can add optional text documentation about

the Task.

Attributes Description
56 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Mapping to Execution Languages
The following two sections describe how the use of Tasks will map to BPEL4WS and
BPML, respectively.

BPEL4WS
A Receive Type Task will be mapped to a BPEL4WS receive.

The Instantiate property will be mapped to the createInstance element of the
receive element. True will be mapped to yes and False will be mapped to no.

A Send Type Task will be mapped to a BPEL4WS reply or a BPEL4WS invoke (with
only the inputContainer specified)

A Service Type Task will be mapped to a BPEL4WS invoke (with both the
inputContainer and outputContainer specified)

A User Type Task will not have any Message Flows and will map TBD:

The mapping for the Transaction property is TBD.

If the LoopType is Standard then the Task will be wrapped by a BPEL4WS while or until.

A Before EvaluateCondition will map to the BPEL4WS while.

An After EvaluateCondition will map to the BPEL4WS while. However, to insure that
the Task is performed at least once, the activity appropriate for the Task Type will be
performed first in a sequence, which includes the while.

Any value in Maximum will be appended to the LoopCondition. For example with a
LoopCondition of “x < 0” and Maximum of 5 (loops), the final expression would be
“(x < 0) and (<TaskName>.Counter <= 5).” A BPEL4WS assign will be used to
update the Counter property.

If the LoopType is ForEach then the mapping is TBD.

BPML
A Receive Type Task will be mapped to a BPML one-way action.

A Send Type Task will be mapped to a BPML notification action.

A Service Type Task with both an incoming and outgoing Message Flow will be mapped
to a BPML solicit-response action.

A User Type Task will not have any Message Flows and will map TBD:

The mapping for the Transaction property is TBD.

If the LoopType is Standard then the Task will be wrapped by a BPML while or until.

A Before EvaluateCondition will map to the BPML while.

An After EvaluateCondition will map to the BPML until.

Any value in Maximum will be appended to the LoopCondition. For example with a
LoopCondition of “x < 0” and Maximum of 5 (loops), the final expression would be
“(x < 0) and (<TaskName>.Counter <= 5).” A BPML assign will be used to update
the Counter property.
Copyright  2002, BPMI.org All Rights Reserved 57 / 158

November 13, 2002 BPMN Working Draft
If the LoopType is ForEach then the Task will be wrapped by a BPML foreach.

If the Time is Parallel, then the Task will be wrapped in a Nested Process and
accessed through BPML spawn for each instance and then a BPML synch will
synchronize them.

Mapping the LoopFlowCondition TBD.

Note: BPML request-response action is not mapped to a BPMN Task. Although this
type of action is an atomic activity in BPML, additional activities can be performed
before the action is complete. Because addtional work can be done for the
response to the request, this will be represented as a Sub-Process in BPMN.

4.3 Decisions
Decisions are locations within a business process where the Sequence Flow can take two
or more alternative paths. This is basically the “fork in the road” for a process. For a given
performance (or instance) of the process, only one of the paths can be taken (this should
not be confused with forking of paths—refer to the section entitled “Forking (AND-Split)” on
page 86). A Decision is not an activity from the business process perspective, but is an
object that controls the flow between activities. It can be thought of as a question that is
asked at that point in the Process. The question has a defined set of Alternative answers.
Each Decision Alternative is paired with a single outgoing Sequence Flow. When an
Alternative is chosen during the performance of the Process, the corresponding Sequence
Flow is then chosen. A Token arriving at the Decision would be directed down the
appropriate path, based on the chosen Alternative. The Sequence Flows themselves act
only as the path through which the Token travels; they do not have their own conditions that
can determine whether they are traveled or not.

A Decision is a diamond (see Figure 13), which has been used in many flow chart notations
and is familiar to most modelers. Text associated with the Decision (e.g., its name) can be
placed inside the shape, or above or below the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor.

Figure 13 A Decision

Note: Although the shape of the Decision is a diamond, it is not a requirement that
incoming and outgoing Sequence Flow must connect to the corners of the diamond.
Sequence Flow can connect to any position on the boundary of the Decision shape.

Decisions come in two basic types: Exclusive and Inclusive. The following two sections
define these two types.

Name
58 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
4.3.1 Exclusive
The Exclusive Decision has two or more outgoing Message Flows, but only one of them
may be taken during the performance of the Process. Thus, the Exclusive Decision defines
a set of Alternative paths for the Token to take as it traverses the Flows. There are two
types of Exclusive Decisions: Data-Based and Event-Based.

Data-Based
The Data-Based Exclusive Decisions are the most commonly used type. We will also refer
to them as just Decisions. The set of Alternatives for Data-Based Exclusive Decisions are
based on condition expressions. These expressions evaluate the current values of process
data to determine which path should be taken (hence the name Data-Based). The
conditions should be evaluated in a specific order. The first one that evaluates as true will
determine the Sequence Flow that will be taken. One of the condition expressions may be
“default,” and is the last condition evaluated. This means that if none of the other condition
expressions is true at runtime, then the default expression will be chosen—along with its
associated Sequence Flow.

Note: the Default Alternative for a Data Decision Type may be defined as being
mandatory in a future version of the specification. This is an open issue. Refer to the
section entitled “Open Issues” on page 137 for a complete list of the issues open for
BPMN.

Although the Decision actually contains the condition expressions, they can be displayed
on the outgoing Sequence Flows (see Figure 14). While shown on the Sequence Flow, they
are not actually a property of the Sequence Flows.

Figure 14 A Data-Based Decision Example

Event-Based
Event-Based Exclusive Decisions are a fairly new development in Business Process
Management and will map to the BPEL4WS pick or BPML choice elements. The basic idea
is that this Decision represents a branching point in the process where the Alternatives are
based on an Intermediate Event that occurs at that point in the Process. The specific
Intermediate Event, usually a message type, determines which of the paths will be taken.

BCondition 1

[Default]

A C

D

Condition 2
Copyright  2002, BPMI.org All Rights Reserved 59 / 158

November 13, 2002 BPMN Working Draft
For example, if a company is waiting for a response from a customer, they will perform one
set of activities if the customer responds “Yes” and another set of activities if the customer
responds “No.” The customer’s response determines which path is taken. The identity of
the Message determines which path is taken. That is, the “Yes” Message and the “No”
message are completely different messages—they are not the same message with
different values within a property of the Message. In addition to Messages, other types of
Intermediate Events can be used, such as Timers and Process Errors.

The Event-Based Exclusive Decisions are configured by using the Decision shape and
having outgoing Sequence Flows target an Intermediate Event (see Figure 15). All of the
outgoing Sequence Flows must target an Intermediate Event; there cannot be a mixing of
condition expressions and Intermediate Events for a given Decision.

Figure 15 An Event-Based Decision Example

To relate the Event-Based Exclusive Decision to BPEL4WS or BPML, the Decision
diamond marks the location of a BPEL4WS pick or a BPML choice and the Intermediate
Events that follow the Decision become the event handlers of the pick or choice. The
activities that follow the Intermediate Events become the contents of the activity sets for the
event handlers. The boundaries of the activity sets is actually determined by the
configuration of the process; that is, the boundaries extend to where all the alternative
paths are finally joined together (which could be the end of the Process).

Message C

Message D

A

E

F

G

1 Day
60 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Attributes
The following table displays the identified attributes of an Exclusive Decision:

Table 14 Decision Attributes

Attributes Description
Name Name is a property that is text description of the Decision.

DecisionType: (Data |
Event): Data

DecisionType is a property and is by default Data.

(Data) Alternative +:
Expression

If the type is Data, there must be one or more Alternatives with
their expressions.

OutgoingSequenceFlow:
SequenceFlowName

Each Alternative must have an associated Sequence Flow.

Assign +: Expression Zero or more assignments can be made for each Alternative.
(Data) DefaultAlternative? If the type is Data, then a Default Alternative may be specified.
OutgoingSequenceFlow:
SequenceFlowName

The Default Alternative must have an associated Sequence
Flow.

Assign +: Expression Zero or more assignments can be made for the
DefaultAlternative.

(Event) Alternative 2+:
OutgoingSequenceFlow

If the type is Event, then two or more Alternatives are defined as
Sequence Flows and their targets must be an Intermediate
Event. The Intermediate Events must be of type Message, Timer,
or Fault. Only one of the Events can be of type Timer, however.

Target: EventName The targets of the Sequence flow must be an Intermediate Event

IncomingSequenceFlow *:
SequenceFlowName

One or more incoming Sequence Flows can be idenitified for the
Decision.

FlowCondition: (One | All |
Complex) : All

If there is more than one, then a Flow Condition must be set. A
Flow Condition of One means that the Decision will be evaluated
when one Token arrives on any of the Flows. The process will
continue and all other Tokens arriving at the Decision will be
consumed. A Flow Condition of All means that a Token must
arrive from all incoming Flows before the Decision can be
evaluated.

Complex: Expression A complex Flow Condition can be set by the modeler. This will
consist of an expression that can reference Sequence Flow
names and or Process data. The expression will determine when
the Decision will be evaluated.

Pool ?: PoolName If Pools are used, then the PoolName must be added to the
Decision to identify its location.

Lane ?: LaneName If that Pool has more than one Lane, then the LaneName must
be added.

Association * Zero or more Associations can be associated with the Decision.

Documentation ? The modeler can add optional text documentation about the
Decision.
Copyright  2002, BPMI.org All Rights Reserved 61 / 158

November 13, 2002 BPMN Working Draft
Sequence flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Data-Based Exclusive Decision can be a target for a Sequence Flow; it can have
multiple incoming Flows. An incoming Flow can be from an alternative path or a parallel
path.

If the Decision does not have an incoming Sequence Flow, and there is no Start
Event for the Process, then the Decision will be evaluated when the process is
instantiated.

An Exclusive Decision can be a source for a Sequence Flow; it must have two or more
outgoing Flows. One of these outgoing Sequence Flows must be a “default” Sequence
Flow. The non-default outgoing Flows are evaluated independently to determine if that
path will be taken. If none of the non-default Flows taken, then the default Flow will be
taken.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how the may be source or targets of Sequence Flows.

An Exclusive Decision cannot be a target for a Message Flow.

An Exclusive Decision cannot be a source for a Message Flow.

Mapping to Execution Languages
The following two sections describe how the use of Decisions will map to BPEL4WS and
BPML, respectively.

BPEL4WS
A Data-Based Exclusive Decision will map to a BPEL4WS switch. Each
ConditionExpression will map to the condition for a switch case. The Default condition
will map to the Switch otherwise case.

The activities that follow the conditions will be included within the activity (usually a
sequence) for that condition. The exact content of the activity will depend on the
configuration of the Process. Details of how the configuration will be mapped to the
activity set can be found in the section entitled “Mapping to Execution Languages”
on page 133.

An Event-Based Exclusive Decision will map to a BPEL4WS pick. Each of the target
Intermediate Events will map to the message handlers within the pick.

The activities that follow the Intermediate Events will be included within the activity
(usually a sequence) for that message handler. The exact content of the activity will
depend on the configuration of the Process. Details of how the configuration will be
mapped to the activity set can be found in the section entitled “Mapping to
Execution Languages” on page 133. If the Intermediate Event is of type Message,
then the first activity of the activity will be a receive.
62 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
BPML
A Data-Based Exclusive Decision will map to a BPML switch. Each
ConditionExpression will map to the condition for a switch case. The Default condition
will map to the Switch default case.

The activities that follow the conditions will be included within the activity set for that
condition. The exact content of the activity set will depend on the configuration of
the Process. Details of how the configuration will be mapped to the activity set can
be found in the section entitled “Mapping to Execution Languages” on page 133.

An Event-Based Exclusive Decision will map to a BPML choice. Each of the target
Intermediate Events will map to the event handlers within the choice.

The activities that follow the Intermediate Events will be included within the activity
set for that event handler. The exact content of the activity set will depend on the
configuration of the Process. Details of how the configuration will be mapped to the
activity set can be found in the section entitled “Mapping to Execution Languages”
on page 133. If the Intermediate Event is of type Message, then the first activity of
the activity set will be a one-way action.

4.3.2 Inclusive
Zero to all of the outgoing Sequence Flows from an Exclusive Decision may be taken
during the performance of the Process. Thus, an Inclusive Decision is a hybrid between a
Fork (AND-Split) and a Decision (OR-Split). In some sense it is a grouping of related
independent Binary (Yes/No) Decisions. Since each path is independent, all combinations
of the paths may be taken, from zero to all. BPMN extends this concept by insisting that
there be a default Flow that is followed if none of the other outgoing Flows are taken. This
insures that the process behavior is fully covered through the Sequence Flows. Thus, a
BPMN Inclusive Decision really will have one or more of the outgoing Flows taken at
runtime.

Editor’s Note: the details of the how Inclusive Decisions look and behave is an
open issue and will be included in a later version of the specification. Since
Inclusive Decisions are a hybrid of forking and splitting, the definition of their
behavior may be moved to another section in this specification, depending on how
the notation of these Decisions are finalized. Refer to the section entitled “Open
Issues” on page 137 for a complete list of the issues open for BPMN.

4.4 Pools and Lanes
BPMN has a larger scope than BPEL4WS or BPML, and this scope is expressed in
different dimensions. The dimension discussed here has to with defining business
processes in a collaborative B2B environment. BPMN uses the concept known as
“swimlanes” to help partition and organize activities.

BPEL4WS and BPML are focused on a specific private process that is internal to a given
Participant (i.e., a company or organization). BPEL4WS also can define an abstract
process. It is possible that a BPMN diagram may depict more than one private process, as
well as the processes that show the collaboration between private processes or
Copyright  2002, BPMI.org All Rights Reserved 63 / 158

November 13, 2002 BPMN Working Draft
Participants. If so, then each private business process will be considered as being
performed by different Participants. Graphically, each Participant will be partitioned; that is,
will be contained within a rectangular box call a “Pool.” Pools can have sub-swimlanes that
are called, simply, “Lanes.”

The section entitled “Uses of BPMN” on page 15 describes the uses of BPMN for modeling
private processes and the interactions of processes in B2B scenarios. Pools and Lanes are
designed to support these uses of BPMN.

4.4.1 Pool
A Pool is a “swimlane” and a graphical container for partitioning a set of activities from other
Pools, usually in the context of B2B situations. It is a square-cornered rectangle that is
drawn with a solid single line (as seen in Figure 16). To help with the clarity of the diagram,
A Pool will extend the entire length of the diagram, either horizontally or vertically. However,
there is no specific restriction to the size and or positioning of a Pool. Modelers and
modeling tools can use Pools (and Lanes) in a flexible manner in the interest of conserving
the “real estate” of a diagram on a screen or a printed page. Text associated with the Pool
(e.g., its name) can be placed inside the shape, in any direction or location, depending on
the preference of the modeler or modeling tool vendor.

Figure 16 A Pool

A Pool acts as the container for the Sequence Flow between activities. The Sequence Flow
can cross the boundaries between Lanes of a Pool, but cannot cross the boundaries of a
Pool. The interaction between Pools, e.g., in a B2B context, is shown through Message
Flows.

Another aspect of Pools is whether or not there is any activity detailed within the Pool.
Thus, a given Pool may be shown as a “White Box,” with all details exposed, or as a “Black
Box,” with all details hidden. No Sequence Flow is associated with a “Black Box” Pool, but
Message Flows can attach to its boundaries (see Figure 17).

N
am

e

64 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Figure 17 Message Flow connecting to the boundaries of two Pools

For a “White Box” Pool, the activities within are organized within by Sequence Flows.
Message Flows can cross the Pool boundary to attach to the appropriate activity (see
Figure 18).

Figure 18 Message Flow connecting to flow objects within two Pools

M
an

uf
ac

tu
re

r
Fi

na
nc

ia
l

In
st

itu
tio

n

Credit ResponseCredit Request

+

Credit Card
Authorization

D
is

tri
bu

tio
n

Sa
le

s

Su
pp

lie
r

Authorize
Payment

Pack Goods Ship Goods

Process Order

+

Fi
na

nc
ia

l
In

st
itu

tio
n

Copyright  2002, BPMI.org All Rights Reserved 65 / 158

November 13, 2002 BPMN Working Draft
Attributes
The following table displays the identified attributes of a Pool:

Table 15 Pool Attributes

Mapping to Execution Languages
Pools do not have any specific Mapping to Execution Languages. However, a Pool is
associated with a mapping to a specific lower level language. For example, one Pool may
encompass a BPEL4WS or BPML document while another Pool might encompass an
ebXML BPSS document.

Attribute Description
Name Name is a property that is text description of the Pool.

PoolType (Private | Interface
| Collaboration): Private

Pool Type is a property that provides information about to which
lower-level language the Pool will be mapped. The default type is
Private which will be mapped to BPEL4WS or BPML. An
Interface Pool is also called the public interface of a process (or
other web services) and will be mapped to languages such as
WSCI. A Collaboration Pool will have two Lanes that represent
business roles (e.g., buyer or seller) and will show the
interactions between these roles. These pools will be mapped to
languages such as ebXML.

Owner ? Owner is an optional property that will help identify the point-of-
view of the diagram. If the Pool Type is Collaboration, then there
is no specific Owner.

IncomingMessageFlow *:
MessageFlowName

There can be zero or more incoming Message Flows.

Target (Boundary |
FlowObjectName):
Boundary

Each Outgoing Message Flow has to have a target specified,
which can be either the boundary of the Pool or a flow object
within the Pool.

OutgoingMessageFlow *:
MessageFlowName

There can be zero or more outgoing Message Flows.

Source (Boundary |
FlowObjectName):
Boundary

Each incoming Message Flow has to have a source specified,
which can be either the boundary of the Pool or a flow object
within the Pool.

Lane +: LaneName There can be one or more Lanes within a Pool. If there is only
one Lane, then that Lane shares the name of the Pool and only
the Pool name is displayed. If there is more than one, then each
Lane has to have its own name and all names are displayed.

Association * Zero or more Associations can be associated with the Pool.

Documentation ? The modeler can add optional text documentation about the Pool.
66 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Note: the current specification does not contain mappings to any languages except
to the execution definitions in BPEL4WS and to BPML. The mapping to the abstract
definitions in BPEL4WS will be included in a later version of the specification.

Note: Interface processes may be allowed to be a Lane within a Pool in a later
version of the specification. This is an open issue. Refer to the section entitled
“Open Issues” on page 137 for a complete list of the issues open for BPMN.

4.4.2 Lane
A Lane is a sub-partition within a Pool and will extend the entire length of the Pool, either
vertically or horizontally (see Figure 19). Text associated with the Lane (e.g., its name) can
be placed inside the shape, in any direction or location, depending on the preference of the
modeler or modeling tool vendor. Our examples place the name as a banner on the left side
(for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that
separates the Pool name.

Figure 19 Two Lanes in a Pool

Lanes are used to organize and categorize activities within a Pool. The meaning of the
Lanes is up to the modeler. BPMN does not specify the usage of Lanes. Lanes are often
used for such things as internal roles (e.g., Manager, Associate), systems (e.g., an
enterprise application), an internal department (e.g., shipping, finance), etc. In addition,
Lanes can be nested. For example, there could be an outer set of Lanes for company
departments and then an inner set of Lanes for roles within each department.

Attributes
The following table displays the identified attributes of a Lane:

Table 16 Lane Attributes

Attribute Description
Name Name is a property that is text description of the Lane. If the Lane

is the only one in the Pool, it will share the name of the Pool.

ParentPool: PoolName The Parent Pool must be specified. There can be only one
Parent.

Association * Zero or more Associations can be associated with the Lane.

Documentation ? The modeler can add optional text documentation about the
Lane.

N
am

e N
am

e
N

am
e

Copyright  2002, BPMI.org All Rights Reserved 67 / 158

November 13, 2002 BPMN Working Draft
Mapping to Execution Languages
Lanes do not have any specific Mapping to Execution Languages. They are designed to
help organize and communicate how activities are grouped in a business process.

4.5 Data Object
In BPMN, a Data Objects are considered artifacts and not a flow object. They are
considered an artifact because they do not have any direct affect on the Sequence Flow or
Message Flow of the Process, but they do provide information about what the Process
does. That is, how documents, data, and other objects are used and updated during the
Process. While the name “Data Object” may imply an electronic document, they can be
used to represent many different types of objects, both electronic and physical.

In general, BPMN will not standardize many modeling artifacts. These will mainly be up to
modelers and modeling tool vendors to create for their own purposes. However,
equivalents of the BPMN Data Object are used by Document Management oriented
workflow systems and many other process modeling methodologies. Thus, this object is
used enough that it is important to standardize its shape and behavior.

The Data Object is a portrait-oriented rectangle that has its upper-right corner folded over
(see Figure 20). Text associated with the Data Object (e.g., its name and/or state) can be
placed above or below the shape, in any direction or location, depending on the preference
of the modeler or modeling tool vendor.

Figure 20 A Data Object

As an artifact, Data Objects generally will be associated with flow objects. An Association
will be used to make the connection between the Data Object and the flow object. This
means that the behavior of the Process can be modeled without Data Objects for modelers
who want to reduce clutter. The same Process can be modeled with Data Objects for
modelers who want to include more information without changing the basic behavior of the
Process.

In some cases, the Data Object will be shown being sent from one Process to another, via
a Sequence Flow (see Figure 21). Data Objects will also be associated with Message
Flows. They are not to be confused with the message itself, but could be though of as the
“payload” or content of some messages.

Name
[State]
68 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Figure 21 A Data Object associated with a Sequence Flow

In other cases, the same Data Object will be shown as being an input, then an output of a
Process (see Figure 22). Directionality added to the Association will show whether the Data
Object is an input or an output. Also, the state property of the Data Object can change to
show the impact of the Process on the Data Object.

Figure 22 Data Objects shown as inputs and outputs

Attributes
The following table displays the identified attributes of a Text Annotation:

Table 17 Data Object Attributes

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how the may be source or targets of Sequence Flows.

Attribute Description
Name Name is a property that is a text description of the Data Object.

Multiple Data Objects can share the same name within one
Process.

State ? State is an optional property that indicates the impact the
Process has had on the Data Object. Multiple Data Objects with
the same name can share the same state within one Process.

Target: ObjectName Target is an option property that identifies the object that the Data
Object is connected to through an Association.

Documentation ? The modeler can add optional text documentation about the Data
Object.

Invoice
[Approved]

Send Invoice Make Payment

Approve Purchase
Order

Purchase Order
[Complete]

Purchase Order
[Approved]
Copyright  2002, BPMI.org All Rights Reserved 69 / 158

November 13, 2002 BPMN Working Draft
A Data Object cannot be a target for a Sequence Flow.

A Data Object cannot be a source for a Sequence Flow.

Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Data Object cannot be a target for a Message Flow.

A Data Object cannot be a source for a Message Flow.

Mapping to Execution Languages
Data Objects do not have any Mapping to Execution Languages. They provide detailed
information about how data will interact with the flow objects and flows of Processes.

4.6 Text Annotation
Text Annotations are a mechanism for a modeler to provide additional information for the
reader of a BPMN diagram. The Text Annotation object is an open rectangle and can be
connected to a specific object on the diagram with an Association (see Figure 23). Text
associated with the Annotation can be placed within the bounds of the open rectangle.

Figure 23 A Text Annotation

Text Annotations do not affect the flow of the Process and do not map to any BPEL4WS or
BPML elements.

Attributes
The following table displays the identified attributes of a Text Annotation:

Table 18 Text Annotation Attributes

Sequence Flow Connections
Refer to the section entitled “Sequence Flow Rules” on page 24 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Text Annotation cannot be a target for a Sequence Flow.

A Text Annotation cannot be a source for a Sequence Flow.

Attribute Description
Text: String Text is a property that is text that the modeler wishes to

communicate to the reader of the diagram.

Target ?: ObjectName Target is an optional property that identifies what object the
Annotation is connected to through an Association.

Text Annotation Allows
a Modeler to provide
additional Information
70 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Message Flow Connections
Refer to the section entitled “Message Flow Rules” on page 25 for the entire set of objects
and how the may be source or targets of Sequence Flows.

A Text Annotation cannot be a target for a Message Flow.

A Text Annotation cannot be a source for a Message Flow.

Mapping to Execution Languages
Text Annotations can map to the documentation element of BPM execution languages. If
the Annotation is associated with a flow object and that object has a straight-forward
mapping to a BPM execution language element, then the text of the Annotation will be
placed in the documentation element of that object. If there is no straight-forward mapping
to a BPM execution language element, then the text of the Annotation will be appended to
the documentation element of the process.
Copyright  2002, BPMI.org All Rights Reserved 71 / 158

November 13, 2002 BPMN Working Draft
72 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
5. Connecting Objects
This section defines the graphical objects used to connect two objects together (i.e., the
connecting lines of the diagram) and how the flow progresses through a Process (i.e.,
through a straight sequence or through the creation of parallel or alternative paths).

5.1 Graphical Connecting Objects
There are two ways of connecting objects in BPMN: a Flow, either sequence or message,
and an Association. Sequence Flows and Message Flows, to a certain extent, represent
orthogonal aspects of the business processes depicted in a model, although they both
affect the performance of activities within a Process. In keeping with this, Sequence Flows
will generally flow in a single direction (either left to right, or top to bottom) and Message
Flows will flow at a 90° from the Sequence Flows. This will help clarify the relationships for
a diagram that contains both Sequence Flows and Message Flows. However, BPMN does
not restrict this relationship between the two types of Flows. A modeler can connect either
type of Flow in any direction at any place in the diagram.

The next three sections will describe how these types of connections function in BPMN.

5.1.1 Sequence Flow
A Sequence Flow is used to show the order that activities will be performed in a Process.
Each Flow has only one source and only one target. The source and target must be from
the set of the following flow objects: Start Event, Intermediate Event, End Event, Task, Sub-
Process, and Decision. During performance or simulation of the process, a Token will leave
the source flow object, traverse down the Sequence Flow, and enter the target flow object.

The Sequence Flow is a thin, solid line with a solid arrowhead (see Figure 24). Text can be
attached to a Sequence Flow and displayed above and/or below, across, or through the line
(for vertical lines).

Figure 24 A Sequence Flow

A Sequence Flow, unlike some process modeling languages, does not have a conditional
expression property. This means that once the Token leaves the source object, it will
always traverse the Flow. There is no “decision” to be made. Such “decisions” are made in
the Decision object. By adding conditionals to a Flow also adds ambiguity about the exact
behavior of the Process.

BPMN is designed to avoid ambiguity to the Sequence Flow to satisfy a general
requirement that “BPMN must expose all normal Sequence Flow semantics in the
notation—there will be no hidden semantics.” For those notations that employ a condition
expression on a flow, there is ambiguity about the behavior of the process. Sometimes a
Token will travel down the Flow sometimes not—depending on the evaluation of the
condition expression. It is not always clear what happens to the Token if it does not go
down the Flow. The Token might “jump” to the end of the Process or some other location in
the Process, depending on the process configuration and notation semantics. A viewer of
the model has to have a clear understanding of the semantics of the diagram to understand
Copyright  2002, BPMI.org All Rights Reserved 73 / 158

November 13, 2002 BPMN Working Draft
this behavior, which might be difficult in a complex diagram because the behavior is not
completely exposed (graphically) to the viewer of the diagram.

It is appropriate for lower-level execution languages to use condition expressions on
transitions between activities, since it provides a compact way of defining behavior.
However, BPMN is a visual language, intended to communicate the behavior to a human
audience. Thus, it is appropriate for BPMN to expose as much of the process behavior as
possible and to make this behavior as obvious to the viewer as possible. This may make
BPMN a bit more visually verbose, but the behavior of the processes will be obvious. A
BPMN diagram can then be mapped to an executable BPM language (BPEL4WS or BPML)
that has a well constructed, but less obvious behavior (to humans).

Attributes
The following table displays the identified attributes of a Sequence Flow:

Table 19 Sequence Flow Attributes

Mapping to Execution Languages
The following two sections describe how the use of Sequence Flow will map to BPEL4WS
and BPML, respectively.

BPEL4WS
A Sequence Flow may not have a specific mapping to a BPEL4WS in most situations.
However, when there is a section of the diagram that contains parallel activities, then
Sequence Flow may map to the link element. Details of this mapping are TBD. In general,
the set of Sequence Flows within a Pool will determine how BPEL4WS elements are
derived and the boundaries of those elements. Refer to the section entitled “Mapping to
Execution Languages” on page 133 for more details.

Attribute Description
Name: String Name is an property that is text description of the Sequence

Flow. If the modeler does not enter a name, the name will default
to: “SF”+<SourceObjectName>+”to”+<TargetObjectName>. This
name is necessary since Sequence Flow names may be used in
Complex Flow Conditions for objects that have multiple incoming
Sequence Flows.

Source: FlowObjectName Source is a property that identifies which flow object the
Sequence Flow is connected from; i.e., the Sequence Flow is an
outgoing flow from that object.

Target: FlowObjectName Target is a property that identifies which flow object the
Sequence Flow is connected to; i.e., the Sequence Flow is an
incoming flow to that object.

Association * Zero or more Associations can be associated with the Sequence
Flow.

Documentation ? The modeler can add optional text documentation about the
Sequence Flow.
74 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
BPML
A Sequence Flow does not have a specific mapping to a BPML element. However, the set
of Sequence Flows within a Pool will determine how BPML elements are derived and the
boundaries of those elements. Refer to the section entitled “Mapping to Execution
Languages” on page 133 for more details.

5.1.2 Message Flow
A Message Flow is used to show the flow of messages between two entities that are
prepared to send and receive them. In BPMN, two separate Pools in the diagram will
represent the two entities. Thus,

Message Flow always connects two Pools, either to the Pools themselves or to flow
objects within the Pools. They cannot connect two objects within the same Pool.

The Message Flow is drawn with a dashed line with an open arrowhead (see Figure 25).
Text can be attached to a Message Flow and displayed above and/or below, across, or
through the line (for vertical lines).

Figure 25 A Message Flow

The Message Flow can connect directly to the boundary of a Pool (See Figure 26),
especially if the Pool does not have any process details within (e.g., is a “Black Box”).

Figure 26 Message Flow connecting to the boundaries of two Pools

A Message Flow can also cross the boundary of a Pool and connect to a flow object within
that Pool (see Figure 27).

M
an

uf
ac

tu
re

r
Fi

na
nc

ia
l

In
st

itu
tio

n

Credit ResponseCredit Request
Copyright  2002, BPMI.org All Rights Reserved 75 / 158

November 13, 2002 BPMN Working Draft
Figure 27 Message Flow connecting to flow objects within two Pools

If there is an Expanded Sub-Process in one of the Pools, then the message flow can be
connected to either the boundary of the Sub-Process or to objects within the Sub-Process.
If the Message Flow is connected to the boundary to the Expanded Sub-Process, then this
is equivalent to connecting to the Start Event for incoming Message Flows or the End Event
for outgoing Message Flows (see Figure 28).

+

Credit Card
Authorization

D
is

tri
bu

tio
n

Sa
le

s

Su
pp

lie
r

Authorize
Payment

Pack Goods Ship Goods

Process Order

+

Fi
na

nc
ia

l
In

st
itu

tio
n

76 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Figure 28 Message Flow connecting to boundary of Sub-Process and Internal objects

C
us

to
m

er

Credit Response

Credit Report

Type of
Customer?

Default
(New)

Established with
good Credit

Established with
poor Credit

Include Apology
Text

Include History of
Transactions

Include Standard
TextReceive Credit

Report

Check Credit

Su
pp

lie
r

Recieve Request

Credit Request

C
re

di
t

Ag
en

cy

No

Approve?

Default
(Yes)

Continue Order...
Copyright  2002, BPMI.org All Rights Reserved 77 / 158

November 13, 2002 BPMN Working Draft
Attributes
The following table displays the identified attributes of a Message Flow:

Table 20 Message Flow Attributes

Mapping to Execution Languages
A Message Flow does not have a specific mapping to a BPEL4WS or BPML element. It
represents a message that is send through a WSDL operation that is referenced in a
BPEL4WS receive, reply, or invoke or a BPML action.

5.1.3 Association
An Association is used to associate information and artifacts with flow objects. Text and
graphical non-flow objects can be associated with the flow objects and flows. Since the
Association does not affect the sequence flow or message flow of the process in any way,
it, and the information it is connected to, can be added or subtracted at any time in a
diagram (i.e., with a modeling tool) and not affect the behavior of the process.

Attribute Description
Name ?: String Name is an optional property that is text description of the

Message Flow.
Message ?: MessageName Message is an optional property that identifies the Message that

is being sent.

SourcePool: PoolName SourcePool is a property that identifies which Pool the message
Flow is connected from; i.e., the Message Flow is an outgoing
flow from that Pool. The Message Flow can originate from the
boundary of the Pool or an object within the Pool.

SourceObject:
FlowObjectName

If the source is an object within the Pool, then the SourceObject
property will identify that object. The set of objects that a
Message Flow can originate from are: Task, Sub-Process, and
End Event.

TargetPool: PoolName TargetPool is a property that identifies which Pool the Message
Flow is connected to; i.e., the Message Flow is an incoming flow
to that Pool. The Message Flow can target the boundary of the
Pool or an object within the Pool.

TargetObject:
FlowObjectName

If the target is an object within the Pool, then the TargetObject
property will identify that object. The set of objects that a
Message Flow can target from are: Task, Sub-Process, Start
Event, and Intermediate Event.

Association * Zero or more Associations can be associated with the Message
Flow.

Documentation ? The modeler can add optional text documentation about the
Message Flow.
78 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Note: We have not dealt with Spawning and Joining yet and the Association may be
used to support these features. Thus, the definition of the Association may change.
It is also possible that an Association may be used to show the bindings between
activities in a private process and activities in a Collaboration Process.

The Association is drawn with a dotted line (see Figure 29). Text can be attached to a
Association and displayed above and/or below, across, or through the line (for vertical
lines).

Figure 29 An Association

If there is a reason to put directionality on the association then a line arrowhead can be
added (see Figure 30)

Figure 30 A directional Association

An Association is used to connect user-defined text with a flow object (see Figure 31).

Figure 31 An Association of Text Annotation

An Association is also used to associate Data Objects with other objects (see Figure 32). A
Data Object is used to show how documents are used throughout a Process. Refer to the
section entitled “Data Object” on page 69 for more information on Data Objects.

Figure 32 An Association connecting a Data Object with a Flow

Allow 1 week for
discussion of

Issues--Through
e-mail or calls

Announce
Issues for
Discussion

Invoice
[Approved]

Send Invoice Make Payment
Copyright  2002, BPMI.org All Rights Reserved 79 / 158

November 13, 2002 BPMN Working Draft
Attributes
The following table displays the identified attributes of a Association:

Table 21 Association Attributes

Mapping to Execution Languages
An Association does not have a specific mapping to an execution language element. These
objects and the artifacts they connect to provide additional information for the reader of the
BPMN diagram, but do not directly affect the execution of the Process.

5.2 Sequence Flow Mechanisms
The Sequence Flow mechanisms described in the following sections are divided into four
types: Normal flow, Exception Flow, Transaction Compensation flow, and Ad Hoc (no flow).

5.2.1 Normal Flow
Normal sequence flow refers to the flow that originates from a Start Event and continues
through activities via alternative and parallel paths until it ends at an End Event. As stated
above, the normal sequence flow should be completely exposed and no flow behavior
hidden. This means that a viewer of a BPMN diagram will be able to trace through a series
of flow objects and Sequence Flows, from the beginning to the end of a given level of the
Process without any gaps or hidden “jumps” (see Figure 33). In this figure, Sequence Flows
connect all the objects in the diagram, from the Start Event to the End Event. The behavior
of the Process shown will reflect the connections as shown and not skip any activities or
“jump” to the end of the Process.

Attribute Description
Name ?: String Name is an optional property that is text description of the

Association.

Source: ObjectName Source is a property that identifies which object the Association is
connected from. The set of objects that an Association can
connect to are: Pool, Lane, all Events, Task, Sub-Process,
Decision, Sequence Flow, and Message Flow.

Target: ObjectName Target is a property that identifies which artifact the Association is
connected to. Associations can only connect to artifacts.

Direction (None | To | From |
Both): None

Direction is a property that defines whether or not the Association
shows any directionality with an arrowhead. The default is None
(no arrowhead). A value of To means that the arrowhead will be
at the Source object. A value of From means that the arrowhead
will be at the Target artifact. A value of Both means that there will
be an arrowhead at both ends of the Association line.

Documentation ? The modeler can add optional text documentation about the
Association.
80 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Figure 33 A Process with Normal flow

As the Process continues through the series of Sequence Flows, control mechanisms may
divide or combine the Sequence Flows as a means of describing complex behavior. There
are two control mechanisms of dividing (forking and splitting) and two control mechanisms
of combining (joining and merging) Sequence Flows. A casual look at the definitions of the
English terms for these mechanisms would indicate that each pair of terms mean basically
the same thing. However, their effect on the behavior of a Process is quite different. We will
continue to use these English terms but will provide specific definitions about how they
affect the performance of the process in the next few sections of this specification. In
addition, we will relate these BPMN terms to the terms OR-Split (for split), Or-Join (for
merge), AND-Split (for fork), and AND-Join (for join), as defined by the Workflow
Management Coalition.1

Editor’s Note: The graphical mechanism for forking, joining, and merging may is an
open issue and may change in the next version of the specification. Refer to the
section entitled “Open Issues” on page 137 for a complete list of the issues open for
BPMN. BPMN might employ a special flow objects that control these behaviors.
Other notations, such as the UML Activity Diagram, EPCs, and IDEF3, use such
control objects. Another possibility is that forking will be restricted to the Start
Events, joining will be restricted to End Events, and Expanded Sub-Processes will
be employed to show parallel flows within a Process. This approach has many
advantages by preventing invalid process designs or processes that produce
unexpected behavior. BPMI is investigating old and new concepts for handling
forking, joining, splitting, and merging.

The use of an expanded Sub-Process in a Process (see Figure 34), which is the inclusion
of one level of the Process within another Level of the Process, can sometimes break the
traceability of the flow through the lines of the diagram. The Sub-Process is not required to
have a Start Event and an End Event. This means that the series of Sequence Flows will be
disrupted from border of the Expanded Sub-Process to the first object within the Expanded
Sub-Process. The flow will “jump” to the first object within the Expanded Sub-Process.
Expanded Sub-Processes will often be used, as seen in the figure, to include exception
handling. A requirement that modelers always include a Start Event and End Event within

1. The Workflow Management Coalition Terminology & Glossary. The Workflow Management Coalition. Document
Number WFMC-TC-1011. April 1999.

Accepted or
Rejected?

Default

Rejected

Receive Order

Fill Order

Ship Order

Send Invoice Make Payment Accept Payment

Close Order
Copyright  2002, BPMI.org All Rights Reserved 81 / 158

November 13, 2002 BPMN Working Draft
Expanded Sub-Processes would mainly add clutter to the diagram without necessarily
adding to the clarity of the diagram. Thus, BPMN does not enforce the use of Start Events
and End Events to satisfy the traceability of a diagram that contains multiple levels.

Figure 34 A Process with Expanded Sub-Process without a Start Event and End Event

A modeler may want to ensure the traceability of a diagram and can use a Start Event and
End Event in an Expanded Sub-Process. One way to do this would be to attach these
events to the boundary of the Expanded Sub-Process (see Figure 35). The incoming
Sequence Flow to the Sub-Process can be attached directly to the Start Event instead of
the boundary of the Sub-Process. Likewise, the outgoing Sequence Flow from the Sub-
Process can connect from the End Event instead of the boundary of the Sub-Process.
Doing this, the Normal flow can be traced throughout a multi-level Process.

Figure 35 A Process with Expanded Sub-Process with a Start Event and End Event

Any
Suppliers?

Yes
<default>

No
Send "No
Suppliers"

Send RFQ Receive
Quote Add Quote

Repeat for Each Supplier

Find Optimal
Quote

Time Limit
Exceeded

Any
Suppliers?

Yes
<default>

No
Send "No
Suppliers"

Send RFQ Receive
Quote Add Quote

Repeat for Each Supplier

Find Optimal
Quote

Time Limit
Exceeded
82 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
When dealing with Exception Flow and Transaction Compensation Flow, the traceability
requirement is also relaxed (refer to the section entitled “Exception Flow” on page 95 and
“Transaction Compensation Flow” on page 99).

Splitting (OR-Split)
BPMN uses the term splitting to refer to the dividing of a path into two or more alternative
paths (also known as an OR-Split). It is a place in the Process where a question is asked,
and the answer determines which of a set of paths is taken. It is the “fork in the road” where
a traveler, in this case a Token, can take only one of the forks (not to be confused with
forking—see below).

A Decision is the object that is used in BPMN to show and control the splitting of the flow.
This means that when a Token reaches a Decision, the Token will continue down only one
of the alternative paths for a given instance of the Process. There are two basic mechanism
for making the Decision during the performance of the Process: the first is an evaluation of
a condition expression (see Figure 36); the second is receipt of a particular message (see
Figure 37). The Decision is the only mechanism in the Normal Flow where alternative paths
are designated. “Decisions” on page 58 for details on the Decision Object.

Figure 36 A Data-Based Decision Example

Figure 37 An Event-Based Decision Example

BCondition 1

[Default]

A C

D

Condition 2

Decision
OR-Split

Decision
OR-Split

Message 1

Message 2

A

B

C

D

1 Day
Copyright  2002, BPMI.org All Rights Reserved 83 / 158

November 13, 2002 BPMN Working Draft
A Decision (an OR-Split) can be thought of as a notational convenience for combining two
or more process variations into the same diagram. A Process could be modeled with
different variations—each variation appropriate for a given set of conditions and shown a
separate diagram. Figure 38 shows the same overall Process as in Figure 36, but modeled
with three different variations. The diagram with a Decision object, as shown in Figure 36,
provides a more compact and intuitive way to show how the process will be performed.

Figure 38 Three variations of a Process

As the number of Decisions increase in a Process, the number of possible variations will
increase almost exponentially. However, only one of those variations will actually be
performed for a given instance. The concept of a Process as a co-location of a set of
variations is important to remember in the next sections that discuss the merging, forking,
and joining of the flow. Each variation should be cleanly traceable through the Process and
should not be intermingled with parallel groupings of activities.

Merging (Or-Join)
BPMN uses the term merging to refer to the combining of two or more alternative paths into
one path (also known as an a OR-Join). It is a place in the process where two or more
alternative paths begin to traverse activities that are common to each of the paths.
Theoretically, each alternative path can be modeled separately to a completion (an End
Event). However, merging allows the paths to overlap and avoids the duplication of
activities that are common to the separate paths (variations). For a given instance of the
Process, a Token would actually only see the sequence of activities that exist in one of the
paths as if it were modeled separately to completion.

The graphical mechanism to merge alternative paths is simple: there are two or more
incoming Sequence Flows to a flow object (see Figure 39). In general, this means that a
Token will travel down one of the alternative paths (for a given Process instance) and will
continue from there. For that instance, Tokens will never arrive down the other alternative
paths. However, the continuation of the Token is subject to the Flow Condition Attributes of

A B

A

A

C

D

Process Variation 1
Based on Condition 1

Process Variation 2
Based on Condition 2

Process Variation 3
Based on any other Condition
84 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
the target object (refer to the section entitled “Flow Conditions” on page 88 for details on
how Flow Conditions will affect the flow of the Process).

Figure 39 Merging – the joining of alternative paths

There are no graphical representations for the Flow Conditions of a flow object. These will
be hidden attributes. However, the modeler can attach to the object a Text Annotation that
displays the Flow Condition.

There is no specific correlation between the merging of a set of paths and the splitting that
occurs through a Decision object. For example, a Decision may split a path into three
separate paths, but these three paths do not need to be merged at the same object. Figure
40 shows that two of three alternative paths are merged at Task “F.” All of the paths
eventually will be merged, but this can happen through any combination of objects,
including lone End Events. In fact, each path could end with a separate End Event.

Figure 40 The Split-Merge Relationship is not Fixed

Thus, for alternative flow, BPMN contrasts with BPEL4WS and BPML, which are mainly
block structured. A BPEL4WS switch and pick or a BPML switch and choice, which map to
the BPMN Decision, are specific block structures that have well-defined boundaries. While
there are no obvious boundaries to the alternative paths created by a Decision, the
appropriate boundaries can be derived by an evaluation of the configuration of Sequence
Flows that follow the Decision. The locations in the Process where Tokens of the same
identity are merged through multiple incoming Sequence Flows will determine the
boundaries for a specific Decision. The boundary may in fact be the end of the Process.
More detail on the evaluation of BPEL4WS and BPML element boundaries can be found in
the section entitled “Mapping to Execution Languages” on page 133.

C

D

F

Merge
OR-Join

This Activity will have a
Flow Condition, usually
set to One for a merge

BCondition 1

[Default]

A C

D

Condition 2

E

F

Copyright  2002, BPMI.org All Rights Reserved 85 / 158

November 13, 2002 BPMN Working Draft
The graphical mechanism for merging alternative paths is also the same as the mechanism
for joining parallel paths (refer to the section entitled “Joining (AND-Join)” on page 87).
Thus, it is possible that a given object may have a combination of parallel and alternative
incoming Sequence Flows. This feature allows the modeler flexibility in configuring a
process diagram to reflect complex behavior in a compact form. However, the actual
behavior and the expected behavior may not coincide in complex situations since there can
be ambiguity in the diagram when alternative and parallel flows are combined. This is
particularly true when alternative paths cross the implicit boundary of a group of parallel
paths. The section entitled “Avoiding Illegal Models and Unexpected Behavior” on page 93
will discuss this issue in more detail.

Forking (AND-Split)
BPMN uses the term forking to refer to the dividing of a path into two or more parallel paths
(also known as an AND-Split). It is a mechanism that will allow activities to be performed
concurrently, rather than serially. This means a separate Token will be generated to
traverse each of the paths. Each Token will have two aspects to its identity. The first aspect,
called the TokenID, has to with the single path that is being forked—this identity will be
common to all the new Tokens. The second aspect, called the SubTokenID, which is a
TokenID nested with a higher-level TokenID, will be unique for each the new paths. The
start of a business process will have a single Token with a TokenID. Multiple levels of
SubTokenIDs will be created as forks occur through the Process. The number of
SubTokenIDs for each fork will be known. The TokenID sets will be used to join the Tokens
from a given fork back together.

The graphical mechanism to create parallel paths is simple: there are two or more outgoing
Sequence Flows from a flow object (see Figure 41). A special flow control object is not
used to fork the path, unlike the Decision object that is used to split the path. All flow objects
that can have outgoing Sequence Flows can create a fork in the flow; except for Decisions,
which can have multiple, but alternative outgoing Sequence Flows.

Figure 41 Forking – the creation of parallel paths

Most of the time, the paths that have been divided with a fork are combined back together
through a join (refer to the next section) and synchronized before the flow will continue.
However, BPMN provides advanced methods for more complex handling of parallel paths.
The exact behavior will be determined by Flow Condition attributes that are contained

B

A C

D

Fork
AND-Split
86 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
within objects that have two or more incoming Sequence Flows (refer to the section entitled
“Flow Conditions” on page 88 for more details).

Joining (AND-Join)
BPMN uses the term joining to refer to the combining of two or more parallel paths into one
path (also known as an AND-Join). The graphical mechanism to join parallel paths is
simple: there are two or more incoming Sequence Flows to a flow object (see Figure 42). In
general, this means that Tokens created at a fork will travel down parallel paths and then
meet at the joining object.

Figure 42 Joining – the joining of parallel paths

Most of the time, only one Token will continue past the joining object. Attributes of the
object will determine how and when the Token will continue (refer to the section entitled
“Flow Conditions” on page 88 for details on how Flow Conditions will affect the flow of the
Process).

There are no graphical representations for the Flow Conditions of a flow object. These will
be hidden attributes. However, the modeler can attach to the object a Text Annotation that
displays the Flow Condition.

There is no specific correlation between the joining of a set of parallel paths and the forking
that created the parallel paths. For example, a an activity may have three outgoing
Sequence Flows, which creates a fork of three parallel paths, but these three paths do not
need to be joined at the same object. Figure 43 shows that two of three parallel paths are
joined at Task “F.” All of the paths eventually will be joined, but this can happen through any
combination of objects, including lone End Events. In fact, each path could end with a
separate End Event.

C

D

F

Join
AND-Join

This Activity will have a
Flow Condition, usually

set to All for a join
Copyright  2002, BPMI.org All Rights Reserved 87 / 158

November 13, 2002 BPMN Working Draft
Figure 43 The Fork-Join Relationship is not Fixed

Thus, for parallel flow, BPMN contrasts with BPEL4WS and BPML, which are mainly block
structured. A BPEL4WS flow or a BPML all, which map to a set of BPMN parallel activities,
is a specific block structure that has a well-defined boundary. While there are no obvious
boundaries to the parallel paths created by a fork, the appropriate boundaries can be
derived by an evaluation of the configuration of Sequence Flows that follow the fork. The
locations in the Process where Tokens of the same TokenID and all the appropriate
SubTokenIDs are joined with through multiple incoming Sequence Flows will determine the
boundaries for a specific block of parallel activities. The boundary may in fact be the end of
the Process. More detail on the evaluation of BPEL4WS and BPML element boundaries
can be found in the section entitled “Mapping to Execution Languages” on page 133.

The graphical mechanism for joining parallel paths is also the same as the mechanism for
merging alternative paths (refer to the section entitled “Merging (Or-Join)” on page 84).
Thus, it is possible that a given object may have a combination of parallel and alternative
incoming Sequence Flows. This feature allows the modeler flexibility in configuring a
process diagram to reflect complex behavior in a compact form. However, the actual
behavior and the expected behavior may not coincide in complex situations since there can
be ambiguity in the diagram when alternative and parallel flows are combined. This is
particularly true when alternative paths cross the implicit boundary of a group of parallel
paths. The section entitled “Avoiding Illegal Models and Unexpected Behavior” on page 93
will discuss this issue in more detail.

Flow Conditions
If an object has more than one incoming Sequence Flows, then a Flow Condition must be
set to specify how Tokens will be handled when they arrive, which will determine when the
object is ready to be instantiated. The Flow Condition will not be evaluated until at least one
Token has arrived at the object. As a result of the evaluation of the condition, the object will
be instantiated or the object will wait until another Token arrives before the Flow Condition
is evaluated again. The TokenID and any SubTokenIDs of the Token will be taken into
consideration for the evaluation of the Flow Condition. The IDs have to match up
appropriately if more than one Token is required for object instantiation. This includes any
Token that arrives via an upstream connection of a Sequence Flow (a loop), which will have
a Path-SubTokenID set that identifies it as being a part of a loop. More detail on the
evaluation of Token Path-SubTokenIDs can be found in the section entitled “Mapping to
Execution Languages” on page 133.

B

A C

D

E

F

88 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
There are three types of Flow Conditions, as described in the following sections: One, All,
and Complex.

One
The One Flow Condition is mainly used for incoming Sequence Flows that are alternative
(see Figure 44). The condition means that the first Token that arrives to the object through
any of the incoming Sequence Flows will cause the instantiation of the object. If there are
parallel incoming Sequence Flows, then addition Tokens will follow the first one, but they
will not cause another instantiation of the object. The additional Tokens will be consumed,
but ignored for additional flow. Note: It is an open issue to provide a mechanism that will
specify that the additional Tokens will not be ignored, but will also continue throughout the
flow (in a sense, they are not joined at the joining location). Refer to the section entitled
“Open Issues” on page 137 for a complete list of the issues open for BPMN.

Figure 44 Flow Condition of One

All
The All Flow Condition is mainly used for incoming Sequence Flows that are parallel (see
Figure 45). The condition means that one Token for each incoming Sequence Flow must
arrive at the object before that object can be instantiated.

Figure 45 Flow Condition of All

BCondition 1

[Default]

A C

D

Condition 2 E

Merge
OR-Join Flow Condition =

One

B

A C

D

E

Join
AND-Join Flow Condition =

All
Copyright  2002, BPMI.org All Rights Reserved 89 / 158

November 13, 2002 BPMN Working Draft
A modeler must be careful in using the All Flow Condition. If there are alternative incoming
Sequence Flows, then it is not possible for all of the Tokens to arrive for a given instance of
the Process. Thus, the activity will not be able to start since it will be waiting for a Token that
will never arrive. The section entitled “Avoiding Illegal Models and Unexpected Behavior”
on page 93 will discuss this issue in more detail.

Complex
A Complex Flow Condition is any condition that is not One or All. The simplest case would
be a single number (e.g., two) that would be required before the condition is satisfied.
Figure 46 shows a Process where Task “G” has three incoming Sequence Flows. However,
because of the Decision that precedes Task “G,” only two of the three incoming Sequence
Flows will have Tokens when the Process is performed. If the modeler wants all preceding
Tasks (that will be performed) to complete before Task “G” is performed, then a Flow
Condition of “two” would be required.

Figure 46 A Complex Flow Condition

If the number of parallel incoming Sequence Flows is greater than the number required, as
specified by the Flow Condition, then the flow will continue when the required number of
Tokens arrives, but any additional Tokens will be consumed and then ignored in terms of
continuing the flow. Note: As with the One Flow Condition, it is an open issue to provide a
mechanism that will specify that the additional Tokens will not be ignored, but will also
continue throughout the flow (in a sense, they are not joined at the joining location). Refer
to the section entitled “Open Issues” on page 137 for a complete list of the issues open for
BPMN.

A Complex Flow Condition may reference Process data attributes, Activities, and/or
Sequence Flows for evaluation to determine when the object is to be instantiated. For
example, the Flow Condition for Task “G” in Figure 47 could be set to check the names of
the Sequence Flows that are incoming to the object for the Tokens to travel through. The
Flow Condition would specify that a Token is expected from the Sequence Flows coming
from Task “C” and Task “E” or, alternatively Task “C” and Task “F.” The Flow Condition could
be set as follows:

(SequenceFlow=”SFCtoG” AND SequenceFlow=”SFEtoG”) OR
(SequenceFlow=”SFCtoG” AND SequenceFlow=”SFFtoG”)

This expression would achieve the same results as a Flow Condition of “two.”

A

Condition 1

<Default>

Solution 1:
C

D

E

F

G

Flow Condition =
2

90 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Looping
BPMN provides 2 (two) mechanisms for looping within a Process. The first involves the use
of attributes of activities to define the loop. The second involves the connection of
Sequence Flows to “upstream” objects.

Activity Looping
The attributes of Tasks and Sub-Processes will determine if they are repeated or performed
once. There are two types of loops: Standard and ForEach.

For Standard Loops:

• If the loop condition is evaluated before the activity, this is generally referred to as a
“while” loop. This means that the activities will be repeated as long as the condition is
true. The activities may not be performed at all (if the condition is false the first time) or
performed many times.

• If the loop condition is evaluated after the activity, this is generally referred to as an
“until” loop. This means that the activities will be repeated until a condition becomes
true. The activities will be performed at least once or performed many times.

For ForEach Loops:

• If the Timing is serial, then this becomes much like a while loop with a set number of
iterations the loop will go through. These are often used in processes where a specific
type of item will have a set number of sub-items or line items. A ForEach loop will be
used to process each of the line items.

• If the Timing is parallel, this is generally referred to as a multiple instance of the
activities. An example of this type of feature would be used in a process to write a book,
there would be a Sub-Process to write a chapter. There would be as many copies or
instances of the Sub-Process as there are chapters in the book. All the instances could
begin at the same time.

Note: In a later version of the BPMN specification, the Loop Marker might be
modified to indicate that Loop is set to be performed in parallel.

Those activities that are repeated (looped) will have a loop marker placed in the bottom
center of the activity shape (see Figure 47 and Figure 48).

Figure 47 A Task with a Loop Marker

Figure 48 A Collapsed Sub-Process with a Loop Marker

Receive Vote

+
Discussion Cycle
Copyright  2002, BPMI.org All Rights Reserved 91 / 158

November 13, 2002 BPMN Working Draft
Expanded Sub-Processes also can have a loop marker placed at the bottom center of the
Sub-Process rectangle (see Figure 49). The entire contents of the Sub-Process will be
repeated as defined in the attributes.

Figure 49 An Expanded Sub-Process with a Loop Marker

Sequence Flow Looping
Loops can also be created by connecting a Sequence Flow to an “upstream” object. An
object is considered to be upstream if that object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows, the last of which turns out to be an incoming
Sequence Flow to the original object. That is, that object produces a Token and that Token
traverses a set of Sequence Flows until the Token reaches the same object again.

Usually these connections follow a Decision so that the loop is not infinite (see Figure 50). If
the Sequence Flow goes directly from a Decision to an upstream object, this is an “until”
loop. The set of looped activities will occur until a certain condition is true.

Figure 50 An Until Loop

A while loop is created by making the decision first and then performing the repeating
activities or moving on in the Process (see Figure 51). The set of looped activities may not
occur or may occur many times.

Discussion Cycle (Until Discussion Over)

E-Mail Discussion
Deadline Warning

Delay 6 days from
Announcement

Announce Issues
for Discussion

Review Status of
Discussion

Moderate E-mail
Discussion

7 Days

YesPass
Test?

No
<default>

Test Product Package ProductConfigure Product
92 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Figure 51 A While Loop

Passing the Sequence Flow to and from Sub-Processes
If a Process is used within another Process, then it is a Sub-Process. The Sequence Flow
will start at the parent Process and then pass to the Sub-Process and then will pass back to
the parent process. Most of the time the flow (a Token) will reach a Sub-Process, get
transferred to the Start Event of the Sub-Process, traverse the Sequence Flows of the Sub-
Process, reach the End Event of the Sub-Process, and, finally, get transferred back to the
parent Process to continue. If the Sub-Process contains parallel flows, then all the flows
must complete before the Token is transferred back to the parent Process. This
functionality treats the Sub-Process as a self-contained “box” of activities.

Refer to the section entitled “References” on page 134 for a complete list of the issues
open for BPMN.

In many process methodologies, the flow will pass back to the parent only when all the
activity within the Sub-Process has completed, even if there are multiple Sequence Flows
from the Sub-Process object.

End Events have a Boolean (True/False) property named PassThrough, which is False by
default. This property specifies if an End Event can pass the flow back to a parent before
the Sub-Process has completed.

Avoiding Illegal Models and Unexpected Behavior
BPMN, being a graph-structured diagram, rather than having a block-structure like
BPEL4WS or BPML, provides a great flexibility for depicting complex process behavior in a
fairly compact form. However, the free-form nature of BPMN can create modeling situations
that cannot be executed or will behave in a manner that is not expected by the modeler.
These types of modeling problems can occur because there is no tight relationship
between forks and joins or splits and merges. A block structure provides these tight
relationships, but a graph-structure allows these flow control mechanisms to be mixed and
matched at the discretion of the modeler. Some combinations of these control elements will
create Processes that cannot be executed or will create behavior that was not intended by
the modeler. The situation where alternative paths cross the implicit boundary of a group of
parallel paths can cause an invalid model.

Figure 52 shows such a model. Task “D” is an activity that has two incoming Sequence
Flows; one from a forked path (after a split path) and one from a split path. This can create
a problem at Task “E,” which also has multiple incoming Sequence Flows. The Sequence

<Default>
Any Errors

Condition 2 Package Product

Fix Errors Test Fixes
Copyright  2002, BPMI.org All Rights Reserved 93 / 158

November 13, 2002 BPMN Working Draft
Flow from Task “B” is crossing the implicit boundary of the fork created after Task “A.” As a
result, if the “Yes” Sequence Flow is taken from the Decision in the diagram (Variation 1),
then Task “E” can expect two Tokens to arrive—one from Task “C” and one from Task “D.”
However, if the default Sequence Flow is taken from the Decision (Variation 2), Task “E”
can expect only one Token will arrive—one from Task “D.”

Figure 52 Potentially an invalid model

If the Flow Condition for Task “E” is set to One, then the behavior will be fine for Variation 1,
but in Variation 2, Task “E” will not wait for both Task “C” and “D” to complete. If the Flow
Condition for Task “E” is set to All, then the behavior will be fine for Variation 1, but in
Variation 2, Task “E” will be waiting for a Token that never arrives and the Process will be
stuck at that location.

This flow can be executed properly if the Flow Condition for Task “E” is set properly to take
into account which path is taken from the Decision and the appropriate number of paths
that will be needed for each variation. The need to be careful in defining the Flow Condition
may not be obvious to the modeler whose diagram is more complex than the one in the
figure.

Another type of problem occurs with looping back to upstream activities. If the loop
Decision is made within the implicit boundaries of a set of parallel paths, then the behavior
of the loop becomes ambiguous (see Figure 53).

Figure 53 Improper Looping

In general, the analysis of how Tokens will flow through the model will help find models that
cannot be executed properly. This Token flow analysis will be used to create some of the

?

Yes

Default B

A

C

E

D

default

BA C

E

D ?

F

GYes
94 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
mappings to BPEL4WS and BPML. Since BPEL4WS and BPML are properly executable, if
the Token flow analysis cannot create a valid BPEL4WS or BPML process, then the model
is not structured correctly. This is an open issue that will be resolved in a later version of the
specification. The section entitled “Mapping to Execution Languages” on page 133 will
detail the Token flow analysis. Refer to the section entitled “Open Issues” on page 137 for a
complete list of the issues open for BPMN.

In addition, BPMI is investigating how the fork, join, and merge control mechanisms might
be improved so that such modeling situations are easily avoided. This is an open issue that
will be resolved in a later version of the specification. Refer to the section entitled “Open
Issues” on page 137 for a complete list of the issues open for BPMN.

5.2.2 Link Events
Start, Intermediate, and End Events can all be defined as being the type Link. Link Events
are used to coordinate specific paths of a Process that are separated by a graphical
distance or by differing levels of the Process. An example of how Link Events are used can
be seen in the section entitled “BPMN by Example” on page 103.

A full description of how Link Events are used within BPMN is an open issue that will be
handled in a later version of the specification. Refer to the section entitled “Open Issues” on
page 137 for a complete list of the issues open for BPMN.

5.2.3 Spawning and Synchronizing Activities
Spawning is a mechanism for starting activities and not waiting on them to complete before
continuing with the flow to other activities. At some other point in the Process, the
completion of the spawned activities may be required to continue the flow. This is called
synchronization.

Spawning and synchronization are a special case of process flow and not part of the
Normal Flow, although these functions do interact with Normal Flow. One factor that makes
spawning a special case is that activities that are spawned are not a part of the event
context that spawned them. That is, if an activity were spawned within an interruptible Sub-
Process, that activity would be aborted if the Sub-Process were aborted through an
Intermediate Event. Thus, the spawned activity should not reside in the confines of the
Sub-Process. This means that the flow from within the Sub-Process must extend to a
position outside that Sub-Process. Normal Sequence Flow cannot cross the Sub-Process
boundary. The same issue applies to the synchronization of the spawned activity.
Therefore, the graphical mechanism for spawning and synchronizing must not (entirely)
utilize Sequence Flows.

The graphical mechanisms for spawning activities and then synchronizing the spawned
activities have not been defined for this version of the specification. It is an open issue that
will be handled in a later version of the specification. Refer to the section entitled “Open
Issues” on page 137 for a complete list of the issues open for BPMN.

5.2.4 Exception Flow
Exception flow occurs outside the normal flow of the Process and is based upon an event
(an Intermediate Event) that occurs during the performance of the Process. Intermediate
Events can be included in the normal flow to set delays or breaks to wait for a message.
However, exception flow is created by attaching the Intermediate Event to the boundary of
Copyright  2002, BPMI.org All Rights Reserved 95 / 158

November 13, 2002 BPMN Working Draft
an activity, either a Task or a Sub-Process (see Figure 54). Multiple Intermediate Events
can be attached to the boundary of an activity.

Figure 54 A Task with Exception Flow (Interrupts Event Context)

By doing this, the modeler is creating an Event Context. An Event Context is an activity of a
Process that responds to an Intermediate Event. The activity will only respond if it is active
(running) at the time of the Event. If the activity has completed, then the event may occur
with no response. If there are a group of Tasks that the modeler wants to include in an
Event Context, then an Expanded Sub-Process can be added to encompass the Tasks and
to handle any events by having them attached to its boundary (see Figure 55).

Figure 55 A Sub-Process with Exception Flow (Interrupts Event Context)

Three types of Intermediate Event are used by Event Contexts: Timer, Message, and
Process Error. A Timer Event occurs when the Time and Date as specific in the
Intermediate Event is exceeded during the performance. Usually the time is relative to the
start of the Event Context. A Message Event occurs when a message, with the exact
identity as specified in the Intermediate Event, is received by the Process. A Process Error
Event occurs when the Process detects a Process Error. If an Error Code is specified in the
Intermediate Event, then the code of the detected Error must match for the Event Context
to respond. If the Intermediate Event does not specify an Error Code, then any Process
Error will trigger a response from the Event Context.

If this event does not occur while the Event Context is ready, then the Process will continue
through the normal flow as defined through the Sequence Flows. If the event does occur
while the Event Context is ready, then one of two things can happen:

Review Status of
Discussion

Moderate E-mail
Discussion

7 Days

Any
Suppliers?

Yes
<default>

No
Send "No
Suppliers"

Send RFQ Receive
Quote Add Quote

Repeat for Each Supplier

Find Optimal
Quote

Time Limit
Exceeded
96 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
• Interrupting the Event Context: The Event Context will be aborted meaning those
activities within the Event Context that are active will be aborted and those that have not
yet been performed will be cancelled. A Token will also be generated from the
appropriate Intermediate Event on the Event Context boundary and proceed through
the Sequence Flows that follow. The Token will have the same TokenID set as the
Token that entered the Event Context.

• Continuing the Event Context: The Event Context will continue without interruption until
normal completion. In addition, a forked Token will also be generated from the
appropriate Intermediate Event on the Event Context boundary and proceed through
the Sequence Flows that follow. The Token will have the same TokenID set as the
Token that entered the Event Context, except that an additional SubTokenID will be
appended onto the set. Likewise, the Token that leaves the Event Context will also have
an additional SubTokenID will be appended onto its TokenID set.

• The graphical mechanism to distinguish an Intermediate Event that interrupts the
Event Context versus one that does not interrupt the Event Context is an open issue
and will be defined in a later version of this specification. Refer to the section
entitled “Open Issues” on page 137 for a complete list of the issues open for BPMN

Mapping to Execution Languages
The following two sections describe how exception flow will map to BPEL4WS and BPML,
respectively.

BPEL4WS
For an activity with an Intermediate Event attached to its boundary:

The activity will be placed inside a scope.

A faultHandler element will be defined for the scope.

If an Intermediate Event is of type Process Error and no name has been specified
for the error, then a catchAll element will be added to the faultHandler element.

If an Intermediate Event is of type Process Error and a name has been specified for
the error, then a catch element will be added to the faultHandler element with the
name of the error placed in the faultName attribute.

If an Intermediate Event is of type Message, then:

The source activity will be placed inside a flow (which is inside the scope)

 A sequence will also be placed within the flow

The first element of the sequence will be a receive that will wait for the message
identified in the Intermediate Event.

The next element of the sequence will be a throw that will have a faultName with
a name that is constructed from the Message Name with “Fault” appended.

A catch element will be added to the faultHandler element (within the scope)
with the “<message name>Fault” error placed in the faultName attribute.

If the Intermediate Event is of type Timer, then:

The source activity will be placed inside a flow (which is inside the scope)
Copyright  2002, BPMI.org All Rights Reserved 97 / 158

November 13, 2002 BPMN Working Draft
 A sequence will also be placed within the flow

The first element of the sequence will be a wait that will use the time information
identified in the Intermediate Event.

The next element of the sequence will be a throw that will have a faultName with
a name that is constructed from the Intermediate Event Name with “Fault”
appended.

A catch element will be added to the faultHandler element (within the scope)
with the “<Intermediate Event name>Fault” error placed in the faultName
attribute.

If there is only one activity that flows from the Intermediate Event, then the
appropriate mapping for this activity will be used as the activity for the faultHandler.

A sequence will be used as the activity for the faultHandler if the mapping is
complex or there are more than one activity that follows the Intermediate Event.

BPML
For a Task with a Intermediate Event attached to its boundary:

A hidden nested process will be created with the Task mapped to an action within the
nested process.

The name of the Task and the name of the BPML nested process will be the same
except that the nested process will have “Sub” appended.

Then for all activities:

A context will be defined for the nested process.

If an Intermediate Event is of type Message, an exception element will be defined
for the context of the nested process.

Within the exception will be an action within an event.

An action to receive the message named in the Intermediate Event will be the
first activity of the exception activity set.

All the BPMN activities that follow the flow from the Intermediate Event will be a
part of the exception activity set.

If an Intermediate Event is of type Process Error or Time, then a faults element will
be added to the context.

If the Intermediate Event is of type Process Error, then

If the Intermediate Event specifies a code for the Process Error, then the
code will be inserted into the faults element as a case.

If the Intermediate Event does not specifies a code for the Process Error,
then a default element will be added to the faults element.

If the Intermediate Event is of type Timer, then schedule will be added to the
context that will generate a fault code at the appropriate time.

The code will be inserted into the faults element as a case.
98 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
All the BPMN activities that follow the flow from the Intermediate Event will be a
part of the case or default activity set.

5.2.5 Transaction Compensation Flow
Transaction Compensation Flow occurs outside the normal flow of the Process and is
based upon an event (an Intermediate Event) that is triggered during the rolling back of a
Process that has started, but is later cancelled. This flow originates from an Intermediate
Event with a Compensate marker. The graphical line for a Transaction Compensation Flow
is drawn the same as a normal Sequence Flow (see Figure 56). The direction of flow can
be set to any orientation, but it will make the diagram more understandable if the flow is
shown going in the opposite direction of the normal flow (as in the figure below).

Figure 56 A Task with Transaction Compensation Flow

A transaction is a special activity that creates a “product” that cannot be simply undone or
rolled back. The undoing of the product requires compensation through another activity.
The compensation activity does not occur unless the Process is aborted and rolled back.
This is why the Compensate marker for Events looks like a “rewind” symbol for a tape
player. Thus, this Transaction Compensation Flow only occurs when the whole process
flow is going backwards—the Tokens will move from the their current positions back to the
Start. When the Tokens reach an activity (either Task or Sub-Process) that has a
Compensate Intermediate Event attached to its border, the Token may traverse the flow
from the Compensate Event to the activity that handles the compensation. The
compensation will occur if:

• The End Event that started the rollback is set to compensate all transactions or

• The End Event that started the rollback is set to compensate a specific transaction. The
name of the transaction will be the name shown on the Compensate Intermediate Event
attached to the boundary of the activity.

After the compensation has been completed, the Process will continue its rollback.

In Figure 56, the buyer was charged for a purchase, but then later cancelled the order
before the Process was completed. The charge cannot be simply erased. A separate
activity that was not performed during the original flow must occur during rollback to credit
the buyer.

Charge
Buyer

Credit Buyer
Copyright  2002, BPMI.org All Rights Reserved 99 / 158

November 13, 2002 BPMN Working Draft
Note: In a later version of the specification, activities that are defined as
transactions may be drawn with a different line style or have a marker to show that
they are transactions and not normal activities. This is an open issue. Refer to the
section entitled “Open Issues” on page 137 for a complete list of the issues open for
BPMN.

Mapping to Execution Languages
The following two sections describe how transaction compensation flow will map to
BPEL4WS and BPML, respectively.

BPEL4WS
For an activity with a Compensate Intermediate Event attached to its boundary:

The activity will be placed inside a scope.

A compensationHandler element will be defined for the scope.

If there is only one activity that flows from the Intermediate Event, then the
appropriate mapping for this activity will be used as the activity for the
compensationHandler.

A sequence will be used as the activity for the compensationHandler if the
mapping is complex or there are more than one activity that follows the
Intermediate Event.

BPML
For a Task with a Compensate Intermediate Event:

A hidden nested process will be created with the Task mapped to an action within the
nested process.

The name of the Task and the name of the BPML nested process will be the same
except that the nested process will have “_sub” appended.

Then for all activities:

A context will be defined for the nested process.

A transaction element will be defined for the context of the nested process.

The transaction type will be open.

The name of the transaction will be the name of the Compensate Intermediate
Event.

All the BPMN activities that follow the flow from the Compensate Intermediate Event
will be a part of the transaction activity set.
100 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
5.2.6 Ad Hoc
An Ad Hoc Process is a group of activities that have no pre-definable sequence
relationships. A set of activities can be defined for the Process, but the sequence and
number of performances for the activities is completely determined by the performers of the
activities and cannot be defined beforehand.

A Sub-Process is marked as being an Ad Hoc with a “tilde” symbol placed at the bottom
center of the Sub-Process shape (see Figure 57 and Figure 58). Activities within the
Process are disconnected from each other. During execution of the Process, any one or
more of the activities may be active and they can be performed in almost any order or
frequency.

Figure 57 A Collapsed Ad Hoc Sub-Process

Figure 58 An Expanded Ad Hoc Sub-Process

The performers determine when activities will start, when they will end, what the next
activity will be, and so on. Examples of the types of Processes that are Ad Hoc include
computer code development (at a low level), sales support, and writing a book chapter. If
we look at the details of writing a book chapter, we could see that the activities within this
Process include: researching the topic, writing text, editing text, generating graphics,
including graphics in the text, organizing references, etc. (see Figure 59). There may be
some dependencies between Tasks in this Process, such as writing text before editing text,
but there is not necessarily any correlation between an instance of writing text to an
instance of editing text. Editing may occur infrequently and based on the text of many
instances of the writing text Task.

+~
Name

 Name

~

Copyright  2002, BPMI.org All Rights Reserved 101 / 158

November 13, 2002 BPMN Working Draft
Figure 59 An Ad Hoc Process for Writing a Book Chapter

It is a challenge for a BPM engine to monitor the status of Ad Hoc Processes, usually these
kind of processes are handled through groupware applications (such as e-mail), but BPMN
allows modeling of Processes that are not necessarily executable and should provide the
mechanisms for those BPM engines that can follow an Ad Hoc Process. Given this, at
some point, the Process will have completed and this can be determined by evaluating a
Completion Condition that evaluates Process attributes that will have been updated by an
activity in the Process.

Mapping to Execution Languages
The Mapping to Execution Languages for Ad Hoc Processes is an open issue has not been
determined for this version of the specification. Refer to the section entitled “Open Issues”
on page 137 for a complete list of the issues open for BPMN.

Wrting a Book Chapter

researching
the topic writing text editing text

generating
graphics

including
graphics in

text

organizing
references

~

102 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
6. BPMN by Example
This section will provide an example of a business process modeled with BPMN. The
process that will be described is a process that BPMI has been using to develop this
notation. It is a process for resolving issues through e-mail votes (see Figure 60). This
Process is small, but fairly complex and will provide examples for many of the features of
BPMN. There are some unusual features of this business process, such as infinite loops.
Although not a typical process, it will help illustrate that BPMN can handle simple and
unusual business processes and still be easily understandable for readers of the diagram.
The sections below will highlight these features as we describe how the Process works.

Figure 60 E-Mail Voting Process

The Process has a point of view that is from the perspective of the manager of the Issues
List and the discussion around this list. From that point of view, the voting members of the
working group are considered as external Participants who will be communicated with by
messages (shown as Message Flow).

6.1 The Beginning of the Process
The Process starts with Timer Start Event that is set to trigger the Process every Friday
(see Figure 61).

Yes

No
<default>

Yes
<default>

No

No
<default>

Yes

No
<default>

Issue
Announcement

Voting Members

Deadline
Warning

Deadline
Warning

Vote

Vote Results

Vote Results

Change Vote
Message

Deadline
Warning

Yes

Yes

Default

Reduce to
Two Solutions

E-Mail Voters
that have to

Change Votes

Friday

Any issues
ready?

Review Issue
List

Announce
Issues for Vote

+

Discussion Cycle

+

Collect Votes

Timed Out
[1 week] 2nd

Time?

Issues w/o
Majority?

Did Enough
Members

Vote?

Have the
members

been warned?

Reduce number of
Voting Members
and Recalculate

Vote

Re-announce
Vote with warning

to voting
members

Prepare
Results

E-Mail Results
of Vote

Issue Votes

Choose the top
two most popular

solutions
Copyright  2002, BPMI.org All Rights Reserved 103 / 158

November 13, 2002 BPMN Working Draft
Figure 61 The Start of the Process

The Issue List Manager will review the list and determine if there are any issues that are
ready for going through the discussion and voting cycle. Then a Decision must be made. If
there are no issues ready, then the Process is over for that week. If there are issues ready,
then the Process will continue with the discussion cycle. The “Discussion Cycle” Sub-
Process is the first activity after the “Any issues ready?” Decision and this Sub-Process has
two incoming Sequence Flows, one of which originates from a downstream Decision and is
thus part of a loop. It is one of a set of five complex loops that exist in the Process. The
contents of the “Discussion Cycle” Sub-Process and the activities that follow will be
described below.

6.1.1 Mapping to BPEL4WS
Processes must begin with a recieve activity that instantiates the process (i.e., it
“bootstraps” itself). The “E-Mail Voting Process” is scheduled to start every Friday as shown
by the Timer Start Event. Thus, an additional Process will have to be created that will run
indefinitely and will send a starting message to the “E-Mail Voting Process” every Friday.
This additional Process is not shown in this example.

The modeler-defined properties of the Process will be placed in a BPEL4WS container
named “processData.” The same container will be used in all derived processes in this
example.

The “Review Issue List” Task will map to a BPEL4WS invoke. This invoke will be placed
inside a sequence since other activities follow the invoke. This Task type is Service, which
means that the invoke will be synchronous and an outputContainer included.

Note: the names of BPD objects have all non-alphanumeric characters stripped
from them when they are mapped to BPEL4WS (or BPML) name elements to match
the element restrictions.

The “Any Issues Ready?” Decision will map to a BPEL4WS switch. The Alternative labeled
“No (default)” will map to the otherwise case of the switch. This case will only contain an
empty activity since there is nothing to do and the Process is over. Note that empty does
not have any corresponding activity in the BPMN diagram. The Decision Alternative labeled
“Yes” will map to other case for the switch. This case will have a condition that checks the

Yes

Default

+

Discussion Cycle

Friday

Any issues
ready?

Review Issue
List

To Task:
"Announce Issues

for Vote"

From "Yes"
Alternative of the

"2nd Time?"
Decision
104 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
number of issues that are ready. This case will contain an activity set that holds the entire
contents of the rest of the Process because the switch needs a definitive boundary and
otherwise is connected to the end of the Process. Thus, the end of the Process is the
boundary for the switch. However, the rest of the Process will be segmented into a set of
processes to account for the diagram configuration that includes three upstream Sequence
Flow that define some intertwining loops.

If the loop shown in this section of the model were merely a simple loop, then a BPEL4WS
while would be used to handle the loop. In this situation, though, the looping has to be
handled through a set of derived processes that are accessed by invoking them (as a web
service). There would no specific diagram element to represent these nested processes;
indeed, a modeler would not want to create a set of related Processes to handle complex
looping. While an execution engine can easily handle a complex set of language
documents and elements, a human developing and monitoring this process will want to see
the Process in an easy-to-read format (such as BPMN). In this example, all derived
processes will be named “DerivedProcess<number>” and the number will be incremented
as they are created. Any naming scheme will work as long as all the processes have
unique names. Thus, to handle the rest of the Process, a derived nested process named
“DerivedProcess1” is created and then a BPEL4WS invoke is used to access this process
from the “Yes” case of the “Any issues ready?” switch. We shall see that later in the
Process the same process is accessed through another invoke, marking the source of the
loop.

Note: All the derived processes in the BPEL4WS samples are accessed through an
asynchronous invoke. That is, the invoke uses a one-way WSDL operation and the
outputContainer element is not used in the invoke. Thus, the “calling” process will
not wait until the “called” process completes. This would be equivalent to the BPML
spawn. The BPML samples use a synchronous call, however, since they are calling
nested processes, instead of independent processes.

All the sub-processes and derived processes in the BPEL4WS documents must be started
with the receipt of a message. This receive will be the first activity inside a sequence that
will be the main activity of the process. These receive activities will have the createInstance
attribute set to “Yes.” A partner named “internal,” a portType name “processPort” will be
created to support all of these process to process communications. The WSDL operations
that will support these communications will all be named “call<process name>” (as noted
above, the processes are actually spawned).

The “Discussion Cycle” Sub-Process shown in Figure 61 will start the sequence (after the
receive that instantiates the process) for the “DerivedProcess1” process. Since “Discussion
Cycle” is a Sub-Process it will map to a separate BPEL4WS process that is access through
an invoke (synchronous, since we don’t want to continue the Process until the Sub-Process
has completed). However, since it has a loop marker, it will first be wrapped in a while. In
this situation, the looping mechanism is simple. The attributes of the Sub-Process will tell
us the details. The “Discussion Cycle” Sub-Process’s relevant attributes are:

• LoopType = “standard”

• LoopCondition = “DiscussionOver = True”

• EvaluateCondition = “after”
Copyright  2002, BPMI.org All Rights Reserved 105 / 158

November 13, 2002 BPMN Working Draft
All variations of LoopType will map to a BPEL4WS while. “not(DiscussionOver = True)” will
be the condition for the while. The default value for the “DiscussionOver” property is False,
thus an activity within the Sub-Process will have to change it to True before the until loop is
over. The logical opposite of the expression that is shown in the Sub-Process attributes is
used since the EvaluationCondition property is “after.” We will look into the details of the
“Discussion Cycle” Sub-Process in the section entitled “The First Sub-Process” on
page 110.

Example 1 displays some sample BPEL4WS code that reflects the portion of the Process
that was just discussed and is shown in Figure 61.

<process name="EMailVotingProcess">
<!-- The Process data is defined first-->
<sequence>
<!--This starts the beginning of the Process. The process that sends the

 starting message every Friday is not shown here.-->
<receive partner="Internal" portType="tns:processPort"

 operation="callEMailVotingProcess" container="processData"
 createInstance="Yes"/>

<invoke name="ReviewIssueList" partner="Internal"
 portType="tns:internalPort" operation="sendIssueList"
 inputContainer="processData" outputContainer="processData"/>

<switch name="Anyissuesready">
<!-- name="Yes" -->
<case condition="bpws:getContainerProperty(ProcessData,NumIssues)>0">
<!--A chunk of this process is separated into a derived process so
that it can be called from a complex loop. Thus, it is called from
here and from ”Collect Votes” as part of a loop-->
<invoke name="DerivedProcess1" partner="Internal"

portType="tns:processPort" operation="callDerivedProcess1"
inputContainer="processData"/>

</case>
<!--name="otherwise" -->
<otherwise>
<!--This is one of the two ways to the end of the Process-->
<empty/>

</otherwise>
</switch>

</sequence>
</process>

<process name="DerivedProcess1">
<!-- The Process data is defined first-->
<sequence>
<receive partner="Internal" portType="tns:processPort"

 operation="callDerivedProcess1" container="processData"
 createInstance="Yes"/>

<while condition="bpws:getContainerProperty(ProcessData,DiscussionOver)
=false">

<!--This calls the first Sub-Process-->
106 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Example 1 BPEL4WS Sample for Beginning of E-Mail Voting Process

6.1.2 Mapping to BPML
Processes must begin with instantiation events (a message or signal) or through a spawn,
call, or a schedule time event. The “E-Mail Voting Process” is scheduled to start every
Friday as shown by the Timer Start Event. Thus, an additional Process will have to be
created that will contain a schedule that will instantiate the “E-Mail Voting Process” every
Friday. This additional Process is not shown in this example.

The modeler-defined properties of the Process will be placed in a BPML property elements
within the context of the main process. All the properties will be available to all the nested
processes in this example.

The “Review Issue List” Task will map to a BPML action. This action will be placed inside a
sequence since other activities follow the action.

The “Any Issues Ready?” Decision will map to a BPML switch. The Alternative labeled “No
(default)” will map to the default case of the switch. This case will only contain an empty
activity since there is nothing to do and the Process is over. Note that empty does not have
any corresponding activity in the BPMN diagram. The Decision Alternative labeled “Yes”
will map to other case for the switch. This case will have a condition that checks the number
of issues that are ready. This case will contain an activity set that holds the entire contents
of the rest of the Process because the switch needs a definitive boundary and default is
connected to the end of the Process. Thus, the end of the Process is the boundary for the
switch. However, the rest of the Process will be segmented into a set of nested processes
to account for the diagram configuration that includes three upstream Sequence Flow that
define some intertwining loops.

If the loop shown in this section of the model were merely a simple loop, then a BPML while
or until would be used to handle the loop. In this situation, though, the looping has to be
handled through a set of derived nested processes that are accessed through a call or
spawn. There would no specific diagram element to represent these nested processes;
indeed, a modeler would not want to create a set of related Processes to handle complex
looping. While an execution engine can easily handle a complex set of language
documents and elements, a human developing and monitoring this process will want to see
the Process in an easy-to-read format (such as BPMN). In this example, all derived nested
processes will be named “DerivedProcess<number>” and the number will be incremented
as they are added to the BPML document. Any naming scheme will work as long as all the
nested processes have unique names. Thus, to handle the rest of the Process, a derived
nested process named “DerivedProcess1” is created and then a BPML call is used to

<invoke process="DiscussionCycle" partner="Internal"
 portType="tns:processPort operation="callDiscussionCycle"
 inputContainer="processData" outputContainer="processData"/>

</while>
<invoke name="DerivedProcess2" partner="Internal" portType="tns:processPort"

operation="callDerivedProcess2" inputContainer="processData"/>
</sequence>
</process>
<!--A lot of other stuff (not shown)-->
Copyright  2002, BPMI.org All Rights Reserved 107 / 158

November 13, 2002 BPMN Working Draft
access this nested process from the “Yes” case of the “Any issues ready?” switch. We shall
see that later in the Process the same nested process is accessed through another call,
marking the source of the loop.

Note: All the derived nested processes in the BPML samples are accessed through
a synchronous call. Thus, the “calling” process will wait until the “called” process
completes. The BPEL4WS samples use an asynchronous invoke, however, since
they are calling independent processes, instead of nested processes.

The “Discussion Cycle” Sub-Process shown in Figure 61 will start the activity set for the
“DerivedProcess1” nested process. Since “Discussion Cycle” is a Sub-Process it will map
to a BPML call. However, since it has a loop marker, it will first be wrapped in a looping
object. In this situation, the looping mechanism is simple. The attributes of the Sub-Process
will tell us the details. The “Discussion Cycle” Sub-Process’s relevant attributes are:

• LoopType = “standard”

• LoopCondition = “DiscussionOver = True”

• EvaluateCondition = “after”

A “standard” LoopType that has an EvaluateCondtion that is “after” will map to a BPML
until. “DiscussionOver = True” will be the condition for the until. The default value for the
“DiscussionOver” property is False, thus an activity within the Sub-Process will have to
change it to True before the until loop is over. We will look into the details of the “Discussion
Cycle” Sub-Process in the section entitled “The First Sub-Process” on page 110.
108 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Example 2 displays some sample BPML code that reflects the portion of the Process that
was just discussed and is shown in Figure 61.

Example 2 BPML Sample for Beginning of E-Mail Voting Process

<process name="EMailVotingProcess">
<action name="ReviewIssueList" portType="tns:internalPort"

operation="sendIssueList">
<output property="NumIssues" element="…"/>

</action>
<switch name="Anyissuesready">
<case name="Yes">
<condition>NumIssues>0<condition/>
<!--A chunk of this process is separated into a derived nested
process so that it can be called from a complex loop. Thus,
it is called from here and from ”Collect Votes” as part of a loop-->

<call name="DerivedProcess1"/>
</case>
<default name="Default">
<!--…This is one of the two ways to the end of the Process-->
<empty/>

</default>
</switch>
<context>
<!-- The Process data is defined first-->
<process name="DerivedProcess1">
<until>
<condition>DiscussionOver<condition/>
<!--This calls the first Sub-Process-->
<call process="DiscussionCycle"/>

</until>
…

</process>
<!--A lot of other stuff (not shown)-->
</context>

</process>
Copyright  2002, BPMI.org All Rights Reserved 109 / 158

November 13, 2002 BPMN Working Draft
6.2 The First Sub-Process
Figure 62 shows the details of the “Discussion Cycle” Sub-Process.

Figure 62 “Discussion Cycle” Sub-Process Details

The Sub-Process starts of with a Task for the Issue List Manager to send an e-mail to the
working group that a set of Issues are now open for discussion through the working group’s
message board. Since this Task sends a message to an outside Participant (the working
group members), an outgoing Message Flow is seen from the “Discussion Cycle” Sub-
Process to the “Voting Members” Pool in Figure 60. Basically, the working group will be
discussing the issues for one week and proposing additional solutions to the issues. After
the first Task, three separate parallel paths are followed.

The top parallel path in the figure starts with a long-running Task, “Moderate E-mail
Discussion,” that has a Timer Intermediate Event attached to its boundary. The Task
“Review Status of Discussion” is intended to occur only when the timeout occurs.

The middle parallel path of the fork, which contains an Intermediate Event and a Task. A
Timer Intermediate Event used in this situation will cause a delay that is set to 6 days. The
“E-Mail Discussion Deadline Warning” Task will follow. Again, since this Task sends a
message to an outside Participant, an outgoing Message Flow is seen from the “Discussion
Cycle” Sub-Process to the “Voting Members” Pool in Figure 60.

The bottom parallel path of the fork contains more than one object, first of which is Task
where the issue list manager checks the calendar to see if there is a conference call this
week. The output of the Task will be an update to the attribute “ConCall,” which will be true
or false. After the Task, a Decision with its two Alternatives follows. The Alternative labeled
“default” flows directly to an End Event. But this is a Link End Event, which indicates that
there will be a corresponding Start or Intermediate Event at some point later in the Process.
The Decision Alternative labeled “Yes” will have a condition that checks the value of the

E-Mail
Discussion
Deadline
WarningDelay 6 days from

Announcement

Announce
Issues for
Discussion

Review Status
of Discussion

Moderate
Conference Call

Discussion
Yes

Default

Moderate E-mail
Discussion

7 Days

Call

No Call

Conference
Call in

Discussion
Week?

Wait until
Thursday, 9am

Check
Schedule for

Conference Call
110 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
“ConCall” attribute (set in the previous Task) to see if there will be a conference call during
the coming week. If so, the Timer Intermediate Event indicates delay, since all conference
calls for the working group start at 9am PDT on Thursdays. The Task for moderating the
conference call follows the delay, which is followed by another Link End Event. We will see
how Link Events are used later.

6.2.1 Mapping to BPEL4WS
The Sub-Process starts of with a Task, which maps to a BPEL4WS invoke (which is after
the automatically generated receive that starts the process). After the first Task, three
separate parallel paths are followed. The forking of the flow marks the start of a BPEL4WS
flow. The flow will extend the entire (Sub) Process, since the paths do not join back
together until the End Events.

In the upper parallel path of the fork, the Task, “Moderate E-mail Discussion,” has a Timer
Intermediate Event attached to its boundary. Because of this, the Task is placed in its own
Event Context. A BPEL4WS scope will be required to set up the Event Context. The Task
itself is mapped to a BPEL4WS invoke (synchronous). The Timer Intermediate Event must
be set up to create a fault at the appropriate time. To do this, another flow is created that
contains the above invoke plus a sequence that contains a wait. The wait is set to the
duration that is defined in the Timer Intermediate Event. After the wait, a throw creates a
fault name after the Intermediate Event with “_fault” appended. The scope will contain a
faultHandler, and a catch element within the faultHandler. The catch will be triggered by the
fault generated by the above throw. The Task “Review Status of Discussion” is intended to
occur only when the timeout occurs, thus, it will map to an invoke that is the activity of the
catch fault handler of the scope.

The middle parallel path of the fork has a string of two objects. Since this sequence
appears in the middle of a BPEL4WS flow, a link element will be used. The link will be
automatically generated and will be named “<source name> to <target name>.” A Timer
Intermediate Event used in this situation will map to a BPEL4WS wait (set to 6 days). The
wait will also have a target element that refers to the name of the generated link. The “E-
Mail Discussion Deadline Warning” Task will map to an invoke that follows the wait.
Included within the invoke will be a source element that refers to the same generated link.
In addition, this invoke can be asynchronous since a response is not required. This means
that the outputContainer will not be included.

The bottom parallel path of the fork also contains more than one object, so four more links
will be automatically generated for the string of objects. The path also contains a Decision,
which normally will map to a switch, as will happen later in the process, but in this situation
the Decision is mapped to links controlled by transitionConditions. The first object is a Task,
which will map to an invoke (synchronous) that has two target elements referring to two of
the new links. There are two Target links because the Task is followed by the Decision with
its two Alternatives. One link will target the wait that follows the “Yes” Alternative and the
other link will target the invoke that is created from the Link End Event that follows the
“default” Alternative. The condition for the Decision Alternative labeled “Yes” will map to the
transitionCondition that checks the value of the “ConCall” property (set in the previous
Task) to see if there will be a conference call during the coming week. This alternative leads
to a wait, as indicated by the Timer Intermediate Event, since all conference calls for the
working group start at 9am PDT on Thursdays. This wait will have a source element that
corresponds to the target element from the previous invoke. The wait will also have a target
element to link to the following invoke. The Task for moderating the conference call follows
Copyright  2002, BPMI.org All Rights Reserved 111 / 158

November 13, 2002 BPMN Working Draft
the wait, which will map to an invoke (synchronous). This invoke will have a source element
that corresponds to the target element from the previous wait. It will also include a target
element to link to the next invoke (described next). Following the Task is a Link End Event,
which represents a specific message that is sent to another process (in this case a pick will
receive the message, as we shall see later). To do this, an invoke (asynchronous) is
included. This invoke will have a source element that corresponds to the target element
from the previous invoke. The operation for the invoke will be named “send<End Event
name>.” The Alternative labeled “default” will map to the otherwise of the switch. This
Alternative flows directly to an End Event. But this is a Link End Event and thus, instead of
an empty, the activity of the otherwise will be an invoke (asynchronous). This invoke
creates a different message than what was sent due to the above End Event and will have
a source element that corresponds to the target element from a previous invoke.

Note: Although the Decision described above was mapped to a set of links with
transitionConditions, it is possible that all Decisions be mapped to switches, even if
the mapping will exist within a BPEL4WS flow element. The BPMN specification
does not require one method or the other. For Decisions that will not be within a
flow, a mapping to a switch is required.

Example 3 displays some sample BPEL4WS code that reflects the portion of the Process
as described above and shown in Figure 62.

<process name="DiscussionCycle">
<!-- The Process data is defined first-->
<sequence>
<receive partner="Internal" portType="tns:processPort"

 operation="callDiscussionCycle" container="processData"
 createInstance="Yes"/>

<invoke name="AnnounceIssuesforDiscussion" partner="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"
inputContainer="processData"/>

<flow>
<links>
<link name="Delay6daysfromDiscussionAnnouncementtoEMailDiscussion

DeadlineWarning"/>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday,9am"/>
<link name="CheckCalendarforConferenceCalltoCall"/>
<link name="WaituntilThursday,9amtoModerateConferenceCallDiscussion"/>

</links>
<!-- This is the first of the three paths of the fork. -->
<scope>
<flow>
<invoke name="ModerateEmailDiscussion" partner="internal"

portType="tns:internalPort" operation="sendDiscussion"
inputContainer="processData"
outputContainer="processData"/>

<sequence>
<wait name="7days" for="tns:OneWeek"/>
<throw faultName="7days_fault"/>

</sequence>
112 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
</flow>
<faultHander>
<catch faultName="7days_fault">
<invoke name="ReviewStatusofDiscussion" partner="internal"

portType="tns:internalPort"
operation="receiveDiscussionStatus"
inputContainer="processData"
outputContainer="processData"/>

</catch>
</faultHander>

</scope>
<!-- This is the second of the three paths of the fork. -->
<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D">
<target linkName="Delay6daysfromDiscussionAnnouncementtoEMail

 DiscussionDeadlineWarning"/>
</wait>
<invoke name="EMailDiscussionDeadlineWarning" partner="WGVoter"

 portType="tns:emailPort" operation="sendDiscussionWarning"
 inputContainer="processData">

<source linkName="Delay6daysfromDiscussionAnnouncementtoEMail
 DiscussionDeadlineWarning"/>

</invoke>
<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partner="internal"

portType="tns:internalPort" operation="receiveCallSchedule"
inputContainer="processData" outputContainer="processData">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
 transitionCondition="bpws:getContainerProperty(processData,conCall)

=true"/>
<target linkName="CheckCalendarforConferenceCalltoCall"

transitionCondition="(bpws:getContainerProperty(processData,conCall)
=true)=false"/>

</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">
<target linkName="WaituntilThursday9amtoModerateConferenceCall

 Discussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partner="internal"

 portType="tns:internalPort" operation="sendConCall"
 inputContainer="processData" outputContainer="processData">

<source linkName="WaituntilThursday9amtoModerateConferenceCall
 Discussion"/>

<target linkName="ModerateConferenceCallDiscussiontoNoCall"/>
</invoke>
<!-- This is used as a message to be used for a pick in the "Collect Votes"

process -->
<invoke name="NoCall" partner="internal" portType="tns:processlPort"

 operation="sendNo_Call" inputContainer="processData">
<source linkName="ModerateConferenceCallDiscussiontoNoCall"/>

</invoke>
Copyright  2002, BPMI.org All Rights Reserved 113 / 158

November 13, 2002 BPMN Working Draft
Example 3 BPEL4WS Sample of “Discussion Cycle” Sub-Process Details

6.2.2 Mapping to BPML
The Sub-Process starts of with a Task, which maps to a BPML action. After the first Task,
three separate parallel paths are followed. The forking of the flow marks the start of a BPML
all. The all will extend the entire (Sub) Process, since the paths do not join back together
until the End Events.

In the upper parallel path of the fork, the Task, “Moderate E-mail Discussion,” has a Timer
Intermediate Event attached to its boundary. Because of this, the Task is placed in its own
Event Context. A BPML nested process will be required to set up this Event Context. The
Task itself is mapped to a BPML action, but this action will be separated from this level of
the process and placed in a separate nested process. The nested process will be accessed
through a BPML call that is one of the activities of the all. The nested process will contain a
context, an exception element within the context, and a scheduled fault handler (a timeout),
set to 1 week, within the exception element. The Task “Review Status of Discussion” is
intended to occur only when the timeout occurs, thus, it will map to an action that is in the
activity set of the case within the fault handler of the nested process.

The middle parallel path of the fork has a string of two objects, whose mappings will
wrapped in a BPML sequence. A Timer Intermediate Event used in this situation will map to
a BPML delay (set to 6 days), since it has an incoming Sequence Flow, rather than an fault
handler as the one described above, which was attached to the boundary of a Task. The
“E-Mail Discussion Deadline Warning” Task will map to an action that follows the delay.

The bottom parallel path of the fork also contains more than one object, so these objects
will be wrapped in a BPML sequence. The first object is a Task, which will map to an action.
The output of the Task will be an update to the property “ConCall,” which will be true or
false. After the Task, a Decision with its two Alternatives follows, which will map to a BPML
switch. The Alternative labeled “default” will map to the default case of the switch. This
Alternative flows directly to an End Event. But this is a Link End Event and thus, instead of
an empty activity, the activity set of the default case will be a raise activity (which raises a
signal that will be received with a synch later). The signal for the raise activity will be named
“Call” after then name of the End Event. The Decision Alternative labeled “Yes” will map to
other case for the switch. This case will have a condition that checks the value of the
“ConCall” property (set in the previous Task) to see if there will be a conference call during
the coming week. The activity set for the case will start with a delay, as indicated by the
Timer Intermediate Event, since all conference calls for the working group start at 9am PDT
on Thursdays. The Task for moderating the conference call follows the delay, which will
map to an action. The Task is followed by another Link End Event. This will map to another

<!-- name="otherwise" -->
<!-- This is used as a message to be used for a pick in the "Collect Votes"

process -->
<invoke name="Call" partner="internal" portType="tns:processlPort"

 operation="sendCall" inputContainer="processData">
<source linkName="CheckCalendarforConferenceCalltoCall"/>

</invoke>
</flow>

</sequence>
</process>
114 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
raise activity that creates a signal named “No Call.” We shall see how this signal and the
“Call” signal are used later in the process.

Example 4 displays some sample BPML code that reflects the portion of the Process as
described above and shown in Figure 62.

Example 4 BPML Sample of “Discussion Cycle” Sub-Process Details

<process name="DiscussionCycle">
<sequence>
<action name="AnnounceIssuesforDiscussion" portType="tns:emailPort"

 operation="sendDiscussionAnnouncement"/>
<all>
<call process="ModerateEmailDiscussionProcess"/>
<sequence>
<delay name="Delay6daysfromAnnouncement" duration="P6D"/>
<action name="EMailDiscussionDeadlineWarning" portType="tns:emailPort"

 operation="sendDiscussionWarning"/>
</sequence>
<sequence>
<action name="CheckCalendarforConferenceCall" … >
<output property="ConCall" element="…" />

</action>
<switch name="ConferenceCallinDiscussionWeek">
<case name="Yes">
<condition>ConCall=true<condition/>
<delay name="WaituntilThursday9am" dateTime="P6DT9H"/>
<action name="ModerateConferenceCall Discussion" … />
<raise signal="NoCall"/>

</case>
<default name="Default">
<raise signal="Call"/>

</default>
</sequence>

</all>
</sequence>

</process>

<process name="ModerateEmailDiscussionProcess">
<action name="ModerateEmailDiscussion" … />
<context>
<schedule code="OneWeek" duration="P7D"/>
<fault>
<case code="OneWeek">
<action name="ReviewStatusofDiscussion" portType="tns:internalPort"

 operation="receiveDiscussionStatus">
<output property="DiscussionOver" element="…"/>

</action>
</case>

</fault>
</context>

</process>
Copyright  2002, BPMI.org All Rights Reserved 115 / 158

November 13, 2002 BPMN Working Draft
6.3 The Second Sub-Process
Figure 63 shows the next section of the Process, which includes the expanded details of
the “Collect Votes” Sub-Process.

Figure 63 “Collect Votes” Sub-Process Details

This part of the process starts out with a Task for the issue list manager to send out an e-
mail to announce to the working group, and the voting members in particular, which lets
them know that the issues are now ready for voting. Since this Task sends a message to an
outside Participant (the working group members), an outgoing Message Flow is seen from
the “Announce Issues for Vote” Task to the “Voting Members” Pool in Figure 60. This Task
is also a target for one of the complex loops in the Process.

The “Collect Votes” Sub-Process follows the Task, and is also a target of one of the looping
Sequence Flows. This Sub-Process is basically a set of four parallel paths that extend from
the beginning to the end of the Sub-Process.

Announce
Issues for Vote

Prepare
Results

E-Mail Results
of Vote

Moderate E-mail
Discussion

Increment TallyReceive Vote

Conference
Call in Voting

Week?

Moderate
Conference Call

Discussion

No Call

Call No Call

Call

E-Mail Vote
Deadline Warning

Delay 6 Days

From Unnamed
Sub-Process
(parallel box)

From Task:
"Re-announce Vote

with warning to voting
members"

To Decision:
"Did Enough

Members Vote?"

From Sub-Process:
"Discussion Cycle"

Collect Votes

Timed Out
[1 week]

Issue Votes
116 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
The first branch of the fork leads to a Decision that determines whether or not a conference
call will occur during the upcoming week. The Decision is an Event-Based Exclusive
Decision that uses Link Events that were created earlier in the Process. Basically, if there
was a call last week, then there will not be a call this week and vice versa. The appropriate
Link Events were created in the “Discussion Cycle” Process for use now. If the “No Call”
Intermediate Event gets triggered (because the call occurred last week during the
discussion cycle), then there is no call this week, but since this whole week might be
repeated, a new “Call” Link End Event is used so that a call will happen next week. If the
“Call” Intermediate Event gets triggered (because there was no call last week), then the
“Moderate Conference Call” Task will occur. This Task will be followed by a Link End Event
that will ensure that a call will not occur next week if the voting cycle is repeated.

The second and third branches forks work the same way as the similar activities in the
“Discussion Cycle” Sub-Process, except that the “Moderate E-Mail Discussion” Task does
not have a Timer Intermediate Event attached. The “E-Mail Vote Deadline Warning” Task
sends a message to an outside Participant (the working group members), thus, an outgoing
Message Flow is seen from the “Collect Votes” Sub-Process to the “Voting Members” Pool
in Figure 60.

The fourth branch of the fork is rather unique in that the diagram uses a loop that does not
utilize a Decision. Thus, it is, as it is intended to be, an infinite loop. The policy of the
working group is that voting members can vote more than once on an issue; that is, they
can change their mind as many times as they want throughout the entire week. The first
Task in the loop receives a message from the outside Participant (the working group
members), thus, an incoming Message Flow is seen from the “Voting Members” Pool to the
“Collect Votes” Sub-Process in Figure 60. The Timer Intermediate Event attached to the
boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work
inside the Sub-Process will be ended when the timeout is triggered. All the remaining work
of the Process is conducted after the timeout and flows from the Timer Intermediate Event.

Note: The modeler could have organized the ending section differently. The Timer
Intermediate Event could have lead directly to an End Event (instead of the rest of
the Process) and the “Collect Votes” Sub-Process could have lead directly to the
rest of the Process (instead of the End Event). The behavior would be the same in
either case. This is mentioned to point out that when a Sub-Process is interrupted
by an Intermediate Event, the flow follows the Intermediate Event until the
Exception Sequence Flow is ended, and then the flow will go back to the end of the
Sub-Process and the Normal Sequence Flow will continue as if the Sub-Process
was never interrupted. That is, Intermediate Events do not interrupt the whole
Process. They only interrupt the level to which they are attached and then the
higher level Process will still continue.

Figure 63 shows that there are Two Tasks that follow the timeout. First, a Task will prepare
all the voting results, then a Task will send the results to the voting members. A Document
Object, “Issue Votes,” is shown in the diagram to illustrate how one might be used, but it will
not map to anything in the execution languages. The remaining activities of the Process will
be described in the next section.

Although the Sub-Process itself is connected to an End Event, this End Event will not be
reached until all work that follows from the Timer Intermediate Event has been completed.
Copyright  2002, BPMI.org All Rights Reserved 117 / 158

November 13, 2002 BPMN Working Draft
6.3.1 Mapping to BPEL4WS
The first Task of this section of the Process is also a target for one of the complex loops in
the Process, thus, it will map to an invoke (asynchronous) that is placed inside another
derived process (“DerivedProcess2”). This derived process will be invoked from
“DerivedProcess1,” after the “Discussion Cycle” process has been completed, as part of
the normal flow and then from another part of the Process as part of the looping flow. Thus,
“DerivedProcess2” will require a (instantiation) receive to accept the message from
“DerivedProcess1” and from “DerivedProcess4” (as we shall see later).

The “Collect Votes” Sub-Process follows the Task, but is also a target of one of the looping
Sequence Flows. Thus, it will also be set inside a derived process (“DerivedProcess3”).
Thus, “DerivedProcess3” will require a (instantiation) receive to accept the message from
“DerivedProcess2” and from the fault handler of “Collect Votes” (as we shall see later). The
“Collect Votes” Sub-Process will map to an invoke (asynchronous) and the details will be in
a process referenced through the invoke.

Example 5 shows sample BPEL4WS code that defines the two derived processes.

Example 5 BPEL4WS Sample that sets up the Access for the Second Sub-Process

The “Collect Votes Sub-Process is basically a set of four parallel paths that extend from the
beginning to the end of the Sub-Process. Thus, the activity for the process it maps to will be
a flow.

<process name="DerivedProcess2">
<!-- This starts the middle section of the Process and is call from

the first time and then from “Collect Votes” during a loop-->
<!-- The Process data is defined first-->
<sequence>
<receive partner="Internal" portType="tns:processPort"

operation="callDerivedProcess2" container="processData"
createInstance="Yes"/>

<invoke name="AnnounceIssuesforVote" partner="WGVoter"
portType="tns:emailPort" operation="sendVoteAnnouncement"
inputContainer="processData"/>

<invoke name="DerivedProcess3" partner="Internal"
portType="tns:processPort" operation="callDerivedProcess3"
inputContainer="processData"/>

</sequence>
</process>

<process name="DerivedProcess3">
<!-- this calls the second Sub-Process and then continues. It is also

 called from “Collect Votes” as part of a loop-->
<!-- The Process data is defined first-->
<sequence>
<receive partner="Internal" portType="tns:processPort"

 operation="callDerivedProcess3" container="processData"
 createInstance="Yes"/>

<invoke name="CollectVotes" partner="Internal" portType="tns:processPort"
operation="callCollectVotes" inputContainer="processData"/>

</sequence>
</process>
118 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
The first branch of the fork introduces the BPEL4WS pick, since an Event-Based Exclusive
Decision was used. The pick will use one of two possible messages that could be
generated during the “Discussion Cycle” process or from the “Collect Votes” process itself if
it is re-instantiate through a loop. The Link Intermediate Events from the Event-Based
Exclusive Decision will map to onMessage event handlers within the pick. The activity for
each event handler in the pick also raised another signal that will be used by this same pick
if voting week was repeated by a loop.

The second and third branches of the fork are rather straightforward mappings of two Tasks
to invokes (one synchronous and one asynchronous), and Timer Intermediate Event to a
delay. One link is created so that one of the invokes will wait for the delay.

The fourth branch of the fork is the location the infinite loop. This loop will map to a
BPEL4WS while with a condition of “1=0,” which will always be false. Inside the while is a
sequence of two invokes (one synchronous and one asynchronous), which are mapped
from the two Tasks in the loop.

To exit out of the infinite loop and the whole “Collect Votes” Sub-Process, a scope will be
wrapped around the main flow of the process, which will include a faultHandler. The Timer
Intermediate Event must be set up to create a fault at the appropriate time. To do this,
another flow is created that contains the above flow plus a sequence that contains a wait.
The wait is set to the duration that is defined in the Timer Intermediate Event. After the wait,
a throw creates a fault name after the Intermediate Event with “Fault” appended. The scope
will contain a faultHandler, and a catch element within the faultHandler. The catch will be
triggered by the fault generated by the above throw. The activity for the catch will be a
sequence and will be the source of all the remaining activities of the Process, since all the
remaining Sequence Flow begins from the Timer Intermediate Event. The first two Tasks,
as shown in the figure, will map to invokes (one synchronous and the other asynchronous).
The Document Object shown in the figure is not mapped into BPEL4WS. The remainder of
the Process will be described in the next section.

Example 6 shows sample BPEL4WS code that defines the “Collect Votes” Sub-Process.

<process name="CollectVotes">
<!--This is a nested process for the E-Mail Voting collection. It consists of

an all and a faultHandler (for a timeout). The all will never complete
normally since there is an infinite loop inside. The timeout is intended to
be the normal way of ending the process-->

<sequence>
<receive partner="Internal" portType="tns:processPort"

operation="callCollectVotes" container="processData"
createInstance="Yes"/>

<scope>
<flow>
<sequence>
<wait name="7days" for="P7D"/>
<throw faultName="7daysFault"/>

</sequence>
<flow>
<links>
<link name="Delay6daysfromVoteAnnouncementtoEMailVote

DeadlineWarning"/>
</links>
Copyright  2002, BPMI.org All Rights Reserved 119 / 158

November 13, 2002 BPMN Working Draft
<!--This is the first of the four paths of the fork. -->
<pick name="ConferenceCallthisWeek">
<!-- name="Call" -->
<onMessage partner="internal" portType="tns:processlPort"

 operation="sendCall" Container="processData">
<invoke name="ModerateConferenceCallDiscussion" partner="internal"

portType="tns:internalPort" operation="sendConCall"
inputContainer="processData" outputContainer="processData"/>

<invoke name="NoCall" partner="internal" portType="tns:processlPort"
 operation="sendNo_Call" inputContainer="processData"/>

</onMessage>
<!-- name="No Call" -->
<onMessage partner="internal" portType="tns:processlPort"

 operation="sendNo_Call" Container="processData">
<invoke name="Call" partner="internal" portType="tns:processlPort"

 operation="sendCall" inputContainer="processData"/>
</onMessage>

</pick>
<!-- This is the second of the four paths of the fork. -->
<invoke name="ModerateEMailDiscussion" partner="internal"

 portType="tns:internalPort" operation="sendDiscussion"
 inputContainer="processData"
 outputContainer="processData"/>

<!--This is the third of the four paths of the fork.-->
<wait name="Delay6daysfromVoteAnnouncement" for="P6D">
<target linkName="Delay6daysfromVoteAnnouncementtoEMailVote

 DeadlineWarning"/>
</wait>
<invoke name="EMailVoteDeadlineWarning" partner="WGVoter"

 portType="tns:emailPort" operation="sendVoteWarning"
 inputContainer="processData">

<source linkName="Delay6daysfromVoteAnnouncementtoEMailVote
 DeadlineWarning"/>

</invoke>
<!--This is the fourth of the four paths of the fork. This branch of the

all is intended to be an infinite loop that is eventually
interrupted by the Time Out. This is necessary since any voter can
change their vote until the deadline. -->

<while condition="1=0">
<sequence>
<receive name="ReceiveVote" partner="WGVoter"

 portType="tns:emailPort" operation="receiveVote"
 container="processData"/>

<invoke name="IncrementTally" partner="internal"
 portType="tns:internalPort" operation="sendReceiveTotal"
 inputContainer="processData" outputContainer="processData"/>

</sequence>
</while>

</flow>
</flow>
<faultHander>
<catch faultName="7 days_fault">
120 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Example 6 BPEL4WS Sample of the Second Sub-Process

6.3.2 Mapping to BPML
The first Task of this section of the Process is also a target for one of the complex loops in
the Process, thus, it will map to an action that is inside another derived nested process
(“DerivedProcess2”). This derived nested process will be called from “DerivedProcess1” as
part of the normal flow and then from another part of the Process as part of the looping flow.

The “Collect Votes” Sub-Process follows the Task, but is also a target of one of the looping
Sequence Flows. Thus, it will also be set inside a derived Sub-Process
(“DerivedProcess3”). This derived nested process will be called from “DerivedProcess2” as
part of the normal flow and then from another part of the Process as part of the looping flow.
The “Collect Votes” Sub-Process will map to a call and the details will be in a nested
process referenced by the call. Example 7 shows sample BPML code that defines the two
derived nested processes.

Example 7 BPML Sample that sets up the Access for the Second Sub-Process

The “Collect Votes Sub-Process is basically a set of four parallel paths that extend from the
beginning to the end of the Sub-Process. Thus, the activity set for the nested process will
be an all.

<!-- The BPMN diagram shows that the Timer Intermediate Event connects
directly to the rest of the Process. Thus, they will show up in
this activity set. -->

<sequence>
<invoke name="PrepareResults" partner="internal"

portType="tns:internalPort" operation="sendReceiveResults"
inputContainer="processData" outputContainer="processData"/>

<invoke name="EMailResultsofVote" partner="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"
inputContainer="processData"/>

<!--the rest of the process is not shown-->
</faultHander>

</scope>
</sequence>

</process>

<process name="DerivedProcess2">
<!-- This starts the middle section of the Process and is call from

“DerivedProcess1” the first time and then from “Collect Votes”
during a loop-->

<action name="Announce Issues for Vote" portType="tns:emailPort"
 operation="sendVoteAnnouncement"/>

<call process="DerivedProcess3"/>
</process>

<process name="DerivedProcess3">
<!-- this calls the second Sub-Process and then continues. It is also

 called from “Collect Votes” as part of a loop-->
<call process="Collect Votes"/>

</process>
Copyright  2002, BPMI.org All Rights Reserved 121 / 158

November 13, 2002 BPMN Working Draft
The first activity introduces the BPML choice and uses signals that were generated in the
“Discussion Cycle” Sub-Process. A working group conference call may occur this week, but
only if there was not a call during the last discussion week, since calls occur every other
week. After the “Discussion Cycle” Sub-Process determined whether or not there would be
a call at that time, the Sub-Process created a signal (either “Call” or “No Call”) that can be
used by the “Collect Votes” Sub-Process to know the call status for this week. An Event-
Based Exclusive Decision maps to a choice. The Link Intermediate Events will map to
event handlers within the choice. The activity set for each event handler in the choice also
raised another signal that will be used by this same pick if voting week was repeated by a
loop.

The second and third activities for the all are rather straightforward mappings of a Task to
an action, and then a sequence that has a delay and an action.

The fourth activity of the all is the location the infinite loop. This loop will map to a BPML
until with a condition of “1=0,” which will always be false. Inside the until are two actions
which are mapped from the two Tasks in the loop.

To exit out of the infinite loop and the whole Sub-Process, the process will be given a
context, which will include a fault handler that will be triggered by a schedule. The Timer
Intermediate Event attached to the Sub-Process boundary sets the schedule to one week.
The activity set for the exception will be the source of all the remaining activities of the
Process, since all the remaining Sequence Flow begins from the Timer Intermediate Event.
The first two Tasks, as shown in the figure, will map to actions. The Document Object
shown in the figure is not mapped into BPML. The remainder of the Process will be
described in the next section.

Example 8 shows sample BPML code that defines the “Collect Votes” Sub-Process.

<process name="CollectVotes">
<!--This is a nested process for the E-Mail Voting collection. It consists of
an all and a scheduled fault handler (a timeout). The all will never complete
normally since there is an infinite loop inside. The timeout is intended to be
the normal way of ending the process-->
<all>
<!--This is the first of the four paths of the fork-->
<choice name="ConferenceCallthisWeek">
<event>
<synch name="Call" signal="Call"/>
<action name="ModerateConferenceCallDiscussion"

portType="tns:internalPort" operation="sendConCall"/>
<raise name="NoCall" signal="NoCall"/>

</event>
<event>
<synch name="NoCall" signal="NoCall"/>
<raise name="Call" signal="Call"/>

</event>
</choice>
<!--the second and third paths of the fork are not shown-->
122 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Example 8 BPML Sample of the Second Sub-Process

<!--This is the fourth of the four paths of the fork and is intended to be an
infinite loop that is eventually interrupted by the Time Out. This is
necessary since any voter can change their vote until the deadline-->
<until>
<condition>1=0<condition/>
<action name="ReceiveVote" portType="tns:emailPort"

operation="receiveVote"/>
<action name="IncrementTally" portType="tns:internalPort"

operation="sendReceiveTotal">
<output property="AllItemsCompleted" element="..."/>
<output property="NoMajority" element="..."/>

</action>
</until>

</all>
<context>
<schedule code="OneWeek" duration="P7D"/>
<fault>
<case code="OneWeek">
<action name="PrepareResults" portType="tns:internalPort"

operation="sendReceiveResults">
<output property="NumVoted" element="..."/>
<output property="NoMajority" element="..."/>

</action>
<action name="EMailResultsofVote" portType="tns:emailPort"

operation="sendVotingResults"/>
<!--the rest of the process is not shown-->

</case>
</fault>

</context>
</process>
Copyright  2002, BPMI.org All Rights Reserved 123 / 158

November 13, 2002 BPMN Working Draft
6.4 The End of the Process
Figure 64 shows the last section of the Process, which includes a complex set of Decisions
and loops.

Figure 64 The last segment of the E-Mail Voting Process

This segment of the Process continues from where the last segment left off (as described in
the section above). It contains four Decisions that interact with each other and create loops
to upstream activities.

The first Decision, “Did Enough Members Vote?,” is necessary since two-thirds of the
voting members are required to approve any solution to an issue. If less than two-thirds of

Yes

No
<default>

Yes
<default>

No

No
<default>

Yes

No
<default>

2nd
Time?

Issues w/o
Majority?

Reduce to
Two Solutions

E-Mail Voters
that have to

Change Votes

Did Enough
Members

Vote?

Have the
members

been warned?

Reduce number of
Voting Members
and Recalculate

Vote

Re-announce
Vote with warning

to voting
members

From Task:
"E-Mail Results of

Vote"

To Sub-Process:
"Collect Votes"

To Sub-Process:
"Discussion Cycle"

To Task:
"Announce Issues

for Vote"
124 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
the voting members cast votes, which sometimes happens, the issues can’t be resolved.
This Decision flows to another Decision for both of its Alternatives. The “No” Alternative is
followed by the “Have the Members been Warned?” Decision. If a voting member misses a
vote, they are warned. If they miss a second vote, they lose their status as a voting member
and the voting percentages are recalculate through a Task (“Reduce number of Voting
Members and Recalculate Vote”). If they haven’t been warned, then a warning is sent and
the voting week is repeated.

If all issues are resolved, then the Process is done. If not, then another Decision is
required. The voting is given two chances before it goes back to another cycle of
discussion. The first time will see a reduction of the number of solutions to the two most
popular based on the vote (more if there are ties). Some voting members will have to
change their votes just because their solution is no longer valid. These two activities are
placed in a Sub-Process to show how a Sub-Process without Start and End Events can be
used to create a simple set of parallel activities. Informally, this is called a “parallel box.” It is
not a special object, but another use of Sub-Processes. For simple situations, it can be
used to show a set of parallel activities without the extra clutter of a lot of Sequence Flows.
In actuality, these two Tasks cannot actually be done in parallel, but they are modeled this
way to highlight the optional use of Start and End Events.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there
already has been two cycles of voting, then the process flows back to the “Decision Cycle”
Sub-Process.

6.4.1 Mapping to BPEL4WS
As mentioned above, the entire contents of this segment follow a Timer Intermediate Event,
which means they are contained in the faultHandler of the scope within the “Collect Votes”
process. Each of the Decisions in this section will map to a BPEL4WS switch.

The first Decision, “Did Enough Members Vote?,” flows to another Decision for both of its
Alternatives. Thus, each of the switch cases will contain another switch. The “No”
Alternative is followed by the “Have the Members been Warned?” Decision. Each
Alternative from this Decision is followed by a Task, which maps to Invokes (one
synchronous and the other asynchronous). The “No (default)” Alternative leads to a loop.
This looping is handled by using an invoke (asynchronous) to the “DerivedProcess3”
process, which was created just for the purpose of this loop (since it is in the context of a
more complex looping situation).

Notice that the “Issues w/o Majority?” Decision can be reached through the alternative
paths from two different Decisions. This creates a situation that has two impacts on the
Mapping to Execution Languages. First, it creates a section of the Process in which the
Alternatives from two Decisions overlap. This is possible in a graph-structured diagram like
BPMN, but in a block-structured (and acyclical) language like BPEL4WS, these two
sections cannot overlap because they have different block boundaries. This means that this
section must be repeated in some way in both of the appropriate switch case activities. All
these elements could be actually duplicated or they can be separated into a derived
process and then invoked from the appropriate place. The later method was used in this
example (see Example 9 and Example 10).
Copyright  2002, BPMI.org All Rights Reserved 125 / 158

November 13, 2002 BPMN Working Draft
Note: At this point, BPMN does not specify whether a reused section of a BPMN
diagram should map to a derived process that is invoked from each location of
duplication, or whether the section should remain intact and be duplicated in each
appropriate location. This is left up to the specific implementation of BPMN since
both solutions will behave equivalently.

The second impact of the multiple incoming Sequence Flows into the “Issues w/o Majority?”
Decision has to do with how the three visible loops are created (actually there are five
loops). Normally, Sequence Flow loops will map to a BPEL4WS while. If there are multiple
loops in the Process they have to be physically separated or completely nested because of
the block-structured nature of the BPML looping elements. The alternative paths of the
Decisions cannot be mixed and still maintain the BPEL4WS blocks they way that the end of
the “E-mail Voting” Process mixes the paths.

A different type of looping mechanism is required. This method requires the creation of a
set of derived processes that can reference each other and also themselves. In this way, a
block-structured language can simulate a set of interleaving loops (as seen in a graph-
structured diagram). Thus, in this BPMN example, derived processes were created to mark
places where loops can be targeted within the BPML code from the “downstream”
elements. A BPML invoke (asynchronous) is used to re-perform activities that had already
been executed in the process.

Note: A synchronous invoke could also be used to access the processes to perform
the loop. With a synchronous invoke, the source process would remain active until
the target process (and any other loops that follow) have been completed before it
also completes. With an asynchronous invoke, the source process would complete
immediately, reducing the number of active BPM system resources. At this point,
BPMN does not specify whether an asynchronous invoke or a synchronous invoke
should be used in this situation.
126 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Example 9 displays the BPEL4WS code for first part of the end of the “E-Mail Voting
Process.”

<!--This segment of the code is within the context of the “Collect
Votes” nested process-->

<catch property="tns:OneWeek" type="duration">
<!--The BPMN diagram shows that the Timer Intermediate Event connects

directly to the rest of the Process. Thus, they will show up in this
activity set-->

<!--The first two actions are not shown-->
<sequence>
<invoke name="PrepareResults" partner="internal" portType="tns:internalPort"

 operation="sendReceiveResults" inputContainer="processData"
 outputContainer="processData"/>

<invoke name="EMailResultsofVote" partner="WGVoter"
 portType="tns:emailPort" operation="sendVotingResults"
 inputContainer="processData"/>

<switch name="DidEnoughMembersVote">
<!-- name="No" -->
<case condition="bpws:getContainerProperty(ProcessData,NumVoted)>

(.7)*(bpws:getContainerProperty(ProcessData,NumVWGM))">
<switch name="Havethemembersbeenwarned">
<!-- name="Yes" -->
<case condition="bpws:getContainerProperty(ProcessData,VotersWarned)

=true">
<sequence>
<invoke name="ReducenumberofVotingMembersandRecalculateVote"

 partner="internal" portType="tns:internalPort"
 operation="sendReceiveNumVoters"
 inputContainer="processData"
 outputContainer="processData"/>

<!--Some elements of the process were separated into a derived
 process since they would have been repeated. They would have
 been repeated because they are arrived by alternative paths that
 do not close a set of alternative paths. -->

<invoke name="DerivedProcess4" partner="Internal"
portType="tns:processPort" operation="callDerivedProcess4"
inputContainer="processData"/>

</sequence>
</case>
<!-- name="No (otherwise)" -->
<otherwise>
<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"

partner="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote" inputContainer="processData"
outputContainer="processData"/>

<invoke name="DerivedProcess3" partner="Internal"
portType="tns:processPort" operation="callDerivedProcess3"
inputContainer="processData"/>

</sequence>
</otherwise>
Copyright  2002, BPMI.org All Rights Reserved 127 / 158

November 13, 2002 BPMN Working Draft
Example 9 Sample BPEL4WS code for the last section of the Process

Example 10 shows the BPEL4WS code for the Process from the “Issues w/o Majority?”
Decision until the end of the Process or loops. The mappings are a fairly straightforward set
of switches. If all issues are resolved, then the Process is done. If not, then another
Decision is required. The “parallel box,” as is any forking situation, will map to a BPEL4WS
flow. After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. This
looping is handled by using an invoke (asynchronous) to the “DerivedProcess2” process,
which was created just for the purpose of this loop.

If there has already been two cycles of voting, then the process flows back to the “Decision
Cycle” Sub-Process. This looping is handled by using an invoke (asynchronous) to the
“DerivedProcess1” process, which was created just for the purpose of this loop

</switch>
</case>
<!-- name="Yes (otherwise)" -->
<otherwise>
<!-- Some elements of the process were separated into a derived process

since they would have been repeated. They would have been repeated
because they are arrived by alternative paths that do not close a
set of alternative paths. -->

<invoke process="DerivedProcess4" partner="Internal"
portType="tns:processPort" operation="callDerivedProcess4"
inputContainer="processData"/>

</otherwise>
</switch>

</sequence>
</catch>

<process name="DerivedProcess4">
<sequence>
<receive partner="Internal" portType="tns:processPort"

 operation="callDerivedProcess4" container="processData"
 createInstance="Yes"/>

<switch name="IssueswoMajority">
<case name="Yes" condition="NoMajority=true">
<switch name="2ndTime">
<!-- name="Yes" -->
<case condition="bpws:getContainerProperty(ProcessData,VotedOnce)

=true">
<!--This is done to do the complex looping situation. -->
<invoke name="DerivedProcess1" partner="Internal"

portType="tns:processPort" operation="callDerivedProcess1"
inputContainer="processData"/>

</case>
<!-- name="No (otherwise)"-->
<otherwise>
<sequence>
128 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Example 10 Sample BPEL4WS code for derived process for repeated elements

6.4.2 Mapping to BPML
As mentioned above, the entire contents of this segment follow a Timer Intermediate Event,
which means they are contained in the case of a fault hander in the “Collect Votes” nested
process. Each of the Decisions in this section will map to a BPML switch.

The first Decision, “Did Enough Members Vote?,” flows to another Decision for both of its
Alternatives. Thus, each of the switch cases will contain another switch. The “No”
Alternative is followed by the “Have the Members been Warned?” Decision. Each
Alternative from this Decision is followed by a Task, which maps to actions. The “No
(default)” Alternative leads to a loop. This looping is handled by using a call to the
“DerivedProcess3” nested process, which was created just for the purpose of this loop
(since it is in the context of a more complex looping situation).

Notice that the “Issues w/o Majority?” Decision can be reached through the alternative
paths from two different Decisions. This creates a situation that has two impacts on the
Mapping to Execution Languages. First, it creates a section of the Process in which the
Alternatives from two Decisions overlap. This is possible in a graph-structured diagram like
BPMN, but in a block-structured language like BPML, these two sections cannot overlap
because they have different block boundaries. This means that this section must be
repeated in some way in both of the appropriate switch case activity sets. All these
elements could be actually duplicated or they can be separated into a derived nested
process and then called from the appropriate place. The later method was used in this
example (see Example 11 and Example 12).

<flow>
<invoke name="ReducetoTwoSolutions" partner="internal"

portType="tns:internalPort"
operation="sendReceiveSolutions"
inputContainer="processData"
outputContainer="processData"/>

<invoke name="EMailVotersthathavetoChangeVotes"
partner="WGVoter" portType="tns:emailPort"
operation="sendVoteWarning" inputContainer="processData"/>

</flow>
<invoke process="DerivedProcess2" partner="Internal"

portType="tns:processPort" operation="callDerivedProcess2"
inputContainer="processData"/>

</sequence>
</otherwise>

</switch>
</case>
<otherwise name="Nootherwise">
<!-- This is one of the two ways to the end of the Process. -->
<empty/>

</otherwise>
</switch>

</sequence>
</process>
Copyright  2002, BPMI.org All Rights Reserved 129 / 158

November 13, 2002 BPMN Working Draft
Note: At this point, BPMN does not specify whether a reused section of a BPMN
diagram should map to a derived nested process that is called from each location of
duplication, or whether the section should remain intact and be duplicated in each
appropriate location. This is left up to the specific implementation of BPMN since
both solutions will behave equivalently.

The second impact of the multiple incoming Sequence Flows into the “Issues w/o Majority?”
Decision has to do with how the three visible loops are created (actually there are five
loops). Normally, Sequence Flow loops will map to a BPML while, until, or foreach. If there
are multiple loops in the Process they have to be physically separated or completely nested
because of the block-structured nature of the BPML looping elements. The alternative
paths of the Decisions cannot be mixed and still maintain the BPML blocks they way that
the end of the “E-mail Voting” Process mixes the paths.

A different type of looping mechanism is required. This method requires the creation of a
set of derived nested processes that can reference each other and also themselves. In this
way, a block-structured language can simulate a set of interleaving loops (as seen in a
graph-structured diagram). Thus, in this BPMN example, derived nested processes were
created to mark places where loops can be targeted within the BPML code from the
“downstream” elements. A BPML call is used to re-perform activities that had already been
executed in the process.

Note: A spawn could also be used to access the nested processes to perform the
loop. With a call, the source nested process would remain active until the target
nested process (and any other loops that follow) have been completed before it also
completes. With a spawn, the source nested process would complete immediately,
reducing the number of active BPM system resources. At this point, BPMN does not
specify whether a spawn or a call should be used in this situation.
130 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Example 11 displays BPML code for the first part of the end of the “E-Mail Voting Process.”

Example 11 Sample BPML code for the last section of the Process

Example 12 shows the BPML code for the Process from the “Issues w/o Majority?”
Decision until the end of the Process or loops. The mappings are a fairly straightforward set
of switches. If all issues are resolved, then the Process is done. If not, then another
Decision is required. The “parallel box,” as is any forking situation, will map to a BPML all.
After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. This looping
is handled by using a call to the “DerivedProcess2” nested process, which was created just
for the purpose of this loop.

<!--This segment of the code is within the context of the “Collect
Votes” nested process-->

<schedule code="OneWeek" duration="P7D"/>
<fault>
<case code="OneWeek">
<!--The BPMN diagram shows that the Timer Intermediate Event connects

directly to the rest of the Process. Thus, they will show up in this
activity set-->

<!--The first two actions are not shown-->
<switch name="DidEnoughMembersVote">
<case name="No">
<condition>NumVoted>(.7)*(NumVWGM)<condition/>
<switch name="Havethemembersbeenwarned">
<case name="Yes">
<condition>VotersWarned=true<condition/>
<action name="ReducenumberofVotingMembersandRecalculateVote"

portType="tns:internalPort" operation="sendReceiveNumVoters"/>
<!--Some elements of the process were separated into a derived nested
process since they would have been repeated. They would have been
repeated because they are arrived by more than one alternative paths-->
<call process="DerivedProcess4"/>

</case>
<default name="Nodefault">
<action name="ReannounceVote with warning to voting members"

portType="tns:emailPort" operation="sendReannounceVote">
<output property="VotersWarned" element="..."/>

</action>
<call process="DerivedProcess3"/>

</default>
</switch>

</case>
<default name="Yesdefault">
<!--Some elements of the process were separated into a derived nested
process since they would have been repeated. They would have been
repeated because they are arrived by more than one alternative paths-->
<call process="DerivedProcess4"/>

</default>
</switch>

</case>
</fault>
Copyright  2002, BPMI.org All Rights Reserved 131 / 158

November 13, 2002 BPMN Working Draft
If there has already been two cycles of voting, then the process flows back to the “Decision
Cycle” Sub-Process. This looping is handled by using a call to the “DerivedProcess1”
nested process, which was created just for the purpose of this loop.

Example 12 Sample BPML code for derived nested process for repeated elements

<process name="DerivedProcess4">
<switch name="IssueswoMajority">
<case name="Yes">
<condition>NoMajority=true<condition/>
<switch name="2ndTime">
<case name="Yes">
<condition>VotedOnce=true<condition/>
<!--This is done to do the complex looping situation-->
<call process="DerivedProcess1"/>

</case>
<default name="Nodefault">
<all>
<action name="ReducetoTwoSolutions" portType="tns:internalPort"

operation="sendReceiveSolutions">
<output property="NoMajority" element="..."/>

</action>
<action name="EMailVotersthathavetoChangeVotes"

portType="tns:emailPort" operation="sendVoteWarning"/>
<call process="DerivedProcess2"/>

</all>
</default>

</switch>
</case>
<default name="Nodefault">
<!--This is one of the two ways to the end of the Process-->
<empty/>

</default>
</switch>

</process>
132 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002

Copyright  2002, BPMI.org All Rights Reserved 133 / 158

7. Mapping to Execution Languages
Many of the above sections specified the Mapping to Execution Languages for the topics of
those sections. Those mappings will not be duplicated in this section. This section will
cover the mappings to BPEL4WS and BPML that are derived by analyzing the relationships
between the elements described in the above sections. For example, a Decision object
marks the beginning of a switch, but the end of the switch will have to be determined by
tracing the alternative paths from the Decision and finding the point in the Process where all
the alternative paths have merged, which may be the end of the Process. The strings of
activities that lie between the Decision and the merging point will comprise the activity sets
for each of the switch cases. The location of the final merging point could be complicated
by the inclusion of intermediary Decisions and/or parallel sections of the Process. BPMN
does not include a specific merging object that will be tied one-to-one with a specific
Decision object that will allow the quick identification of the merging point. Likewise, BPMN
does not have paired objects to mark the beginning and end of parallel activities that would
fit into the BPML all element or BPEL4WS flow element. Furthermore, BPMN is cyclical in
that it allows Sequence Flows to connect to upstream objects so that a modeler can easily
visualize looping situations. The exact configuration of these loops will determine how they
are mapped to BPM execution constructions, some of which are acyclical.

To determine the appropriate merging and joining points that are needed to construct
execution language elements such as switch, the configuration of the Process needs to be
analyzed. The mechanism we are proposing is called Token Analysis. This involves the
creation of a conceptual Token that will “traverse” all the Sequence Flows of the Process.
The Token will have a hierarchical TokenID set that will expand or contract based on the
forking and joining and/or splitting and merging that occurs throughout the Process. By
matching the TokenID set of Tokens that arrive at objects that have multiple incoming
Sequence Flows, it will be possible to determine the boundaries of execution language
structured activities.

Editor’s Note: the finalization of the Mapping to Execution Languages through
Token Analysis is an open issue and will be developed further in a later version of
the specification. Refer to the section entitled “Open Issues” on page 137 for a
complete list of the issues open for BPMN.

November 13, 2002 BPMN Working Draft
8. References
8.1 Normative

RFC-2119
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119,
March 1997

http://www.ietf.org/rfc/rfc2119.txt

URI
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter, IETF RFC 2396, August 1998

http://www.ietf.org/rfc/rfc2396.txt

BPML
(BPML) 1.0, BPMI, November 2002

http://www.BPMI.org

BPEL4WS
(BPEL4WS) 1.0, IBM/Microsoft/BEA, August 2002

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

WSCI
Web Services Choreography Interface (WSCI) 1.0, BEA, Intalio, Sun, SAP et al, June 2002

http://www.intalio.com/wsci/

WSDL
Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001

http://www.w3.org/TR/wsdl.html

XML 1.0 (Second Edition)
Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6
October 2000

http://www.w3.org/TR/REC-xml

XML-Namespaces
Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999

http://www.w3.org/TR/REC-xml-names
134 / 158 Copyright  2002, BPMI.org All Rights Reserved

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.BPMI.org
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.intalio.com/wsci/
http://www.w3.org/TR/wsdl.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names

BPMN Working Draft November 13, 2002
XML-Schema
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah
Mendelsohn, W3C, 2 May 2001

http://www.w3.org/TR/xmlschema-1//

XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001

http://www.w3.org/TR/xmlschema-2/

XPath
XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16
November 1999

http://www.w3.org/TR/xpath

8.2 Non-Normative

Activity Service
Additional Structuring Mechanism for the OTS specification, OMG, June 1999

http://www.omg.org

J2EE Activity Service for Extended Transactions (JSR 95), JCP

http://www.jcp.org/jsr/detail/95.jsp

Business Process modeling
Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,”
2002

http://www.ebpml.org/ebpml2.2.doc

Dublin Core Meta Data
Dublin Core Metadata Element Set, Dublin Core Metadata Initiative

http://dublincore.org/documents/dces/

ebXML BPSS
Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web
Services Choreography,” 2002

http://www.ebpml.org/ebpml.doc

OMG UML
Unified Modeling Language Specification, OMG, June 1999

http://www.omg.org
Copyright  2002, BPMI.org All Rights Reserved 135 / 158

http://www.w3.org/TR/xmlschema-1//
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.omg.org
http://www.jcp.org/jsr/detail/95.jsp
http://www.ebpml.org/ebpml2.2.doc
http://dublincore.org/documents/dces/
http://www.ebpml.org/ebpml.doc
http://www.omg.org

November 13, 2002 BPMN Working Draft
Open Nested Transactions
Concepts and Applications of Multilevel Transactions and Open Nested Transactions,
Gerhard Weikum, Hans-J. Schek, 1992

http://citeseer.nj.nec.com/weikum92concepts.html

RDF
RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft

http://www.w3.org/TR/rdf-schema/

SOAP 1.2
SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft

http://www.w3.org/TR/soap12-part1/

SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft

http://www.w3.org/TR/soap12-part2/

UDDI
Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.

http://www.uddi.org

WfMC Glossary
Workflow Management Coalition Terminology and Glossary.

http://www.wfmc.org/standards/docs.htm
136 / 158 Copyright  2002, BPMI.org All Rights Reserved

http://citeseer.nj.nec.com/weikum92concepts.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.uddi.org
http://www.wfmc.org/standards/docs.htm

BPMN Working Draft November 13, 2002
9. Open Issues
The following elements or features of BPMN are not fully defined in this version of the
specification:

• Use of Link Start and End Events (to dynamically pass Tokens between levels of a
Process).

• Event properties for defining how they can be correlated with a specific process
instance.

• Use of the PassThrough property for End Events. This is related to the Link Start and
End Events.

• Process Breaks.

• The position of Loop and Ad Hoc markers.

• Enhancing the Loop marker to show parallelism.

• Inclusive Decisions.

• Will Decisions have a mandatory default alternative?

• Enhanced graphical mechanisms for forking, joining, and merging.

• Expanding Flow Conditions so that multiple Tokens can proceed after a join. This is
related to the use of a PassThrough property.

• Should interface processes be a Lane within a Pool? Or should they be separated in
their own Pool?

• Using an Intermediate Event without interrupting an Event Context.

• Visual marker or queue for Transactions.

• Spawning and Synchronizing Activities.

• Linking activities in private business processes to their corresponding activities in an
abstract or collaboration process.

• Completed Mapping to Execution Languages (including the abstract definitions in
BPEL4WS and WSCI).

• Specification of BPMN as an XML language.
Copyright  2002, BPMI.org All Rights Reserved 137 / 158

November 13, 2002 BPMN Working Draft
Appendix A: E-Mail Voting Process
BPEL4WS

This appendix provides the complete BPEL4WS code for the example BPMN business
process that is described in the section entitled “BPMN by Example” on page 103.

<!-- The Main Process -->
<process name="EMailVotingProcess">
<containers>
<container name="processData" messageType="processDataMessage"/>

</containers>
<sequence>
<!--This starts the beginning of the Process. The process that sends the

 starting message every Friday is not shown here.-->
<receive partner="Internal" portType="tns:processPort"

 operation="callEMailVotingProcess" container="processData"
 createInstance="Yes"/>

<invoke name="ReviewIssueList" partner=“Internal"
portType="tns:internalPort" operation="sendIssueList"
inputContainer="processData" outputContainer="processData"/>

<switch name="AnyIssuesReady">
<!--name="Yes" -->
<case condition="bpws:getContainerProperty(ProcessData,NumIssues)>0">
<!-- A chunk of this process is separated into a derived process so that

it can be called from a complex loop. -->
<invoke name="DerivedProcess1" partner="Internal"

 portType="tns:processPort" operation="callDerivedProcess1"
 inputContainer="processData"/>

</case>
<!--name="otherwise" -->
<otherwise>
<!--This is one of the two ways to the end of the Process.-->
<empty/>

</otherwise>
</switch>

</sequence>
<!-- A Derived Process -->
<process name="DerivedProcess1">
<containers>
<container name="processData" messageType="processDataMessage"/>

</containers>
<sequence>
<receive partner="Internal" portType="tns:processPort"

operation="callDerivedProcess1" container="processData"
createInstance="Yes"/>

<while condition="bpws:getContainerProperty(ProcessData,DiscussionOver)
=false">

<!--This calls the first Sub-Process-->
<invoke process="DiscussionCycle" partner="Internal"

 portType="tns:processPort operation="callDiscussionCycle"
 inputContainer="processData"/>
138 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
</while>
<invoke name="DerivedProcess2" partner="Internal" portType="tns:processPort"

 operation="callDerivedProcess2" inputContainer="processData"/>
</sequence>

</process>
</process>
<!-- A Derived Process -->
<process name="DerivedProcess2">
<!-- This starts the middle section of the process. -->
<containers>
<container name="processData" messageType="processDataMessage"/>

</containers>
<sequence>
<receive partner="Internal" portType="tns:processPort"

operation="callDerivedProcess2" container="processData"
createInstance="Yes"/>

<invoke name="AnnounceIssuesforVote" partner="WGVoter"
 portType="tns:emailPort" operation="sendVoteAnnouncement"
 inputContainer="processData"/>

<invoke name="DerivedProcess3" partner="Internal" portType="tns:processPort"

 operation="callDerivedProcess3" inputContainer="processData"/>
</sequence>

</process>
<!-- A Derived Process -->
<process name="DerivedProcess3">
<!--this calls the second Sub-Process. After the Collect Votes Sub-Process

times out, the rest of the process will be in the fault handler
of that process. Calls from there will loop back into other processes.-->

<containers>
<container name="processData" messageType="processDataMessage"/>

</containers>
<sequence>
<receive partner="Internal" portType="tns:processPort"

 operation="callDerivedProcess3" container="processData"
 createInstance="Yes"/>

<invoke name="CollectVotes" partner="Internal" portType="tns:processPort"
operation="callCollectVotes" inputContainer="processData"/>

</sequence>
</process>
<!-- A Derived Process -->
<process name="DerivedProcess4">
<containers>
<container name="processData" messageType="processDataMessage"/>

</containers>
<sequence>
<receive partner="Internal" portType="tns:processPort"

 operation="callDerivedProcess4" container="processData"
 createInstance="Yes"/>

<switch name="IssueswoMajority">
<case name="Yes" condition="NoMajority=true">
Copyright  2002, BPMI.org All Rights Reserved 139 / 158

November 13, 2002 BPMN Working Draft
<switch name="2ndTime">
<!-- name="Yes" -->
<case condition="bpws:getContainerProperty(ProcessData,VotedOnce)

=true">
<!--This is done to do the complex looping situation. -->
<invoke name="DerivedProcess1" partner="Internal"

portType="tns:processPort" operation="callDerivedProcess1"
inputContainer="processData"/>

</case>
<!-- name="No (otherwise)" -->
<otherwise>
<sequence>
<flow>
<invoke name="ReducetoTwoSolutions" partner="internal"

portType="tns:internalPort"
operation="sendReceiveSolutions"
inputContainer="processData"
outputContainer="processData"/>

<invoke name="EMail Voters that have to Change Votes"
 partner="WGVoter" portType="tns:emailPort"
 operation="sendVoteWarning" inputContainer="processData"/>

</flow>
<invoke process="DerivedProcess2" partner="Internal"

 portType="tns:processPort" operation="callDerivedProcess2"
 inputContainer="processData"/>

</sequence>
</otherwise>

</switch>
</case>
<otherwise name="Nootherwise">
<!-- This is one of the two ways to the end of the Process. -->
<empty/>

</otherwise>
</switch>

</sequence>
</process>
<!-- A User Built Process -->
<process name="DiscussionCycle">
<!--This defines the first Sub-Process. -->
<containers>
<container name="processData" messageType="processDataMessage"/>

</containers>
<sequence>
<receive partner="Internal" portType="tns:processPort"

operation="callDiscussionCycle" container="processData"
createInstance="Yes"/>

<invoke name="AnnounceIssuesforDiscussion" partner="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"
inputContainer="processData"/>

<flow>
<links>
<link name="Delay6daysfromDiscussionAnnouncementtoEMailDiscussion

DeadlineWarning"/>
140 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoCall"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>
<!-- This is the first of the three paths of the fork. -->
<scope>
<flow>
<invoke name="ModerateEmailDiscussion" partner="internal"

portType="tns:internalPort" operation="sendDiscussion"
inputContainer="processData"
outputContainer="processData"/>

<sequence>
<wait name="7days" for="P7D"/>
<throw faultName="7days_fault"/>

</sequence>
</flow>
<faultHander>
<catch faultName="7days_fault">
<invoke name="ReviewStatusofDiscussion" partner="internal"

portType="tns:internalPort"
operation="receiveDiscussionStatus"
inputContainer="processData" outputContainer="processData"/>

</catch>
</faultHander>

</scope>
<!-- This is the second of the three paths of the fork. -->
<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D">
<target linkName="Delay6daysfromDiscussionAnnouncementtoEMail

 DiscussionDeadlineWarning"/>
</wait>
<invoke name="EMailDiscussionDeadlineWarning" partner="WGVoter"

 portType="tns:emailPort" operation="sendDiscussionWarning"
 inputContainer="processData">

<source linkName="Delay6daysfromDiscussionAnnouncementtoEMail
 DiscussionDeadlineWarning"/>

</invoke>
<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partner="internal"

 portType="tns:internalPort" operation="receiveCallSchedule"
 inputContainer="processData" outputContainer="processData">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
 transitionCondition="bpws:getContainerProperty(processData,conCall)

=true"/>
<target linkName="Check Calendar for Conference Call to Call"

transitionCondition="(bpws:getContainerProperty(processData,
conCall)=true)=false"/>

</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName="CheckCalendarforConferenceCalltoWaituntil

 Thursday9am"/>
<target linkName="WaituntilThursday9amtoModerateConferenceCall

Discussion"/>
Copyright  2002, BPMI.org All Rights Reserved 141 / 158

November 13, 2002 BPMN Working Draft
</wait>
<invoke name="ModerateConferenceCallDiscussion" partner="internal"

 portType="tns:internalPort" operation="sendConCall"
 inputContainer="processData" outputContainer="processData">

<source linkName="WaituntilThursday9amtoModerateConferenceCall
Discussion"/>

<target linkName="ModerateConferenceCallDiscussiontoNoCall"/>
</invoke>
<!-- This is used as a message to be used for a pick in the "Collect Votes"

process -->
<invoke name="NoCall" partner="internal" portType="tns:processlPort"

operation="sendNo_Call" inputContainer="processData">
<source linkName="ModerateConferenceCallDiscussiontoNoCall"/>

</invoke>
<!-- name="otherwise" -->
<!-- This is used as a message to be used for a pick in the "Collect Votes"

process -->
<invoke name="Call" partner="internal" portType="tns:processlPort"

 operation="sendCall" inputContainer="processData">
<source linkName="CheckCalendarforConferenceCalltoCall"/>

</invoke>
</flow>

</sequence>
</process>
<!-- A User Built Process -->
<process name="CollectVotes">
<!--This is a process for the E-Mail Voting collection. It consists of an all

and a timeout event handler. The all will never complete normally since
there is an infinite loop inside. The timeout is intended to be the normal
way of ending the process. -->

<containers>
<container name="processData" messageType="processDataMessage"/>

</containers>
<sequence>
<receive partner="Internal" portType="tns:processPort"

operation="callCollectVotes" container="processData"
createInstance="Yes"/>

<scope>
<flow>
<sequence>
<wait name="7days" for="P7D"/>
<throw faultName="7days_fault"/>

</sequence>
<flow>
<links>
<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadline

Warning"/>
</links>
<!--This is the first of the four paths of the fork. -->
<pick name="ConferenceCallthisWeek">
<!-- name="Call" -->
<onMessage partner="internal" portType="tns:processlPort"

 operation="sendCall" Container="processData">
142 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
<invoke name="ModerateConferenceCallDiscussion" partner="internal"
portType="tns:internalPort" operation="sendConCall"
inputContainer="processData" outputContainer="processData"/>

<invoke name="NoCall" partner="internal" portType="tns:processlPort"
operation="sendNo_Call" inputContainer="processData"/>

</onMessage>
<!-- name="No Call" -->
<onMessage partner="internal" portType="tns:processlPort"

 operation="sendNo_Call" Container="processData">
<invoke name="Call" partner="internal" portType="tns:processlPort"

 operation="sendCall" inputContainer="processData"/>
</onMessage>

</pick>
<!-- This is the second of the four paths of the fork. -->
<invoke name="ModerateEMailDiscussion" partner="internal"

 portType="tns:internalPort" operation="sendDiscussion"
 inputContainer="processData"
 outputContainer="processData"/>

<!--This is the third of the four paths of the fork.-->
<wait name="Delay6daysfromVoteAnnouncement" for="P6D">
<target linkName="Delay6daysfromVoteAnnouncementtoEMailVote

 DeadlineWarning"/>
</wait>
<invoke name="EMailVoteDeadlineWarning" partner="WGVoter"

 portType="tns:emailPort" operation="sendVoteWarning"
 inputContainer="processData">

<source linkName="Delay6daysfromVoteAnnouncementtoEMailVote
 DeadlineWarning"/>

</invoke>
<!--This is the fourth of the four paths of the fork. This branch of the

all is intended to be an infinite loop that is eventually
interrupted by the Time Out. This is necessary since any voter can
change their vote until the deadline. -->

<while condition="1=0">
<sequence>
<receive name="ReceiveVote" partner="WGVoter"

 portType="tns:emailPort" operation="receiveVote"
 container="processData"/>

<invoke name="IncrementTally" partner="internal"
 portType="tns:internalPort" operation="sendReceiveTotal"
 inputContainer="processData" outputContainer="processData"/>

</sequence>
</while>

</flow>
</flow>
<faultHander>
<catch faultName="7days_fault">
<!-- The BPMN diagram shows that the Timer Intermediate Event connects

directly to the rest of the Process. Thus, they will show up in
this activity set. -->

<sequence>
Copyright  2002, BPMI.org All Rights Reserved 143 / 158

November 13, 2002 BPMN Working Draft
<invoke name="PrepareResults" partner="internal"
portType="tns:internalPort" operation="sendReceiveResults"
inputContainer="processData" outputContainer="processData"/>

<invoke name="EMailResultsofVote" partner="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"
inputContainer="processData"/>

<switch name="DidEnoughMembersVote">
<!-- name="No" -->
<case condition="bpws:getContainerProperty(ProcessData,NumVoted)>

 (.7)*(bpws:getContainerProperty(ProcessData,NumVWGM))">
<switch name="Havethemembersbeenwarned">
<!-- name="Yes" -->
<case condition="bpws:getContainerProperty(ProcessData,

VotersWarned)=true">
<sequence>
<invoke name="ReducenumberofVotingMembersandRecalculateVote"

partner="internal" portType="tns:internalPort"
operation="sendReceiveNumVoters"
inputContainer="processData"
outputContainer="processData"/>

<!--Some elements of the process were separated into a
 derived process since they would have been repeated. They
would have been repeated because they are arrived by
alternativepaths that do not close a set of alternative
paths. -->

<invoke name="DerivedProcess4" partner="Internal"
PortType="tns:processPort"
operation="callDerivedProcess4"
inputContainer="processData"/>

</sequence>
</case>
<!-- name="No (otherwise)" -->
<otherwise>
<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"

partner="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote"
inputContainer="processData"
outputContainer="processData"/>

<invoke name="DerivedProcess3" partner="Internal"
portType="tns:processPort"
operation="callDerivedProcess3"
inputContainer="processData"/>

</sequence>
</otherwise>

</switch>
</case>
<!-- name="Yes (otherwise)" -->
<otherwise>
<!-- Some elements of the process were separated into a derived

process since they would have been repeated. They would
have been repeated because they are arrived by alternative
that do not close a set of alternative paths. -->
144 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
<invoke process="DerivedProcess4" partner="Internal"
 portType="tns:processPort" operation="callDerivedProcess4"
 inputContainer="processData"/>

</otherwise>
</switch>

</sequence>
</catch>

</faultHander>
</scope>

</sequence>
</process>
Copyright  2002, BPMI.org All Rights Reserved 145 / 158

November 13, 2002 BPMN Working Draft
Appendix B: E-Mail Voting Process
BPML

This appendix provides the complete BPML code for the example BPMN business process
that is described in the section entitled “BPMN by Example” on page 103.

<process name="EMailVotingProcess">
<!--The process is started by a schedule time event that is defined in a

separate process and is not shown here.-->
<action name="ReviewIssueList" portType="tns:internalPort"

operation="sendIssueList">
<output property="NumIssues" element="..."/>

</action>
<switch name="AnyIssuesReady">
<case name="Yes">
<condition>NumIssues>0<condition/>
<!--A chunk of this process is separated into a derived nested
process so that it can be called from a complex loop.-->
<call name="DerivedProcess1"/>

</case>
<default name="Default">
<!--This is one of the two ways to the end of the Process.-->
<empty/>

</default>
</switch>
<context>
<property name="tns:NumVWGM" type="xsd:integer">
<value>10</value>

</property>
<property name="tns:VotedOnce" type="xsd:boolean">
<value>false</value>

</property>
<property name="tns:NoMajority" type="xsd:boolean">
<value>true</value>

</property>
<property name="tns:DiscussionOver" type="xsd:boolean">
<value>false</value>

</property>
<property name="tns:NumIssues" type="xsd:integer">
<value>0</value>

</property>
<property name="tns:NumVoted" type="xsd:integer">
<value>0</value>

</property>
<property name="tns:VotersWarned" type="xsd:boolean">
<value>false</value>

</property>
<property name="tns:ConCall" type="xsd:boolean">
<value>false</value>

</property>
146 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
<process name="DerivedProcess1">
<until>
<condition>DiscussionOver<condition/>
<!--This calls the first Sub-Process. -->
<call process="Discussion Cycle"/>

</until>
<call process="DerivedProcess2"/>

</process>
<process name="DerivedProcess2">
<!--This starts the middle section of the process.-->
<action name="AnnounceIssuesforVote" portType="tns:emailPort"

 operation="sendVoteAnnouncement"/>
<call process="DerivedProcess3">

</process>
<process name="DerivedProcess3">
<!--This calls the second Sub-Process. After the Collect Votes Sub-Process
times out, the rest of the process will be in the fault handler of
that process. Calls from there will loop back into other processes. -->
<call name="CollectVotes" process="CollectVotes"/>

</process>
<process name="DerivedProcess4">
<switch name="Issuesw/oMajority">
<case name="Yes">
<condition>NoMajority=true<condition/>
<switch name="2ndTime">
<condition>VotedOnce=true<condition/>
<case name="Yes">
<!--This is done to do the complex looping situation.-->
<call process="DerivedProcess1"/>

</case>
<default name="Nodefault">
<all>
<action name="ReducetoTwoSolutions" portType="tns:internalPort"

 operation="sendReceiveSolutions">
<output property="NoMajority" element="..."/>

</action>
<action name="EMailVotersthathavetoChangeVotes"

 portType="tns:emailPort" operation="sendVoteWarning"/>
<call process="DerivedProcess2"/>

</all>
</default>

</switch>
</case>
<default name="Nodefault">
<!--This is one of the two ways to the end of the Process.-->
<empty/>

</default>
</switch>

</process>
<process name="DiscussionCycle">
<!--This defines the first Sub-Process.-->
<action name="AnnounceIssuesforDiscussion" portType="tns:emailPort"

 operation="sendDiscussionAnnouncement"/>
Copyright  2002, BPMI.org All Rights Reserved 147 / 158

November 13, 2002 BPMN Working Draft
<all>
<call process="ModerateEmailDiscussionProcess"/>
<sequence>
<delay name="Delay6daysfromDiscussionAnnouncement" duration="P6D"/>
<action name="EMailDiscussionDeadlineWarning" portType="tns:emailPort"

 operation="sendDiscussionWarning"/>
</sequence>
<sequence>
<action name="CheckCalendarforConferenceCall"

 portType="tns:internalPort" operation="receiveCallSchedule">
<output property="ConCall" element="…"/>

</action>
<switch name="ConferenceCallinDiscussionWeek">
<case name="Yes">
<condition>ConCall=true<condition/>
<delay name="WaituntilThursday9am" instant="P6DT9H"/>
<action name="ModerateConferenceCallDiscussion"

 portType="tns:internalPort" operation="sendConCall"/>
<raise name="NoCall" signal="NoCall"/>

</case>
<default name="Default">
<raise signal="Call"/>

</default>
</switch>

</sequence>
</all>

</process>
<process name="ModerateEmailDiscussionProcess">
<action name="ModerateEmailDiscussion" portType="tns:internalPort"

 operation="sendDiscussion"/>
<context>
<schedule code="OneWeek" duration="P7D"/>
<fault>
<case code="OneWeek">
<action name="ReviewStatusofDiscussion" portType="tns:internalPort"

 operation="receiveDiscussionStatus">
<output property="DiscussionOver" element="…"/>

</action>
</case>

</fault>
</context>

</process>
<process name="CollectVotes">
<!--This is a nested process for the E-Mail Voting collection. It
consists of an all and a timeout event handler. The all will never
complete normally since there is an infinite loop inside. The
timeout is intended to be the normal way of ending the process.-->
<all>
<!--This is the first of the four paths of the fork. -->
<choice name="ConferenceCallthisWeek">
<event>
<synch name="Call" signal="Call"/>
148 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
<action name="ModerateConferenceCallDiscussion"
portType="tns:internalPort" operation="sendConCall"/>

<raise name="NoCall" signal="NoCall"/>
</event>
<event>
<synch name="NoCall" signal="NoCall"/>
<raise name="Call" signal="Call"/>

</event>
</choice>
<!--This is the second of the four paths of the fork. -->
<action name="ModerateEMailDiscussion" portType="tns:internalPort"

operation="sendDiscussion"/>
<!--This is the third of the four paths of the fork. -->
<sequence>
<delay name="Delay6daysfromVoteAnnouncement" duration="P6D"/>
<action name="EMailVoteDeadlineWarning" portType="tns:emailPort"

operation="sendVoteWarning"/>
</sequence>
<!--This is the fourth of the four paths of the fork.
This branch of the all is intended to be an infinite loop that
is eventually interrupted by the Time Out. This is necessary
since any voter can change their vote until the deadline. -->
<until>
<condition>1=0<condition/>
<action name="ReceiveVote" portType="tns:emailPort"

operation="receiveVote"/>
<action name="IncrementTally" portType="tns:internalPort"

operation="sendReceiveTotal">
<output property="AllItemsCompleted" element="..."/>
<output property="NoMajority" element="..."/>

</action>
</until>

</all>
<context>
<schedule code="OneWeek" duration="P7D"/>
<fault>
<case code="OneWeek">
<!--The BPMN diagram shows that the Timer Intermediate Event
connects directly to the rest of the Process. Thus, they will
show up in this activity set. -->
<action name="PrepareResults" portType="tns:internalPort"

operation="sendReceiveResults">
<output property="NumVoted" element="..."/>
<output property="NoMajority" element="..."/>

</action>
<action name="EMailResultsofVote"

portType="tns:emailPort"
operation="sendVotingResults"/>

<switch name="DidEnoughMembersVote">
<case name="No">
<condition>NumVoted>(.7)*(NumVWGM)<condition/>
Copyright  2002, BPMI.org All Rights Reserved 149 / 158

November 13, 2002 BPMN Working Draft
<switch name="Havethemembersbeenwarned">
<case name="Yes" condition="VotersWarned=true">
<condition>VotersWarned=true<condition/>
<action name="ReducenumberofVotingMembersandRecalculateVote"

portType="tns:internalPort"
operation="sendReceiveNumVoters"/>

<!--Some elements of the process were separated into a derived
nested process since they would have been repeated. They would have
been repeated because they are arrived by alternative paths
that do not close a set of alternative paths. -->
<call process="DerivedProcess4"/>

</case>
<default name="Nodefault">
<action name="ReannounceVotewithwarningtovotingmembers"

 portType="tns:emailPort" operation="sendReannounceVote">
<output property="VotersWarned" element="..."/>

</action>
<call process="DerivedProcess3"/>

</default>
</switch>

</case>
<default name="Yesdefault">
<!--Some elements of the process were separated into a derived nested
process since they would have been repeated. They would have been
repeated because they are arrived by alternative paths that do not
close a set of alternative paths.-->
<call process="DerivedProcess4"/>

</default>
</switch>

</case>
</fault>

</context>
</process>
</context>

</process>
150 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Appendix C: Glossary
Some of the terminology definitions listed here will differ from the definitions listed in the
Terminology section of the BPML specification (see BPML). Some of the terms that are
used in both specifications, but have different definitions are: activity, atomic activity, flow,
and process.

A
Activity (BPML): (from the BPML 1.0 specification1) An activity is a

component that performs a specific function within the
process, such as invoking a service or another process.
Activities can be as simple as sending or receiving a
message or as complex as coordinating the execution
of other processes and activities.

Activity (BPMN): An activity is a generic term for work that company
performs via business processes. An activity can be
atomic or non-atomic (compound). The types of
activities that are a part of a Process Model are:
Process, Sub-Process, and Task.

AND-Join: (from the WfMC Glossary2) An AND-Join is a point in
the Process where two or more parallel executing
activities converge into a single common thread of
Sequence Flow. See “Join.”

AND-Split: (from the WfMC Glossary3) An AND-Split is a point in
the Process where a single thread of Sequence Flow
splits into two or more threads which are executed in
parallel within the Process, allowing multiple activities
to be executed simultaneously. See “Fork.”

Artifact: An artifact is a graphical object that provides supporting
information about the Process or elements within the
Process. However, it does not directly affect the flow of
the Process. BPMN has standardized the shape of a
Data Object. Other examples of artifacts include critical
success factors and milestones.

Association: An Association is a dotted graphical line that is used to
associate information and artifacts with flow objects.
Text and graphical non-flow objects can be associated
with the flow objects and flows.

1. Some terms were italicized based on the current specification’s typographical conventions
2. The underlined terms in this definition were changed from the original definition. “Process” is used in place of

“workflow.” “Sequence Flow” is used in place of “control.”
3. See previous footnote.
Copyright  2002, BPMI.org All Rights Reserved 151 / 158
158

November 13, 2002 BPMN Working Draft
Atomic Activity (BPML): (from the BPML 1.0 specification1) An atomic activity is
an elementary unit of work that cannot be further
decomposed. Atomic activities can be used to start
other processes, perform calculations, or perform
operations.

Atomic Activity (BPMN): An atomic activity is an activity not broken down to a
finer level of Process Model detail. It is a leaf in the tree-
structure hierarchy of Process activities. Graphically it
will appear as a Task in BPMN.

C
Choreography: Choreography is an ordered sequence of B2B message

exchanges.

Collaboration: Collaboration is the act of sending messages between
any two Participants in a BPMN model. The two
Participants represent two separate BPML processes.

Collaboration Process: A Collaboration Process depicts the interactions
between two or more business entities.

Collapsed Sub-Process: A Collapsed Sub-Process is a Sub-Process that hides
its flow details. The Collapsed Sub-Process object uses
a marker to distinguish it as a Sub-Process, rather than
a Task. The marker is a small square with a plus sign
(+) inside.

Complex Activity (BPML): (from the BPML 1.0 specification2) A complex activity is
composed of other activities, and directs the execution
of these activities. The complex activity instructs these
activities to execute in sequential order or in parallel, to
execute once or repeatedly, or even whether to execute
or not conditionally. A process is a type of complex
activity.

Compound Activity (BPMN): A compound activity is an activity that has detail that is
defined as a flow of other activities. It is a branch (or
trunk) in the tree-structure hierarchy of Process
activities. Graphically, it will appear as a Process or
Sub-Process in BPMN.

1. Some terms were italicized based on the current specification’s typographical conventions
2. Some terms were italicized based on the current specification’s typographical conventions
152 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
D
Decision: Decisions are locations within a business process

where the Sequence Flow can take two or more
alternative paths. This is basically the “fork in the road”
for a process. For a given performance (or instance) of
the process, only one of the forks can be taken. A
Decision is a diamond. See “Or-Split.”

E
End Event: As the name implies, the End Event indicates where a

process will end. In terms of sequence flow, the End
Event ends the flow of the Process, and thus, will not
have any outgoing Sequence Flows. An End Event can
have a specific Result that will appear as a marker
within the center of the End Event shape. End Event
Results are Message, Process Error, Compensate,
Link, and Multiple. The End Event shares the same
basic shape of the Start Event and Intermediate Event,
a circle, but is drawn with a thick single line

Event Context: An Event Context is the set of activities that can be
interrupted by an exception (Intermediate Event). This
can be one activity or a group of activities in an
expanded Sub-Process.

Exception: An Exception is an event that occurs during the
performance of the process that causes normal flow of
the process to be diverted or stopped. Exceptions can
be generated by a time out, fault, message, etc.

Exception Flow: Exception Flow is a set of Sequence Flow that
originates from an Intermediate Event that is attached
to the boundary of an activity. The Process will not
traverse this flow unless an Exception occurs during the
performance of that activity (through an Intermediate
Event).

Expanded Sub-Process: An Expanded Sub-Process is a Sub-Process that
exposes its flow detail within the context of its Parent
Process. It will maintain its rounded rectangle shape,
but will be enlarged to a size sufficient to display the
flow objects within.
Copyright  2002, BPMI.org All Rights Reserved 153 / 158
158

November 13, 2002 BPMN Working Draft
F
Fault (BPML): (from the BPML 1.0 specification1) A Fault is an error

that occurs while executing an activity. Specifically, it is
an error that occurs while executing an operation. See
“Process Error.”

Flow (BPML): (from the BPML 1.0 specification2) A flow is the series
of executing activities resulting from the execution of an
activity set.

Flow (BPMN): A Flow is a graphical line connecting two objects in a
BPD. There are two types of Flow: Sequence Flow and
Message Flow, each with their own line style.

Flow Object: A flow object is one of the set of following graphical
objects: Start Event, Task, Sub-Process, Intermediate
Event, Decision, and End Event.

Fork: A fork is a point in the Process where a single flow is
divided into two or more flows. It is a mechanism that
will allow activities to be performed concurrently, rather
than serially. BPMN does not have a specific graphical
object to represent a fork. See “AND-Split.”

Interface Process: An interface process represents the interactions
between a private business process and another
process or participant.

Intermediate Event: An Intermediate Event is an event that occurs after a
Process has been started. It will affect the flow of the
process, but will not start or (directly) terminate the
process. An Intermediate Event will show where
messages or delays are expected within the Process,
disrupt the normal flow through exception handling, or
show the extra flow required for compensating a
transaction. The Intermediate Event shares the same
basic shape of the Start Event and End Event, a circle,
but is drawn with a thin double line.

J
Join: A Join is a point in the Process where two or more

parallel Sequence Flows are combined into one
Sequence Flow. BPMN does not have a specific
graphical object to represent a fork. See “AND-Join.”

1. Some terms were italicized based on the current specification’s typographical conventions
2. Some terms were italicized based on the current specification’s typographical conventions
154 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
L
Lane: An Lane is a sub-partition within a Pool and will extend

the entire length of the Pool, either vertically or
horizontally. Lanes are used to organize and categorize
activities within a Pool. The meaning of the Lanes is up
to the modeler.

M
Merge: A Merge is a point in the process where two or more

alternative Sequence Flows are combined into one
Sequence Flow. BPMN does not have a specific
graphical object to represent a fork. See “OR-Join.”

Message: A Message is the object that is transmitted through a
Message Flow. The Message will have an identity that
can be used for alternative branching of a Process
through the Event-Based Exclusive Decision.

Message Flow: A Message Flow is a dashed line that is used to show
the flow of messages between two entities that are
prepared to send and receive them. In BPMN, two
separate Pools in the diagram will represent the two
entities.

N
Normal Flow: Normal Flow is the flow that originates from a Start

Event and continues through activities via alternative
and parallel paths until it ends at an End Event.

O
OR-Join: (from the WfMC Glossary1) An Or-Join is a point in the

Process where two or more alternative activity(s)
Process branches re-converge to a single common
activity as the next step within the Process. (As no
parallel activity execution has occurred at the join point,
no synchronization is required.) See “Merge.”

OR-Split: (from the WfMC Glossary2) An OR-Split is a point in the
Process where a single thread of Sequence Flow
makes a decision upon which branch to take when
encountered with multiple alternative Process
branches. See “Decision.”

1. The underlined terms in this definition were changed from the original definition. “Process” is used in place of
“workflow.” “Sequence Flow” is used in place of “control.”

2. See previous footnote
Copyright  2002, BPMI.org All Rights Reserved 155 / 158
158

November 13, 2002 BPMN Working Draft
P
Parent Process: A Parent Process is the Process that holds a Sub-

Process within its boundaries.

Participant: A Participant is a business entity, usually a company,
company division, or a customer, which controls or is
responsible for a business process. If Pools are used,
then a Participant would be associated with one Pool.

Pool: A Pool is a “swimlane” and a graphical container for
partitioning a set of activities from other Pools, usually
in the context of B2B situations. It is a square-cornered
rectangle that is drawn with a solid single line. A Pool
acts as the container for the Sequence Flow between
activities. The Sequence Flow can cross the
boundaries between Lanes of a Pool, but cannot cross
the boundaries of a Pool. The interaction between
Pools, e.g., in a B2B context, is shown through
Message Flows.

Private Business Process: A private business process is internal to a specific
organization and is the type of process that has been
generally called a workflow or BPM process. A single
private business process will map to a single BPML
document.

Process (BPML): (from the BPML 1.0 specification1) A process is a
progressively continuing procedure consists of a series
of controlled activities that are systematically directed
toward a particular result or end.

Process (BPMN): A Process is any activity performed within a company
or organization. In BPMN a Process is depicted as a
network of flow objects, which are a set of other
activities and the controls that sequence them.

R
Result: A Result is consequence of reaching an End Event.

Results can be of different types, including: Message,
Process Error, Compensate, Link, and Multiple.

S
Sequence Flow: A Sequence Flow is a solid graphical line that is used to

show the order that activities will be performed in a
Process. Each Flow has only one source and only one
target.

1. Some terms were italicized based on the current specification’s typographical conventions
156 / 158 Copyright  2002, BPMI.org All Rights Reserved

BPMN Working Draft November 13, 2002
Start Event: A Start Event indicates where a particular Process will
start. In terms of sequence flow, the Start Event starts
the flow of the Process, and thus, will not have any
incoming Sequence Flows. A Start Event can have a
Trigger that indicates how the Process starts: Message,
Timer, Rule, Link, or Multiple. The Start Event shares
the same basic shape of the Intermediate Event and
End Event, a circle, but is drawn with a single thin line

Sub-Process: A Sub-Process is Process that is included within
another Process. The Sub-Process can be in a
collapsed view that hides its details. A Sub-Process can
be in an expanded view that shows its details within the
view of the Process in which it is contained. A Sub-
Process shares the same shape as the Task, which is a
rectangle that has rounded corners.

Swimlane: A swimlane is a graphical container for partitioning a set
of activities from other activities. BPMN has two
different types of swimlanes. See “Pool” and “Lane.”

T
Task: A Task is an atomic activity that is included within a

Process. A Task is used when the work in the Process
is not broken down to a finer level of Process Model
detail. Generally, an end-user and/or an application are
used to perform the Task when it is executed. A Task
object shares the same shape as the Sub-Process,
which is a rectangle that has rounded corners.

Token: A Token is a descriptive construct used to describe how
the flow of a process will proceed at runtime. By
tracking how the Token traverses the flow objects, gets
diverted through alternative paths, and gets split into
parallel paths, the normal sequence flow should be
completely definable.A Token will have a unique identity
that can be used to separate multiple Tokens that may
exist because of concurrent process instances or the
splitting of the Token for parallel processing within a
single process instance.

Transaction (BPML): (from the BPML 1.0 specification1) a transaction is a
logical unit of work that must be executed in an all-or-
nothing manner. Once the transaction completes, its
effects can be reverted by performing compensation.

1. Some terms were italicized based on the current specification’s typographical conventions
Copyright  2002, BPMI.org All Rights Reserved 157 / 158
158

November 13, 2002 BPMN Working Draft
Transaction (BPMN): A Transaction is one or more activities that perform
work that cannot be undone with a simple rollback. A
separate set of activities will be required to compensate
for the work done within the Transaction. An
Intermediate Event and Transaction Flow define the
compensation activities.

Transaction Flow: Transaction Flow is defines the set of activities that are
performed during the roll-back of a transaction to
compensate for activities that were performed during
the normal flow of the Process.

Trigger: A Trigger is a mechanism that signals the start of a
business process. Triggers are associated with a Start
Events and Intermediate Events and can be of the type:
Message, Timer, Rule, Link, and Multiple.
158 / 158 Copyright  2002, BPMI.org All Rights Reserved

	Abstract
	Status of this Document
	Acknowledgements
	Notice of BPMI.org Policies on Intellectual Property Rights & Copyright
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	1. Introduction
	1.1 Conventions
	1.1.1 Typographical and Linguistic Conventions and Style

	1.2 Dependency on Other Specifications
	1.3 Conformance

	2. BPMN Overview
	2.1 BPMN Scope
	2.1.1 Uses of BPMN
	2.1.2 Diagram Point of View
	2.1.3 Extensibility of BPMN and Vertical Domains

	3. Business Process Diagram Concepts
	3.1 BPD Core Element Set
	Table 1 BPD Core Element Set

	3.2 BPD Complete Set
	Table 2 BPD Complete Element Set

	3.3 Use of Text, Color, and Lines in a Diagram
	3.4 Flow Object Connection Rules
	3.4.1 Sequence Flow Rules
	Table 3 Sequence Flow Connection Rules

	3.4.2 Message Flow Rules
	Table 4 Message Flow Connection Rules

	4. Business Process Diagram Graphical Objects
	4.1 Events
	4.1.1 Start
	Figure 1 A Start Event
	Table 5 Start Event Types
	Table 6 Start Event Attributes
	Figure 2 Message Flow connected to a Start Event
	Figure 3 Process Instantiation through Message Receiving Task

	4.1.2 End
	Figure 4 End Event
	Table 7 End Event Types
	Table 8 End Event Attributes
	Figure 5 Message Flow leaving an End Event
	Figure 6 Message Flow from Task that precedes the End Event

	4.1.3 Intermediate
	Figure 7 Intermediate Event
	Figure 8 Task with an Intermediate Event attached to its boundary
	Table 9 Intermediate Event Types
	Table 10 Intermediate Event Attributes

	4.2 Activities
	4.2.1 Processes
	Table 11 Process Attributes

	4.2.2 Sub-Process
	Figure 9 Collapsed Sub-Process
	Figure 10 Expanded Sub-Process
	Figure 11 Collapse Sub-Process Marker Combinations
	Table 12 Sub-Process Attributes

	4.2.3 Task
	Figure 12 A Task Object
	Table 13 Task Attributes

	4.3 Decisions
	Figure 13 A Decision
	4.3.1 Exclusive
	Figure 14 A Data-Based Decision Example
	Figure 15 An Event-Based Decision Example
	Table 14 Decision Attributes

	4.3.2 Inclusive

	4.4 Pools and Lanes
	4.4.1 Pool
	Figure 16 A Pool
	Figure 17 Message Flow connecting to the boundaries of two Pools
	Figure 18 Message Flow connecting to flow objects within two Pools
	Table 15 Pool Attributes

	4.4.2 Lane
	Figure 19 Two Lanes in a Pool
	Table 16 Lane Attributes

	4.5 Data Object
	Figure 20 A Data Object
	Figure 21 A Data Object associated with a Sequence Flow
	Figure 22 Data Objects shown as inputs and outputs
	Table 17 Data Object Attributes

	4.6 Text Annotation
	Figure 23 A Text Annotation
	Table 18 Text Annotation Attributes

	5. Connecting Objects
	5.1 Graphical Connecting Objects
	5.1.1 Sequence Flow
	Figure 24 A Sequence Flow

	5.1.2 Message Flow
	Figure 25 A Message Flow
	Figure 26 Message Flow connecting to the boundaries of two Pools
	Figure 27 Message Flow connecting to flow objects within two Pools
	Figure 28 Message Flow connecting to boundary of Sub-Process and Internal objects

	5.1.3 Association
	Figure 29 An Association
	Figure 30 A directional Association
	Figure 31 An Association of Text Annotation
	Figure 32 An Association connecting a Data Object with a Flow

	5.2 Sequence Flow Mechanisms
	5.2.1 Normal Flow
	Figure 33 A Process with Normal flow
	Figure 34 A Process with Expanded Sub-Process without a Start Event and End Event
	Figure 35 A Process with Expanded Sub-Process with a Start Event and End Event
	Figure 36 A Data-Based Decision Example
	Figure 37 An Event-Based Decision Example
	Figure 38 Three variations of a Process
	Figure 39 Merging - the joining of alternative paths
	Figure 40 The Split-Merge Relationship is not Fixed
	Figure 41 Forking - the creation of parallel paths
	Figure 42 Joining - the joining of parallel paths
	Figure 43 The Fork-Join Relationship is not Fixed
	Figure 44 Flow Condition of One
	Figure 45 Flow Condition of All
	Figure 46 A Complex Flow Condition
	Figure 47 A Task with a Loop Marker
	Figure 48 A Collapsed Sub-Process with a Loop Marker
	Figure 49 An Expanded Sub-Process with a Loop Marker
	Figure 50 An Until Loop
	Figure 51 A While Loop
	Figure 52 Potentially an invalid model
	Figure 53 Improper Looping

	5.2.2 Link Events
	5.2.3 Spawning and Synchronizing Activities
	5.2.4 Exception Flow
	Figure 54 A Task with Exception Flow (Interrupts Event Context)
	Figure 55 A Sub-Process with Exception Flow (Interrupts Event Context)

	5.2.5 Transaction Compensation Flow
	Figure 56 A Task with Transaction Compensation Flow

	5.2.6 Ad Hoc
	Figure 57 A Collapsed Ad Hoc Sub-Process
	Figure 58 An Expanded Ad Hoc Sub-Process
	Figure 59 An Ad Hoc Process for Writing a Book Chapter

	6. BPMN by Example
	Figure 60 E-Mail Voting Process
	6.1 The Beginning of the Process
	Figure 61 The Start of the Process
	6.1.1 Mapping to BPEL4WS
	Example 1 BPEL4WS Sample for Beginning of E-Mail Voting Process

	6.1.2 Mapping to BPML
	Example 2 BPML Sample for Beginning of E-Mail Voting Process

	6.2 The First Sub-Process
	Figure 62 “Discussion Cycle” Sub-Process Details
	6.2.1 Mapping to BPEL4WS
	Example 3 BPEL4WS Sample of “Discussion Cycle” Sub-Process Details

	6.2.2 Mapping to BPML
	Example 4 BPML Sample of “Discussion Cycle” Sub-Process Details

	6.3 The Second Sub-Process
	Figure 63 “Collect Votes” Sub-Process Details
	6.3.1 Mapping to BPEL4WS
	Example 5 BPEL4WS Sample that sets up the Access for the Second Sub-Process
	Example 6 BPEL4WS Sample of the Second Sub-Process

	6.3.2 Mapping to BPML
	Example 7 BPML Sample that sets up the Access for the Second Sub-Process
	Example 8 BPML Sample of the Second Sub-Process

	6.4 The End of the Process
	Figure 64 The last segment of the E-Mail Voting Process
	6.4.1 Mapping to BPEL4WS
	Example 9 Sample BPEL4WS code for the last section of the Process
	Example 10 Sample BPEL4WS code for derived process for repeated elements

	6.4.2 Mapping to BPML
	Example 11 Sample BPML code for the last section of the Process
	Example 12 Sample BPML code for derived nested process for repeated elements

	7. Mapping to Execution Languages
	8. References
	8.1 Normative
	8.2 Non-Normative

	9. Open Issues
	Appendix A: E-Mail Voting Process BPEL4WS
	Appendix B: E-Mail Voting Process BPML
	Appendix C: Glossary

