Business Process Execution Language

for Web Services

Version 1.1

Authors (alphabetically):

Tony Andrews, Microsoft
Francisco Curbera, IBM
Hitesh Dholakia, Siebel Systems

Doug Smith, Siebel Systems
Satish Thatte, Microsoft (Editor)
Ivana Trickovic, SAP

Sanjiva Weerawarana, IBM

Copyright© 2002, 2003 BEA Systems, International Business Machines Corporation,
Microsoft Corporation, SAP AG, Siebel Systems. All rights reserved,,

JPermission to copy and display the "Business Process Execution Language for Web S@[Vlc,e,s, -
Specification, version 1.1 dated May 5, 2003" (hereafter "the BPEL4WS Specification"),
any medium without fee or royalty is hereby granted, provided that you include the

following on ALL copies of the BPEL4WS Specification, or portions thereof, that you make:

1. A link to the BPEL4WS Specification at these locations:

http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html|/bpell-
1.asp

http://ifr.sap.com/bpel4ws/

http://www.siebel.com/bpel

\ { Formatted: German Germany

_ -] Style Definition: Heading 1: Outline
numbered + Level: 1 + Numbering
Style: 1,2, 3, ... + Startat: 1 +
Alignment: Left + Aligned at: 0" +

. Tab after: 0" + Indent at: 0.4"

Style Definition: Heading 2: Outline
numbered + Level: 2 + Numbering
Style: 1,2, 3, ... + Startat: 1 +
Alignment: Left + Aligned at: 0" +

' | Tab after: 0" + Indent at: 0.4"

Style Definition: Heading 3: Outline
numbered + Level: 3 + Numbering
Style: 1,2, 3, ... + Startat: 1 +
Alignment: Left + Aligned at: 0" +

| \| Tab after: 0" + Indent at: 0.4"

Style Definition: Heading 4: Outline
numbered + Level: 4 + Numbering
Style: 1, 2, 3, ... + Startat: 1 +
Alignment: Left + Aligned at: 0" +

| Tab after: 0" + Indent at: 0.4"

Style Definition: Heading 5: Outline
" | numbered + Level: 5 + Numbering

““ Style: 1,2, 3, ... + Start at: 1 +

1| Alignment: Left + Aligned at: 0" +

| Tab after: 0.7" + Indent at: 0.7"

{ Style Definition
;\‘[Style Definition
‘ ‘{ Style Definition
\x [Style Definition
| [Style Definition
[Deleted: 31 March
[Field Code Changed

. \\ \\\{Formatted German Germany
| v \\
L
o

)
‘o‘\\\ ‘1\ \{Formatted German Germany

—
[
—

\\ \ \
\

\\ \\\

Formatted: German Germany

\ { Formatted: German Germany
‘\ \\ \ [Field Code Changed
\ \[Field Code Changed

\\ !
[‘I Formatted: German Germany
\‘ \

\[Field Code Changed

\

‘\\ { Formatted: German Germany
\
‘\\ [Formatted: German Germany

{ Field Code Changed

R \‘[Formatted: German Germany

Y [Formatted: German Germany

— —| = = =
— —| = = =
o U 0 0 L

Formatted

(
(

Deleted: The presentation,

—
~
—

2. The copyright notice as shown in the BPEL4WS Specification:

BEA, IBM, Microsoft, SAP AG and Siebel Systems (collectively, the “Authors”) agree to grant
you a royalty-free license, under reasonable, non-discriminatory terms and conditions, to
patents that they deem necessary to implement the Business Process Execution Language
for Web Services Specification.

THE Business Process Execution Language for Web Services SPECIFICATION IS PROVIDED
"AS IS," AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE BPEL4WS SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT
THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION
OF THE BPEL4WS SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the BPEL4WS Specification or its contents without
specific, written prior permission. Title to copyright in the BPEL4AWS Specification will at all
times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract

This document defines a notation for specifying business process behavior based on Web
Services. This notation is called Business Process Execution Language for Web Services
(abbreviated to BPEL4WS in the rest of this document). Processes in BPEL4WS export and
import functionality by using Web Service interfaces exclusively.

Business processes can be described in two ways. Executable business processes model
actual behavior of a participant in a business interaction. Business protocols, in contrast,
use process descriptions that specify the mutually visible message exchange behavior of
each of the parties involved in the protocol, without revealing their internal behavior. The
process descriptions for business protocols are called abstract processes. BPEL4WS is meant
to be used to model the behavior of both executable and abstract processes.

BPEL4WS provides a language for the formal specification of business processes and
business interaction protocols. By doing so, it extends the Web Services interaction model
and enables it to support business transactions. BPEL4WS defines an interoperable
integration model that should facilitate the expansion of automated process integration in
both the intra-corporate and the business-to-business spaces.

Status

This is a second public draft release of the BPEL4AWS specification. BPEL4AWS represents a
convergence of the ideas in the XLANG and WSFL specifications. Both XLANG and WSFL are
superseded by the BPEL4WS specification.

Deleted: BPEL4WS and related

. 7 specifications are provided as-is
’’’ and for review and evaluation
only. The authors hope to solicit
your contributions and
suggestions in the near future.
The authors make no warrantees
or representations regarding the
specifications in any manner
whatsoever.q

{ Deleted: 8

!
i

Field Code Changed

1/
/

Deleted: 10
[

.. [10

—

{
i
/ 1 { Field Code Changed
/il
g

/ Field Code Changed
Contents ,

/
Deleted: 11

/
{ Deleted: 12

1 INTRODUCTION / / /{ Field Code Changed

[Field Code Changed

. [12

—

2 NOTATIONAL CONVENTIONS {Deleted: 12

!
/ [Field Code Changed

—| = = — : :
= =] = = — =
a| (D] w - (=) @
[y e — — =
N U (N N

3 RELATIONSHIP WITH WSDL 11 / "? {De'ete"' 4.1.2 Feature
[Field Code Changed 1
4 WHAT CHANGED FROM BPEL4WS 1.0 12, / ,,' {De'ete" 12
// /

Deleted: 4.1.3 Other changes

L

Formatted

Hil
[Field Code Changed
1

4, 1, ,1,C,Qr,e,c,o,n,c,ept,s,gl,a [lflga,tlo,n, B R] él /‘,/////,// [Field Code Changed (oo [16] 1
'4L1J g J,ejmlrlolgqy, gbénq QSJ e A R S S = R S A S B B S S R R R R S =B RS 12' /{/ ///) 7 { Deleted: 12]
A.1.3 FEATUIE CaNgOS vttt sttt ettt et te et ee et eee e eeeeasee e seeeaseseeaseeasasenseeeasasensass 12 /" {[:e:: z°:e z:ange: (...[17]
ield Code Change .. [18]
CORE CONCEPTS AND USAGE PATTERNS .cccooccsssscssssssessssssssssssssssssssesssssesssssesssssesssssesss ?e:‘tz‘ d”Ch y J
Field Code Change: .. [19]
/" { Deleted:
6 DEFINING A BUSINESS PROCESS 14, - }F_e I:: dﬂCh -)
ield Code Change . [20]
/
/ .
6, ,]-,Ipl,tl,a,l ,EXQD"Ple, R L L R] él /4 . /:[[:el::zd;jlétch d Jj
- el ode ange: 21
6 ,Z,Th,e, St,rygt,u,rg pf ,a,B,u,Slrle,S,s ,P,rgge,s,s (e e el el el é /;/jf { Deleted- 24 [] J
6, 3 7L§1[lguage7 E)St,epg,bl,l l,tY B R P RN LU R LR R PR PR T :'143 = = [Field Code Changed [ﬁ
,4, Ibg ,Llf,EGXCJe, Qf a ,B,U§Ln,e,s§ ,P[Qc,e,s§, EE R A ,AL _) { Deleted: 31]
~_{ Field Code Changed (231
JPARTNER LINK TYPES, PARTNER LINKS, AND ENDPOINT REFERENCES.ccccccee0eeneee 32 {Deleted' 31]
N\ Deleted: SERVICE LINKIN(___ [24]
ZoL Partner LiNK Ty DO vuu ettt ittt ettt ettt ettt ettt it et ettt ittt iesasesesasiaeineieeneieens D30y \\ [Field Code Changed - [25]
‘7727 Pgttl:lgt I:ml(§:L'L'L'L'L'J'J'JL'L'L'L'L'J'J'JL'L'L'L'L'J'J'J:L'L'L'L'L'J'J'JL'L'L'L'L'J'J'JL'L'L'L'L';'J'JL' = ‘34 vv \ \[Deleted: Q]
-Z ;,B,llslrle,S,S ,P,aIEnEIS, T O S O T O T OO SO U 35' \ ' \\ : [Field Code Changed - [26]
.4 End t Ref 36, \ \\ WA [Field Code Changed [27]
16 Yo)1 |l 2A=] F=T =Y o Tl N e
777 \‘ ‘\ Deleted: 7.1 Service Linking }
8 MESSAGE PROPERTIES 36. »\\ w % Field Code Changed [zle
Deleted: 33
N \ 1\ { Field Code Changed [ﬂ
BL]',Mnga,tlofnfL'L'L'L'L'J'J'J:L'L'L'L'L'J'J:L'L'L'L'L'J::L'L'L'L'L'J::L'L'L'L'L'J::L'L'L'L'L'L'J::L‘L‘L' ||l \ \[e ode ange [29]
‘8,2 ,D,eflplnq PrOD,eEt,Ie,S,'L'L'L' e N A R R e N R = = L LR RN ‘:‘ \\\\ \ I[Deleted 7 2 Partners }
il \\ Field Code Changed .. [30]
9 DATA HANDLING »“ \ ! (eteted: 34)
M' i [Field Code Changed (.31
9.1, Expressions ‘,‘\g, “\,\\)\\ {Deleted 7.3 Service —[32]
p,,,,,,,'L",'L',";';';L'L'L'L';';';'; R i) ,m. \ \[F 1d Code Ch " .
,1,'97 599 Le,a, ,E,Xprggslqn,s,' el eyl el el el L'LAFOV ‘:\‘I‘\{ ! i oce ange = [33]
“‘” % \ i \\[Deleted:]
i o
'.m i 1 [Formatted . [34]
4 ‘\“u‘l\s ‘[Field Code Changed (351
gy
'“”:.\QH i { Deleted: 8 Message Properties }
\‘,‘.\1\» 0 \\\[Field Code Changed (D361
m"‘ :»' \“[Deleted: 36]
il i
\.Il\‘:‘»“ \‘w \[Formatted [ﬁ
'l‘l‘“ig i [Formatted .. [38]
\'.'.‘n(u \\'[Field Code Changed (. [39]]
o Hv
il)
er‘:\‘“\«“[Field Code Changed . [40]
Y ‘x[)
- [41]
... [42]
... [43]
ﬁ

|
|
i (Field Code Chanaed

{Deleted: 3 Duration
/

)/ [Field Code Changed

... [47

=

J /{ Deleted: 40

/
K /_ { Field Code Changed

/
/7" | Field Code Changed

9.1.2 Deadling-Valued EXPreSSiONS. .. uuuee ettt teaneeteantaeaeanssaeasaneaeaesnenesesnsnsnesnsnens A4Q, " / //{Deleted: p——"
9.1.3 Duration-Valued EXPreSSiONS. ...t ittitteieseineeseassasenesnerneanesnsasenesnesneensses A0, -7 { Deleted: 40
9.1.4 General EXPressionsoeeeveeesiesisessiesiesieiiiesieieieniesieieieeneneenee. 4070 [Field Code Changed
9.2 VaITEDIES .o isnssssnssns 41, { FoOrmatted
9.3 ASSIGMMENL ...t -,--,-;,‘1,2;};\\\\\{ Field Code Changed
9.3.1 Type Compatibility in ASSIGNMENt,...uuiiiiiiiiiiiiiiiiiiiiiiieiieeeiiieeeieeeiieeeeiieeeeeees, 43 \;\\\\\\\\\ {De'etem 9.2 Variables
9.3.2 ASSIGNMENt EXAMPI.vesesiiiiiiiieeisrss e A4 {\\\‘ .\ Fietd Code Changed ... [53

W
N {Deleted: 40

(Y
|) [Field Code Changed

\

... [54

S

\‘\\\\\\ Deleted: 9.3 Assignment
I
10,1 Message Correlationttt it i A6, ',‘vﬂ\“‘ \\ \\\\[Field Code Changed 1
1! “‘\\ B
-1 Q,Z,nglrﬂ Dq gﬂg ,U,S,in,q 99 Er,el,a,tl,on,s,e,t§ et vt v rrsurraurerrsrsenrrerreavssussrrravresvravreriee ‘4L7: ‘1’;[1\‘“‘“‘::\\‘\\(Deleted: 41
« x““r»“(“ ! (Formatted
\v““‘ \

Field Code Changed

—| = — | = —| =
(S A% (9,1 ol (U (L FYREN
N (o ul N| (=] [[© O| |[co
—| = — = = = —| =
(— (N (— (N L (— (—

il
I
\

Deleted: .1 Type Compatibility in

—J

\

—

Deleted: 42

[
il

i (Field Code Changed
il
(

! ”m |\ Field Code Changed

!
‘“\“Y‘\‘\
“\»‘\l\y“ﬂ“ Deleted: 2... Example
i)

... [60

]

W

el
L

iy
!
i

Ay

(LAt

]
M
L

i

| M‘ W

il
iy .
Vi ‘;‘1“‘,,\‘ Deleted: 10 Correlation

i

(
[
(
|1}/ [Field Code Changed
{

f&fs“‘(:»“i‘y\?‘\ Field Code Changed ... [64]
E‘gﬁi‘:«‘fﬁ[Deleted: 44
" ’;‘”‘ “ Formatted
! g.‘ Formatted
11111/ Field Code Changed
) “‘\“ Deleted: .1 MESSAGE
::'“ 'ﬂ “y Field Code Changed ... [68]
“.“‘w: Deleted: 45
‘6=2Lm|’w; f il Formatted
&:}M \')“ y “ Field Code Changed

eV

| Deleted: 2 Defining and U

—
~N

1

i il

| — —| = —| = = = = = — —
NN ~N N| [| [[|] [ul ul
B W N (=10} N| O] [l W IN] [O 0
= = —| =] = —i | = = | = — —

A— A— A— - [A AN—

—

T ﬂ‘“\““‘u(Fi
i) Field Code Changed]
66 wwim il
i)/ Deleted: 46
67, |l i
‘#\m: ,:' ‘u‘\\‘w\«‘[Formatted
e ! Field Code Changed
13 SCOPES 69, \\W; i
.1..14;w;-'! ‘ﬂ{ Deleted: 11 Basic Activities
UL R
R
IR
1‘1‘1‘1‘41‘1.\::‘\&““‘“ h\)‘[Field Code Changed . I751
||/ Deteted: 47
it
5 :1“:“% "ﬁw“ Formatted
1
1\:~.g%w Formatted
i
-'m Field Code Changed
e .
“m /| Deleted: 11.1 STANDARD 7

Formatted

| Field Code Changed

— = = = = =) e e

[o2) | 00| [co| oo o] NN N

ul AW [N = O V] o] [N [o

— = = = = = = = =] =
(— (— -

=
[ee]
(o))
—

J;

Pepp—

{ Deleted: 71
/

)/ { Field Code Changed

... [89

—

// [Deleted: 71
/

/
///// //,{ Field Code Changed

/" 5
v //// /{ Field Code Changed

—

/
J //{ Deleted: 72

/ /
Ly { Deleted: 72
/7 /

74 ////// {Deleted: 74

| Field Code Changed
e A

.. [94

~ - { Deleted: 75

*** ‘@ﬂ(* - { Field Code Changed

... [95

&\ : h ‘[Deleted: 78

N

..80, ' |Field Code Changed
N { Field Code Changed

80, \\\‘\

\ N\ {Deleted: 79
\

82\

\ ‘\\\\\\k{ Field Code Changed

13.5.3 EN@DIEMENE OF EVENES eviiieiiiiiiiiiiieiiieeeees sttt e e e e s st eeeeeeeeseanne 82 '\ "\ (Deleted: 80
\ \

\ \
83 \\\\t\ \\{ Field Code Changed

\ \
\

\
.. 83 \\\\\\\\{ Deleted: 80

LA
|1\ [Field Code Changed
\

... [100]

8 \
é_\ﬁ \ 1\
00 (Deleted: 82
\ '

.Si IR -
\\ \\\\ A\ \\{ Field Code Changed

... [101

VAL
84, AN \\\\{ Deleted: 82
TR

[Field Code Changed

.. [102]

W

\\ \\\{ Deleted: 83

L

\\ \\{ Field Code Changed

... [103]

\
| [Deleted: 83
VAN

‘ {Deleted: 84

Y

LI
W
W\

\ \
LA

| Field Code Changed
TR
11| Field Code Changed

—

\
Deleted: 84

Field Code Changed

... [106]

Deleted: 84

Field Code Changed

.. [107]

‘\‘\
\ \\| Deleted: 85

\

\

.. [108]

Deleted: 85

(
(

\ (Field Code Changed
(Field Code Changed

... [109

—

| Deleted: 85

Field Code Changed

.. [110

—

'\
Deleted: 86

16 EXAMPLES | Field Code Changed

.11l

—

.. [112

—

|| Deleted: 86
g
Deleted: 86

o1 Bl ELEL sl gl Bl il Bisl | gl ol Bl | B sl gl | Bl | el | sl sl

.. [113]

A
)

)

' Field Code Changed

L)

'\ Deleted: 14.6 Compensation
|

.. [114

=

wlii| Deleted: 87

whil
wly N\‘ \
whit

Field Code Changed

... [115]

! n“ru‘
ul (et

\|‘1‘«“{\v
il
iy

Field Code Changed

.. [116

—

L1
bty
uhil

|
'

aly!| Formatted

.. [117

{l
V[Field Code Changed

\
|

... [118

Al

Wi
Wl

(

(

(

(

(

(

(

[-
i

bl { Field Code Changed

{

(

(

(

{

(

(

(

(

(

.. [119

... [120

| kel Kl £l &

{ Formatted
/

. [124

=

//{ Deleted: 89

////’ [Field Code Changed

Deleted: .1... Description

—

16,1, ShiPDING SOIVICE, e iiittestt ittt ettt s st e ettt ettt e e et e ettt et e eeeereeieesieeessaeesennasn 89.“ | Field Code Changed
16.1.1 Service DeSCIIDTION Lvvvrrrresesssiieessseeeeeeersesiieieesseeeeerereseseeiisiisseeerereseeassiaees A9Q, Field Code Changed - [128
. ‘[Deleted 16.1.2 Message .. [129
J§L1J2,MQS§§QQE[erIEIgS,::L'L'L'L'L';';::L‘L‘L'L';:::L‘L‘:L';:::L‘L‘L‘L';::::::;‘;::'- A91' \ \\ [Fleld Code Changed [130
'1671,§,Pr0,c,e§§ e R B AR R AR SRR AR AR R R RE AR RS R AR SR R R R AR AR R R R R AR R A AR AR R 92' \\\\\ \{Deleted 90
6.2 Loan Approval

95, \\\\\ \\ { Field Code Changed
\

. [131]

77 96, | }\ ‘\\) {Deleted: 16.1.3 Process

) B Bk o

\\\

17 SECURITY CONSIDERATIONS

J8 ACKNOWLEDGMENTS

19 REFERENCES

APPENDIX A — STANDARD FAULTS

APPENDIX B — ATTRIBUTES AND DEFAULTS

' (Formatted

} i Deleted: 95
i W

. [132

—

{ Deleted: 91
\

‘lm \Q \\\ Deleted: 16.2 Loan Approval
it

\ \{Deleted 92

o J

Field Code Changed

\'| Field Code Changed

\

.. [136

'| Formatted

. [137

/| Field Code Changed

.. [138

—

il
i
[Deleted: 16.2.1 Service
(
(
(

.. [139

.. [140

]

Deleted: 16.2.2 Process

APPENDIX C — COORDINATION PROTOCOL,

|
(LK

i

O

s
I W !

'\ Deleted: 16.3 Multiple St

. [141

| Deleted: 96

' Formatted

—

o
[
! [Field Code Changed
(
(
(

Field Code Changed

.. [143

.. [144

=

Llulllulplu%%%%ullli;l%l_%%lésull%glgll_lllié%

i 0
116 ::‘}\" 4’;‘“\“”\“\[Deleted: 98
!
"“‘l‘ w ‘,H‘[Field Code Changed
! J I
'l:',"H iy [Formatted
116, H ity
iLul
134 1],'.'.‘:"‘““ \ \)‘[Field Code Changed .. [147
uummﬁ(“a‘: «\[Deleted: 16.3.1 Service
Il ¥t
Message Properties 5;@@@@ R I R R LT LS R R TN T Y] ;-413 %z::&"%m““\\“‘*d[Field Code Changed i
I u
\\’ulllm"'{;‘ ‘;WY\“V“[Deleted: 101
VM“
<! "\er‘l ﬂ[Field Code Changed .. [150]
Hlllll)
“\ll‘l"'lw',‘w‘ i { Deleted: 16.3.2 Process
i
”m t‘”““‘ﬂ { Field Code Changed . [151]
i)
Hmnu‘v“\‘uu{ Deleted: 102
|| ‘\‘
‘u'vln:u; ‘M [Formatted
\IUII W !
”"V‘h i \{ Field Code Changed .. [153
“ml\‘\ﬁv‘l [Deleted: 17 Security .. [154
”" h‘w \‘\[Field Code Changed ~[155]
\‘m’f‘ it w[Deleted: 105
1 ll i
wﬂl ‘“ \[Formatted 1
Y
7 ‘“" ’t "" \[Field Code Changed
mﬁ“‘ﬁ [Deleted: 18
i
/| n‘[Field Code Changed
i
W (Deleted: 111
\
‘:“"‘ ‘,\[Field Code Changed - [160]
!
‘i“‘“\‘“‘{
i
\:Uw‘ »ﬂ»[Field Code Changed .. [161]
bl
o
\
f:v“wi[Field Code Changed - [162
\i‘v[.. [163
W
u‘“\{ Field Code Changed - [164
‘:“\[
f
:\
!L Field Code Changed .. [165]

1 Introduction

The goal of the Web Services effort is to achieve universal interoperability between
applications by using Web standards. Web Services use a loosely coupled integration model
to allow flexible integration of heterogeneous systems in a variety of domains including
business-to-consumer, business-to-business and enterprise application integration. The
following basic specifications originally defined the Web Services space: SOAP, Web Services
Description Language (WSDL), and Universal Description, Discovery, and Integration
(UDDI). SOAP defines an XML messaging protocol for basic service interoperability. WSDL
introduces a common grammar for describing services. UDDI provides the infrastructure
required to publish and discover services in a systematic way. Together, these specifications
allow applications to find each other and interact following a loosely coupled, platform-
independent model.

Systems integration requires more than the ability to conduct simple interactions by using
standard protocols. The full potential of Web Services as an integration platform will be
achieved only when applications and business processes are able to integrate their complex
interactions by using a standard process integration model. The interaction model that is
directly supported by WSDL is essentially a stateless model of synchronous or uncorrelated
asynchronous interactions. Models for business interactions typically assume sequences of
peer-to-peer message exchanges, both synchronous and asynchronous, within stateful,
long-running interactions involving two or more parties. To define such business
interactions, a formal description of the message exchange protocols used by business
processes in their interactions is needed. The definition of such business protocols involves
precisely specifying the mutually visible message exchange behavior of each of the parties
involved in the protocol, without revealing their internal implementation. There are two
good reasons to separate the public aspects of business process behavior from internal or
private aspects. One is that businesses obviously do not want to reveal all their internal
decision making and data management to their business partners. The other is that, even
where this is not the case, separating public from private process provides the freedom to
change private aspects of the process implementation without affecting the public business
protocol.

Business protocols must clearly be described in a platform-independent manner and must
capture all behavioral aspects that have cross-enterprise business significance. Each
participant can then understand and plan for conformance to the business protocol without
engaging in the process of human agreement that adds so much to the difficulty of
establishing cross-enterprise automated business processes today.

What are the concepts required to describe business protocols? And what is the relationship
of these concepts to those required to describe executable processes? To answer these
questions, consider the following:

« Business protocols invariably include data-dependent behavior. For example, a
supply-chain protocol depends on data such as the number of line items in an order,
the total value of an order, or a deliver-by deadline. Defining business intent in these
cases requires the use of conditional and time-out constructs.

« The ability to specify exceptional conditions and their consequences, including
recovery sequences, is at least as important for business protocols as the ability to
define the behavior in the "all goes well" case.

* Long-running interactions include multiple, often nested units of work, each with its
own data requirements. Business protocols frequently require cross-partner

coordination of the outcome (success or failure) of units of work at various levels of
granularity.

If we wish to provide precise predictable descriptions of service behavior for cross-
enterprise business protocols, we need a rich process description notation with many
features reminiscent of an executable language. The key distinction between public
message exchange protocols and executable internal processes is that internal processes
handle data in rich private ways that need not be described in public protocols.

In thinking about the data handling aspects of business protocols it is instructive to consider
the analogy with network communication protocols. Network protocols define the shape and
content of the protocol envelopes that flow on the wire, and the protocol behavior they
describe is driven solely by the data in these envelopes. In other words, there is a clear
physical separation between protocol-relevant data and "payload" data. The separation is
far less clear cut in business protocols because the protocol-relevant data tends to be
embedded in other application data.

BPEL4WS uses a notion of message properties to identify protocol-relevant data embedded
in messages. Properties can be viewed as "transparent" data relevant to public aspects as
opposed to the "opaque" data that internal/private functions use. Transparent data affects
the public business protocol in a direct way, whereas opaque data is significant primarily to
back-end systems and affects the business protocol only by creating nondeterminism
because the way it affects decisions is opaque. We take it as a principle that any data that is
used to affect the behavior of a business protocol must be transparent and hence viewed as
a property.

The implicit effect of opaque data manifests itself through nondeterminism in the behavior
of services involved in business protocols. Consider the example of a purchasing protocol.
The seller has a service that receives a purchase order and responds with either acceptance
or rejection based on a number of criteria, including availability of the goods and the credit
of the buyer. Obviously, the decision processes are opaque, but the fact of the decision
must be reflected as behavior alternatives in the external business protocol. In other words,
the protocol requires something like a switch activity in the behavior of the seller's service
but the selection of the branch taken is nondeterministic. Such nondeterminism can be
modeled by allowing the assignment of a nondeterministic or opaque value to a message
property, typically from an enumerated set of possibilities. The property can then be used in
defining conditional behavior that captures behavioral alternatives without revealing actual
decision processes. BPEL4WS explicitly allows the use of nondeterministic data values to
make it possible to capture the essence of public behavior while hiding private aspects.

The basic concepts of BPEL4WS can be applied in one of two ways. A BPEL4WS process can
define a business protocol role, using the notion of abstract process. For example, in a
supply-chain protocol, the buyer and the seller are two distinct roles, each with its own

abstract process. Their relationship is typically modeled as a partner link. Abstract processes __ - ‘[Deleted: service

use all the concepts of BPEL4WS but approach data handling in a way that reflects the level
of abstraction required to describe public aspects of the business protocol. Specifically,
abstract processes handle only protocol-relevant data. BPEL4WS provides a way to identify
protocol-relevant data as message properties. In addition, abstract processes use
nondeterministic data values to hide private aspects of behavior.

It is also possible to use BPEL4WS to define an executable business process. The logic and
state of the process determine the nature and sequence of the Web Service interactions
conducted at each business partner, and thus the interaction protocols. While a BPEL4WS
process definition is not required to be complete from a private implementation point of
view, the language effectively defines a portable execution format for business processes
that rely exclusively on Web Service resources and XML data. Moreover, such processes

execute and interact with their partners in a consistent way regardless of the supporting
platform or programming model used by the implementation of the hosting environment.

Even where private implementation aspects use platform-dependent functionality, which is
likely in many if not most realistic cases, the continuity of the basic conceptual model
between abstract and executable processes in BPEL4AWS makes it possible to export and
import the public aspects embodied in business protocols as process or role templates while
maintaining the intent and structure of the protocols. This is arguably the most attractive
prospect for the use of BPELAWS from the viewpoint of unlocking the potential of Web
Services because it allows the development of tools and other technologies that greatly
increase the level of automation and thereby lower the cost in establishing cross-enterprise
automated business processes.

In summary, we believe that the two usage patterns of business protocol description and
executable business process description require a common core of process description
concepts. In this specification we clearly separate the core concepts from the extensions
required specifically for the two usage patterns. The BPEL4WS specification is focused on
defining the common core, and adds only the essential extensions required for each usage
pattern.

BPEL4WS defines a model and a grammar for describing the behavior of a business process
based on interactions between the process and its partners. The interaction with each
partner occurs through Web Service interfaces, and the structure of the relationship at the

| interface level is encapsulated in what we call a partner link. The BPEL4AWS process defines - {Deleted: service

how multiple service interactions with these partners are coordinated to achieve a business
goal, as well as the state and the logic necessary for this coordination. BPEL4WS also
introduces systematic mechanisms for dealing with business exceptions and processing
faults. Finally, BPEL4WS introduces a mechanism to define how individual or composite
activities within a process are to be compensated in cases where exceptions occur or a
partner requests reversal.

BPEL4WS is layered on top of several XML specifications: WSDL 1.1, XML Schema 1.0, and
XPath1.0. WSDL messages and XML Schema type definitions provide the data model used
by BPEL4WS processes. XPath provides support for data manipulation. All external
resources and partners are represented as WSDL services. BPEL4AWS provides extensibility
to accommodate future versions of these standards, specifically the XPath and related

Formatted: No bullets or

standards used in XML computation.
(/){numbering

2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [13].

Namespace URIs of the general form "some-URI" represent some application-dependent or
context-dependent URI as defined in RFC 2396 [14].

This specification uses an informal syntax to describe the XML grammar of the XML
fragments that follow:

« The syntax appears as an XML instance, but the values indicate the data types instead of« - - - -| Formatted: No bullets or
values. numbering

« Grammar in bold has not been introduced earlier in the document, or is of particular
interest in an example.

10

e <--description --> is a placeholder for elements from some "other" namespace (like
##other in XSD).

» Characters are appended to elements, attributes, and <!-- descriptions --> as follows:
"?" (0 or 1), "*" (0 or more), "+" (1 or more). The characters "[" and "]" are used to
indicate that contained items are to be treated as a group with respect to the "?", "*", or
"+" characters.

+ Elements and attributes separated by "|" and grouped by "(" and ")" are meant to be
syntactic alternatives.

+ The XML namespace prefixes (defined below) are used to indicate the namespace of the
element being defined.

» Examples starting with <?xml contain enough information to conform to this
specification; other examples are fragments and require additional information to be
specified in order to conform.

XSD schemas and WSDL definitions are provided as a formal definition of grammars [xml-

schemal] [WSDL]. /{Formatted: No bullets or

3 Relationship with WSDL

BPEL4WS depends on the following XML-based specifications: WSDL 1.1, XML Schema 1.0, {Deleted_ and

‘ XPath 1.0,and WS-Addressing. .
T ‘[Deleted: .

Among these, WSDL has the most influence on the BPEL4AWS language. The BPEL4WS
process model is layered on top of the service model defined by WSDL 1.1. At the core of
the BPEL4AWS process model is the notion of peer-to-peer interaction between services
described in WSDL; both the process and its partners are modeled as WSDL services. A
business process defines how to coordinate the interactions between a process instance and
its partners. In this sense, a BPEL4WS process definition provides and/or uses one or more
WSDL services, and provides the description of the behavior and interactions of a process
instance relative to its partners and resources through Web Service interfaces. That is,
BPEL4WS defines the message exchange protocols followed by the business process of a
specific role in the interaction.

The definition of a BPEL4WS business process also follows the WSDL model of separation
between the abstract message contents used by the business process and deployment
information (messages and portType versus binding and address information). In particular,
a BPEL4WS process represents all partners and interactions with these partners in terms of
abstract WSDL interfaces (portTypes and operations); no references are made to the actual
services used by a process instance.

However, the abstract part of WSDL does not define the constraints imposed on the
communication patterns supported by the concrete bindings. Therefore a BPEL4WS process
may define behavior relative to a partner service that is not supported by all possible
bindings, and it may happen that some bindings are invalid for a BPEL4WS process
definition.

A BPEL4WS process is a reusable definition that can be deployed in different ways and in
different scenarios, while maintaining a uniform application-level behavior across all of
them. Note that the description of the deployment of a BPEL4AWS process is out of scope for
this specification.

11

The dependency on WS-Addressing [16] is meant to avoid inventing a private BPEL4WS

mechanism for web service endpoint references—such references are obviously a very
general requirement in the usage of web services.

4 What Changed from BPEL4WS 1.0

The BPEL4WS 1.1 specification is an enhancement of the BPEL4WS 1.0 specification [15].
The 1.1 version has five new authors who brought a fresh viewpoint and deep industry
experience. Their contributions are reflected in a number of enhancements in this version.

The 1.1 version incorporates numerous corrections and clarifications based on the feedback

4.1.1 Core Concepts Clarification

We believe that the two usage patterns of business protocol description and executable
business process description require a common core of process description concepts.
the 1.1 version of the specification we clearly separate the core concepts from the
extensions required specifically for the two usage patterns. The main body of the
specification defines the core concepts. The Extensions for Executable Processes and the
Extensions for Business Protocols are defined in separate sections at the end of the

In

specification. The separation of core concepts from extensions allows features required for
specific usage patterns to be defined in a composable manner. It is conceivable that further
extensions will be developed over time as the usage of the specification matures.

The following terminology changes have occurred

Service Links are now called Partner Links

Service Link Types are now called Partner Link Types

Service References are now called Endpoint References
Containers are now called Variables

The formal syntax has also been changed to reflect these terminology changes, including
the replacement of the current part ner element with a part ner Li nk element to reflect the
fact that such a link is a conversational interface rather than reflective of a business

relationship. A partner element reflective of a business relationship is added as described
in the next section.

4.1.3 Feature Changes

The following changes have been made

The t er mi nat e activity is now strictly limited to executable processes.

Partner Link Type Roles are now limited to a single WSDL portType.

A new partner element is added to allow grouping of Partner Links based on
expected business enterprise relationships.

12

received on the 1.0 version. In addition, the 1.1 version differs from the 1.0 version in the
following substantive ways.

_ -] Formatted: No bullets or
o “ | numbering

- '{Formatted: No bullets or
-

\| process data entities has been

numbering

Deleted: <#>Feature
,"| enhancementsq|
, The 1.1 version adds §
<#>Variables and correlation
sets that are associated with
scopes rather than with the
process as a whole. This permits
easier management of visibility
and lifetime for variables and
repeated initiation of local
correlation sets to allow multiple
correlated conversations during,
e.g., iterative behavior.
<#>Event handlers which permit
a process or scope to be
prepared to receive external
events and requests concurrently
with the main activity of the
process or scope. This is
especially helpful for events and
requests that cannot be
“scheduled” relative to the main
activity, but may occur at
unpredictable times.q|
<#>0ther changesq
<#>The schema has been
substantially updated to reflect
both the feature enhancements
and other needed corrections
and simplification.q
<#>The term “container” for

|| replaced with the more
traditional “variable”.q

[Formatted: Bullets and Numbering J

« Endpoint references (formerly service references) are now defined as given in WS-

Addressing [16].

« Message Properties are now limited to only be simple types.

« Web service interactions in abstract processes are now permitted to omit references
to variables for inbound and outbound message data.

 Opaque assignment in abstract processes may now target Boolean variables, and

variables of simple but unbounded types. In the latter case the semantics requires
creation of a unigue value similar to a GUID.

» The syntax for defining variables has been changed to use three mutually exclusive
attributes messagetype, type and element. The first points to a WSDL message type
definition. The second points to an XML Schema simple type. The third points to an
XML Schema global element definition. This allows one to define variables using
something other than WSDL message types. Only variables that are defined using
messagetypes can be used as input or output targets in messaging operations.

» The ability to provide an in-line WSDL message type has been removed, since the
vast majority of the uses of this feature will be replaced by the usage of XML Schema
simple types and global elements.

« Correlation sets have now been added to the unigueness requirement so that it is not
legal to have two web service interactions outstanding if they have the same partner,
port type, operation and correlation set(s).

« In case of activity termination, the activities wai t, repl y and i nvoke are added to
recei ve as being instantly terminated rather than being allowed to finish.

« The variable provided as the value of the f aul t Vari abl e attribute in a cat ch
handler to hold fault data is now scoped to the fault handler itself rather than being
inherited from the associated scope.

« Variables and correlation sets can now be associated with local scopes rather than
with the process as a whole. This permits easier management of visibility and
lifetime for variables and repeated initiation of local correlation sets to allow multiple
correlated conversations during, e.q., iterative behavior.

« Event handlers can now be associated with scopes, to permit a process or scope to
be prepared to receive external events and requests concurrently with the main
activity of the process or scope. This is especially helpful for events and requests
that cannot be “scheduled” relative to the main activity, but may occur at

unpredictable times.

« The Future Directions section has been dropped since this version forms the starting «---
point for a formal standards process, which will define those directions.

Formatted: Bulleted + Level
Aligned at: 0.25" + Tab after
+ Indent at: 0.5"

1+

1 0.5"

5 Core Concepts and Usage Patterns 1

Formatted: No bullets or
numbering

|

As noted in the introduction, we believe that the two usage patterns of business protocol
description and executable business process description require a common core of process
description concepts. In this specification we clearly separate the core concepts from the
extensions required specifically for the two usage patterns. The BPEL4WS specification is
focused on defining the common core, and adds only the essential extensions required for
each usage pattern. These extensions are described in separate sections (Extensions for
Executable Processes and Extensions for Business Protocols).

13

In a number of cases, the behavior of a process in a certain combination of circumstances is
undefined, e.g., when a variable is used before being initialized. In the definition of the
core concepts we simply note that the semantics in such cases is not defined.

BPEL4WS takes it as a general principle that compliant implementations MAY choose to
perform static analysis to detect and reject process definitions that may have undefined
semantics. Such analysis is necessarily pessimistic and therefore might in some cases
prevent the use of processes that would not, in fact, create situations with undefined
semantics, either in specific uses or in any use.

In the executable usage pattern for BPEL4WS, situations of undefined semantics always
result in standard faults in the BPEL4AWS namespace. These cases will be described as part
of the_Extensions for Executable Processes in the specification. However, it is important
to note that BPEL4WS uses two standard internal faults for its core control semantics,
namely, bpws:forcedTermination and bpws:joinFailure. These are the only two standard
faults that play a role in the core concepts of BPEL4WS. Of course, the occurrence of faults
specified in WSDL portType definitions during web service invocation is accounted for in the

Formatted: No bullets or
numbering

core concepts as well. {
4//

6 Defining a Business Process

6.1 Initial Example

Before describing the structure of business processes in detail, this section presents a
simple example of a BPEL4WS process for handling a purchase order. The aim is to
introduce the most basic structures and some of the fundamental concepts of the language.

The operation of the process is very simple, and is represented in the following figure.
Dotted lines represent sequencing. Free grouping of sequences represents concurrent
sequences. Solid arrows represent control links used for synchronization across concurrent
activities. Note that this is not meant to be a definitive graphical notation for BPEL4AWS
processes. It is used here informally as an aid to understanding.

On receiving the purchase order from a customer, the process initiates three tasks
concurrently: calculating the final price for the order, selecting a shipper, and scheduling the
production and shipment for the order. While some of the processing can proceed
concurrently, there are control and data dependencies between the three tasks. In
particular, the shipping price is required to finalize the price calculation, and the shipping
date is required for the complete fulfillment schedule. When the three tasks are completed,
invoice processing can proceed and the invoice is sent to the customer.

14

Receive

Purchase
Order
A 4
K Initiate Initiate \
Price Decide Production
Calculation On Scheduling
Shipper
\ 4
Arrange A 4
Complete Logistics \ Complete
Price Production

\Calculation Scheduling J

v

Invoice
Processing

The WSDL portType offered by the service to its customers (purchaseOrderPT) is shown in
the following WSDL document. Other WSDL definitions required by the business process are
included in the same WSDL document for simplicity; in particular, the portTypes for the Web
Services providing price calculation, shipping selection and scheduling, and production
scheduling functions are also defined there. Observe that there are no bindings or service
elements in the WSDL document. A BPEL4WS process is defined "in the abstract" by
referencing only the portTypes of the services involved in the process, and not their possible
deployments. Defining business processes in this way allows the reuse of business process
definitions over multiple deployments of compatible services.

777777777777

type defines up to two "role" names, and lists the portTypes that each role must support for
the interaction to be carried out successfully. In this example, two partner link types,

purchasinglLT" and "schedulingLT", list a single role because, in the corresponding service

partner link represents the connection between the process and the requesting customer,
where only the purchase order service needs to offers a service operation

the purchase order service and the scheduling service, in which only operations of the latter
are invoked. The two other partner link types, "invoicingLT" and "shippingLT", define two

roles because both the user of the invoice calculation and the user of the shipping service

15

- ‘[Deleted

1 service

- ‘[Deleted

: Service

hN R \ Field Code Changed

R { Deleted

Partners, and Service References

: Service Linking

\ { Deleted

1 service

T ‘[Deleted

: purchaselLT

T ‘[Deleted

: purchaseLT" service

- {Deleted

i service

- {Deleted

i service

- ‘[Deleted

1 invoicelT

)
)
|
)
J
J
)
)
J

(the invoice or the shipping schedule) must provide callback operations to enable
asynchronous notifications to be asynchronously sent ("invoiceCallbackPT" and
"shippingCallbackPT" portTypes).

<definitions target Nanespace="htt p:// manuf acturing. or g/ wsdl / pur chase"
xm ns: sns="htt p://manuf act uri ng. or g/ xsd/ pur chase"
xm ns: pos="htt p://manuf act uri ng. or g/ wsdl / pur chase"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM_Schena"
xm ns="http://schemas. xm soap. or g/ wsdl /"

xn ns: pl nk="ht t p: / / schemas. xm soap. or g/ ws/ 2003/ 05/ par t ner - 1 i nk/ " > - { peteted: si nk

777 [~ ‘[Deleted: 03/ servi ce

<i nport nanespace="htt p://manuf acturi ng. or g/ xsd/ pur chase"
| ocation="http://manuf act uri ng. or g/ xsd/ pur chase. xsd"/ >

<nessage nanme="PO\essage" >
<part nane="custonerl| nfo" type="sns: custonerlnfo"/>
<part nane="purchaseOrder" type="sns: purchaseOrder"/>
</ message>
<nessage nanme="|nvMessage">
<part nane="1VC' type="sns:|nvoice"/>
</ message>
<message nane="or der Faul t Type" >
<part nanme="probl em nfo" type="xsd:string"/>
</ message>
<nmessage nane="shi ppi ngRequest Message" >
<part nane="custonerl| nfo" type="sns: custonerlnfo"/>
</ message>
<nmessage nane="shi ppi ngl nf oMessage" >
<part nane="shi ppi ngl nf 0" type="sns: shi ppi ngl nfo"/>
</ message>
<nmessage nane="schedul eMessage" >
<part nane="schedul e" type="sns: schedul el nfo"/>
</ message>

<!-- portTypes supported by the purchase order process -->

<port Type nane="purchaseO der PT" >
<oper ati on nane="sendPurchaseOr der" >

16

<I-- portType supported by the production scheduling process -->

<port Type nane="schedul i ngPT" >
<operati on nane="r equest Producti onSchedul i ng" >
<i nput nessage="pos: POVessage"/ >
</ oper ati on>
<oper ati on nane="sendShi pi ngSchedul e" >
<i nput nmessage="pos: schedul eMessage"/ >
</ oper ati on>
</ port Type>

>
L77777777777T7777777777777T77_ 777 -~ ~ 7 Deleted: 1
<pl nk: partner Li nkType nane="shi ppi ngLT" > <sl nk: servi ceLi nkType
<pl nk: rol e name="shi ppi ngServi ce"> - ‘[Deleted: sl nk

,,, s
e ———— === —=—=———=—=—=———=—=——=—=—=—=——===c=—===========— 3 - - {Deleted: 1)
<pl nk: part ner Li nkType nanme="schedul i ngLT"> <sl nk: ser vi celi nkType

18

T { Deleted: s| nk
”””””””””””””””””””””””””””””””” - ‘[Deleted: sl nk: servi ceLi nkType

_ - { Deleted: sI n

- ‘[Deleted: sl nk: servi ceLi nkType

o ‘[Deleted: pur chaseLT">
T {Deleted: sl nk
T ‘[Deleted: sl nk

>

"~ { Deleted: §
N <sl nk: servi ceLi nkType

~_) ‘[Deleted: i nvoi ceLT" >
.) ‘[Deleted: sl nk
-) ‘[Deleted: sl nk
" { eleted: s nk
- ‘[Deleted: s| nk

_- {Deleted: sl nk: servi ceLi nkType

__ - { Deleted: si nk
- ‘[Deleted: sl nk
_ - { Deleted: si nk

o A A A 0 . A 0 L

- {Deleted: sl nk

/ /‘{Deleted: sl nk: servi ceLi nkType

- J . JCU J

_ - { Deleted: si nk

</ definitions>

The business process for the order service is defined next. There are four major sections in
this process definition:

_ - { Deleted: si nk

)

_- ‘[Deleted: s| nk

)

P /{Deleted: sl nk: servi ceLi nkType

]

The <variables> section defines the data variables used by the process, providing their «--- ‘{Formatted: No bullets or

definitions in terms of WSDL message types, XML Schema simple types, or XML Schema
elements. Variables allow processes to maintain state data and process history based on
messages exchanged.

correspond to the sender of the order (customer), as well as the providers of price
(jnvoicingProvider), shipment (shippingProvider), and manufacturing scheduling services

name. This information identifies the functionality that must be provided by the business
process and by the partner service for the relationship to succeed, that is, the portTypes
that the purchase order process and the partner need to implement.

The <faultHandlers> section contains fault handlers defining the activities that must be
performed in response to faults resulting from the invocation of the assessment and
approval services. In BPEL4WS, all faults, whether internal or resulting from a service
invocation, are identified by a qualified name. In particular, each WSDL fault is identified
in BPEL4WS by a qualified name formed by the target namespace of the WSDL
document in which the relevant portType and fault are defined, and the ncname of the
fault. It is important to note, however, that because WSDL 1.1 does not require that
fault names be unique within the namespace where the operation is defined, all faults
sharing a common name and defined in the same namespace are indistinguishable. In
spite of this serious WSDL limitation, BPEL4WS provides a uniform naming model for
faults, in the expectation that future versions of WSDL will provide a better fault-naming
model.

The rest of the process definition contains the description of the normal behavior for

handling a purchase request. The major elements of this description are explained in the
section following the process definition.

<process nanme="purchaseO der Process"

2

t ar get Nanespace="htt p: // acme. com ws- bp/ pur chase"
xm ns="http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/"
xm ns: | ns="http://manuf act uri ng. or g/ wsdl / pur chase" >

<part nerLi nks>

<part ner Li nk nanme="pur chasi ng"

partner Li nkType="I| ns: pur chasi ngLT"

19

numbering

- ‘[Deleted: partners

- ‘[Deleted: partners

- {Deleted: invoiceProvider

- ‘[Deleted: service

—JJ

_ | Deleted: <partner s>
- <partner
nanme="cust omer" g

servi ceLi nkType="1 ns: pur chas
eLT" |

nmyRol e=" pur chaseSer vi ce"/ >
<partnerLi nk nane="i nvoi ci ng"

part ner Li nkType="1ns: i nvoi ci ngLT"

nmyRol e="i nvoi ceRequest er "
par t ner Rol e="i nvoi ceServi ce"/ >

<partnerlink name="shi pping;

nmyRol e="shi ppi ngRequest er "
par t ner Rol e="shi ppi ngServi ce"/>

<partnerlink nane="scheduling;
partnerLi nkType="1ns: schedul i ngLT"

<vari abl es>
<vari abl e nane="PO' nessageType="I| ns: POVessage"/ >
<vari abl e nane="1nvoi ce"
messageType="I| ns: | nvMessage"/ >
<vari abl e nane="POFaul t"
nessageType="1| ns: or der Faul t Type"/ >
<vari abl e nane="shi ppi ngRequest "
nmessageType="I ns: shi ppi ngRequest Message"/ >
<vari abl e nane="shi ppi ngl nf 0"
messageType="I ns: shi ppi ngl nf oMessage"/ >
<vari abl e nane="shi ppi ngSchedul e"
nessageType="1| ns: schedul eMessage"/ >
</vari abl es>

<f aul t Handl er s>
<cat ch faul t Nane="I ns: cannot Conpl et eOr der "
faul t Vari abl e="PCFaul t ">

<reply par t ner Li nk="pur chasi ng"

port Type="I ns: pur chaseCOr der PT"

oper at i on="sendPur chaseCOr der "

vari abl e="POFaul t"

faul t Name="cannot Conpl et eOr der "/ >
</ cat ch>

</ f aul t Handl er s>

20

- 7| Deleted: <part ner
nane="i nvoi ceProvi der" {

servi ceLi nkType="Ins:invoi ce
LT q

- { Deleted: par t ner
e ‘[Deleted: Provi der

A J

T ‘[Deleted: servi ceLi nkType

- { Deleted: part ner
o ‘[Deleted: Provi der

T ‘[Deleted: servi ceLi nkType

U A

- ‘[Deleted: partners

- ‘[Deleted: =" cust oner J

- { Deleted: =" cust oner]

- ’[Deleted: =" shi ppi ngPr ovi der]

- ’[Deleted: =" shi ppi ngPr ovi der]

- ’[Deleted: ="i nvoi ceProvi der]

- { Deleted: ="i nvoi ceProvi der]

- ’[Deleted: ="i nvoi ceProvi der]

- ’[Deleted: =" schedul i ngPr ovi der]

- { Deleted: =" schedul i ngPr ovi der]

</fl ow>

<reply partnerLi nk="purchasi ng" - { Deleted: =" cust omer

port Type="1 ns: pur chaseOr der PT"
oper at i on="sendPur chaseOr der "
vari abl e="1nvoi ce"/ >

</ sequence>

</ process>

The structure of the main processing section is defined by the outer <sequence> element,
which states that the three activities contained inside are performed in order. The customer
request is received (<receive> element), then processed (inside a <flow> section that
enables concurrent behavior), and a reply message with the final approval status of the
request is sent back to the customer (<reply>). Note that the <receive> and <reply>
elements are matched respectively to the <input> and <output> messages of the
"sendPurchaseOrder" operation invoked by the customer, while the activities performed by
the process between these elements represent the actions taken in response to the
customer request, from the time the request is received to the time the response is sent
back (reply).

The example makes the implicit assumption that the customer request can be processed in
a reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response operation).
When that assumption does not hold, the interaction with the customer is better modeled as
a pair of asynchronous message exchanges. In that case, the "sendPurchaseOrder"
operation is a one-way operation and the asynchronous response is sent by invoking a
second one-way operation on a customer "callback" interface. In addition to changing the
signature of "sendPurchaseOrder" and defining a new portType to represent the customer
callback interface, two modifications need to be made in the preceding example to support

an asynchronous response to the customer. First, the partner link type "purchasingLT" that - {Deleted: service
represents the process-customer connection needs to include a second role ("customer") "~ { Deleted: purchaseLT

listing the customer callback portType. Second, the <reply> activity in the process needs to
be replaced by an <invoke> on the customer callback operation.

The processing taking place inside the <flow> element consists of three <sequence> blocks
running concurrently. The synchronization dependencies between activities in the three
concurrent sequences are expressed by using "links" to connect them. The links are defined
inside the flow and are used to connect a source activity to a target activity. (Note that each
activity declares itself as the source or target of a link by using the nested <source> and
<target> elements.) In the absence of links, the activities nested directly inside a flow
proceed concurrently. In the example, however, the presence of two links introduces control
dependencies between the activities performed inside each sequence. For example, while
the price calculation can be started immediately after the request is received, shipping price
can only be added to the invoice after the shipper information has been obtained; this
dependency is represented by the link (named "ship-to-invoice") that connects the first call
on the shipping provider ("requestShipping") with sending shipping information to the price
calculation service ("sendShippingPrice"). Likewise, shipping scheduling information can only
be sent to the manufacturing scheduling service after it has been received from the shipper
service; thus the need for the second link ("ship-to-scheduling").

23

Observe that information is passed between the different activities in an implicit way
through the sharing of globally visible data variables. In this example, the control
dependencies represented by links are related to corresponding data dependencies, in one
case on the availability of the shipper rates and in another on the availability of a shipping
schedule. The information is passed from the activity that generates it to the activity that

Certain operations can return faults, as defined in their WSDL definitions. For simplicity, it is
assumed here that the two operations return the same fault ("cannotCompleteOrder").
When a fault occurs, normal processing is terminated and control is transferred to the
corresponding fault handler, as defined in the <faultHandlers> section. In this example the
handler uses a <reply> element to return a fault to the customer (note the "faultName"
attribute in the <reply> element).

Finally, it is important to observe how an assignment activity is used to transfer information
between data variables. The simple assignments shown in this example transfer a message
part from a source variable to a message part in a target variable, but more complex forms

of assignments are also possible. {
-

6.2 The Structure of a Business Process

This section provides a quick summary of the BPELAWS syntax. It provides only a brief
overview; the details of each language construct are described in the rest of this document.

The basic structure of the language is:
<process nane="ncnane" target Namespace="uri"
quer yLanguage="anyURI " ?
expr essi onLanguage="anyURl " ?
suppr essJoi nFai | ure="yes| no"?
enabl el nst anceConpensat i on="yes| no" ?
abst ract Process="yes| no" ?
xm ns="http://schenas. xm soap. or g/ ws/ 2003/ 03/ busi ness- pr ocess/ ">

<!-- Note: At |east one role nust be specified. -->

nyRol e="ncnane" ? part ner Rol e="ncnane" ?>+
</ partner Li nk>

</ part nerLi nks>

<part ners>?

<partner nane="ncnang" >+

<partnerLi nk nane="ncnane"/ >+

</ part ner>

e e

Deleted: The current version of
BPEL4WS supports only global
data variables, but future
versions will include locally
scoped data as well. Moreover,
in the future, data flow will be
allowed through links in addition
to using links to express
synchronization dependencies.

Formatted: No bullets or
numbering

A

Deleted: partners

A

Deleted: part ner

o

Deleted: servi ceLi nkType

=

Formatted: Complex Script Font:
Bold

- { Formatted: (Asian) Japanese

~ - Deleted: <l-- Note: The
- nmessage type may be
indicated with the
nmessageType 1

attribute or with

an inlined <wsdl: nessage>
element within., -->1

<vari abl e name="ncnane"
nmessageType="qgnane" ?>+1

<wsdl : nessage

name="ncnanme">? {

R |
</ wsdl : nessage>f
</variable> |

- { peleted: ">

activity
</ process>

The top-level attributes are as follows:

e querylLanguage. This attribute specifies the XML query language used for selection of
nodes in assignment, property definition, and other uses. The default for this attribute is
XPath 1.0, represented by the URI of the XPath 1.0 specification:
http://www.w3.org/TR/1999/REC-xpath-19991116.

« expressionLanguage. This attribute specifies the expression language used in the
process. The default for this attribute is XPath 1.0, represented by the URI of the XPath
1.0 specification: http://www.w3.org/TR/1999/REC-xpath-19991116.

« suppressloinFailure. This attribute determines whether the joinFailure fault will be
suppressed for all activities in the process. The effect of the attribute at the process
level can be overridden by an activity_using a different value for the attribute. The
default for this attribute is "no".

« enableInstanceCompensation. This attribute determines whether the process instance as
a whole can be compensated by platform-specific means. The default for this attribute is
"nO".

« abstractProcess. This attribute specifies whether the process being defined is abstract
(rather than executable). The default for this attribute is "no".

The token "acti vi ty" can be any of the following:

* <receive>

+ <reply>

+ <invoke>

e <assign>

« <throw>

e <terminate>
e <wait>

e <empty>

+ <sequence>
+ <switch>

« <while>

* <pick>

o« <flow>

e <scope>

+ <compensate>

The syntax of each of these elements, except <terminate>, is considered in the following
paragraphs._Although <terminate> is permitted as an interpretation of the token activity, it

26

Formatted: No bullets or
numbering

Formatted: No bullets or
numbering

is only available in executable processes and as such is defined in the section on Extensions
for Executable Processes.

The <receive> construct allows the business process to do a blocking wait for a matching
message to arrive.

<recei ve partnerLink="ncnane" portType="gnanme" operati on="ncnane"

vari abl e="ncnang ? createl nstance="yes|no"? | -~ { Deleted: -
standard-attri but es>
st andard- el enent s
<correl ati ons>?
<correl ation set="ncnane" initiate="yes|no"?>+
</correl ations>
</recei ve>
The <reply> construct allows the business process to send a message in reply to a message
that was received through a <receive>. The combination of a <receive> and a <reply>
forms a request-response operation on the WSDL portType for the process.
<reply partnerLink="ncname" portType="qgname" operation="ncnanme"
vari abl e="ncnang ? faul t Nane="gnare"? - { peteted: -
standard-attri butes>
st andard- el ement s
<correl ati ons>?
<correl ation set="ncnanme" initiate="yes|no"?>+
</correl ations>
</reply>
The <invoke> construct allows the business process to invoke a one-way or request-
response operation on a portType offered by a partner.
<i nvoke partnerLi nk="ncnanme" port Type="gnanme" operation="ncnane"
i nput Vari abl e="ncnanme' ? out put Vari abl e="ncnare"? - /{De'ete": !

standard-attri but es>

st andar d- el enent s

<correl ati ons>?
<correl ation set="ncnane" initiate="yes|no"?
pattern="in| out|out-in"/>+
</correl ations>
<cat ch faul t Nane="qgnane" faul t Vari abl e="ncnane" ?>*
activity
</ cat ch>
<cat chAl | >?

27

activity
</ catchAl | >
<conpensat i onHandl er >?
activity
</ conpensat i onHandl er >
</i nvoke>

The <assign> construct can be used to update the values of variables with new data. An
<assign> construct can contain any number of elementary assignments. The syntax of the
assignment activity is:

<assi gn standard-attributes>

st andar d- el enent s

<copy>+
fromspec
to- Spec
</ copy>

</ assi gn>

The <throw> construct generates a fault from inside the business process.
<t hrow f aul t Nane="qgnane" faul t Vari abl e="ncnane"? standard-attri butes>

st andar d- el enent s

</t hr ow>
| The <wait> construct allows you to wait for a given time period or until a certain time has - { Deleted: The <terminate>
passed. Exactly one of the expiration criteria must be specified. construct allows you to
. immediately terminate a

<wait (for="duration-expr" | until="deadline-expr") standard-attributes> business process.

<term nate standard-
st andard- el ement s attributes>{

. st andar d- el enent s

</ wai t > </term nate>f

1

The <empty> construct allows you to insert a "no-op" instruction into a business process.
This is useful for synchronization of concurrent activities, for instance.

<enpty standard-attributes>

st andar d- el enent s

</ enpt y>

The <sequence> construct allows you to define a collection of activities to be performed
sequentially in lexical order.

<sequence standard-attributes>

st andar d- el enent s

28

activity+

</ sequence>

The <switch> construct allows you to select exactly one branch of activity from a set of
choices.

<swi tch standard-attri butes>

st andar d- el enent s

<case condi ti on="bool - expr" >+
activity

</ case>

<ot herwi se>?
activity

</ ot her wi se>

</ sw tch>

The <while> construct allows you to indicate that an activity is to be repeated until a
certain success criteria has been met.

<whi | e condi tion="bool -expr" standard-attributes>

st andar d- el enent s

activity
</ whi | e>

The <pick> construct allows you to block and wait for a suitable message to arrive or for a
time-out alarm to go off. When one of these triggers occurs, the associated activity is
performed and the pick completes.

<pi ck createlnstance="yes|no"? standard-attributes>

st andar d- el enent s

<onMessage partner Li nk="ncnane" port Type="gnane"

operati on="ncnane" vari abl e="ncnang;/?>+

<correl ati ons>?
<correl ation set="ncname" initiate="yes|no"?>+

</correl ati ons>
activity

</ onMessage>

<onAlarm (for="duration-expr” | until="deadline-expr")>*
activity

</ onAl ar m>

</ pi ck>

29

- {Deleted: ">+

The <flow> construct allows you to specify one or more activities to be performed
concurrently. Links can be used within concurrent activities to define arbitrary control
structures.

<fl ow standard-attri but es>

st andar d- el enent s

<l i nks>?
<l i nk nanme="ncnane" >+

</links>

activity+
</fl ow>

The <scope> construct allows you to define a nested activity with its own associated
variables, fault handlers, and compensation handler.

<scope vari abl eAccessSeri al i zabl e="yes| no" standard-attri butes>

st andar d- el enent s

<vari abl es>?

see above under <process> for syntax ...
</ vari abl es>
<correl ati onSet s>?

see above under <process> for syntax ...
</correl ati onSet s>
<f aul t Handl er s>?

see above under <process> for syntax ...
</ f aul t Handl er s>
<conpensat i onHandl| er >?

see above under <process> for syntax ...
</ conpensat i onHandl er >
<event Handl er s>?

</ event Handl er s>
activity
</ scope>

The <compensate> construct is used to invoke compensation on an inner scope that has
already completed normally. This construct can be invoked only from within a fault handler
or another compensation handler.

<conpensat e scope="ncnanme"? standard-attributes>

st andar d- el enent s

30

</ conpensat e>

Note that the "standard-attributes" referred to above are:

nanme="ncnane" ?
j oi nCondi ti on="bool - expr"?

suppr essJoi nFai | ure="yes| no" ?

where the default values are as follows:

« name. No default value (that is, unnamed)

« joinCondition. The logical OR of the liveness status of all links that are targeted at this
activity

« suppressJoinFailure. No

and that the "standard-elements" referred to above are:

<target |inkNane="ncnanme"/>*

<source |inkNane="ncnane" transitionCondition="bool -expr"?/>*

where the default value of the "transitionCondition" attribute is "true()", the truth-value
function from the default expression language XPath 1.0.

6.3 Language Extensibility

BPEL4WS contains constructs that are generally sufficient for expressing abstract and
executable business processes. In some cases, however, it might be necessary to “extend”
the BPEL4WS language with additional constructs from other XML namespaces.

BPEL4WS supports extensibility by allowing namespace-qualified attributes to appear on any

BPEL4WS element and by allowing elements from other nhamespaces to appear within
BPEL4WS defined elements. This is allowed in the XML Schema specifications for BPEL4WS.

Extensions MUST NOT change the semantics of any element or attribute from the BPEL4AWS
namespace.

6.4 The Lifecycle of a Business Process

As noted in the introduction, the interaction model that is directly supported by WSDL is
essentially a stateless client-server model of synchronous or uncorrelated asynchronous
interactions. BPEL4WS, builds on WSDL by assuming that all external interactions of the
business process occur through Web Service operations. However, BPEL4AWS business
processes represent stateful long-running interactions in which each interaction has a
beginning, defined behavior during its lifetime, and an end. For example, in a supply chain,
a seller's business process might offer a service that begins an interaction by accepting a
purchase order through an input message, and then returns an acknowledgement to the
buyer if the order can be fulfilled. It might later send further messages to the buyer, such

31

!

Formatted: No bullets or
numbering

//){
-
<«

Formatted: No bullets or
numbering

-
-
<«

Formatted: No bullets or
numbering

as shipping notices and invoices. The seller's business process remembers the state of each
such purchase order interaction separately from other similar interactions. This is necessary
because a buyer might be carrying on many simultaneous purchase processes with the
same seller. In short, a BPEL4AWS business process definition can be thought of as a
template for creating business process instances.

The creation of a process instance in BPEL4WS is always implicit; activities that receive
messages (that is, r ecei ve activities and pi ck activities) can be annotated to indicate that
the occurrence of that activity causes a new instance of the business process to be created.
This is done by setting the cr eat el nst ance attribute of such an activity to "yes". When a
message is received by such an activity, an instance of the business process is created if it
does not already exist (see Providing Web Service Operations and Pick).

To be instantiated, each business process must contain at least one such "start activity."
This must be an initial activity in the sense that there is no basic activity that logically
precedes it in the behavior of the process.

If more than one start activity is enabled concurrently, then all such activities must use at
least one correlation set and must use the same correlation sets (see Correlation and the
Multiple Start Activities example).

If exactly one start activity is expected to instantiate the process, the use of correlation sets
is unconstrained. This includes a pi ck with multiple onMessage branches; each such branch
can use different correlation sets or no correlation sets.

A business process instance is terminated in one of the following ways:

* When the activity that defines the behavior of the process as a whole completes. In this «--- {Format_ted: No bullets or
case the termination is normal. numbering

+« When a fault reaches the process scope, and is either handled or not handled. In this
case the termination is considered abnormal even if the fault is handled and the fault
handler does not rethrow any fault. A compensation handler is never installed for a
scope that terminates abnormally.

« When a process instance is explicitly terminated by a t er m nat e activity (see
Terminating the Service Instance). In this case the termination is abnormal.

« If a compensation handler is specified for the business process as a whole (see
Compensation Handlers), a business process instance can be compensated after normal
completion by platform-specific means. This functionality is enabled by setting the
enabl el nst anceConpensat i on attribute of the process to "yes".

/| Deleted: Service Linking,
L7 Partners

7 Partner Link Types, Partner Links, and

,,, / , { Deleted: Service

Endpoint References v

A very important, if not the most important, use case for BPEL4WS will be in describing
cross-enterprise business interactions in which the business processes of each enterprise
interact through Web Service interfaces with the processes of other enterprises. An
important requirement for realistic modeling of business processing in this environment is
the ability to model the required relationship with a partner process. WSDL already
describes the functionality of a service provided by a partner, at both the abstract and
concrete levels. The relationship of a business process to a partner is typically peer-to-peer,
requiring a two-way dependency at the service level. In other words, a partner represents
both a consumer of a service provided by the business process and a provider of a service

32

to the business process. This is especially the case when the interactions are based on

,,,,,,,,,,,, -—- {Deleted:

define the shape of a relationship with a partner by defining the message and port types
used in the interactions in both directions. However, the actual partner service may be

ANN N
RIYANN {Deleted: standard

- {Deleted:

service

Service

(N N

- { Deleted:

defines

o ‘[Deleted:

service

- ‘[Deleted:

service

- i h ‘[Deleted:

service

N " Deleted:
~_ | generally agreed

There is as yet no

\

\ A
A {Deleted
\ \

: confirm

N { Deleted

w
———————————————————————— TR TR TSkl \\{Deleted

declaration:
<partner Li nkType nane="Buyer Sel | er Li nk"

<rol e nanme="Buyer">

<port Type nane="buy: Buyer Port Type"/>
</rol e>
<rol e nanme="Sel |l er">

<port Type nane="sell: Sel | er Port Type"/>

1 <#>Service Linking

NN {Formatted: Bullets and Numbering
N\

NN \[Deleted

1 service

\ W .
" \\\{Deleted.

relationship

\
N \\{ Deleted:

S

\ \
o {Deleted:
N \

role

ANEN {Deleted:
\ \

service

\\\{ Deleted:

servi ceLi nkType

{ Deleted:

o A 0 G 0 A

03/ service

</rol e>
</ par t ner Li nkType> - /‘[Deleted: servi ceLi nkType J
o _ -| Deleted: can include any number

Each role specifies exactly one WSDL portType, ~__ __ __________________________ - {of }
In the common case, portTypes of the two roles originate from separate namespaces. =~ " { Deleted: s]
However, in some cases, both roles of a partner link type can be defined in terms of f: ~ {Deleted: cach role J
portTypes from the same namespace. The latter situation occurs for partner link types that \\\
define "callback" relationships between services. N \{De'eted’ a)

. N AN {Deleted: service]
The partner link type definition can be a separate artifact independent of either service's = _ : -
WSDL document. Alternatively, the partner link type definition can be placed within the e { Deleted: service)
WSDL document defining the portTypes from which the different roles are defined. \\\\{Delete& service J
The extensibility mechanism of WSDL 1.1 is used to define partnerLinkType as a new { Deleted: service)
definition type to be placed as an immediate child element of a <wsdl:definitions> element ~ ~ {Deleted: serviceLinkType J
in all cases. This allows reuse of the WSDL target namespace specification and, more
importantly, its import mechanism to import portTypes. For cases where a partnerLinkType - ‘[Deleted: service link type]
declaration is linking the portTypes of two different services, the partnerLinkType o ‘[Deleted: service link type J
declaration can be placed in a separate WSDL document (with its own targetNamespace).

- { Deleted: service link type]

33

<definiti ons name="ncnanme" target Nanespace="uri"
xm ns="http://schemas. xm soap. or g/ wsdl /"

<plnk: port Type nane="gname"/ >,

- -

- {Deleted: sl nk

T ‘[Deleted: 03/ servi ce

B /{Deleted: sl nk: servi ceLi nkType

- { Deleted: s| nk

_ - { Deteted: si nk

o ‘[Deleted: +

T ‘[Deleted: sl nk

T ‘[Deleted: sl nk

<~ { Deleted: sl nk

N . ‘[Deleted: +

~ . \‘[Deleted: sl nk

\‘[Deleted: sl nk: servi ceLi nkType

)
1
)
)
)
)
)
)
)
)
)
)

- {Deleted: service

- { Deleted: <sInk:role>

a willingness to link with any other service, without placing any requirements on the other
service.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

34

The services with which a business process interacts are modeled as partner links in ,

Each partnerLink is named, and this name is used for all service interactions yia that

- {Deleted: service

- - {Deleted: service

o J

- ‘[Deleted: serviceLinkType

- { Deleted: <#>Partnersq

/{ Deleted: partners

///{ Deleted: servicelLinkType

/
)/ ///{ Deleted: serviceLinkType

/
)/)/ {Deleted: serviceLinkType
;7

,/ ,//{ Formatted: German Germany

/
K /’/{Deleted: part ner s>

s
S { Formatted: German Germany
.

J { Deleted: part ner

- ‘[Formatted: German Germany

-
N

N ‘[Deleted: servi ceLi nkType

{ Formatted: German Germany

S {Deleted: >

- ‘[Deleted: partners

- { Deleted: partner

- ‘[Deleted: with

T ‘[Deleted: partners

o 0 A 0 0)

for simultaneous requests of the same kind (see Invoking Web Service Operations and
Providing Web Service Operations).

/

The role of the business process itself is indicated by the attribute nyRol e and the role of
the partner is indicated by the attribute part ner Rol e. In the degenerate case where a

business process deployment. This is outside the scope of BPEL4AWS. However, it is also
possible to select and assign actual partner services dynamically, and BPEL4WS provides
the mechanisms to do sq,via assignment of endpoint references. In fact, because the -

7.3 Business Partners \

While a partner link represents a conversational relationship between two partner
processes, relationships with a business partner in general require more than a single
conversational relationship to be established. To represent the capabilities required from a
business partner, BPEL4WS uses the part ner element. A partner is defined as a subset of
the partner links of the process, as shown in the example below.

<part ner nane="Sel | er Shi pper"

xm ns="http://schenas. xm soap. or g/ ws/ 2003/ 05/ par t ner -1 i nk/">

<partnerLink nane="Seller"/>

<part ner Li nk nane="Shi pper"/>
</ part ner >

Partner definitions are optional and need not cover all the partner links defined in the
process. From the process perspective a partner definition introduces a constraint on the
functionality that a business partner is required to provide. In the example above, the
partner definition states that the same business partner (*SellerShipper”) is required to
provide the services associated with the the roles of seller and shipper. Partner definitions
MUST NOT overlap, that is, a partner link MUST NOT appear in more than one partner
definition.

The syntax for partner definitions is given below:

<partners>
<partner

nanme="ncnane" >+

<par t ner Li nk nane="ncnang"/ >+

</ part ner>
</ part ner s>

35

’/{ Deleted:
’/{ Deleted:
//{ Deleted:
/{ Deleted:

/
///
S
/
/ /
/

/
;s
’y
"y

{ Deleted: serviceLinkType
/

partner

When such

process is deployed, all

partners

Deleted: whom the part ner Rol e
attribute is present

U U A

Deleted: resolved to actual
services before operations on the
partner's service can be invoked

{Deleted: . The dynamic content]

-| Deleted: the information
regarding a partner's service is
conceptually encapsulated in a
service reference

Deleted: service]

Deleted: partner definitions]

Deleted: The form of a service
reference is described in the
following paragraphs.

Deleted: for the mechanisms
used for dynamic assignment of
service references to partners.q
<#>Service References
WSDL makes an important
distinction between portTypes
and ports. PortTypes define
abstract functionality by using
abstract messages. Ports provide
actual access information,
including communication
endpoints and (by using
extension elements) other
deployment-related information
such as public keys for
encryption. Bindings provide the
glue between the two. While the
user of a service must be
statically dependent on the
abstract interface defined by
portTypes, the information
contained in port definitions can
typically be discovered and used
dynamically. §

The fundamental use of service
references is to serve as the
mechanism for dynamic
communication of port-specific
data for services. A service
reference makes it possible in
BPEL4WS to dynamically select a
provider for a particular type of
service and to invoke their
operations. BPEL4WS provides a
general mechanism for
correlating messages to stateful
instances of a service, and
therefore service references that

carry instance-neutral po . T169]

7.4 Endpoint References

WSDL makes an important distinction between portTypes and ports. PortTypes define
abstract functionality by using abstract messages. Ports provide actual access information,
including communication endpoints and (by using extension elements) other deployment-
related information such as public keys for encryption. Bindings provide the glue between
the two. While the user of a service must be statically dependent on the abstract interface
defined by portTypes, some of the information contained in port definitions can typically be
discovered and used dynamically.

The fundamental use of endpoint references is to serve as the mechanism for dynamic
communication of port-specific data for services. An endpoint reference makes it possible in
BPEL4WS to dynamically select a provider for a particular type of service and to invoke their
operations. BPEL4WS provides a general mechanism for correlating messages to stateful
instances of a service, and therefore endpoint references that carry instance-neutral port
information are often sufficient. However, in general it is necessary to carry additional
instance-identification tokens in the endpoint reference itself.

BPEL4WS uses the notion of endpoint reference defined in [16]. Every partner role in a
partnerLink in a BPEL4WS process instance is assigned a unique endpoint reference in the

Formatted: No bullets or
numbering

course of the deployment of the process or dynamically by an activity within the process. {
e

8 Message Properties

8.1 Motivation

The data in a message consists conceptually of two parts: application data and protocol-
relevant data, where the protocols can be business protocols or infrastructure protocols
providing higher quality of service. An example of business protocol data is the correlation
tokens that are used in correlation sets (see Correlation). Examples of infrastructure
protocols are security, transaction, and reliable messaging protocols. The business protocol
data is usually found embedded in the application-visible message parts, whereas the
infrastructure protocols almost always add implicit extra parts to the message types to
represent protocol headers that are separate from application data. Such implicit parts are
often called message context because they relate to security context, transaction context,
and other similar middleware context of the interaction. Business processes might need to
gain access to and manipulate both kinds of protocol-relevant data. The notion of message
properties is defined as a general way of naming and representing distinguished data
elements within a message, whether in application-visible data or in message context. For a
full accounting of the service description aspects of infrastructure protocols, it is necessary
to define notions of service policies, endpoint properties, and message context. This work is
outside the scope of BPEL4AWS. Message properties are defined here in a sufficiently general
way to cover message context consisting of implicit parts, but the use in this specification
focuses on properties embedded in application-visible data that is used in the definition of

Formatted: No bullets or

business protocols and abstract business processes.
< numbering

8.2 Defining Properties

A property definition creates a globally unique name and associates it with an XML Schema
| simple type. The intent is not to create a new type. The intent is to create a name that has

36

greater significance than the type itself. For example, a sequence number can be an
integer, but the integer type does not convey this significance, whereas a globally named
sequence-number property does. Properties can occur anywhere in a message, including in
the message context.

A typical use for a property in BPEL4WS is to name a token for correlation of service
instances with messages. For example, a social security number might be used to identify
an individual taxpayer in a long-running multiparty business process regarding a tax matter.
A social security number can appear in many different message types, but in the context of
a tax-related process it has a specific significance as a taxpayer ID. Therefore a global name
is given to this use of the type by defining a property, as in the following example:

<definitions name="properties"
t ar get Nanespace="htt p: // exanpl e. conl properties. wsdl "
xm ns:tns="http://exanpl e. cont properties.wsdl"
xm ns: txtyp="http://exanpl e. conl t axTypes. xsd"
xm ns: bpws="htt p://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/ "
xm ns="http://schemas. xm soap. or g/ wsdl /" >

<!-- define a correlation property -->
<bpws: property nanme="t axpayer Nunber"
type="t xtyp: SSN'/ >

</wsdl : definitions>

In correlation, the property name must have global significance to be of any use. Properties
such as price, risk, response latency, and so on, which are used in conditional behavior in a
business process, have similar global and public significance. It is likely that they will be
mapped to multiple messages, and therefore they need to be globally named as in the case
of correlation properties. Such properties are essential, especially in abstract processes.

The WSDL extensibility mechanism is used to define properties so that the target
namespace and other useful aspects of WSDL are available. The BPEL4AWS standard
namespace, "http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/ ", is used for
property definitions. The syntax for a property definition is a new kind of WSDL definition as
follows:

<wsdl : defini ti ons nane="ncnane"
xm ns: bpws="htt p: //schenmas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/ ">
<bpws: property nane="ncnane" type="qgnanme"/>

</wsdl : definitions>

Properties used in business protocols are typically embedded in application-visible message
data. The notion of aliasing is introduced to map a global property to a field in a specific
message part. The property name becomes an alias for the message part and location, and
can be used as such in Expressions and Assignment in abstract business processes.

37

<definiti ons name="properties"
t ar get Nanespace="htt p: // exanpl e. conl properties. wsdl "
xm ns:tns="http://exanpl e. conl properties.wsdl"
xm ns: txtyp="http://exanpl e. conl t axTypes. xsd"
xm ns: t xnmeg="http://exanpl e. com t axMessages. wsdl "
xm ns: bpws="htt p: //schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/"
xm ns="http://schenas. xm soap. or g/ wsdl / " >

<!-- define a correlation property -->
<bpws: property nane="t axpayer Number" type="t xtype: SSN'/ >

<bpws: propertyAl i as propertyNane="t ns:taxpayer Nunber"
messageType="t xnmsg: t axpayer I nfo" part="identification"
query="/soci al secnunber"/>
</ bpws: propert yAl i as>
</ definitions>

The bpws: propertyAl i as defines a globally named property t ns: t axpayer Nunber as an
alias for a location in the i denti fi cati on part of the message type t xnsg: t axpayer | nf o.

The syntax for a propertyAlias definition is:
<defini ti ons name="ncnane"

xm ns: bpws="htt p://schenmas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/ ">

<bpws: propert yAl i as propertyNanme="qgnane"
nessageType="qnane" part="ncnane" query="queryString"/>

</ wsdl : definitions>

The interpretation of the nessage, part, and query attributes is the same as in the

corresponding from-spec in copy assignments (see Assignment). {Formaued_ No bullets o
4//

9 Data Handling

Business processes model stateful interactions. The state involved consists of messages
received and sent as well as other relevant data such as time-out values. The maintenance
of the state of a business process requires the use of state variables, which are called
variables in BPELAWS. Furthermore, the data from the state needs to be extracted and
combined in interesting ways to control the behavior of the process, which requires data
expressions. Finally, state update requires a notion of assignment. BPEL4WS provides these

38

features for XML data types and WSDL message types. The XML family of standards in these
areas is still evolving, and using the process-level attributes for query and expression
languages provides for the incorporation of future standards.

The extensions required for abstract and executable processes are concentrated in the data-
handling feature set. Executable processes are permitted to use the full power of data
selection and assignment but are not permitted to use nondeterministic values. Abstract
processes are restricted to limited manipulation of values contained in message properties
but are permitted to use nondeterministic values to reflect the consequences of hidden

Formatted: No bullets or

private behavior. Detailed differences are specified in the following sections. {
« numbering

9.1 Expressions

BPEL4WS uses several types of expressions. The kinds of expressions used are as follows
(relevant usage contexts are listed in parentheses):

+ Boolean-valued expressions (transition conditions, join conditions, while condition, and <« -- *‘{Formatted: No bullets or
switch cases) numbering

« Deadline-valued expressions ("until" attribute of onAlarm and wait)
« Duration-valued expressions ("for" attribute of onAlarm and wait)
» General expressions (assignment)

BPEL4WS provides an extensible mechanism for the language used in these expressions.
The language is specified by the expr essi onLanguage attribute of the process element.
Compliant implementations of the current version of BPELAWS MUST support the use of
XPath 1.0 as the expression language. XPath 1.0 is indicated by the default value of the
expr essi onLanguage attribute, which is:

http://www.w3.0rg/TR/1999/REC-xpath-19991116

Given an expression language, it must be possible to query data from variables, to extract
property values, and to query the status of links from within expressions. This specification
defines those functions for XPath 1.0 only, and it is expected that other expression-
language bindings will provide equivalent functionality. The rest of this section is specific to
XPath 1.0.

BPEL4WS introduces several extension functions to XPath's built-in functions to enable
XPath 1.0 expressions to access information from the process. The extensions are defined in
the standard BPEL4WS namespace "http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness-
process/". The prefix "bpws: " is associated with this namespace.

Any qualified names used within XPath expressions are resolved by using namespace
declarations currently in scope in the BPEL4AWS document at the location of the expression.

The following functions are defined by this specification:

bpws: get Vari abl eProperty ('variabl eNane', 'propertyNane')

This function extracts global property values from variables. The first argument names the
source variable for the data and the second is the qualified name (QName) of the global
property to select from that variable (see Message Properties). If the given property does
not appear in any of the parts of the variable's message type, then the semantics of the
process is undefined. The return value of this function is a node set containing the single

39

node representing the property. If the given property definition selects a node set of a size
other than one, then the semantics of the process is undefined.

bpws: get Li nkStatus ('linkNanme')

This function returns a Boolean indicating the status of the link (see Link Semantics). If the
status of the link is positive the value is true, and if the status is negative the value is false.
This function MUST NOT be used anywhere except in a join condition. The linkName
argument MUST refer to the name of an incoming link for the activity associated with the
join condition. These restrictions MUST be statically enforced.

These BPEL4WS-defined extension functions are available for use within all XPath 1.0
expressions.

The syntax of XPath 1.0 expressions for BPEL4AWS is considered in the following paragraphs

9.1.1 Boolean Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
results in Boolean values.

9.1.2 Deadline-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
results in values that are of the XML Schema types dateTime or date. Note that XPath 1.0 is
not XML Schema aware. As such, none of the built-in functions of XPath 1.0 are capable of
producing or manipulating dateTime or date values. However, it is possible to write a
constant (literal) that conforms to XML Schema definitions and use that as a deadline value
or to extract a field from a variable (part) of one of these types and use that as a deadline
value. XPath 1.0 will treat that literal as a string literal, but the result can be interpreted as
a lexical representation of a dateTime or date value.

9.1.3 Duration-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
results in values that are of the XML Schema type duration. The preceding discussion about
XPath 1.0's XML Schema unawareness applies here as well.

9.1.4 General Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation
results in any XPath value type (string, number, or Boolean).

Expressions with operators are restricted as follows:

« All numeric values including arbitrary constants are permitted with the equality or
relational operators (<, <=, =, !=, >=, >).

« Values of integral (short, int, long, unsignedShort, and so on) type including constants
are permitted in numeric expressions, provided that only integer arithmetic is
performed. In practice, this means that division is disallowed. It is difficult to enforce
this restriction in XPath 1.0 because XPath 1.0 lacks integral support for types. The

40

=

Formatted: No bullets or
numbering

A

Formatted: No bullets or
numbering

A

Formatted: No bullets or
numbering

A

Formatted: No bullets or
numbering

1

Formatted: No bullets or
numbering

restriction should be taken as a statement of intent that will be enforced in the future
when expression languages with more refined type systems become available.

« Only equality operators (=, !=) are permitted when used with values of string type
including constants.

These restrictions reflect XPath 1.0 syntax and semantics. Future alternative standards in
this space are expected to provide stronger type systems and therefore support more
nuanced constraints. The restrictions are motivated by the fact that XPath general
expressions are meant to be used to perform business protocol-related computation such as
retry loops, line-item counts, and so on, that must be transparent in the process definition.
They are not meant to provide arbitrary computation. This is the motivation for the
constraint that numerical expressions deal only with integer computation, and for
disallowing arbitrary string manipulation through expressions.

-
<«

9.2 Variables

Business processes specify stateful interactions involving the exchange of messages

between partners. The state of a business process includes the messages that are

exchanged as well as intermediate data used in business logic and in composing messages
sent to partners. , /

Variables provide the means for holding messages that constitute the state of a business
process. The messages held are often those that have been received from partners or are to

/
/

1

!
/

1

n

. { Formatted: No bullets or J

numbering

Deleted: BPEL4WS treats all
state uniformly as a collection of
messages.

!
/

!
/

/ [Deleted: But BPEL4WS does not
!
]

require this.

///{ Deleted: messages
!

'/ 1 Deleted: act as "temporary

’| variables"

p
/ 7 /{Deleted: are

XML Schema element. The syntax of the vari abl es declaration is:

<vari abl es>

</vari abl es> N

Jhe name of a variable should be unigue within its own scope. If a local variable has the

same name and same messageType/type/element as a variable defined in an enclosing N

scope, the local variable will be used in local assignments and/or getVariableProperty
functions. It is not permitted to have variables with same name but different
messageType/type/element within an enclosing scope hierarchy. The behavior of such
variables is not defined.

The nessageType, t ype or el enent attributes are used to specify the type of a variable.
Exactly one of these attributes must be used. Attribute nessageType refers to a WSDL
message type definition. Attribute t ype refers to an XML Schema simple type. Attribute
el enent refers to an XML Schema element. An XML Schema complex type must be
associated with an element to be used by a BPEL4WS variable

An example of a variable declaration using a message type declared in a WSDL document
with the targetNamespace " htt p: // exanpl e. coni orders":

<variable xnl ns: ORD="http://exanpl e. coni orders"

41

.~ { Deleted: MUST
//// ‘{Deleted: . However, BPEL4WS

)
)
/ J
’ { Deleted: computation]
)
)
J

allows the message

Deleted: to be inlined in the
variable declaration rather than
being defined in a WSDL
document. This alternative is
provided to avoid cluttering
WSDL documents with types for
N the "temporary variable" case

\\{ Deleted: >+]

Deleted: <wsdl : message
name="ncnane">?

</\.N.S;.‘“ : message>
\ </variable>

Deleted: An example of a
vari abl e declaration with an
inlined message type is:
<vari abl e
name="or der Det ai | s" >
<wsdl : nessage
nane="or der Det ai | s" >
<part
nane="processDuration"
type="xsd: duration"/>{
</ wsdl : nessage>1
</vari abl e>

If the same message type is
declared in a WSDL document
with the targetNamespace
"http://exanpl e.conlorders”,
the declaration could be: §

nanme="order Det ai | s" nessageType="CORD: orderDetail s"/>

| Variables associated with message types can be specified as input or output variables for
invoke, receive, and reply activities (see Invoking Web Service Operations and Providing
Web Service Operations). When an invoke operation returns a fault message, this causes a
fault in the current scope. The fault variable in the corresponding fault handler is initialized
with the fault message received (see Scopes and Fault Handlers).

Each variable is declared within a scope and is said to belong to that scope. Variables that
belong to the global process scope are called global variables. Variables may also belong to
other, non-global scopes, and such variables are called local variables. Each variable is

| visible only jn the scope in which it is defined and in all scopes nested within the scope it - {Deleted: visible

belongs to. Thus, global variables are visible throughout the process. It is possible to
"hide" a variable in an outer scope by declaring a variable with an identical name in an inner
scope. These rules are exactly analogous to those in programming languages with lexical
scoping of variables.

A global variable is in an uninitialized state at the beginning of a process. A local variable is
in an uninitialized state at the start of the scope it belongs to. Note that non-global scopes
in general start and complete their behavior more than once in the lifetime of the process
instance they belong to. Variables can be initialized by a variety of means including
assignment and receiving a message. Variables can be partially initialized with property
assignment or when some but not all parts in the message type of the variable are assigned

values. _ -1 Formatted: No bullets or
<~ | numbering

9.3 Assignment

Copying data from one variable to another is a common task within a business process. The
assi gn activity can be used to copy data from one variable to another, as well as to
construct and insert new data using expressions. The use of expressions is primarily
motivated by the need to perform simple computation (such as incrementing sequence
numbers) that is required for describing business protocol behavior. Expressions operate on
message selections, properties, and literal constants to produce a new value for a variable

property or selection. Finally, this activity can also be used to copy gndpoint referencesto - {Deleted: service

and from partner links.
The assi gn activity contains one or more elementary assignments.
<assi gn standard-attributes>

st andar d- el enent s

<copy>+

from spec
t o- spec
</ copy>
</ assi gn>

The assign activity copies a type-compatible value from the source ("from-spec") to the
destination ("to-spec"). The f rom spec MUST be one of the following forms except for the
opaque form available in abstract processes:

42

<from vari abl e="ncnane" part="ncnane"?/>

<from part ner Li nk="ncname" endpoi nt Ref er ence="nyRol e| part ner Rol "/ > - {De'eted’ servi ceRef erence

<from vari abl e="ncnane" property="qgnane"/>
<f rom expr essi on="gener al - expr"/>

<from> ... literal value ... </frone

The t o- spec MUST be one of the following forms:
<to vari abl e="ncnanme" part="ncnanme"?/>
<to partnerLi nk="ncnane"/>

<to vari abl e="ncnanme" property="gnane"/>

In the first from-spec and to-spec variants the variable attribute provides the name of a

variable, If the type of the variable is a WSDL messge type_the optional part attribute MAY - { Deleted: , and

be used to provide the name of a part within that variable. When the variable is defined T | Deleted: provides
using XML Schema simple type or element, the part attribute MUST NOT be used.

The second from-spec and to-spec variants allow dynamic manipulation of the gndpoint =~ - ‘[Deleted: service
references associated with partner links. The value of the partnerLink attribute is the name {Daeted: partners

of a partnerLink declared in the process. In the case of from-specs, the role must alsobe = "~ { 5

specified because a process might need to communicate an endpoint reference - | Deleted: partner
corresponding to either its own role or the partner's role_within the partnerlink. The value . {De'eteﬁh partner
“myRole” means that the gndpoint reference of the process with respect to that partnerLink \‘[Deleted: a service

is the source, while the value “partnerRole” means that the partner’s gndpoint reference for \\\:\\ {Deleted: service

the partnerLink is the source. For the to-spec, the assignment is only possible to the N -
partnerRole, hence there is no need to specify the role. The type of the value used in \{Deleted' partner
partnerLink-style from/to-specs is always.an endpoint reference (see Partner Link Types, {De'eted= service
Partner Links, and Endpoint References). "~ { Deleted: a service

The third from-spec and to-spec variants allow explicit manipulation of message properties '\ | Field Code Changed
(see Message Properties) occurring in variables. The property forms are especially useful for TDeleted: Service Linking
abstract processes, because they provide a way to clearly define how distinguished data Partners, and Service References

J
J
J
J
J
J
J
J
J
J
J
j

elements in messages are being used.

The fourth ("expression") from-spec variant allows processes to perform simple
computations on properties and variables (for example, increment a sequence number).

The fifth from-spec variant allows a literal value to be given as the source value to assign to
a destination. The type of the literal value MUST be the type of the destination (to-spec).
The type of the literal value MAY be optionally indicated inline with the value by using XML

Schema's instance type mechanism (xsi:type). /{

Formatted: No bullets or
numbering

9.3.1 Type Compatibility in Assignment

For an assignment to be valid, the data referred to by the from and to specifications MUST
be of compatible types. The following points make this precise:

+ The from-spec is a variable of a WSDL message type and the to-spec is a variable of a <«--- ‘[Formatted: No bullets or
numbering

WSDL message type. In this case both variables MUST be of the same message type,

where two message types are said to be equal if their qualified names are the same.

43

« The from-spec is a variable of a WSDL message type and the to-spec is not, or vice
versa. This is not legal because parts of variables, selections of variable parts, or

| endpoint references cannot be assigned to/from variables of WSDL message types - {De'et3d= service
directly.
« In all other cases, the types of the source and destination are XML Schema types_or
elements, and the constraint is that the source value MUST possess the glement or type - {Deleted: type

associated with the destination. Note that this does not require the types associated with
the source and destination to be the same. In particular, the source type MAY be a
subtype of the destination type._In the case of variables defined by reference to an
element, moreover, both the source and the target MUST be the same element.

The semantics of a process in which any of the matching constraints above is violated is
undefined.

_ - 7| Formatted: No bullets or
«” numbering

9.3.2 Assignment Example

The example assumes the following complex type definition in the namespace
"http://tempuri.org/bpws/example":

- { Deleted: addr ess

‘ <conpl exType name="} Addr ess" >
<sequence>
<el enent nanme="nunber" type="xsd:int"/>
<el enent nane="street" type="xsd:string"/>
<el enent nane="city" type="xsd:string"/>
<el enent nane="phone" >
<conpl exType>
<sequence>
<el enent nane="areacode" type="xsd:int"/>
<el enent nane="exchange" type="xsd:int"/>
<el enent nane="nunber" type="xsd:int"/>
</ sequence>
</ conpl exType>
</ el ement >
</ sequence>
</ conpl exType>

«- - ‘[Formatted: example

<el ement nane = “address” type = “t Address”/>

Assume that the following WSDL message definition exists for the same target namespace:
<message nane="person" xml ns:x="http://tenpuri.org/bpws/exanple">
<part nane="full-nane" type="xsd:string"/>

44

<part name="address" gl enent="x: address"/> - { Deleted: type

</ message>

Also assume the following BPEL4WS variable declarations:
<vari abl e nane="c1" nessageType="x: person"/>
<vari abl e nane="c2" nessageType="x: person"/>
<vari abl e nane="c3" el enent ="x: address"/ >

The example illustrates copying one variable to another_as well as copying a variable part to
a variable of compatible element type:

<assi gn>
<copy>
<from vari abl e="c1"/>
<to vari abl e="c2"/>
</ copy>

<copy>
<fromvariabl e="cl1" part = “address”/>

<to vari abl e="c3"/>

</ copy>

Formatted: No bullets or
numbering

</ assi gn> {

-
-«

10 Correlation

The information provided so far suggests that the target for messages that are delivered to
a business process service is the WSDL port of the recipient service. This is an illusion
because, by their very nature, stateful business processes are instantiated to act in
accordance with the history of an extended interaction. Therefore, messages sent to such
processes need to be delivered not only to the correct destination port, but also to the
correct instance of the business process that provides the port. The infrastructure hosting
the process must do this in a generic manner, to avoid burdening every process
implementation with the need to implement a custom mechanism for instance routing.
Messages, which create a new business process instance, are a special case, as described in
The Lifecycle of a Business Process.

In the object-oriented world, such stateful interactions are mediated by object references,
which intrinsically provide the ability to reach a specific object (instance) with the right state
and history for the interaction. This works reasonably well in tightly coupled
implementations where a dependency on the structure of the implementation is normal. In
the loosely coupled world of Web Services, the use of such references would create a fragile
web of implementation dependencies that would not survive the independent evolution of
business process implementation details at each business partner. In this world, the answer
is to rely on the business data and communication protocol headers that define the wire-
level contract between partners and to avoid the use of implementation-specific tokens for
instance routing whenever possible.

45

Consider the usual supply-chain situation where a buyer sends a purchase order to a seller.
Suppose that the buyer and seller have a stable business relationship and are statically
configured to send documents related to the purchasing interaction to the URLs associated
with the relevant WSDL service ports. The seller needs to asynchronously return an
acknowledgement for the order, and the acknowledgement must be routed to the correct
business process instance at the buyer. The obvious and standard mechanism to do this is
to carry a business token in the order message (such as a purchase order humber) that is
copied into the acknowledgement for correlation. The token can be in the message envelope
in a header or in the business document (purchase order) itself. In either case, the exact
location and type of the token in the relevant messages is fixed and instance independent.
Only the value of the token is instance dependent. Therefore, the structure and position of
the correlation tokens in each message can be expressed declaratively in the business
process description. The BPEL4WS notion of correlation set, described in the following
section, provides this feature. The declarative information allows a BPEL4WS-compliant
infrastructure to use correlation tokens to provide instance routing automatically.

The declarative specification of correlation relies on declarative properties of messages. A
property is simply a "field" within a message identified by a query—by default the query
language is XPath 1.0. This is only possible when the type of the message part or binding

element is described by using an XML Schema. The use of correlation tokens and gndpoint - {Deleted: service

references is restricted to message parts described in this way. To be clear, the actual wire
format of such types can still be non-XML, for example, EDI flat files, based on different

Formatted: No bullets or
numbering

bindings for port types. /{

10.1 Message Correlation

During its lifetime, a business process instance typically holds one or more conversations
with partners involved in its work. Conversations may be based on sophisticated transport
infrastructure that correlates the messages involved in a conversation by using some form
of conversation identity and routes them automatically to the correct service instance
without the need for any annotation within the business process. However, in many cases
correlated conversations involve more than two parties or use lightweight transport
infrastructure with correlation tokens embedded directly in the application data being
exchanged. In such cases, it is often necessary to provide additional application-level
mechanisms to match messages and conversations with the business process instances for
which they are intended.

Correlation patterns can become quite complex. The use of a particular set of correlation
tokens does not, in general, span the entire interaction between a service instance and a
partner (instance), but spans a part of the interaction. Correlated exchanges may nest and
overlap, and messages may carry several sets of correlation tokens. For example, a buyer
might start a correlated exchange with a seller by sending a purchase order (PO) and using
a PO number embedded in the PO document as the correlation token. The PO number is
used in the PO acknowledgement by the seller. The seller might later send an invoice that
carries the PO number, to correlate it with the PO, and also carries an invoice humber so
that future payment-related messages need to carry only the invoice number as the
correlation token. The invoice message thus carries two separate correlation tokens and
participates in two overlapping correlated exchanges.

BPEL4WS addresses correlation scenarios by providing a declarative mechanism to specify
correlated groups of operations within a service instance. A set of correlation tokens is
defined as a set of properties shared by all messages in the correlated group. Such a set of
properties is called a correlation set.

46

Correlation sets are declared within scopes and associated with them in a manner that is
analogous to variable declarations. Each correlation set is declared within a scope and is
said to belong to that scope. Correlation sets that belong to the global process scope are
called global correlation sets. Correlation sets may also belong to other, non-global scopes,
and such correlation sets are called local correlation sets. Each correlation set is only
visible in the scope in which it is defined and in all scopes nested within the scope it belongs
to. Thus, global correlation sets are visible throughout the process. It is possible to "hide"
a correlation set in an outer scope by declaring a correlation set with an identical name in
an inner scope.

A global correlation set is in an uninitiated state at the beginning of a process. A local
correlation set is in an uninitiated state at the start of the scope it belongs to. Note that
non-global scopes in general start and complete their behavior more than once in the
lifetime of the process instance they belong to.

Correlation sets resemble late-bound constants rather than variables in their semantics.
The binding of a correlation set is triggered by a specially marked message send or receive
operation. A correlation set can be initiated only once during the lifetime of the scope it
belongs to. Thus, a global correlation set can only be initiated at most once during the
lifetime of the process instance. Its value, once initiated, can be thought of as an alias for
the identity of the business process instance. A local correlation set is available for binding
each time the corresponding scope starts, but once initiated must retain its value until the
scope completes.

In multiparty business protocols, each participant process in a correlated message exchange
acts either as the initiator or as a follower of the exchange. The initiator process sends the
first message (as part of an operation invocation) that starts the conversation, and
therefore defines the values of the properties in the correlation set that tag the
conversation. All other participants are followers that bind their correlation sets in the
conversation by receiving an incoming message that provides the values of the properties in
the correlation set. Both initiator and followers must mark the first activity in their

Formatted: No bullets or

respective groups as the activity that binds the correlation set.
«’){numbering

10.2 Defining and Using Correlation Sets

The examples in this section show correlation being used on almost every messaging
activity (receive, reply, and invoke). This is because BPEL4WS does not assume the use of
any sophisticated conversational transport protocols for messaging. In cases where such
protocols are used, the explicit use of correlation in BPEL4WS can be reduced to those
activities that establish the conversational connections.

Each correlation set in BPEL4WS is a named group of properties that, taken together, serve
to define a way of identifying an application-level conversation within a business protocol
instance. A given message can carry multiple correlation sets. After a correlation set is
initiated, the values of the properties for a correlation set must be identical for all the
messages in all the operations that carry the correlation set and occur within the
corresponding scope until its completion. The semantics of a process in which this
consistency constraint is violated is undefined. Similarly undefined is the semantics of a
process in which an activity with the i ni ti at e attribute set to no attempts to use a
correlation set that has not been previously initiated.

As the following examples illustrate, a correlation set is initiated when the activity within
which it is used applies the attribute i ni ti at e="yes" to the set.

<correl ati onSet s>?

47

<correl ati onSet name="ncnane" properties="qnanme-|ist"/>+
</correl ati onSet s>

Following is an extended example of correlation. It begins by defining four message
properties: cust oner | D, or der Nunber , vendor | D and i nvoi ceNunber . All of these
properties are defined as part of the "http://exanpl e. comf suppl yCorrel ati on. wsdl "
namespace defined by the document.

<definitions name="properties"
t ar get Nanespace="htt p: // exanpl e. conl suppl yCorrel ati on. wsdl "
xm ns: tns="http://exanpl e. con suppl yCorrel ati on. wsdl "
xm ns: bpws="http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/"
xm ns="http://schemas. xm soap. or g/ wsdl / " >

<l-- define correlation properties -->

<bpws: property nanme="custoner| D' type="xsd:string"/>

<bpws: property nanme="order Nunber" type="xsd:int"/>

<bpws: property nanme="vendor| D' type="xsd:string"/>

<bpws: property nane="i nvoi ceNunber" type="xsd:int"/>
</definitions>

Note that these properties are global names with known (simple) XMLSchema types. They
are abstract in the sense that their occurrence in messages needs to be separately specified
(see Message Properties). The example continues by defining purchase order and invoice
messages and by using the concept of aliasing to map the abstract properties to fields
within the message data identified by selection.

<definiti ons nanme="correl at edMessages"
t ar get Nanespace="htt p: // exanpl e. conml suppl yMessages. wsdl "
xm ns:tns="http://exanpl e. conl suppl yMessages. wsdl "
xm ns: cor="http://exanpl e. cont suppl yCorrel ati on. wsdl "
xm ns: bpws="http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/"
xm ns="http://schemas. xm soap. or g/ wsdl / " >
<! —define schema types for PO and invoice information -->
<t ypes>
<xsd: schema>
<xsd: conpl exType nane="Pur chaseOr der" >
<xsd: el ement nane="Cl D' type="xsd:string"/>
<xsd: el ement nanme="order" type="xsd:int"/>

</ xsd: conpl exType>
<xsd: conpl exType nane="Pur chaseO der Response" >

48

<bpws: propertyAl i as propertyNanme="cor:invoi ceNunber"
messageType="tns: | nvMessage" part="1VC"
query="/1VCd | nvNunt/ >

</ definitions>

Finally, the portType used is defined, in a separate WSDL document.
<defini ti ons name="pur chasi ngPort Type"
t ar get Nanespace="htt p: // exanpl e. conl puchasi ng. wsdl "
xm ns: snmsg="htt p: // exanpl e. conf suppl yMessages. wsdl "
xm ns="http://schemas. xm soap. or g/ wsdl / " >

<port Type nane="Purchasi ngPT" >
<operati on nane="SyncPur chase">
<i nput message="snsg: POVessage"/ >
<out put nmessage="snsg: POResponse"/ >
<fault name="tns: Rej ect PO' nessage="snsg: PORej ect"/ >
</ oper ati on>
<operati on nanme="AsyncPur chase" >
<i nput message="snmsg: POVessage"/ >
</ oper ati on>
</ port Type>
<port Type nane="Buyer PT">
<operati on nane="AsyncPurchaseResponse" >
<i nput nmessage="snsg: POResponse"/ >
<fault name="tns: Rej ect PO' nessage="snsg: PORej ect"/ >
</ oper ati on>
<oper ati on nanme="AsyncPur chaseRej ect ">
<i nput message="snsg: PORej ect "/ >
</ oper ati on>
</ port Type>
</definitions>

Both the properties and their mapping to purchase order and invoice messages will be used
in the following correlation examples.

<correl ati onSets
xm ns: cor="http://exanpl e. com suppl yCorrel ati on. wsdl ">
<l-- Order nunbers are particular to a custoner,

50

this set is carried in application data -->
<correl ati onSet nane="PurchaseCr der"
properties="cor: customerl D cor: order Nunber"/>

<l-- Invoice nunbers are particular to a vendor,
this set is carried in application data -->
<correl ati onSet nane="I|nvoi ce"
properties="cor:vendorl D cor:invoi ceNunber"/>

</correl ati onSet s>

Correlation set names are used in i nvoke, r ecei ve, and r epl y activities (see Invoking Web - {Deleted: sets
Service Operations and Providing Web Service Operations), in the onMessage branches of ~~ __ {Ddeted:)

pick activities, and in the onMessage variant of event handlers (see Pick and Message
Events). These sets are used to indicate which correlation sets (i.e., the corresponding
property sets) occur in the messages being sent and received. The i ni ti at e attribute is
used to indicate whether the set is being initiated. When the attribute is set to "yes" the set
is initiated with the values of the properties occurring in the message being sent or
received. Finally, in the case of invoke, when the operation invoked is synchronous
request/response, a patt er n attribute is used to indicate whether the correlation applies to
the outbound (request) message, the inbound (response) message, or both. These ideas
are explained in more detail in the context of the use of correlation in the rest of this
example.

A message can carry the tokens of one or more correlation sets. The first example shows an
interaction in which a purchase order is received in a one-way inbound request and a
confirmation including an invoice is sent in the asynchronous response. The Pur chaseOr der
correlationSet is used in both activities so that the asynchronous response can be correlated
to the request at the buyer. The receive activity initiates the Pur chaseOr der correlationSet.
The buyer is therefore the initiator and the receiving business process is a follower for this
correlationSet. The invoke activity sending the asynchronous response also initiates a new
correlationSet | nvoi ce. The business process is the initiator of this correlated exchange and
the buyer is a follower. The response message is thus a part of two separate conversations,
and forms the bridge between them.

In the following, the prefix SP: represents the namespace
"http://exanpl e. conf puchasi ng. wsdl ".

<recei ve partnerLink="Buyer" port Type="SP: Purchasi ngPT"

oper ati on="AsyncPur chase"
vari abl e="PO' >
<correl ati ons>
<correl ati on set="PurchaseOrder" initiate="yes">
</correl ati ons>

</recei ve>

<i nvoke partnerLi nk="Buyer" port Type="SP: Buyer PT"

51

oper ati on="AsyncPur chaseResponse" i nput Vari abl e=" POResponse" >
<correl ations>
<correl ation set="PurchaseOrder" initiate="no" pattern="out">
<correlation set="Invoice" initiate="yes" pattern="out">
</correl ati ons>

</i nvoke>

Alternatively, the response might have been a rejection (such as an "out-of-stock"
message), which in this case terminates the conversation correlated by the correlationSet
Pur chaseOr der without starting a new one correlated with | nvoi ce. Note that theinitiate
attribute is missing. It therefore has the default value of "no".

<i nvoke partnerLi nk="Buyer" port Type="SP: Buyer PT"
oper ati on="AsyncPur chaseRej ect" i nput Vari abl e="PORej ect " >
<correl ati ons>
<correl ati on set="PurchaseOrder" pattern="out">
</correl ati ons>

</i nvoke>

The use of correlation with synchronous Web Service invocation is illustrated by the

alternative synchronous purchasing operation used by an invoke activity used in the buyer's
business process.

<i nvoke partnerLink="Seller" portType="SP: Purchasi ngPT"
oper at i on="SyncPur chase"

i nput Var i abl e="sendPO'
out put Vari abl e="get Response" >
<correl ations>
<correl ation set="PurchaseOrder" initiate="yes"
pattern="out">
<correlation set="Invoice" initiate="yes"
pattern="in">
</correl ati ons>
<cat ch faul t Nane="SP: Rej ect PO' faul t Vari abl e="PORej ect" >
<l-- handle the fault -->
</ cat ch>
</'i nvoke>

Note that an i nvoke consists of two messages: an outgoing request message and an
incoming reply message. The correlation sets applicable to each message must be
separately considered because they can be different. In this case the Pur chaseOr der
correlation applies to the outgoing request that initiates it, while the I nvoi ce correlation

52

applies to the incoming reply and is initiated by the reply. Because the Pur chaseOr der

correlation is initiated by an outgoing message, the buyer is the initiator of that correlation

but a follower of the | nvoi ce correlation because the values of the correlation properties for

Invoice are initiated by the seller in the reply received by the buyer. {
-

Formatted: No bullets or
numbering

11 Basic Activities
11.1 Standard Attributes for Each Activity

Each activity has optional standard attributes: a name, a join condition, and an indicator
whether a join fault should be suppressed if it occurs. A join condition is used to specify
requirements about concurrent paths reaching at an activity. See Flow for a full discussion
of the last two attributes. The default value of suppr essJoi nFai | ure is no.

nane="ncname" ?
j oi nCondi ti on="bool - expr"?

suppr essJoi nFai | ure="yes| no" ?>

The value of the joinCondition attribute is a Boolean-valued expression in the expression
language indicated for this document (see Expressions). The default value of the join
condition for the default expression language XPath is the logical OR of the link status of all
incoming links of this activity. /{

Formatted: No bullets or
numbering

11.2 Standard Elements for Each Activity

Each BPEL4WS activity has optional nested standard elements <source> and <target>. The
use of these elements is required for establishing synchronization relationships through links
(see Flow). Each link is defined independently and given a name. The link name is used as
value of the linkName attribute of the <source> element. An activity MAY declare itself to
be the source of one or more links by including one or more <source> elements. Each
<source> element MUST use a distinct link name. Similarly, an activity MAY declare itself to
be the target of one or more links by including one or more <target> elements. Each
<source> element associated with a given activity MUST use a link name distinct from all
other <source> elements at that activity. Each <target> element associated with a given
activity MUST use a link name distinct from all other <target> elements at that activity.
Each <source> element MAY optionally specify a transition condition that functions as a
guard for following this specified link (see Flow). If the transition condition is omitted, it is
deemed to be present with the constant value tr ue.

<source |inkNane="ncnane" transitionCondition="bool -expr"?/>*

. — D) s
<target |inkName="ncnane"/> /{Formatted: No bullets or J
4//

numbering

11.3 Invoking Web Service Operations

Web Services provided by partners (see Partner Link Types, Partner Links, and Endpoint [Field Code Changed)

References) can be used to perform work in a BPEL4AWS business process. Invoking an \\T

operation on such a service is a basic activity. Recall that such an operation can be a Partners, and Service References

Deleted: Service Linking J

53

synchronous request/response or an asynchronous one-way operation. BPEL4WS uses the
same basic syntax for both with some additional options for the synchronous case.

An asynchronous invocation yequires only the input variable of the operation because it does __ - {Deleted: specifies
not expect a response as part of the operation (see Providing Web Service Operations). A
synchronous invocation yequires both an input variable and an output variable. One or more __- {Deleted: specifies

correlation sets can be specified to correlate the business process instance with a stateful
service at the partner’s side (see Correlation). However, these attributes are both
syntactically optional since they are absolutely required only in executable processes.

In the case of a synchronous invocation, the operation might return a WSDL fault message.
This results in a BPEL4WS fault. Such a fault can be caught locally by the activity, and in
this case the specified activity will be performed. If a fault is not caught locally by the
activity it is thrown to the scope that encloses the activity (see Scopes and Fault Handlers).

Note that a WSDL fault is identified in BPELAWS by a qualified name formed by the target
namespace of the corresponding portType and the fault name. This uniform naming
mechanism must be followed even though it does not accurately match WSDL's fault-
naming model. Because WSDL does not require that fault names be unique within the
namespace where the service operation is defined, all faults sharing a common name and
defined in the same namespace are indistinguishable in BPEL4AWS. In WSDL 1.1 it is
necessary to specify a portType name, an operation name, and the fault name to uniquely
identify a fault. This limits the ability to use fault-handling mechanisms to deal with
invocation faults. This is an important shortcoming of the WSDL fault model that will be
removed in future versions of WSDL.

Finally, an activity can be associated with another activity that acts as its compensation
action. This compensation handler can be invoked either explicitly or by the default
compensation handler of the enclosing scope (see Scopes and Compensation Handlers).

Semantically, the specification of local fault and/or compensation handlers is equivalent to
the presence of an implicit scope immediately enclosing the activity and providing those
handlers. The name of such an implicit scope is always the same as the name of the activity
it encloses.

<i nvoke partnerLi nk="ncnane" port Type="gnane" operation="ncnane"

i nput Var i abl e="ncnang; ? out put Vari abl e="ncname" ? - { peleted: -

standard-attri butes>

st andar d- el enent s

<correl ati ons>?
<correl ation set="ncnanme" initiate="yes|no"?
pattern="in| out|out-in"/>+
</correl ati ons>
<cat ch faul t Name="qgnane" faultVari abl e="ncnane" ?>*
activity
</ cat ch>
<cat chAl | >?
activity
</ catchAl | >
<conpensat i onHandl er >?

54

activity
</ conpensat i onHandl er >
</'i nvoke>

See Correlation for an explanation of the correlation semantics. The following example
shows an invocation with a nested compensation handler. Other examples are shown
throughout the specification.

<i nvoke partnerLink="Seller" portType="SP: Purchasi ng"

oper ati on="SyncPur chase"
i nput Var i abl e="sendPO'
out put Vari abl e=" get Response" >
<conpensat i onHandl| er >
<i nvoke partnerLink="Seller" portType="SP: Pur chasi ng"

oper at i on="Cancel Pur chase"
i nput Var i abl e="get Response"
out put Var i abl e="get Confi rnati on">
</ conpensat i onHandl er >
</'i nvoke>

11.4 Providing Web Service Operations

A business process provides services to its partners through receive activities and
corresponding reply activities. A receive activity specifies the partner link it expects to
receive from, and the port type and operation that it expects the partner to invoke._In
addition, it may specify a variable that is to be used to receive the message data received.
However, this attribute is syntactically optional since it is absolutely required only in
executable processes.

In addition, receive activities play a role in the lifecycle of a business process. The only way
to instantiate a business process in BPEL4WS is to annotate a r ecei ve activity with the
creat el nst ance attribute set to "yes" (see Pick for a variant). The default value of this
attribute is "no". A recei ve activity annotated in this way MUST be an initial activity in the
process, that is, the only other basic activities may potentially be performed prior to or

simultaneously with such a r ecei ve activity MUST be similarly annotated r ecei ve activities.

It is permissible to have the cr eat el nst ance attribute set to "yes" for a set of concurrent
initial activities. In this case the intent is to express the possibility that any one of a set of
required inbound messages can create the process instance because the order in which
these messages arrive cannot be predicted. All such r ecei ve activities MUST use the same
correlation sets (see Correlation). Compliant implementations MUST ensure that only one of
the inbound messages carrying the same correlation set tokens actually instantiates the
business process (usually the first one to arrive, but this is implementation dependent). The
other incoming messages in the concurrent initial set MUST be delivered to the
corresponding r ecei ve activities in the already created instance.

55

-
-){
«

Formatted: No bullets or
numbering

A business process instance MUST NOT simultaneously enable two or more recei ve

recei ve is a blocking activity in the sense that it will not complete until a matching
message is received by the process instance. The semantics of a process in which two or

may be simultaneously enabled is undefined. For the purposes of this constraint, an
onMessage clause in a pi ck and an onMessage event handler are equivalent to a recei ve

(see Pick and Message Events).

<recei ve partnerLi nk="ncnane" portType="qgnane" operati on="ncnane"

standard-attri but es>

st andar d- el enent s

<correl ati ons>?
<correl ation set="ncnane" initiate="yes|no"?>+
</correl ations>

</receive>

A reply activity is used to send a response to a request previously accepted through a
recei ve activity. Such responses are only meaningful for synchronous interactions. An
asynchronous response is always sent by invoking the corresponding one-way operation on
the partner link. A reply activity may specify a variable that contains the message data to

be sent in reply. However, this attribute is syntactically optional since it is absolutely
required only in executable processes.

The correlation between a request and the corresponding reply is based on the constraint
that more than one outstanding synchronous request from a specific partner link for a

For the purposes of this constraint, an onMessage clause in a pi ck is equivalent to a

recei ve (see Pick). Moreover, a reply activity must always be preceded by a recei ve
activity for the same partner_link, portType and (request/response) operation, such that no
reply has been sent for that r ecei ve activity. The semantics of a process in which this
constraint is violated is undefined.

<reply partnerLink="ncnane" port Type="gnanme" operation="ncnane"

standard-attri but es>

st andar d- el enent s

<correl ati ons>?
<correl ation set="ncnane" initiate="yes|no"?>+
</correl ations>

</reply>

56

simultaneously. The semantics of a process in which this constraint is violated is undefined.

- {Deleted: and

- {Deleted: and

- {Deleted: is

- { Deleted: "

- {Deleted: partner's service.

- {Deleted: and

- ‘[Deleted: "

Note that the <r epl y> activity corresponding to a given request has two potential forms. If
the response to the request is normal, the f aul t Nane attribute is not used and the

| vari abl e attribute, when present, will indicate a variable of the normal response message

type. If, on the other hand, the response indicates a fault, the f aul t Narme attribute is used
| and the vari abl e attribute, when present, will indicate a variable of the message type for
the corresponding fault.

11.5 Updating Variable Contents

_ - Formatted: No bullets or
<~ | numbering

11.6 Signaling Faults

Variable update occurs through the assignment activity, which is described in Assignment. /{

Formatted: No bullets or
numbering

The t hr ow activity can be used when a business process needs to signal an internal fault
explicitly. Every fault is required to have a globally unique QName. The t hr ow activity is
required to provide such a name for the fault and can optionally provide a variable of data
that provides further information about the fault. A fault handler can use such data to
analyze and handle the fault and also to populate any fault messages that need to be sent
to other services.

BPEL4WS does not require fault names to be defined prior to their use in a throw element.
An application or process-specific fault name can be directly used by using an appropriate
QName as the value of the faultName attribute and providing a variable with the fault data
if required. This provides a very lightweight mechanism to introduce application-specific
faults.

<t hrow f aul t Nane="qgnane" faultVari abl e="ncnane"? standard-attributes>
st andard- el enent s
</t hr ow>

A simple example of a throw activity that does not provide a variable of fault data is:
<t hrow xm ns: FLT="htt p: // exanpl e. comf f aul t s" faul t Name="FLT: Qut Of St ock"/ >

11.7 Waiting

Deleted: <#>Terminating the
Service Instance9
/| The terni nat e activity can be

used to immediately terminate
the behavior of a business

,, \
\
and deadline expressions).

The wai t activity allows a business process to specify a delay for a certain period of time or
until a certain deadline is reached (see Expressions for the grammar of duration expressions
<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
st andard- el ement s
</ wai t >

A typical use of this activity is to invoke an operation at a certain time (in this case a
constant, but more typically an expression dependent on process state):
<sequence>

57

process instance within which
the t er mi nat e activity is
! performed. All currently running
| activities MUST be terminated as
Y soon as possible without any
\\\ fault handling or compensation
\ behavior. It should be noted that
| the process instance still can be
compensated after it has
| terminated, if
' | enabl el nst anceConpensat i on
has been set to yes. |
<term nate standard-
| attributes>T
! st andar d- el ement s
\ </term nat e>f

Formatted: No bullets or
| numbering

(Formatted: Bullets and Numbering]

<wai t until="'2002-12-24T18: 00+01: 00" "/ >

<i nvoke partnerLink="Cal | Server" portType="Automati cPhoneCal | "

oper at i on="Text ToSpeech"
i nput Vari abl e="seasonal Greeti ng">

</'i nvoke>
</ sequence> _ - Formatted: No bullets or
7 numbering
<+
11.8 Doing Nothing
There is often a need to use an activity that does nothing, for example when a fault needs
to be caught and suppressed. The enpt y activity is used for this purpose. The syntax is
obvious and minimal.
<enpty standard-attributes>
st andar d- el enent s
</ empty> _-| Formatted: No bullets or
.~ | numbering
o
12 Structured Activities
Structured activities prescribe the order in which a collection of activities take place. They
describe how a business process is created by composing the basic activities it performs into
structures that express the control patterns, data flow, handling of faults and external
events, and coordination of message exchanges between process instances involved in a
business protocol.
The structured activities of BPEL4WS include:
« Ordinary sequential control between activities is provided by sequence, swi t ch, and <~ - - 1 Formatted: No bullets or
whi | e. numbering
» Concurrency and synchronization between activities is provided by f | ow.
« Nondeterministic choice based on external events is provided by pi ck.
Structured activities can be used recursively in the usual way. A key point to understand is
that structured activities can be nested and combined in arbitrary ways. This provides a
somewhat unusual but very attractive free blending of the graph-like and program-like
control regimes that have traditionally been seen as alternatives rather than orthogonal
composable features. A simple example of such blended usage is found in the Initial
Example.
It is important to emphasize that the word activity is used throughout the following to
include both basic and structured activities. _{ Formatted: No bullets or
<~ | numbering

12.1 Sequence

58

A sequence activity contains one or more activities that are performed sequentially, in the
order in which they are listed within the <sequence> element, that is, in lexical order. The
sequence activity completes when the final activity in the sequence has completed.

<sequence standard-attributes>

st andar d- el enent s

activity+
</ sequence>

Example:
<sequence>
<fl ow>

</fl ow>

<scope>

</ scope>

<pi ck>

</ pi ck>

Formatted: No bullets or

</ sequence>
-~ | numbering
<

12.2 Switch

The swi t ch structured activity supports conditional behavior in a pattern that occurs quite
often. The activity consists of an ordered list of one or more conditional branches defined by
case elements, followed optionally by an ot her wi se branch. The case branches of the

swi t ch are considered in the order in which they appear. The first branch whose condition
holds true is taken and provides the activity performed for the switch. If no branch with a
condition is taken, then the ot her wi se branch is taken. If the ot herw se branch is not
explicitly specified, then an ot her wi se branch with an enpty activity is deemed to be
present. The swi t ch activity is complete when the activity of the selected branch completes.

<swi tch standard-attri butes>

st andar d- el enent s

<case condi ti on="bool - expr" >+
activity

</ case>

<ot herw se>?
activity

</ ot herw se>

</ swi tch>

59

Example:
<swi tch xm ns:inventory="http://supply-chain.org/inventory"
xm ns: FLT="htt p: // exanpl e. com faul t s">
<case condi tion= "bpws: get Vari abl eProperty(stockResult,|evel) > 100">
<fl ow>
<l-- performfulfillnent work -->
</fl ow>
</ case>
<case condi tion="bpws: get Vari abl eProperty(stockResult,|evel) >= 0">
<t hrow f aul t Nane="FLT: Qut Of St ock"
vari abl e=" Rest ockEsti mate"/ >
</ case>
<ot herwi se>
<t hrow f aul t Nane="FLT: | t enDi sconti nued"/ >
</ ot her wi se>

Formatted: No bullets or

</ swi t ch>
. numbering
«

12.3 While

The whi | e activity supports repeated performance of a specified iterative activity. The
iterative activity is performed until the given Boolean whi | e condition no longer holds true.

<whi | e condi tion="bool -expr" standard-attributes>

st andar d- el enent s

activity
</ whi | e>
Example:
<variabl e nane="orderDetails’ type="xsd:integer"/> e De":f/jsdgl"?nlssage
nane="or der Det ai | s" >
’’’ N <part
<whi |l e condition= N | name="nunber O I t enrs
"bpws: get Vari abl eDat a(or der Detai | s) > 100" > Deleted: ~ </wsdl: message>1
***************************** ~ . </vari abl e>f
< > S~
SE ‘[Deleted: , nunber Of | t ens
</ scope>
</ whi | e>

60

12.4 Pick

The pi ck activity awaits the occurrence of one of a set of events and then performs the
activity associated with the event that occurred. The occurrence of the events is often
mutually exclusive (the process will either receive an acceptance message or a rejection
message, but not both). If more than one of the events occurs, then the selection of the
activity to perform depends on which event occurred first. If the events occur almost
simultaneously, there is a race and the choice of activity to be performed is dependent on
both timing and implementation.

The form of pi ck is a set of branches of the form event/activity, and exactly one of the
branches will be selected based on the occurrence of the event associated with it before any
others. Note that after the pick activity has accepted an event for handling, the other events
are no longer accepted by that pi ck. The possible events are the arrival of some message in
the form of the invocation of an inbound one-way or request/response operation, or an
"alarm" based on a timer (in the sense of an alarm clock).

A special form of pi ck is used when the creation of an instance of the business process
could occur as a result of receiving one of a set of possible messages. In this case, the pi ck
itself has a cr eat el nst ance attribute with a value of yes (the default value of the attribute
is no). In such a case, the events in the pi ck must all be inbound messages and each of
those is equivalent to a r ecei ve with the attribute "creat el nst ance=yes". No alarms are
permitted for this special case.

Each pick activity MUST include at least one onMessage event. The semantics of the

—

receive actions. For the latter, recall that the semantics of a process in which two or more
recei ve actions for the same partner link, portType, operation and correlation set(s) may
be simultaneously enabled is undefined (see Providing Web Service Operations).
Enablement of each onMessage handler is equivalent to enablement of the corresponding
recei ve activity for the purposes of this constraint.

<pi ck createlnstance="yes| no"? standard-attributes>

st andar d- el enent s

<onMessage partnerLi nk="ncnane" port Type="qgnane"
oper ati on="ncnanme" vari abl e="ncnamg?>+
<correl ati ons>?
<correl ati on set="ncnanme" initiate="yes| no"?>+
</correl ati ons>
activity
</ onMessage>
<onAl arm (for="duration-expr" |
activity
</ onAl ar n>

unti | ="deadl i ne- expr") >*

</ pi ck>

61

P '{Formatted: No bullets or
-

numbering

Deleted: Enablement of each
onMessage handler is equivalent
to enablement of the
corresponding r ecei ve activity
for the

\ {Deleted: occurrence of
\

)

Deleted: bpws: conflictingRece
ive and

bpws: conflictingRequest
faults

- ‘[Deleted: " >+

The pi ck activity completes when one of the branches is triggered by the occurrence of its
associated event and the corresponding activity completes. The following example shows a
typical usage of pick. Such a pick activity can occur in a loop that is accepting line items for
a large order, but a completion action is enabled as an alternative event.

<pi ck>

<onMessage partnerLi nk="buyer"
port Type="order Entry"
oper ati on="i nput Li nel t enf
vari abl e="1inel teni >

<l-- activity to add line itemto order -->

</ onMessage>

<onMessage partnerLi nk="buyer"
port Type="order Entry"
oper at i on="or der Conpl et e"
vari abl e="conpl eti onDetai | ">

<l-- activity to performorder conpletion -->
</ onMessage>

<I-- set an alarmto go after 3 days and 10 hours -->
<onAl arm f or=""' P3DT10H " >
<l-- handle timeout for order conpletion -->
</ onAl ar m>
</ pi ck> _ - Formatted: No bullets or
-7 numbering
12.5 Flow

The f | ow construct provides concurrency and synchronization. The grammar for f | owis:
<fl ow standard-attri but es>

st andar d- el enent s

<l i nks>?
<l i nk nane="ncnane" >+
</links>

activity+
</fl ow>

The standard attributes and standard elements for activities nested within a f1 ow are
especially significant because the standard attributes and elements primarily exist to
provide f | ow-related semantics to activities.

62

The most fundamental semantic effect of grouping a set of activities in a f| owis to enable
concurrency. A f | ow completes when all of the activities in the f| ow have completed.
Completion of an activity in a flow includes the possibility that it will be skipped if its
enabling condition turns out to be false (see Dead-Path-Elimination). Thus the simplest use
of fl owis equivalent to a nested concurrency construct. In the following example, the two
invoke activities are enabled to start concurrently as soon as the f| owis started. The
completion of the f | ow occurs after both the seller and the shipper respond (assuming the
invoke operations were synchronous request/response). The bank is invoked only after the
f | ow completes.

<sequence>
<fl ow>
<i nvoke partnerLink="Seller" .../>
<i nvoke partnerLi nk="Shi pper" .../>
</fl ow>
<i nvoke partnerLink="Bank" .../>

</ sequence>

More generally, a flow activity creates a set of concurrent activities directly nested within it.
It further enables expression of synchronization dependencies between activities that are
nested directly or indirectly within it. The | i nk construct is used to express these
synchronization dependencies. A link has a hame and all the links of a flow activity MUST be
defined separately within the flow activity. The standard sour ce and t ar get elements of an
activity are used to link two activities. The source of the link MUST specify a sour ce element
specifying the link's name and the target of the link MUST specify a t ar get element
specifying the link's name. The source activity MAY also specify a transition condition
through the transi ti onCondi ti on attribute of the source element. If the
transitionCondition attribute is omitted, it is deemed to be present with a value of
"true". Every link declared within a flow activity MUST have exactly one activity within the
flow as its source and exactly one activity within the flow as its target. The source and
target of a link MAY be nested arbitrarily deeply within the (structured) activities that are
directly nested within the flow, except for the boundary-crossing restrictions.

The following example shows that links can cross the boundaries of structured activities.
There is a link named "CtoD" that starts at activity C in sequence Y and ends at activity D,
which is directly nested in the enclosing flow. The example further illustrates that sequence
X must be performed prior to sequence Y because X is the source of the link named "XtoY"
that is targeted at sequence Y.

<fl ow>
<l'i nks>
<l'i nk nane="XtoY"/>
<l'i nk nane="CtoD"'/>
</links>
<sequence nane="X">
<source |inkName="XtoY"/>

<i nvoke nanme="A" .../>

63

<i nvoke name="B" .../>
</ sequence>
<sequence nane"Y">
<target |inkName="XtoY"/>

<receive namre="G¢ ...> | _-- {Deleted: ">

<source |inkName="C oD'/ >
</receive>
<i nvoke nanme="E"' .../>
</ sequence>

<i nvoke partnerLink="0Q' ...> ///{Deleted: ">

<target |inkNane="CtoD"'/>
</i nvoke>
</ fl ow>

In general, a link is said to cross the boundary of a syntactic construct if the source activity
for the link is nested within the construct but the target activity is not, or vice versa, if the
target activity for the link is nested within the construct but the source activity is not.

A link MUST NOT cross the boundary of a while activity, a serializable scope, an event
handler or a compensation handler (see Scopes for the specification of event, fault and
compensation handlers). In addition, a link that crosses a fault-handler boundary MUST be
outbound, that is, it MUST have its source activity within the fault handler and its target
activity within a scope that encloses the scope associated with the fault handler. Finally, a
link MUST NOT create a control cycle, that is, the source activity must not have the target
activity as a logically preceding activity, where an activity A logically precedes an activity B
if the initiation of B semantically requires the completion of A. Therefore, directed graphs

Formatted: No bullets or

created by links are always acyclic.
«~ | numbering

12.5.1 Link Semantics

In the rest of this section, the links for which activity A is the source will be referred to as
A's outgoing links, and the links for which activity A is the target will be referred to as A's
incoming links. If activity X is the target of a link that has activity Y as the source, X has a
synchronization dependency on Y.

Every activity that is the target of a link has an implicit or explicit j oi nCondi ti on attribute
associated with it. This applies even when an activity has exactly one incoming link. If the
explicit j oi nCondi ti on is missing, the implicit condition requires the status of at least one
incoming link to be positive (see below for an explanation of link status). A join condition is
a Boolean expression (see Expressions). The expression for a join condition for an activity
MUST be constructed using only Boolean operators and the bpws: get Li nkSt at us function
(see Expressions) applied to incoming links at the activity.

Without considering links, the semantics of business processes, scopes, and structured
activities determine when a given activity is ready to start. For example, the second activity
in a sequence is ready to start as soon as the first activity completes. An activity that
defines the behavior of a branch in a switch is ready to start if and when that branch is

64

chosen. Similarly, an activity nested directly within a flow is ready to start as soon as the
flow itself starts, because flow is fundamentally a concurrency construct.

If an activity that is ready to start in this sense has incoming links, then it does not start
until the status of all its incoming links has been determined and the (implicit or explicit)
join condition associated with the activity has been evaluated. The precise semantics of link
status evaluation are as follows:

When activity A completes, the following steps are performed to determine the effect of the
synchronization links on other activities:

« Determine the status of all outgoing links for A. The status will be either positive or - - {Formatted: No bullets or

negative. To determine the status for each link its t ransi ti onCondi ti on is evaluated. numbering
Note that the evaluation is carried out with the actual values of the variables referenced

in the transition condition expression. If some of the variables are modified in a

concurrent behavior path, the result of the transition condition evaluation may depend
nondeterministically on the timing of behavior among concurrent activities. If the value

is t rue the status is positive, otherwise it is negative.

« For each activity B that has a synchronization dependency on A, check whether:

- B is ready to start (except for its dependency on incoming links) in the sense
described above.

e The status of all incoming links for B has been determined.

« If both these conditions are true, then evaluate the join condition for B. If the join - - ‘{Format_ted: No bullets or
condition evaluates to false, a standard bpws: j oi nFai | ur e fault is thrown, otherwise numbering

activity B is started.

If, during the performance of structured activity S, the semantics of S dictate that activity X
nested within S will not be performed as part of the behavior of S, then the status of all
outgoing links from X is set to negative. An example is an activity within a branch that is not
taken in a switch activity, or activities that were not completed in a scope in which
processing was halted due to a fault, including a bpws: j oi nFai | ure (see Scopes and
Compensation Handlers).

Note that in general multiple target activities will be enabled based on the completion of an
activity with multiple outgoing links; because of this, such an activity is often called a fork

activity. - '{Formatted: No bullets or
-

numbering
12.5.2 Dead-Path-Elimination (DPE)

In cases where the control flow is largely defined by networks of links, the normal
interpretation of a false join condition for activity A is that A should not be performed,
rather than that a fault has occurred. Moreover, there is a need to propagate the
consequences of this decision by assigning a negative status to the outgoing links for A.
BPEL4WS makes it easy to express these semantics by using an attribute

suppr essJoi nFai | ure on an activity. A value of "yes" for this attribute has the effect of
suppressing the bpws: j oi nFai | ure fault for the activity and all nested activities, except
where the effect is overridden by using the suppr essJoi nFai | ur e attribute with a value of
"no" in a nested activity. Suppressing the bpws: j oi nFai | ur e is equivalent to the fault
being logically caught by a special default handler attached to an implicit scope that
immediately encloses just the activity with the join condition. The default handler behavior
is an enpt y activity, that is, the handler suppresses the fault and does nothing about it.
However, because the activity with the join condition was not performed, its outgoing links

65

are automatically assigned a negative status according to the rules of Link Semantics. Thus
within an activity with the value of the suppressJoi nFai | ur e attribute set to "yes", the
semantics of a join condition that evaluates to false are to skip the associated activity and
to set the status of all outgoing links from that activity to negative. This is called dead-path-
elimination because in a graph-like interpretation of networks of links with transition
conditions, these semantics have the effect of propagating negative link status transitively
along entire paths formed by consecutive links until a join condition is reached that
evaluates to true.

Note that the name of the implicit scope (created to suppress the bpws: j oi nFai | ur e) that
immediately encloses an activity with a join condition is exactly the same as the name of
the activity itself. In case this is an invoke activity (see Invoking Web Service Operations)
with an inlined fault or compensation handler, the implicit scope for the fault and
compensation handlers is merged with the implicit scope described here, which adds an
additional fault handler for the bpws: j oi nFai | ure.

The default value of the suppr essJoi nFai | ur e attribute is "no" . This is to avoid
unexpected behavior in simple use cases where complex graphs are not involved and links
without transition conditions are used for synchronization. The designers of such use cases
are likely to be naive about link semantics and are likely to be surprised by the
consequences of a default interpretation that suppresses a well-defined fault. For example,
consider the interpretation of the Initial Example with the suppr essJoi nFai | ur e attribute
set to "yes". Suppose further that the invocations of the shi ppi ngPr ovi der are enclosed in
a scope that provides a fault handler (see Scopes and Fault Handlers). If one of these
invocations were to fault, the status of the outgoing link from the invocation would be
negative, and the (implicit) join condition at the target of the link would be false, but the
resulting bpws: j oi nFai | ur e would be implicitly suppressed and the target activity would be
silently skipped within the sequence instead of causing the expected fault.

If universal suppression of the bpws: j oi nFai | ur e is desired, it is easy to achieve by using
the suppressJoi nFai | ur e attribute with a value of "yes" in the overall process element at

the root of the business process definition. _ { Formatted: No bullets or
<« | numbering

12.5.3 Flow Graph Example

In the following example, the activities with the names get Buyer I nf or mat i on,

get Sel l erI nformation, settl eTrade, confirnBuyer, and confirnBel | er are nodes of a

graph defined through the flow activity. The following links are defined:

+ The link named buyToSet t | e starts at get Buyer I nf or mat i on (specified through the - ‘[Formatted: No bullets or
corresponding sour ce element nested in get Buyer | nf or mat i on) and ends at numbering

sett| eTrade (specified through the corresponding t ar get element nested in
settl eTrade).

¢ The link named sel | ToSet t| e starts at get Sel | er | nf or mati on and ends at
settl eTrade.

e The link named t oBuyConf i r mstarts at sett| eTrade and ends at confi r nBuyer .
* The link named t oSel | Confi r mstarts at settl eTrade and ends at confirnSel | er.

Based on the graph structure defined by the flow, the activities get Buyer I nf or mati on and
get Sel | er I nf or mati on can run concurrently. The sett| eTr ade activity is not performed

66

before both of these activities are completed. After sett| eTr ade completes the two
activities, confi rnBuyer and confirnsSel | er are performed concurrently again.

<fl ow suppressJoi nFai |l ure="yes" >
<l'i nks>
<link name="buyToSettle"/>
<link nane="sel | ToSettle"/>
<l i nk nanme="t oBuyConfirm'/>
<l'ink nane="toSel | Confirni/>
</links>
<recei ve nane="get Buyer | nf ormati on">
<source |inkNane="buyToSettle"/>
</receive>
<recei ve nane="get Sel | er | nf or mati on">
<source |inkNane="sel | ToSettle"/>
</receive>
<i nvoke nane="settl eTr ade"

sel | ToSettle

j oi nCondi ti on="ppws: get Li nkSt at us(' buyToSettle') and Pt {De'ete": buyToSettle AND

bpws: get Li nkSt at us(' sel | ToSettle')">
<target |inkNane="get Buyer| nformation"/>
<target |inkNane="get Sellerlnformation"/>
<source |inkNane="t oBuyConfirni/>
<source |inkNane="toSel | Confirm'/>
</i nvoke>
<reply nanme="confirnBuyer">
<target |inkNane="toBuyConfirni/>
</reply>
<reply nanme="confirntel |l er">
<target |inkNane="toSell Confirni/>
</reply>

Formatted: No bullets or
numbering

</fl ow> {

12.5.4 Links and Structured Activities

Links can cross the boundaries of structured activities. When this happens, care must be
taken to ensure the intended behavior of the business process. The following example
illustrates the behavior when links target activities within structured constructs.

The following flow is intended to perform the sequence of activities A, B, and C. Activity B
has a synchronization dependency on the two activities X and Y outside of the sequence,
that is, B is a target of links from X and Y. The join condition at B is missing, and therefore
implicitly assumed to be the default, which is the disjunction of the status of the links

67

targeted to B. The condition is therefore true if at least one of the incoming links has a
positive status. In this case that condition reduces to the Boolean condition P(X, B) OR
P(Y, B) based on the transition conditions on the links.

In the flow, the sequence S and the two receive activities X and Y are all concurrently
enabled to start when the flow starts. Within S, after activity A is completed, B cannot start
until the status of its incoming links from X and Y is determined and the implicit join
condition is evaluated. When activities X and Y complete, the join condition for B is
evaluated.

Suppose that the expression P(X, B) OR P(Y, B) evaluates to false. In this case, the
standard fault bpws: j oi nFai | ur e will be thrown, because the environmental attribute
suppr essJoi nFai | ure is set to "no". Thus the behavior of the flow is interrupted and
neither B nor C will be performed.

If, on the other hand, the environmental attribute suppressJoi nFai | ure is set to "yes",
then B will be skipped but C will be performed because the bpws: j oi nFai | ur e will be
suppressed by the implicit scope associated with B.

<fl ow suppressJoi nFai | ure="no" >
<l'i nks>
<l'i nk nane="XtoB"/>
<link name="YtoB"/>
</1inks>

<sequence nanme="S">

<recei ve nanme="A" ...>

</receive>

<recei ve nane="B" ...>
<target |inkNane="XtoB"/>
<target |inkNane="YtoB"/>

</receive>

<recei ve nane="C' ...>

</receive>

</ sequence>

<recei ve name="X"' ...>
<source |inkNane="XtoB" transitionCondition="P(X, B)"/>

</recei ve>

<recei ve nanme="Y" ...>

68

<source |inkNane="YtoB" transitionCondition="P(Y,B)"/>

</recei ve>

</fl ow>

Finally, assume that the preceding flow is slightly rewritten by linking A, B, and C through
links (with transition conditions with constant truth-value of "true") instead of putting them
into a sequence. Now, B and thus C will always be performed. Because the join condition is
a disjunction and the transition condition of link AtoB is the constant "true", the join
condition will always evaluate to "true", independent from the values of P(X,B) and P(Y,B).

<f | ow suppressJoi nFai | ur e="no" >

<l'i nks>
<l'i nk
<l'i nk
<l'i nk
<l'i nk

</1inks>

nane=" At oB"/ >
nane="Bt oC"'/ >
nane=" Xt oB"/ >
nane="Yt oB"/ >

<recei ve nane="A">

<sour ce | i nkNanme="AtoB"/>

</receive>

<recei ve nane="B">
<target |inkNane="AtoB"/>
<target |inkNane="XtoB"/>
<target |inkNane="YtoB"/>

<source |inkNanme="BtoC'/>

</recei ve>

<recei ve nane="C'>

<target |inkNane="BtoC"'/>

</recei ve>

<recei ve nanme="X">

<sour ce | i nkNanme=" Xt oB"

</recei ve>

<recei ve nanme="Y">

<sour ce | i nkNanme="YtoB"

</recei ve>

</fl ow>

13 Scopes

transiti onConditi on="P(X, B)"/>

transiti onCondition="P(Y,B)"/>

69

-

-
-
-
-

Formatted: No bullets or
numbering

The behavior context for each activity is provided by a scope. A scope can provide fault
handlers, event handlers, a compensation handler, data variables, and correlation sets.

All scope elements are syntactically optional and some have default semantics when
omitted. The syntax and semantics of scopes are explained in detail below.

<scope vari abl eAccessSeri al i zabl e="yes| no" standard-attributes>

st andar d- el enent s

<vari abl es>?

</vari abl es>

<correl ati onSet s>?

</correl ati onSet s>
<f aul t Handl er s>?

</ f aul t Handl er s>

<conpensat i onHandl er >?

</ conpensat i onHandl er >
<event Handl er s>?

</ event Handl er s>

activity
</ scope>

Each scope has a primary activity that defines its normal behavior. The primary activity can
be a complex structured activity, with many nested activities within it to arbitrary depth.
The scope is shared by all the nested activities. In the following example, the scope has a
primary f | ow activity, which contains two concurrent invoke activities. Either of the invoke
activities can receive one or more types of fault responses. The fault handlers for the scope
are shared by both invoke activities and can be used to catch the faults caused by the
possible fault responses.

<scope>
<f aul t Handl er s>?

</ f aul t Handl er s>
<fl ow>
<i nvoke partnerLink="Seller" portType="Sell: Purchasi ng"
oper at i on="SyncPur chase"
i nput Var i abl e="sendPO"'
out put Vari abl e="get Response"/ >

70

<i nvoke partner Li nk="Shi pper"
por t Type="Shi p: Transport O der s"
oper at i on="0Or der Shi pnent "
i nput Vari abl e="sendShi pOr der "
out put Vari abl e="shi pAck"/ >
</fl ow>

</ scope> _ - Formatted: No bullets or
7 numbering
<+

13.1 Data Handling

A scope can have defined variables that live only within the scope. For further information

Formatted: No bullets or
numbering

see the chapter about data handling. {

13.2 Error Handling in Business Processes

Business processes are often of long duration and use asynchronous messages for
communication. They also manipulate sensitive business data in back-end databases and
line-of-business applications. Error handling in this environment is both difficult and
business critical. The use of ACID transactions is usually limited to local updates because of
trust issues and because locks and isolation cannot be maintained for the long periods
during which technical and business errors and fault conditions can occur in a business
process instance. As a result, the overall business transaction can fail or be cancelled after
many ACID transactions have been committed during its progress, and the partial work
done must be undone as best as possible. Error handling in business processes therefore
relies heavily on the well-known concept of compensation, that is, application-specific
activities that attempt to reverse the effects of a previous activity that was carried out as
part of a larger unit of work that is being abandoned. There is a long history of work in this
area regarding the use of Sagas [10] and open nested transactions [11]. BPEL4WS provides
a variant of such a compensation protocol by providing the ability for flexible control of the
reversal. BPEL4WS achieves this by providing the ability to define fault handling and
compensation in an application-specific manner, resulting in a feature called Long-Running
(Business) Transactions (LRTs).

It is important to understand that the notion of LRT described here is meant to be used
purely within a platform-specific implementation. There is no prescribed requirement that
the business process be distributed or span multiple vendors and platforms. For such
environments, it is expected that the WS-Transaction specification [12] would be utilized to
register participants interested in the reversal notifications provided by the LRT
implementation. See Appendix C for a detailed model of BPELAWS LRTs based on WS-
Transaction concepts.

Additionally, it is important to understand that the notion of LRT described here is purely
local and occurs within a single business process instance. There is no distributed
coordination regarding an agreed-upon outcome among multiple-participant services. The
achievement of distributed agreement is an orthogonal problem outside the scope of
BPEL4WS, to be solved by using the protocols described in the WS-Transaction specification.
The need to compose WS-transaction with BPEL4WS is recognized.

As an example of an LRT, consider the planning and fulfillment of a travel itinerary. This can
be viewed as an LRT in which individual service reservations can use nested transactions

71

within the scope of the overall LRT. If the itinerary is cancelled, the reservation transactions
must be compensated for by cancellation transactions, and the corresponding payment
transactions must be compensated accordingly. For ACID transactions in databases the
transaction coordinator(s) and the resources that they control know all of the uncommitted
updates and the order in which they must be reversed, and they are in full control of such
reversal. In the case of business transactions, the compensation behavior is itself a part of
the business logic and protocol, and must be explicitly specified. For example, there might
be penalties or fees applied for cancellation of an airline reservation depending on the class
of ticket and the timing. If a payroll advance has been given to pay for the travel, the
reservation must be successfully cancelled before the payroll advance for it can be reversed
in the form of a payroll deduction. This means the compensation actions might need to run
in the same order as the original transactions, which is not the standard or default in most
transaction systems. Using activity scopes as the definition of logical units of work, the LRT

Formatted: No bullets or

feature of BPELAWS addresses these requirements.)
P){numbering

13.3 Compensation Handlers

Scopes can delineate a part of the behavior that is meant to be reversible in an application-
defined way by a compensation handler. Scopes with compensation and fault handlers can

Formatted: No bullets or

be nested without constraint to arbitrary depth.)
«){numbering

13.3.1 Defining a Compensation Handler

A compensation handler in the current version of BPEL4WS is simply a wrapper for a
compensation activity as shown below. It is recognized that in many scenarios the
compensation handler needs to receive data about the current state of the world and return
data regarding the results of the compensation.

<conpensat i onHandl er >?
activity
</ conpensat i onHandl| er >

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke
activity to inline a compensation handler rather than explicitly using an immediately
enclosing scope. For example:

<i nvoke partnerLink="Seller" portType="SP: Purchasi ng"
oper at i on="SyncPur chase"
i nput Var i abl e="sendPO'
out put Vari abl e=" get Response" >
<correl ati ons>
<correl ati on set="PurchaseOrder" initiate="yes"
pattern="out"/>

</correl ati ons>

<conpensat i onHandl| er >

<i nvoke partnerLi nk="Sell er" port Type="SP: Purchasi ng"

72

oper at i on="Cancel Pur chase"
i nput Var i abl e="get Response"
out put Var i abl e="get Confi rnati on">
<correl ati ons>
<correl ati on set="PurchaseOrder" pattern="out"/>
</ correl ati ons>
</invoke>
</ conpensat i onHandl er >

</i nvoke>

In this example, the original invoke activity makes a purchase and in case that purchase
needs to be compensated, the conpensati onHandl er invokes a cancellation operation at

| the same port of the same partnerLink, using the response to the purchase request as the
input.

In standard syntax (without the invoke shortcut) this example would be equivalently
expressed as follows:

<scope>
<conpensat i onHandl| er >
<i nvoke partnerLink="Seller" portType="SP: Purchasi ng"
oper at i on="Cancel Pur chase"
i nput Var i abl e="get Response"
out put Vari abl e="get Confi r mati on" >
<correl ati ons>
<correl ati on set="PurchaseOrder" pattern="out"/>
</correl ati ons>
</invoke>
</ conpensat i onHandl er >
<i nvoke partnerLink="Sel|er" portType="SP: Purchasi ng"
oper at i on="SyncPur chase"
i nput Var i abl e="sendPO'
out put Var i abl e="get Response" >
<correl ati ons>
<correl ation set="PurchaseOrder" initiate="yes"
pattern="out"/>
</correl ations>
</i nvoke>

</ scope>

73

Note that the variable get Response can be reused later for other purposes before
compensation is invoked. But the compensation handler needs the specific response to the

i nvoke operation that is being reversed. BPEL4AWS semantics state that the compensation
handler, if invoked, will see a frozen snapshot of all variables, as they were when the scope
being compensated was completed. In other words, if the compensation handler shown here
is used, the contents of get Response that it will see and use are exactly the contents at the
time of the completion of the invoke activity it compensates. This also means that
compensation handlers cannot update live data in the variables that the business process is
using. They live entirely in a snapshot world. A compensation handler, once installed, can be
thought of as a completely self-contained action that is not affected by, and does not affect,
the global state of the business process instance. It can only affect external entities.

It is not realistic to expect compensation activities to always be oblivious to the current
state of the world. In fact, compensation both affects and is affected by the current state.
However, the shape of the world within which compensation is run is difficult to anticipate.
It is therefore necessary to allow the two-way interaction between compensation activities
and the live world to take place in a tightly controlled manner. In the future, BPEL4AWS will
add input and output parameters to compensation handlers for this purpose.

As stated in The Lifecycle of a Process, if a compensation handler is specified for the
business process as a whole, a business process instance can be compensated after normal
completion by platform-specific means. This functionality is enabled by setting the

Formatted: No bullets or

enabl el nst anceConpensat i on attribute of the process to "yes".
-){numbering

13.3.2 Invoking a Compensation Handler

The compensation handler can be invoked by using the conpensat e activity, which names
the scope for which the compensation is to be performed, that is, the scope whose
compensation handler is to be invoked. A compensation handler for a scope is available for
invocation only when the scope completes normally. Invoking a compensation handler that
has not been installed is equivalent to the enpty activity (it is a no-op)—this ensures that
fault handlers do not have to rely on state to determine which nested scopes have
completed successfully. The semantics of a process in which an installed compensation
handler is invoked more than once is undefined.

Note that in case an invoke activity has a compensation handler defined inline, the name of
the activity is the name of the scope to be used in the conpensat e activity.

<conpensat e scope="ncnanme"? standard-attributes>

st andar d- el enent s

</ conpensat e>

The ability to explicitly invoke the conpensat e activity is the underpinning of the
application-controlled error-handling framework of BPEL4AWS. This activity can be used only
in the following parts of a business process:

« In a fault handler of the scope that immediately encloses the scope for which «- - ‘{Formatted: No bullets or

compensation is to be performed. numbering

« In the compensation handler of the scope that immediately encloses the scope for which
compensation is to be performed.

74

Example:
<conpensat e scope="RecordPaynent"/>

If a scope being compensated by name was nested in a loop, the instances of the
compensation handlers in the successive iterations are invoked in reverse order.

If the compensation handler for a scope is absent, the default compensation handler invokes
the compensation handlers for the immediately enclosed scopes in the reverse order of the
completion of those scopes.

The <conpensat e/ > form, in which the scope name is omitted in a conpensat e activity,
causes this default behavior to be invoked explicitly. This is useful when an enclosing fault
or compensation handler needs to perform additional work, such as updating variables or
sending external notifications, in addition to performing default compensation for inner
scopes. Note that the <conpensat e/ > activity in a fault or compensation handler attached to
scope S causes the default-order invocation of compensation handlers for completed scopes
directly nested within S. The use of this activity can be mixed with any other user-specified
behavior except the explicit invocation of <conpensat e scope="5x"/> for scope Sx nested
directly within S. Explicit invocation of compensation for such a scope nested within S

Formatted: No bullets or

disables the availability of default-order compensation, as expected.
«”){ numbering

13.4 Fault Handlers

Fault handling in a business process can be thought of as a mode switch from the normal
processing in a scope. _Fault handling in BPEL4WS is always treated as "reverse work" in
that its sole aim is to undo the partial and unsuccessful work of a scope in which a fault has
occurred. The completion of the activity of a fault handler, even when it does not rethrow
the fault handled, is never considered successful completion of the attached scope and
compensation is never enabled for a scope that has had an associated fault handler invoked.

The optional fault handlers attached to a scope provide a way to define a set of custom
fault-handling activities, syntactically defined as cat ch activities. Each cat ch activity is
defined to intercept a specific kind of fault, defined by a globally unique fault QName and a
variable for the data associated with the fault. _If the fault name is missing, then the catch
will intercept all faults with the right type of fault data. The fault variable is specified using
the faultVariable attribute in a catch handler. The variable is deemed to be declared by
virtue of being used as the value of this attribute and is local to the fault handler. It is not
visible or usable outside the fault handler in which it is declared. The fault variable is
optional because a fault might not have additional data associated with it.

A fault response to an invoke activity is one source of faults, with obvious name and data
aspects based on the definition of the fault in the WSDL operation. A programmatic t hr ow
activity is another source, again with explicitly given nhame and data. The core concepts

and executable, pattern extensions of BPEL4WS define several standard faults with their - [Deleted: exexutable

names and data, and there might be other platform-specific faults such as communication
failures that can occur in a business process instance. A cat chAl | clause can be added to
catch any fault not caught by a more specific catch handler.

<f aul t Handl er s>?

<I-- there nust be at |east one fault handler or default -->

75

<catch faul t Nane="qgnane"? faul t Vari abl e="ncnang" ?>*

activity
</ cat ch>
<cat chAl | >?

activity
</catchAl | >
</ f aul t Handl er s>

Because of the flexibility allowed in expressing the faults that a cat ch activity can handle, it
is possible for a fault to match more than one fault handler. The following rules are used to
select the cat ch activity that will process a fault:

1. If the fault has no associated fault data, a cat ch activity that specifies a matching
f aul t Narre value will be selected if present. Otherwise, the default cat chAl | handler is
selected if present.

2. If the fault has associated fault data, a cat ch activity specifying a matching f aul t Nane
value and a f aul t Vari abl e whose type (WSDL message type) matches the type of the
fault’s data will be selected if present. Otherwise, a cat ch activity with no specified
f aul t Nare and with a f aul t Vari abl e whose type matches the type of the fault data will
be selected if present. Otherwise, the default cat chAl | handler is selected if present.

If no catch or catchal | is selected, the fault is not caught by the current scope and is
rethrown to the immediately enclosing scope (see Implicit Fault and Compensation Handlers
for a more complete description of the default fault and compensation handling behavior).
If the fault occurs in (or is rethrown to) the global process scope, and there is no matching
fault handler for the fault at the global level, the process terminates abnormally, as though
a term nat e activity had been performed.

Consider the following example:

<f aul t handl er s>

<catch faul t Nane="x: f oo" >
<enpty/ >

</ cat ch>

<catch faultVari abl e="bar">
<enpty/ >

</ cat ch>

<catch faul t Nane="x: foo" faultVariabl e="bar">
<enpty/ >

</ cat ch>

<cat chAl | >

76

<enpty/ >
</catchAl | >

</ f aul t handl er s>

Assume that a fault named "x:foo” is thrown. The first cat ch will be selected if the fault
carries no fault data. If there is fault data associated with the fault, the third cat ch will be
selected if and only if the type of the fault’s data matches the type of variable “bar”,
otherwise the default cat chal | handler will be selected. Finally, a fault with a fault variable
whose type matches the type of “bar” and whose name is not “x:foo” will be processed by
the second cat ch. All other faults will be processed by the default cat chal | handler.

Although the use of compensation can be a key aspect of the behavior of fault handlers,
each handler performs an arbitrary activity, which can even be <enpty/ >. When a fault
handler is present, it is in charge of handling the fault. It might rethrow the same fault or a
different one, or it might handle the fault by performing cleanup and allowing normal
processing to continue in the enclosing scope.

A scope in which a fault occurred is considered to have ended abnormally, whether or not
the fault was caught and handled without rethrow by a fault handler. A compensation
handler is never installed for a scope in which a fault occurred.

When a fault handler for scope S handles a fault that occurred in S without rethrowing, links
that have S as the source will be subject to regular evaluation of status after the fault has
been handled, because processing in the enclosing scope is meant to be continued.

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke
activity to inline fault handlers rather than explicitly using an immediately enclosing scope.
For example:

<i nvoke partnerLink="Sel | er"
port Type="SP: Pur chasi ng"
oper at i on="SyncPur chase"
i nput Var i abl e="sendPO'
out put Vari abl e=" get Response" >
<catch faul t Nane="SP: POFaul t" faul t Vari abl e="POFaul t ">
<l-- handle the fault -->
</ cat ch>
</'i nvoke>

In this example, the original i nvoke makes a purchase and a fault handler is inlined to
handle the case where the purchase request results in a fault response. In standard syntax
(without the i nvoke shortcut), this example would be equivalently expressed as follows:

<scope>
<f aul t Handl er s>
<catch faul t Nane="SP: POFaul t" faul t Vari abl e="POFaul t ">
<!-- handle the fault -->

</ cat ch>

77

</ f aul t Handl er s>

<i nvoke partnerlLink="Seller"

por t Type=" SP: Pur chasi ng"

oper at i on="SyncPur chase"

i nput Var i abl e="sendPO'

out put Vari abl e="get Response" >
</invoke>

</ scope>

The compensation handler for scope C becomes available for invocation by the fault and
compensation handlers for its immediately enclosing scope exactly when scope C completes
normally. A fault handler for scope C is available for invocation exactly when C has
commenced but has not been completed. If the scope faults before completion, then the
appropriate fault handler gets control and all other fault handlers are uninstalled. It is never
possible to run more than one fault handler for the same scope under any circumstances.

Note that availability also applies to Implicit Fault and Compensation Handlers.

The behavior of a fault handler for scope C begins by implicitly terminating all activities that
are currently active and directly enclosed within C (see Semantics of Activity Termination).
The termination of these activities occurs before the specific behavior of a fault handler is
started. This also applies to the implicit fault handlers described below._The activity of a

Formatted: No bullets or

fault handler is deemed to occur in the scope to which the fault handler is attached.)
«){numbering

13.4.1 Implicit Fault and Compensation Handlers

Because the visibility of scope names and therefore of compensation handlers is limited to
the next enclosing scope, the ability to compensate a scope would be lost if the enclosing
scope did not have a compensation handler or was missing a fault handler for some fault.
Because many faults are not programmatic or the result of operation invocation, it is not
reasonable to expect an explicit handler for every fault in every scope. BPEL4WS therefore
provides default compensation and fault handlers when these are missing. The behavior of
these implicit handlers is to run available compensation handlers in the reverse order of
completion of the corresponding scopes. This is defined in more precise terms below.

Whenever a fault handler (for any fault) or the compensation handler is missing for any
given scope, they are implicitly created with the following behavior:

Fault handler:

* Run all available compensation handlers for immediately enclosed scopes in the reverse «--- ‘[Formatted: No bullets or
order of completion of the corresponding scopes. numbering

» Rethrow the fault to the next enclosing scope.

Compensation handler:

* Run all available compensation handlers for immediately enclosed scopes in the reverse «--- ‘[Formatted: No bullets or
order of completion of the corresponding scopes. numbering

13.4.2 Semantics of Activity Termination

78

As stated above, the behavior of a fault handler for scope C begins by implicitly terminating
all activities directly enclosed within C that are currently active. The following paragraphs
define what this means for all BPEL4AWS activity types.

The assi gn activities are sufficiently short-lived that they are allowed to complete rather - {Deleted: i nvoke, reply, and

than being interrupted when termination is forced. The evaluation of expressions when

already started is also allowed to complete. Each wai t, receive, reply and invoke /,/{Deleted: The

activity is interrupted and terminated prematurely, When a synchronous i nvoke activity s /{Ddeted: as

. . . . ey . 1 .1 .y - - . 7’77D|td: t
response (if received) for such a terminated activity is silently discarded. The notion of { ceted: v

o J

termination does not apply to enpty, term nate, andthrow.

All structured activity behavior is interrupted. The iteration of whi | e is interrupted and
termination is applied to the loop body activity. If swi t ch has selected a branch, then the
termination is applied to the activity of the selected branch. The same applies to pi ck. If
either of these activities has not yet selected a branch, then the swi t ch and the pi ck are
terminated immediately. The sequence and f | ow constructs are terminated by terminating
their behavior and applying termination to all nested activities currently active within them.

Scopes provide the ability to control the semantics of forced termination to some degree.
When the activity being terminated is in fact a scope, the behavior of the scope is
interrupted and the fault handler for the standard bpws: f or cedTer mi nat i on fault is run.
Note that this applies only if the scope is in nhormal processing mode. If the scope has
already experienced an internal fault and invoked a fault handler, then as stated above, all
other fault handlers including the handler for bpws: f or cedTer ni nat i on are uninstalled, and
the forced termination has no effect. The already active fault handler is allowed to complete.

The fault handler for the bpws: f or cedTer mi nati on fault is designed like other fault
handlers, but this fault handler cannot rethrow any fault. Even if an uncaught fault occurs
during its behavior, it is not rethrown to the next enclosing scope. This is because the
enclosing scope has already faulted, which is what is causing the forced termination of the
nested scope.

In other respects this is a normal fault handler. Its behavior begins by implicitly
(recursively) terminating all activities directly enclosed within its associated scope that are
currently active. It can invoke compensate activities. And when it is missing, it is provided
by using the same implicit behavior that is used for all other implicit fault handlers.

Note that forced termination of nested scopes occurs in innermost-first order as a result of
the rule (quoted above) that the behavior of any fault handler begins by implicitly
(recursively) terminating all activities directly enclosed within its associated scope that are
currently active.

«- Formatted: No bullets or
numbering

13.4.3 Handling Faults That Occur Inside Fault and

Compensation Handlers

Compensation handlers are always invoked directly or indirectly as part of the processing of
some fault handler E. The behavior of a compensation handler invoked by E can cause a
fault to be thrown. Such a fault, if uncaught by scopes within the chain of compensation
handlers invoked by E, is treated as being a fault within E.

If a fault occurs in a fault handler E for a scope C, the fault can be caught through the use
of a scope within E. If the fault is not caught by a scope within E, it is immediately thrown

79

to the parent scope of C and the behavior of E terminates prematurely. In effect, no
distinction is made between faults that E rethrows deliberately and faults that occur as
undesired faults in E.

13.5 Event Handlers

The whole process as well as each scope can be associated with a set of event handlers that
are invoked concurrently if the corresponding event occurs. The actions taken within an
event handler can be any type of activity, such as sequence or flow, but invocation of
compensation handlers using the <compensate/> activity is not permitted. As stated
earlier, the <compensate/> activity can only be used in fault and compensation handlers.
There are two types of events. First, events can be incoming messages that correspond to a
request/response or one-way operation in WSDL. For instance, a status query is likely to be
a request/response operation, whereas a cancellation may be a oneway operation. Second,
events can be alarms, that go off after user-set times. The grammar for the set of event
handlers associated with a scope or process is

<event Handl er s>?
<!-- there nust be at |east one onMessage or
onAl arm handl er -->
<onMessage partnerLi nk="ncname" port Type="gnane"
oper ati on="ncnane"

vari abl e="ncnang ?>*

<correl ati ons>?
<correl ati on set="ncnane" initiate="yes|no">+

</correl ati ons>
activity

</ onMessage>

<onAl arm for="durati on-expr"? until ="deadl i ne- expr" ?>*
activity

</ onAl ar >

</ event Handl er s>

It is important to emphasize that event handlers are considered a part of the normal
behavior of the scope, unlike fault and compensation handlers.

13.5.1 Message Events

The onMessage tag indicates that the event specified is an event that waits for a message to
arrive. The interpretation of this tag and its attributes is very similar to a receive activity.

_ - Formatted: No bullets or
«’ numbering

- ‘[Deleted: " >*

_ - 7| Formatted: No bullets or
« numbering

P ’[Deleted: part ner

oper ati on attributes define the appropriate port type and operation that is invoked by the

80

- ‘[Deleted: from whom

\I‘\‘ ‘[Deleted: partner

‘[Deleted: partners

A

partner in order to cause the event. The variable attribute identifies the variable which
contains the message received from the partner. Note that the operation may be either an
asynchronous (oneway) or a synchronous (request/response) operation. In the latter case
the event handler is expected to use a repl y activity to send the response. The usage and
interpretation of correlation is exactly the same as for receive activities. It should also be
noted that an event cannot create a process instance.

Jhe semantics of the onMessage event is identical to a receive activity regardingthe =~ _ - - Deleted: No two message events
A must reference the same
*. | combination

optional nature of the variable attribute and the constraint regarding simultaneous
enablement of conflicting receive actions. For the latter, recall that the semantics of a N
process in which two or more r ecei ve actions for the same partner link, portType, {Deleted: partner, port type]
operation_and correlation set(s) may be simultaneously enabled is undefined (see Providing

Web Service Operations). Enablement of each onMessage event handler is equivalent to

enablement of the corresponding r ecei ve activity for the purposes of this constraint.

As specified in the grammar above, event handlers for message events are not permitted to
carry the createlnstance attribute. A business process instance cannot be created by a
message event. This is because the event handler cannot be enabled until the instance is
created.

When the message constituting an event arrives, the activity specified in the corresponding
handler is carried out. The key point to understand is that the business process is enabled
to receive such messages concurrently with the normal activity of the scope to which the
event handler is attached. This allows such events to occur (or not occur) at arbitrary times
and an arbitrary number of times while the corresponding scope (which may be the entire
business process instance) is active.

The following example shows the usage of an event handler to support the termination of a
process instance through an external message. Alternatively, the event handler could throw
a fault to cause the ongoing work to be undone and compensated.

<process nane="“order Car” >

<event Handl er s>
<onMessage partnerLi nk="buyer”
port Type="car”
oper ati on="cancel ”
vari abl e=*cancel Detai | s” >
<terninate/>
</ onMessage>

</ event Handl er s>

</ process>

In this example, if the buyer invokes the cancel operation on the port type car, the
t erm nat e activity is carried out, which results in immediate termination of the process
instance without the ongoing work being undone and compensated. And this event is

81

attached to the global process scope and is therefore available during the lifetime of the

entire business process instance.

13.5.2 Alarm events

The onAl ar mtag marks a timeout event. The for attribute specifies the duration after which
the event will be signaled. The clock for the duration starts at the point in time when the
associated scope starts. The alternative until attribute specifies the specific point in time
when the alarm will be fired. Exactly one of these two attributes must occur in any onAl arm

1

event.

13.5.3 Enablement of Events

The event handlers associated with a scope are enabled when the associated scope starts .

If the event handler is associated with the global process scope, the event handler is
enabled as soon as the process instance is created. The process instance is created when
the first r ecei ve activity that provides for the creation of a process instance (indicated via
message. This allows the alarm time for a global alarm event to be specified using the data
provided within the message that creates a process instance, as shown in the following

example:

xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schena"

. >

<wsdl : nessage nane="orderDetail s”>
<part nane="processDuration”
type=*xsd: duration”/ >
</ wsdl : nessage>
</ wsdl : definitions>

The message type above is used in

<process nane="order Car”

xm ns: def ="htt p: // ww. exanpl e. coml wsdl / exanpl e" ...>

<event Handl er s>

<onAl arm f or =

“bpws: get Var i abl eDat a(orderDetai | s, processDuration)”

1

</ onAl ar n»

82

Formatted: No bullets or
numbering

Formatted: No bullets or
numbering

- {Deleted: true

.

Deleted: process
nane="or der Car " >

Deleted: ... 7
<event Handl er s>
<onAl arm for=

“wsbp: get Vari abl eDat a(or der D
etails, processDuration)”q
>1

</ onAl ar m>q
</ event Handl er s>

T
<variabl e
nane="or der Det ai | s” >

</ event Handl er s>

<vari abl e nane="orderDetails” nessageType="def:orderDetails"/>

</vari abl e>

<recei ve nanme="“get Order”
part ner Li nk="buyer”
port Type=“car”
oper ati on="order”
vari abl e="orderDetail s”

creat el nstance="yes"/ >

</ process>

The onAl ar mtag specifies a timer event that is fired when the duration specified in the
processDur ati on field in the or der Det ai | s variable is exceeded. The value of the field is
provided via the get Or der activity that receives message containing the order details and

Formatted: No bullets or

causes the creation of a process instance for that order.
«~ | numbering

13.5.4 Processing of Events
13.5.4.1 ALARM EVENTS

The counting of time for an alarm event with a duration starts when the enclosing event
handler is activated. An alarm event goes off when the specified time or duration has been
reached. An alarm event is carried out at most once while the corresponding scope is active.
The event is disabled for the rest of the activity of the corresponding scope after it has

Formatted: No bullets or

occurred and the specified processing has been carried out.)
« numbering

13.5.4.2 MESSAGE EVENTS

A message event occurs when the appropriate message is received on the specified partner - {Deleted: from

link using the specified port type and operation. When such an event occurs, the
corresponding activity is carried out. However, the event remains enabled, even for
concurrent use. Thus a particular message event can occur multiple times while the

Formatted: No bullets or

corresponding scope is active. See below for concurrency considerations.
-7 | numbering

<«

13.5.5 Disablement of Events

All event handlers associated with a scope are disabled when the normal processing of the
scope is complete. The already dispatched event handlers are allowed to complete. The
completion of the scope as a whole is delayed until all active event handlers have
completed.

83

13.5.6 Fault Handling Considerations

As we stated above, event handlers are considered a part of the normal processing of the
scope, i.e., active event handlers are concurrent activities within the scope. Faults within
event handlers are therefore faults within the associated scope. Moreover, if a fault occurs
within a scope, the behavior of the fault handler begins by implicitly terminating all activities
directly enclosed within the scope that are currently active. This includes the activities

within currently active event handlers. {

13.5.7 Concurrency Considerations

Multiple message and alarm events can occur concurrently and they are treated as
concurrent activities even if they are request/response events representing the same

most one outstanding synchronous request on _a given partner link at a given port type and

operation applies here as well (see Providing Web Service Operations). Concurrent
invocation of event handlers necessarily relies heavily on the use of serializable scoping to
ensure consistent access to shared variables.

--- ‘[Deleted: from

- '{Formatted: No bullets or
-

numbering

Formatted: No bullets or
numbering

- {Deleted: and

P '{ Formatted: No bullets or
«

13.6 Serializable Scopes

When the vari abl eAccessSeri al i zabl e attribute is set to "yes", the scope provides
concurrency control in governing access to shared variables. Such a scope is called a
serializable scope. Serializable scopes must not be nested. A scope marked with

vari abl eAccessSeri al i zabl e="yes" must be a leaf scope.

Suppose two concurrent serializable scopes, S1 and S2, access a common set of variables
(external to them) for read or write operations. The semantics of serializability ensure that
the results of their behavior would be no different if all conflicting activities (read/write and
write/write activities) on any shared variable were conceptually reordered in such a way
that either all activities within S1 are completed before those in S2 or vice versa. The actual
mechanisms used to ensure serializability are implementation dependent.

The use of error handling features in a serializable scope is governed by the following rules:

« The fault handlers for a serializable scope share the serializability domain of the .-
associated scope, that is, in case a fault occurs in a serializable scope, the behavior of
the fault handler is considered part of the serializable behavior (in commonly used
implementation terms, locks are not released when making the transition to the fault
handler). This is because the repair of the fault needs a shared isolation environment to
provide predictable behavior.

« The compensation handler for a serializable scope does not share the serializability
domain of the associated scope.

« For a serializable scope with a compensation handler, the creation of the state snapshot
for compensation is part of the serializable behavior. In other words, it is always possible
to reorder behavior steps as if the scope had sufficiently exclusive access to the shared
variables all the way to completion, including the creation of the snapshot.

84

numbering

~ ~ 71 Formatted: No bullets or
numbering

It is useful to note that the semantics of serializable scopes are very similar to the standard
isolation level "serializable" used in database transactions.

_ -] Formatted: No bullets or
_-7 | numbering
<+

14 Extensions for Executable Processes

In this section we define the essential extensions required for the use of BPEL4WS to define
executable processes. The extensions are grouped by the core concepts to which they

apply. _ - Formatted: No bullets or
< | numbering

14.1 Expressions

These extensions refer to the Expressions feature of BPEL4WS.

The first extension defines a standard fault for erroneous, use of the XPath 1.0 function - [Deleted: errorneous

defined for extracting global property values from variables.
bpws: get Vari abl eProperty ('variabl eNane', 'propertyNane')

The first argument names the source variable for the data and the second is the qualified
name (QName) of the global property to select from that variable (see Message Properties).
If the given property does not appear in any of the parts of the variable's message type or
the given property definition selects a node set of a size other than one, then the standard
fault bpws: sel ecti onFai | ure MUST be thrown by a compliant implementation.

The second extension defines an additional XPath 1.0 function usable only in executable
processes. This function extracts arbitrary values from variables.

bpws: get Vari abl eData (' vari abl eNane', 'partNane'?, 'locationPath'?)
The first argument names the source variable for the data, the second and third arguments

are optional. When present, the second names the part to select from that variable, and the
third optional argument, when present, provides an absolute location path (with '/' meaning

the root of the document fragment representing the entire part) to identify the root of a

subtree within the document fragment representing the part. - - Deteted: he

When only the first argument is present, the function extracts the value of the variable,
which in this case must be defined using an XML Schema simple type or element.
Otherwise, the return value of this function is a node set containing the single node
representing either an entire part of a message type(if the second argument is present and
the third argument is absent) or the result of the selection based on the locationPath_(if
both optional arguments are present). If the given locationPath selects a node set of a size
other than one during execution, then the standard fault bpws: sel ecti onFai | ure MUST be

Formatted: No bullets or

thrown by a compliant implementation.
<«){numbering

14.2 Variables

These extensions apply to the Variables feature of BPEL4WS.

An attempt during process execution to use any part of a variable before it is initialized
MUST result in the standard bpws: uni ni ti al i zedVari abl e fault.

85

P '{Formatted: No bullets or
« numbering

14.3 Assignment

These extensions apply to the Assignment feature of BPEL4WS.
The first extension adds an additional assignment form.

In the first from-spec and to-spec variants of assignment, an optional query attribute may
be used in executable processes, yielding the forms

<from vari abl e="ncnane" part="ncnanme"? query="queryString"?/>

<to vari abl e="ncnane" part="ncnanme"? query="queryString"?/>

The value of the query attribute is a query string to identify a single value within a source
or target variable part. BPEL4WS provides an extensible mechanism for the language used
in these queries. The language is specified by the attribute "queryLanguage" of the
<process> element. Compliant implementations of the current version of BPEL4AWS MUST
support the use of XPath 1.0 as the query language. XPath 1.0 is indicated by the default
value of the queryLanguage attribute, which is:

http://www.w3.0rg/TR/1999/REC-xpath-19991116

For XPath 1.0, the value of the query attribute MUST be an absolute /ocationPath (with '/’
meaning the root of the document fragment representing the entire part). It is used to
identify the root of a subtree within the document fragment representing the part. The
location path MUST select exactly one node. If the location path selects zero nodes or more
than one node during execution, then the standard fault bpws: sel ecti onFai | ure MUST be
thrown by a compliant implementation.

The second extension defines a standard fault for violation of type matching constraints. If
any of the matching constraints defined in the section Type Compatibility in Assignment is
violated during execution, the standard fault bpws: ni snat chedAssi gnnent Fai | ure MUST be
thrown by a compliant implementation.

The second extension defines the behavior of assignment in the presence of failure during
execution. An important characteristic of assignment in BPEL4WS is that assignment
activities are atomic. If there is any fault during the execution of an assignment activity, the
destination variables are left unchanged as they were at the start of the activity. This
applies regardless of the number of assignment elements within the overall assignment

activity. B { Formatted: No bullets or
< -

numbering
14.4 Correlation

After a correlation set is initiated, the values of the properties for a correlation set must be
identical for all the messages in all the operations that carry the correlation set and occur
within the corresponding scope until its completion. If at execution time this constraint is
violated, the standard fault bpws: correl ati onVi ol ati on MUST be thrown by a compliant
implementation. The same fault MUST be thrown if an activity with theini ti at e attribute

Formatted: No bullets or

set to no attempts to use a correlation set that has not been previously initiated. {
< numbering

14.5 Web Service Operations

86

The first extension defines a standard fault for the case where multiple conflicting receive
activities create ambiguity about message delivery.

If during the execution of a business process instance, two or more r ecei ve activities for

the same partner_link, portType, operation and correlation set(s) are in fact simultaneously - {Deleted: and

enabled, then the standard fault bpws: confl i cti ngRecei ve MUST be thrown by a
compliant implementation.

The second extension defines a standard fault for the case where multiple outstanding
synchronous requests create an ambiguity about response correlation.

If more than one outstanding synchronous request on a specific partner link for a particular - ‘[Deleted: from

portType, operation and correlation set(s) is outstanding simultaneously during the - ‘[Deleted: and

execution of a business process instance, then the standard fault
bpws: conf | i cti ngRequest MUST be thrown by a compliant implementation. Note that this
is semantically different from the bpws: confli cti ngRecei ve, because it is possible to

create the confl i cti ngRequest by consecutively receiving the same request on a specific ~_- {Deleted: from
partner link for a particular portType, operation_and correlation set(s). Ifareply activityis __ - {peleted: and
being carried out during the execution of a business process instance and no synchronous

request is outstanding for the specified partnerLink, portType, operation_and correlation =~ - {Deleted: and

set(s), then the standard fault bpws: i nval i dRepl y MUST be thrown by a compliant
implementation.

The third extension specifies that the i nput Vari abl e attribute for i nvoke and the vari abl e
attribute for recei ve and r epl y activities are not optional in executable processes. In
addition, the out put Vari abl e attribute is not optional for i nvoke when the operation
concerned is a request/response operation.

14.6 Terminating a Service Instance

The t er mi nat e activity can be used to immediately terminate the behavior of a business
process instance within which the t er nmi nat e activity is performed. All currently running
activities MUST be terminated as soon as possible without any fault handling or
compensation behavior.

<term nate standard-attributes>

st andar d- el enent s

Formatted: No bullets or

</term nat e>
-~ | numbering

<«

14.7 Compensation

If an installed compensation handler is invoked more than once during the execution of a
process instance, a compliant implementation MUST throw the standard

Formatted: No bullets or

bpws: r epeat edConpensat i on fault.
<«){numbering

14.8 Event Handlers

This extension explains the relationship of onMessage event handlers to the standard fault
extension in Web Service Operations for multiple conflicting receive activities create
ambiguity about message delivery

87

Enablement of an onMessage event handler is equivalent to enablement of a r ecei ve

activity for the semantics of the occurrence of the pbpws: confli cti ngRecei veFaul t fault - {Deleted: wsbp

(see Providing Web Service Operations).

The i nput Vari abl e attribute for onvessage handlers is not optional in executable
processes. In addition, the out put Vari abl e attribute is not optional for i nvoke when the
operation concerned is a request/response operation.

_ -1 Formatted: No bullets or
_~~ | numbering
<

15 Extensions for Business Protocols

There are two extensions for the business protocol usage pattern. _ { Formatted: No bullets or
« numbering

15.1 Variables

This extension clarifies the rules regarding variable initialization in abstract processes.
Unlike executable processes, variables in abstract processes do not need to be fully
initialized before being used since some computation is left implicit in abstract processes.
However, since message properties are meant to represent "transparent," i.e., protocol
relevant data, BPEL4WS requires that all message properties in a message must be
initialized before the message can be used, for example before the variable of the message
is used as the i nput Vari abl e in a Web Service operation invocation.

In many cases, the level of abstraction appropriate in abstract processes makes it
unnecessary to use message variables in web service interaction activities, when the intent
is to simply constrain the sequencing of such activities, and the actual message data is not
relevant. To simplify these common cases it is permissible, in abstract processes, to omit
the variable reference attributes from the <invoke/>, <receive/>, and <reply/> activities.
The meaning of such an omission must be stated clearly. If no variable is specified for an
incoming message, then the abstract process may not refer subsequently to the message or
its properties (if any). If the variable reference is omitted for an outgoing message, then
any properties of the message are considered to have been initialized through opaque
assignment, as described in the following section.

When variable references are omitted, correlation set references may be interpreted as
follows:

1. For an incoming message which initializes a correlation set (initiator case), the
correlation set is deemed to be initialized.

2. For an outgoing message which initializes a correlation set (initiator case), the
correlation tokens (which are message properties) are initialized through implicit
opague assignment as described above.

3. For an outgoing message which references but does not initialize a correlation set
(follower case), the proper initialization of the message properties is implicit. In this
case, the already initialized correlation set itself provides the token values for the
outgoing message.

Note that it is not possible to mix the variable-using and variable-less web service
interaction styles freely. If a correlation set is initialized by rule 1 or 2 above, then outgoing
messages in the same correlated exchange must also refrain from referencing a message

88

variable. This restriction applies because it is not possible to initialize the properties of the
outgoing messages from the correlation set alone.

_ - Formatted: No bullets or
< | numbering

15.2 Assignment

This extension adds a special form of assignment to abstract processes to permit the
modeling of the non-deterministic effects of private computation on external protocol
behavior.

Abstract processes add a sixth from-spec variant to allow an opaque value to be assigned
based on non-deterministic choice, yielding the form:

<from opaque="yes" >

The value of this form in the interpretation of assignment is chosen nondeterministically
from the XSD value space of the target. It can only be used in assignments where the "to-

spec" refers to a variable property. Two distinct use cases exist for opague assignment. If - {Deleted: The

the value space of the target is suitably constrained, then opaque assignment is a useful
way to describe behavioral alternatives where the mechanism for choosing the alternative is
private or otherwise external to the process specification. For this use case, the XSD type of
the target property must be one of the following:

» xsd:boolean

« A type derived from xsd:string and restricted by enumeration - {Eg;’;‘:;ﬁ:* No bullets or

+ A type derived from any XSD integral numeric type restricted by either enumeration or a
combination of minExclusive or minInclusive and maxExclusive or maxInclusive

A second use cases exists for target properties which don’t meet these requirements. When
the target’s value space is not constrained, it is useful to think of opague assignment as
providing a unigue identifier. Semantically, each opaque assignment of this form should be
considered to generate a unique value similar to a GUID. This style of opague assignment is
most useful to model the initialization of properties used for correlation.

A process that uses assignment of opaque values is clearly not executable in the normal
sense. However, it is feasible to emulate possible execution traces using assignment of

Formatted: No bullets or

random values of the correct type.
_~~ | numbering
<

16 Examples

16.1 Shipping Service

This example presents the use of a BPELAWS abstract process to describe a rudimentary
shipping service. This service handles the shipment of orders. From the service point of
view, orders are composed of a number of items. The shipping service offers two types of
shipment: shipments where the items are held and shipped together and shipment where
the items are shipped piecemeal until all of the order is accounted for.

89

<

16.1.1 Service Description

The context for the shipping service is a two-party interaction between a customer and the
service. This is modeled in the following part ner Li nkType definition:

The corresponding message and portType definitions are as follows:
<wsdl : definitions
t ar get NameSpace="ht t p: // shi p. or g/ wsdl / shi ppi ng"
xm ns: ship= ...>

<message nane="shi ppi ngRequest Msg" >
<part nanme="shi pOrder" type="shi p: shi pOrder"/>

</ message>

<nmessage nane="shi ppi ngNot i ceMsg" >
<part nanme="shi pNoti ce" type="shi p: shipNotice"/>
</ message>

<port Type nane="shi ppi ngServi cePT" >
<oper at i on nanme="shi ppi ngRequest ">
<i nput message="shi ppi ngRequest Msg"/ >
</ oper ati on>
</ port Type>

<port Type nane="shi ppi ngSer vi ceCust oner PT" >
<oper ati on nanme="shi ppi ngNoti ce">
<i nput nmessage="shi ppi ngNot i ceMsg"/>
</ oper ati on>
</ port Type>

90

_ - | Formatted: No bullets or
- numbering

- { Deleted:

servi ceLi nkType

- ‘[Deleted:

sl nk: servi ceLi nkType

- {Deleted:

sl nk

o ‘[Deleted:

03/ service

T ‘[Deleted:

sl nk

B ‘[Deleted:

sl nk

T { Deleted:

sl nk

T ‘[Deleted:

sl nk

- ‘[Deleted:

sl nk

- { Deleted:

sl nk

--- ‘[Deleted:

sl nk: servi ceLi nkType

)
)
)
)
)
)
)
)
)
)
)

</ wsdl : definitions>

16.1.2 Message Properties

The properties relevant to the service behavior are:

The ship order ID that is used to correlate the ship notice(s) with the ship order

(shi pOrder| D)
Whether the order is to be shipped complete or not (shi pConpl et e)
The total number of items in the order (i t ensTot al)

The number of items referred to in a ship notice so that, when partial shipments are
acceptable, we can use this, along with i t ensTot al , to track the overall fulfillment of

the shipment (i t ensCount)

Here are the definitions for the properties and their aliases:

<wsdl : definitions

t ar get Nanespace="htt p: // exanpl e. conl shi pProps/"
xm ns: sns="http://ship. org/wsdl / shi ppi ng"

xm ns: bpws="htt p: // schenas. xm soap. or g/ ws/ 2003/ 03/ busi ness- pr ocess/ ">

<I-- types used in abstract processes are required to be finite domains.

The itemCount Type is restricted by range -->

<wsdl : types>
<xsd: schema>
<xsd: si npl eType nane="it enCount Type" >
<xsd:restriction base="xsd:int">
<xsd: m nl ncl usi ve val ue="1"/>
<xsd: max| ncl usi ve val ue="50"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>
</wsdl : types>

<bpws: property nanme="shi pOrder| D' type="xsd:int"/>

<bpws: property nanme="shi pConpl ete" type="xsd: bool ean"/ >
<bpws: property nane="itensTotal " type="ship:itenCount Type"/>
<bpws: property name="itenmsCount" type="ship:itenCount Type"/>

<bpws: property name="nunl t ensShi pped" type="shi p:itenCount Type"/>

91

.

Formatted: No bullets or
numbering

T

Formatted: No bullets or
numbering

Deleted: <l-- a nmessage
type is defined here for
internal use of the |
abstract process; it
is not inlined because we
need tof
define a property
relative to it -->1
1
<wsdl : message
nane="it ems Shi pped" >
<part name="val ue"
type="shi p:itenCount Type"/ >
</ wsdl : message>{

<bpws: propertyAlias propertyName="tns: shi pOrderl| D"
nessageType="sns: shi ppi ngRequest Msg"
part="shi pOrder"
quer y="/ Shi pOr der Request Header / shi pOrder | D'/ >

<bpws: propertyAl i as propertyName="t ns: shi pOrderl D'
nessageType="sns: shi ppi ngNot i ceMsg"
part ="shi pNoti ce"
qguer y="/ Shi pNot i ceHeader / shi pOrder| D'/ >

<bpws: propertyAlias propertyNane="t ns: shi pConpl et e"
nessageType="sns: shi ppi ngRequest Msg"
part="shi pOrder"
quer y="/ Shi pOr der Request Header / shi pConpl et e"/ >

<bpws: propertyAlias propertyNane="tns:itensTotal"
nessageType="sns: shi ppi ngRequest Msg"
part="shi pOrder"
qguer y="/ Shi pOr der Request Header /it ensTotal "/ >

<bpws: propertyAlias propertyNanme="tns:itenmsCount"
nmessageType="sns: shi ppi ngNot i ceMsg"
part="shi pNoti ce"
quer y="/ Shi pNot i ceHeader /i t ensCount "/ >

16.1.3 Process

Next is the process definition. For brevity, the abstract process definition does not include,
for example, the handling of error conditions (business or otherwise) that a complete
description would account for. The rough outline of the process is as follows:

recei ve shi pOrder
swi tch
case shi pConpl et e
send shi pNotice
ot herw se
i temrsShi pped := 0
whi |l e itensShi pped < itensTot al

92

Deleted:

<bpws: propertyAl i as
propertyName="t ns: nurl t ensSh
i pped" 1

messageType="tns: it emsShi ppe
da'q

part="val ue"|
query="/"/>{
1

Formatted: No bullets or
numbering

i temsCount := opaque // non-determ nistic assignnment
/] corresponding e.g. to
// internal interaction with
/'l back-end system

send shi pNotice

i t ensShi pped = itensShi pped + itenmsCount

And here is the more complete version:
<process nane="shi ppi ngServi ce"
t ar get Namespace="htt p: // acme. conl shi ppi ng"
xm ns="http://schenmas. xm soap. or g/ ws/ 2003/ 03/ busi ness- pr ocess/ "
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: sns="http://shi p. org/ wsdl / shi ppi ng"
xm ns: props="http://exanpl e. con shi pProps/"
abstract Process="yes">

<partnerLinks> g///‘[Deleted: partners>

<partnerLi nk name="cust oner" //{De'eted: <partner

- {Deleted: servi ceLi nkType

L _JL J

part ner Rol e="shi ppi ngSer vi ceCust oner"
nmyRol e="shi ppi ngServi ce"/ >

- {Deleted: partners

<vari abl es>
<vari abl e nane="shi pRequest"
nessageType="sns: shi ppi ngRequest Msg"/ >
<vari abl e nane="shi pNoti ce"
nessageType="sns: shi ppi ngNot i ceMsg"/ >
<vari abl e nane="it ensShi pped"

e="pr ops:j t enCount Type"/ > - {Deleted: nessageType

</vari abl es> ‘[Deleted: i t ensShi pped

<correl ati onSet s>
<correl ati onSet nane="shi pCOrder"
properti es="props: shi pOderl D'/ >

</correl ati onSet s>

<sequence>

93

- ’[Deleted: " part="val ue

- { Deleted: get Vari abl eProperty]

"~ ~{ Deleted: , ' props: num t ensShi p
ped'

- ’[Deleted: get Vari abl eProperty]

"~ { Deleted: ,)

o “‘ Deleted: ' props: nun t ensShi pp ’
ed')

- { Deleted:)

- ‘[Deleted: " part="val ue]

_ -1 Formatted: No bullets or
_-7 | numbering

16.2 Loan Approval

This example considers a simple loan approval Web Service that provides a port where
customers can send their requests for loans. Customers of the service send their loan
requests, including personal information and amount being requested. Using this
information, the loan service runs a simple process that results in either a "loan approved"
message or a "loan rejected" message. The approval decision can be reached in two
different ways, depending on the amount requested and the risk associated with the
requester. For low amounts (less than $10,000) and low-risk individuals, approval is
automatic. For high amounts or medium and high-risk individuals, each credit request needs
to be studied in greater detail. Thus, to process each request, the loan service uses the
functionality provided by two other services. In the streamlined processing available for low-
amount loans, a "risk assessment" service is used to obtain a quick evaluation of the risk
associated with the requesting individual. A full-fledged "loan approval" service (possibly
requiring direct involvement of a loan expert) is used to obtain in-depth assessments of

Formatted: No bullets or

requests when the streamlined approval process does not apply.)
P){numbering

16.2.1 Service Description

The WSDL portType supported by this service is shown below ("loanServicePT" portType). It
is assumed that an independent "loan.org" consortium has provided definitions of the loan
service portType as well as the risk assessment and in-depth loan approval service, so all
the required WSDL definitions appear in the same WSDL document. In particular, the
portTypes for the Web Services providing the risk assessment and approval functions, and

all the required partner link types that relate to the use of these portTypes, are also defined __- {Deleted: service

there.
<definitions
tar get Namespace="http: / /| oans. or g/ wsdl / | oan- appr oval "
xm ns="http://schenas. xm soap. or g/ wsdl /"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM_Schena"

xm ns: pl nk="ht t p: / / schemas. xm soap. or g/ ws/ 2003/ 05/ par t ner - | i nk/ " - - { Deleted: si nk

xm ns: | ns="http://| oans. or g/ wsdl / | oan- appr oval "> ~{ Deleted: 03/ servi ce

<nmessage nane="credit | nfornati onMessage" >
<part nanme="firstName" type="xsd:string"/>
<part nanme="nane" type="xsd:string"/>
<part nane="anount" type="xsd:integer"/>
</ message>

<nmessage nane="approval Message" >
<part nane="accept" type="xsd:string"/>

</ message>

<message nane="ri skAssessnent Message" >
<part nane="|evel " type="xsd:string"/>

96

/{ Deleted: sl nk: servi ceLi nkType
////w Deleted: | oanSer vi ceLi nkType"

Z

>

_ -~ { peleted: s nk
,,/‘[Deleted: sl nk

- /“ Deleted: sl nk: servi ceLi nkType
>

)
|
,——‘[Deleted:sl nk]
)
)

- ‘{Deleted: q
L »

<pl nk: part ner Li nkType nane="I| oanAppr oval Li nkType" >

<sl nk: servi ceLi nkType

- { Deleted: sl nk

_ - { Deleted: si nk

_- ‘[Deleted: s| nk

>

<sl nk: servi ceLi nkType

2 --- ‘{Deleted: 1

<pl nk: partnerLi nkType nanme="ri skAssessnent Li nkType" >

</definitions>

16.2.2 Process

In the business process defined below, the interaction with the customer is represented by
the initial <receive> and the matching <reply> activities. The use of risk assessment and
loan approval services is represented by <invoke> elements. All these activities are
contained within a <flow>, and their (potentially concurrent) behavior is staged according
to the dependencies expressed by corresponding <link> elements. Note that the transition
conditions attached to the <source> elements of the links determine which links get
activated. Dead path elimination is enabled by the value "yes" taken by the
"suppressJoinFailure" attribute on the <process> element. This implies that as certain links

certain activities can be skipped.

- { Deleted: s| nk

- { Deleted: s| nk

_ - { Deleted: si nk

J

)

J

)

. /‘{Deleted: sl nk: servi ceLi nkType }
)

)

)

J

J

/ /‘[Deleted: sl nk: servi ceLi nkType

_-| Formatted: No bullets or
«~ | .numbering

[Deleted: excecution J

Because the operations invoked can return a fault of type "loanProcessFault", a fault handler
is provided. When a fault occurs, control is transferred to the fault handler, where a <reply>
element is used to return a fault response of type "unableToHandleRequest" to the loan

requester.
<process nane="| oanAppr oval Process"

t ar get Nanespace="htt p: // acnme. com | oanpr ocessi ng"

xm ns="http://schenmas. xm soap. or g/ ws/ 2003/ 03/ busi ness- pr ocess/ "

xm ns: |l ns="http://|oans. org/wsdl /| oan- approval "

suppr essJoi nFai | ure="yes" >

nmyRol e="1 oanServi ce"/ >

<partnerlink name="approver”

98

- ‘[Deleted: part ner s>

- { Deleted: part ner

- ‘[Deleted: servi ceLi nkType

o ‘[Deleted: | oanSer vi ceLi nkType

U A JU JU J

- { Deleted: par t ner

- ’[Deleted: servi ceLi nkType

- ’[Deleted: part ner

- ’[Deleted: ser vi ceLi nkType

- { Deleted: partners

100

<i nvoke partnerLi nk="approver"
port Type="1| ns: | oanAppr oval PT"
oper at i on="appr ove"
i nput Vari abl e="request"
out put Vari abl e="approval ">
<target |inkNane="receive-to-approval"/>
<target |inkNane="assess-to-approval"/>
<source |inkName="approval -to-reply" />
</'i nvoke>

<reply partnerLink="customer"

port Type="I ns: | oanSer vi cePT"
operati on="request"
vari abl e="approval ">
<target |inkName="set Message-to-reply"/>
<target |inkName="approval -to-reply"/>
</reply>
</flow>

</ process>
-~ | numbering
«

Formatted:

No bullets or

16.3 Multiple Start Activities

A process can have multiple activities that create a process instance. An example of this
situation is a (simplified) business process run by an auction house. The purpose of the
business process is to collect information from the buyer and the seller of a particular
auction, report the appropriate auction results to some auction registration service, and
then send the registration result back to the seller and the buyer. Thus the business process
starts with two activities, one for receiving the seller information and one for receiving the
buyer information. Because a particular auction is uniquely identified by an auction ID, the
seller and the buyer need to provide this information when sending in their data. The
sequence in which the seller and buyer requests arrive at the auction house is random.
Thus, when such a request comes in, it needs to be checked whether a business process
instance exists already or not. If not, a business process instance is created. After both
requests have been received, the auction registration service is invoked. Because the
invocation is done asynchronously, the auction house passes the auction ID to the auction
registration service. The auction registration service returns this auction ID in its answer so
that the auction house can locate the proper business process instance. Because there are

many buyers and sellers, each of them needs to provide their endpoint references, so that - {Deleted: service

own gndpoint reference to the auction registration service so that the auction registration - ‘[Deleted: service

service can send the response back to the auction house.

101

_ - | Formatted: No bullets or
« numbering

16.3.1 Service Description

The auction service offers two port types, called sellerPT and buyerPT, with appropriate
operations for accepting the data provided by the seller and the buyer. Because the
processing time of the business process is lengthy, the auction service responds to the seller
and buyer through appropriate port types, sellerAnswerPT and buyerAnswerPT. These

portTypes are properly combined into two partner link types, one for the seller called - ‘[Deleted: service

sellerAuctionHouseLT and one for the buyer called buyerAuctionHouseLT.

The auction service needs two port types, called auctionRegistrationPT and
auctionRegistrationAnswerPT, that provide for the invocation of the auction registration

- {Deleted: service

auctionHouseAuctionRegistrationServicelLT.

<definitions
tar get Namespace="htt p: // ww. aucti on. com wsdl / auct i onSer vi ce"
xm ns:tns="http://ww. auction. com wsdl / aucti onSer vi ce"

xm ns: pl nk="ht tp://schemas. xnl soap. or g/ ws/ 2003/ 05/ part ner - | i nk/" _ - | Deleted:

e-link/"q
xm ns: bpws="http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/"

xm ns: sref ="http://schemas. x
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM_Schena" i soap. or g/ ws/ 2003/ 03/ ser vi ¢

e-reference/"|

—————————— xm ns: sl nk="http:// schemas_. X
xm ns: wsa="http://schemas. xm soap. or g/ ws/ 2003/ 03/ addr essi ng" n soap. or g/ ws/ 2003/ 03/ servi ¢

xm ns="http://schemas. xm soap. or g/ wsdl / " >

<l-- Messages for communication with the seller -->

<nmessage nane="sel | er Dat a" >
<part nanme="creditCardNunber" type="xsd:string"/>
<part nanme="shi ppi ngCosts" type="xsd:integer"/>
<part nane="auctionld" type="xsd:integer"/>

)

<part name="gndpoi nt Ref erence" type="wsa: Endpoi nt Ref er enceType"/> o /{Dehted: servi ceRef erence
</ message> ‘{eD%Ilt’e)teed: sref: serviceReferenc

|

<message nane="sel | er Answer Dat a" >
<part nanme="t hankYouText" type="xsd:string"/>
</ message>

<l-- Messages for communication with the buyer -->
<message nane="buyer Dat a" >

<part nane="credit CardNunber" type="xsd:string"/>
<part nanme="phoneNunmber" type="xsd:string"/>

<part nanme="I|D' type="xsd:integer"/>

P { Deleted: servi ceRef erence

)

<part nane="gndpoi nt Ref erence" type="wsa: Endpoi nt Ref er enceType"/> s {
eType

Deleted: sr ef : servi ceRef erenc

|

102

_ - | Deleted: auct i onHouseSer vi ceR
- eference

- -~ 7 Deleted: sref: servi ceRef erenc
eType

103

104

- {Deleted:

Service J

- ‘[Deleted:

sl nk: servi ceLi nkType

- { Deleted:

sl nk

- { Deleted:

sl nk

- { Deleted:

sl nk

- { Deleted:

- { Deleted:

sl nk

- { Deleted:

sl nk

- ‘[Deleted:

)
)
)
)
sl nk]
)
)
)

sl nk: servi ceLi nkType

- {Deleted:

Servi ce]

- { Deleted:

sl nk: servi ceLi nkType

- { Deleted:

sl nk

- { Deleted:

sl nk

- { Deleted:

- {Deleted:

sl nk

- {Deleted:

sl nk

- ‘[Deleted:

sl nk

- {Deleted:

)
)
)
sl nk]
)
)
)
)

sl nk: servi ceLi nkType

- { Deleted:

Service J

regi stration service -->

<pl nk: part nerLi nkType nane="aucti onHouseAucti onRegi strationServiceLT">

- { Deleted:

sl nk: servi ceLi nkType

- ‘[Deleted:

sl nk

- { Deleted:

sl nk

- {Deleted:

- { Deleted:

sl nk

- ‘[Deleted:

sl nk

- {Deleted:

sl nk

- {Deleted:

)
)
)
sl nk]
)
)
)
)

sl nk: servi ceLi nkType

</ definitions>

_ - | Formatted: No bullets or
<« numbering

16.3.2 Process

105

The BPEL4WS definition for the business process offered by the auction
<process nane="auctionService"

t ar get Namespace="ht t p: / / ww. auct i on. conf'

vari abl eAccessSeri al i zabl e="no"

xm ns: as="http://ww. aucti on. com wsdl / auct i onServi ce"

xmins:wsa="http://schemas. xm soap. or g/ ws/ 2003/ 03/ addressing" | -~ { Deteted:
xm ns="http://schenas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/ "> {De'ete":

<l-- Partners -->

nmyRol e="aucti onHouse" partnerRol e="sel l er"/>
<partnerLi nk name="buyer"

partnerLi nkType="as: buyer Auct i onHouseLT"

nmyRol e="auct i onHouse" part ner Rol e="buyer"/>
<partnerLink name="aucti onRegi strationService"

partnerLinkType=

"as: auct i onHouseAuct i onRegi strati onServi ceLT"
nyRol e="auct i onHouse"
part ner Rol e="auct i onRegi strati onServi ce"/>

<l-- Variables -->

<vari abl es>

house follows:

<vari abl e nane="sel | erDat a" nessageType="as: sel | erData"/ >

<vari abl e nane="sel | er Answer Dat a" nmessageType="as: sel | er Answer Dat a"/ >

<vari abl e nane="buyer Dat a" nmessageType="as: buyer Dat a"/>

<vari abl e nane="buyer Answer Dat a" nessageType="as: buyer Answer Dat a"/ >

<vari abl e nane="auct i onDat a"
messageType="as: aucti onDat a"/ >
<vari abl e nane="auct i onAnswer Dat a"
nessageType="as: aucti onAnswer Dat a"/ >
</ vari abl es>

106

isref

servi ce-reference/

 _J

- ‘[Deleted:

part ners>

- ‘[Deleted:

partner

- ‘[Deleted:

servi ceLi nkType

- ‘[Deleted:

partner

- ‘[Deleted:

servi ceLi nkType

- {Deleted:

part ner

- { Deleted:

servi ceLi nkType

- { Deleted:

partners

107

- { Deleted: servi ce

- { Deleted: servi ce

~ 7| Deleted:
- <sref:serviceRef erence>f

<sref:service
name="ars: Regi strationServic
e v

xm ns: ars="http://aucti onReg
istration.cont/>f

</ sref:serviceReference>

- ’[Deleted: servi ceRef erence

108

- ’[Deleted: servi ce

- { Deleted: ser vi ceRef erence

109

- { Deleted: service

- ’[Deleted: servi ceRef erence

110

</ process>

-
«

17 Security Considerations

Because messages can be modified or forged, it is strongly RECOMMENDED that business
process implementations use WS-Security to ensure messages have not been modified or
forged while in transit or while residing at destinations. Similarly, invalid or expired
messages could be re-used or message headers not specifically associated with the specific
message could be referenced. Consequently, when using WS-Security, signatures MUST
include the semantically significant headers and the message body (as well as any other
relevant data) so that they cannot be independently separated and re-used.

Messaging protocols used to communicate among business processes are subject to various
forms of replay attacks. In addition to the mechanisms listed above, messages SHOULD
include a message timestamp (as described in WS-Security) within the signature. Recipients
can use the timestamp information to cache the most recent messages for a business
process and detect duplicate transmissions and prevent potential replay attacks.

It should also be noted that business process implementations are subject to various forms
of denial-of-service attacks. Implementers of business process execution systems

compliant with this specification should take this into account. {

18 Acknowledgments

Achille Fokoue, Ashok Malhotra, and Bob Schloss for their help with developing and verifying
the XML Schemas.

Tony Andrews and Marc Levy for their help in defining abstract processes.
Tony Hoare and Marc Shapiro for thoughtful comments on the language concepts.

Jonathan Marsh for suggesting the generalization of the dependency on external (query and
expression) languages.

Tom Freund and Tony Storey for inducing us to precisely define the relationship with the
coordination framework in WS-Transaction.

Martin Nally for his help on improving the usability of the language. {

19 References

[1] W3C Recommendation "The XML Specification"

[2] W3C Note "Simple Object Access Protocol (SOAP) 1.1"

[3] W3C Note "Web Services Definition Language (WSDL) 1.1"

[4] Industry Initiative "Universal Description, Discovery and Integration"

[5] XLANG: Web Services for Business Process Design

111

Formatted: No bullets or
numbering

Formatted: No bullets or
numbering

Formatted: No bullets or
numbering

[6] WSFL: Web Service Flow Language 1.0

[7] W3C Proposed Recommendation "XML Schema Part 1: Structures"

[8] W3C Proposed Recommendation "XML Schema Part 2: Datatypes"

[9] W3C Recommendation "XML Path Language (XPath) Version 1.0"

[10] "Sagas," H. Garcia-Molina and K. Salem, Proc. ACM SIGMOD (1987).

[11] " Trends in systems aspects of database management,"” I.L. Traiger, Proc. 2nd Intl.
Conf. on Databases (ICOD-2), Wiley & Sons 1983.

[12] “"Web Services Transaction”, IBM & Microsoft, 2002.

[13] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner,
Harvard University, March 1997.

[14] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R.
Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[15] "Business Process Execution Language for Web Services Version 1.0," BEA, IBM and
Microsoft, August 2002:

http://dev2dev.bea.com/techtrack/BPEL4WS.jsp
http://www-106.ibm.com/developerworks/library/ws-bpel/

- ‘{Deleted: default.asp?url=/library

http://msdn.microsoft.com/library/en-us/dnbiz2k2/html/bpell-0.asp /

[16] "Web Services Addressing (WS-Addressing)," BEA, IBM and Microsoft, March 2003:
http://msdn.microsoft.com/ws/2003/03/ws-addressing/

http://www-106.ibm.com/developerworks/webservices/library/ws-add/

http://dev2dev.bea.com/technologies/webservices/ws-addressing.jsp

Appendix A - Standard Faults

The following list specifies the standard faults defined within the BPEL4AWS specification. All
these faults are named within the BPELAWS namespace standard prefix bpws:
corresponding to URI "http://schemas.xmlsoap.org/ws/2003/03/business-process/".

Fault name Reason

selectionFailure Thrown when a selection operation performed either
in a function such as bpws:getVariableData, or in an
assignment, encounters an error.

112

conflictingReceive Thrown when more than one receive activity or
equivalent (currently, onMessage branch in a pick
activity) are enabled simultaneously for the same

partner_link, port type, pperation,and correlation - {Deleted: and

set(s). o ‘[Deleted: .
conflictingRequest Thrown when more than one synchronous inbound

request on the same partner link for a particular port - {Deleted: from

type,_operation and correlation set(s) are active. - {Deleted: and
mismatchedAssignmentFailure Thrown when incompatible types are encountered in

an assign activity.

joinFailure Thrown when the join condition of an activity
evaluates to false.

forcedTermination Thrown as the result of a fault in an enclosing scope.

correlationViolation Thrown when the contents of the messages that are
processed in an invoke, receive, or reply activity do
not match specified correlation information.

uninitializedVariable Thrown when there is an attempt to access the value
of an uninitialized part in a message variable.

repeatedCompensation Thrown when an installed compensation handler is
invoked more than once.

invalidReply Thrown when a reply is sent on a partner link, - {Deleted: used for

portType and operation for which the corresponding
receive with the same correlation has not been
carried out.

Appendix B - Attributes and Defaults

The following list specifies the defaults for all standard attributes at the process and activity

level. The table does not include activity-specific attributes (such as part nerLink in an - {Deleted: partner

invoke activity). T

113

Parameter

Default

queryLanguage

expressionLanguage

suppressJoinFailure

variableAccessSerializable

abstractProcess

initiate

pattern

createlnstance

enableInstanceCompensation

joinCondition

transitionCondition

http://www.w3.0rg/TR/1999/REC-xpath-19991116

http://www.w3.0rg/TR/1999/REC-xpath-19991116

no

no

no

no

No default

no

no

Disjunction of the status of the incoming links

true

Appendix C - Coordination Protocol

It is valuable to express the fault and compensation handling relationship between scopes
by using the protocol framework of WS-Transaction [16]. Specifically, this section shows
how the relationship between an enclosing scope and each of its nested scopes can be
modeled using the BusinessAgreement protocol defined in the WS-Transaction specification.
The BusinessAgreement protocol is designed to enable distributed coordination of business
activities. BPEL4WS usage of the protocol makes the assumption of localized behavior in a
single service, and as a result several of the features of the protocol, including the
acknowledgement signal Forget, and the Error and Replay messages, are not actually
needed in BPEL4WS.

Coordination Protocol for BPEL4WS Scopes

114

A nested scope may complete successfully. In this case a compensation handler is
installed for the nested scope. This is modeled with a Completed signal from the nested
scope to its parent scope.

A nested scope may encounter a fault internally. In this case the scope always

terminates unsuccessfully.

i. If the fault handler rethrows a fault to its enclosing scope, this is modeled as a
Faulted signal from the nested scope to its parent scope.

ii. If the fault is handled and not rethrown, the scope exits gracefully from the work of

its parent scope. This is modeled as an Exited signal from the nested scope to its
parent scope.

. After a nested scope has completed, (a fault or compensation handler for) the parent

scope may ask it to compensate itself by invoking its compensation handler. The
compensate action is modeled with a Compensate signal from the parent scope to the
nested scope.

. Upon successful completion of the compensation, the nested scope sends the

Compensated signal to its parent scope.
The compensation handler may itself fault internally. In this case

i. If the fault is not handled by a scope within the compensation handler, it is rethrown
to the parent scope. This is modeled as a Faulted signal from the nested scope to its
parent scope.

ii. If the fault is handled and not rethrown, we assume that the compensation was able
to complete successfully. In this case the nested scope sends the Compensated
signal to its parent scope.

If there is a fault in the parent scope independent of the work of the nested scope, the
parent scope will ask the nested scope to prematurely abandon its work by sending a
Cancel signal.

The nested scope, upon receiving the cancel signal, will interrupt and terminate its

behavior (as though there were an internal fault), and return a Canceled signal to the
parent.

. Finally, when a parent scope decides that the compensation for a completed nested

scope is not needed any more it sends a Close signal to the nested scope. After
discarding the compensation handler the nested scope responds with a Closed signal.
In case there is a race between the Completed signal from the nested scope and the

Cancel signal from the parent scope, the Completed signal wins, i.e., the nested scope is
deemed to have completed and the Cancel signal is ignored.

In case a Cancel signal is sent to a nested scope that has already faulted internally, the
Cancel signal is ignored and the scope will eventually send either a Faulted or an Exited
signal to the parent.

115

Figure 2: BusinessAgreement Protocol State Diagram

Canceled

Coordinator generated Participant generated

The BusinessAgreement protocol state diagram above summarizes the preceding discussion.
In the diagram, the parent (enclosing) scope generates Cancel, Compensate, Forget and
Close signals and the nested scope generates Completed, Faulted, Exited, Compensated,
Canceled and Closed signals. It is important to emphasize that the states represent the
state of the relationship between the parent scope and one specific nested scope. However,
it is very nearly the case that the states represent the state of the nested scope itself,
except in case of signal races. Note that the signal races discussed in points I and J above
are not reflected in the diagram since the diagram only reflects real protocol states.

Appendix D - XSD Schemas
BPEL4WS Schema

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: bpws="htt p: //schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/"
tar get Namespace="htt p: // schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- pr ocess/ "
el enent For nDef aul t ="qual i fi ed">

<i nport nanmespace="http://schemas. xm soap. or g/ wsdl /"
schemalLocati on="http://schemas. xm soap. org/ wsdl / "/ >

<conpl exType nane="t Ext ensi bl eEl enment s" >

116

117

use="requi red"/>
<attribute nane="t ar get Nanespace" type="anyURI"
use="required"/>
<attribute nane="querylLanguage" type="anyURl"
defaul t ="http://ww. w3. or g/ TR/ 1999/ REC- xpat h- 19991116"/ >
<attri bute nane="expressi onLanguage" type="anyURl"
defaul t="http://ww. w3. org/ TR/ 1999/ REC- xpat h- 19991116"/ >
<attribute nane="suppressJoi nFai |l ure" type="bpws:tBool ean"

def aul t ="no"/ >
<attri bute nane="enabl el nst anceConpensati on"
type="bpws: t Bool ean" defaul t="no"/>
<attribute nane="abstract Process" type="bpws:tBool ean"

defaul t ="no"/>

</ ext ensi on>

</ conpl exCont ent >

</ conpl exType>

<group nane="activity">

<choi ce>
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent
<el enent

</ choi ce>

</ gr oup>

name="enpty" type="bpws:tEnpty"/>
name="invoke" type="bpws:tlnvoke"/>
nanme="r ecei ve" type="bpws:tReceive"/>
nane="reply" type="bpws:tReply"/>
name="assi gn" type="bpws:tAssign"/>
nane="wai t" type="bpws:tWait"/>

nanme="t hrow' type="bpws:tThrow'/>
nane="t erm nate" type="bpws:tTerm nate"/>
nane="f| ow' type="bpws:tFl ow'/>
name="swi tch" type="bpws:tSw tch"/>
name="whi | e" type="bpws:tWile"/>
name="sequence" type="bpws:tSequence"/>
nanme="pi ck" type="bpws:tPick"/>
nane="scope" type="bpws:t Scope"/>

<conpl exType nanme="t Part ner Li nks" >

118

119

- { Deleted: use="requi red"/>

_ - | Deleted: <attribute
- name="servi ceLi nkType"
type="QNanme" |

~

" { Deletea:

- ’[Deleted: nyRol e

~ - Deleted:
<attribute
nane="part ner Rol e"
type="NCNane"/ >

120

121

- ’[Deleted: r equi r ed

122

123

\

Deleted:
<sequence>1

<el ement
nane="nessage"
type="wsdl : t Message" 1
m nCccur s="0">1
<uni que nane="part">f

<sel ect or
xpat h="wsdl : part"/ >

<field xpat h="@ane"/ >
</ uni que>Y

</ el enent >

</ sequence>T

(Deleted: "/ >

)

124

125

126

<el enent nanme="cat ch" type="bpws:tCatch"
m nCccur s="0" maxCccur s="unbounded"/ >
<el enent nane="cat chAl | "
type="bpws: t Acti vi t yO Conpensat eCont ai ner "
m nCccur s="0"/>
<el enent nane="conpensati onHandl er"
type="bpws: t Conpensati onHandl er" m nQccurs="0"/>
</ sequence>
<attribute name="partnerLink" type="NCNane" use="required"/>
<attribute nane="port Type" type="QName" use="required"/>
<attribute nane="operation" type="NCNanme" use="required"/>
<attribute nane="input Vari abl e"

type="NCNane" use="pptional"/> T ‘[Deleted: required"/>

<attribute name="outputVariabl e" type="NCNane", - { Deteted: />

use="optional "/ >

</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="t Recei ve">
<conpl exCont ent >
<ext ensi on base="bpws:tActivity">
<sequence>
<el enent nane="correl ati ons"

type="bpws:tCorrel ati ons" m nQccurs="0"/>

</ sequence>

<attribute name="partnerLink" type="NCName" use="required"/>

<attribute nane="portType" type="QNane" use="required"/>

<attribute nane="operation" type="NCNane" use="required"/>

<attribute name="variabl e" type="NCName" use="gptional "/> ///{Ddemd”eqmred

<attribute nane="createl nstance" type="bpws:tBool ean"
def aul t ="no"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="t Repl y">

<conpl exCont ent >

127

- { Deleted: r equi r ed

128

- { Deleted: ser vi ceRef erence

- ’[Deleted: ser vi ceRef erence

129

130

131

132

133

<si nmpl eType nane="t Dur ati on- expr" >
<restriction base="string"/>

</ si npl eType>

<si mpl eType nane="t Deadl i ne- expr" >
<restriction base="string"/>

</ si npl eType>

<si npl eType nane="t Bool ean">
<restriction base="string">
<enuneration val ue="yes"/>
<enuneration val ue="no"/>
</restriction>

</ si npl eType>

<si npl eType nane="t Rol es" >
<restriction base="string">
<enunerati on val ue="nyRol e"/>
<enuner ati on val ue="part ner Rol e"/>
</restriction>

</ si npl eType>

</ schena> /{Ddemd:vake

<?xm version='1.0' encodi ng="uUrf-g8"2> 4///{F“mau““EWMhU5
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schema"
xni ns: pl nk="ht t p: / / schemas. xn soap. or g/ ws/ 2003/ 05/ par t ner | i nk/" - { Deleted: s1 ik
targetl\lamaspace:"http://schemats.xmsoap.org/ws/2003/95/Qartner-lﬁiinikilj“l\\\{\‘‘{F""“atte":Eng"s‘hu'S

Y \ > .
s N Deleted: 03/ servi ce
el enent For nDef aul t =" qual i fi ed" > AN \{

AN {Formatted: English U.S.
N\

\
\ {Deleted: 03/ service
\

<el ement name="partnerLi nkType" type="pl nk:tPartnerLinkType"/> {Fonnaﬂnd-EnmEhUS

\\ ‘[Deleted: servi ceLi nkType
A

Deleted: sl nk: t Servi ceLi nkTyp
e

<conpl exType nane="} Part nerLi nkType" > {

{Deleted: t Ser vi ceLi nkType

ST ‘[Deleted: sl nk

o A U A

</ sequence>

134

<attribute nane="nanme" type="NCNane" use="required"/>

/

</ conpl exType>

<conpl exType name="t Rol e" >
/]

<sequence>
<el ement name="port Type" mi nCccurs="1" maxCccurs="1"> P

<conpl exType>
<attribute nane="nane" type="QNanme" use="required"/> ’u
</ conpl exType> /)
</ el ement > /e/ “

</ sequence>
<attribute nane="nanme" type="NCNane" use="required"/> |
! |

<?xm version='"1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. org/ 2001/ XM_Schema"
t ar get Nanespace="htt p: // schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/ "
xm ns: wsbp="htt p: // schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/"

el enent For nDef aul t ="qual i fi ed">

<el enent nane="property">

<conpl exType>
<attribute nanme="nane" type="NCNanme" use="required"/>

<attribute nanme="type" type="QNanme" use="required"/>
</ conpl exType>
</ el ement >

<el enent nanme="propertyAlias">

<conpl exType>
<attribute name="propertyNane" type="QNanme" use="required"/>

<attribute nanme="nessageType" type="QNanme" use="required"/>
<attribute nane="part" type="NCNane"/>
<attribute nanme="query" type="string"/>
</ conpl exType>
</ el ement >

135

{Deleted: unbounded J

/ [Formatted: German Germany]

Deleted: Service References
Schemaq

<?xm version="1.0'

encodi ng="UTF- 8" ?>1

<schema

xm ns="http://ww. w3. or g/ 200
1/ XM_Schema"

xm ns: sref="http://schemas. x
m soap. or g/ ws/ 2003/ 03/ servi c
e-reference/"

xm ns: wsdl ="http://schemas. x
m soap. org/wsdl /" 1

tar get Namespace="http://sche
mas. xnl soap. or g/ ws/ 2003/ 03/ s
ervice-reference/ "

el ement For nDef aul t ="qual i fie
d">1

1

<i nport
nanespace="http://schemas. xm
| soap. org/wsdl /"9

schemalLocati on="http://schem
as. xm soap. org/wsdl /"/> |
1

<el enent

name="ser vi ceRef er ence"
type="sref:servi ceReferenceT

ype"/>1

1
<conpl exType
nane="servi ceRef erenceType" >
<sequence>T
<el erment
ref ="wsdl : definitions"
m nCccurs="0"/>Y
<el ement
nane="service" >
<conpl exType>1
<attribute
nane="name" type="CQName"
use="requi red"/ >
</ conpl exType>Y
</ el enent >
<el ement
nane="r ef erenceProperties"”
m nCccur s="0">1
<conpl exType>1
<sequence>
<el ement
nane="property"
type="sref:referenceProperty
Type" 1

maxCccur s="unbounded"/ >
</ sequence>1
</ conpl exType>Y
</ el enent >
</ sequence>{
</ conpl exType>{

.. [170]

<conpl exType

136

Page 1: [1] Style Definition Satish 6/2/2003 1:18 PM
Heading 6: Outline numbered + Level: 6 + Numbering Style: 1, 2, 3, ... + Start at: 1 +
Alignment: Left + Aligned at: 0" + Tab after: 0.8" + Indent at: 0.8"

Page 1: [2] Style Definition Satish 6/2/2003 1:18 PM
Heading 7: Outline numbered + Level: 7 + Numbering Style: 1, 2, 3, ... + Startat: 1 +
Alignment: Left + Aligned at: 0" + Tab after: 0.9" + Indent at: 0.9"

Page 1: [3] Style Definition Satish 6/2/2003 1:18 PM
Heading 8: Outline numbered + Level: 8 + Numbering Style: 1, 2, 3, ... + Start at: 1 +
Alignment: Left + Aligned at: 0" + Tab after: 1" + Indent at: 1"

Page 1: [4] Style Definition Satish 6/2/2003 1:18 PM
Heading 9: Outline numbered + Level: 9 + Numbering Style: 1, 2, 3, ... + Start at: 1 +
Alignment: Left + Aligned at: 0" + Tab after: 1.1" + Indent at: 1.1"

Page 1: [5] Style Definition Satish 6/2/2003 1:18 PM
Bulleted List 1,bl1: Bulleted + Level: 1 + Aligned at: 0" + Tab after: 0.25" + Indent at:
0.25"

Page 1: [6] Formatted DianeJordan 6/2/2003 1:18 PM
Complex Script Font: Times New Roman

Page 1: [7] Deleted DianeJordan 6/2/2003 1:18 PM
The presentation, distribution or other dissemination of the information contained in this
“Business Process Execution Language for Web Services, Version 1.1 Specification”
(“BPEL Specification”) is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by BEA or IBM or Microsoft or SAP or Siebel and\or any
other third party. BEA, IBM, Microsoft, SAP, Siebel and\or any other third party may
have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in the BPEL Specification. The furnishing of the BPEL
Specification does not give you any license to BEA's or IBM's or Microsoft's or SAP’S or
Siebel's or any other third party's patents, trademarks, copyrights, or other intellectual
property.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the BPEL Specification or its contents without
specific, written prior permission. Title to copyright in the BPEL Specification will at all
times remain with the Authors.

The example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real
company, organization, product, domain name, email address, logo, person, places, or
events is intended or should be inferred.

The BPEL Specification and the information contained herein is provided on an "AS IS"
basis and to the maximum extent permitted by applicable law, BEA and IBM and
Microsoft and SAP and Siebel provide the BPEL Specification AS IS AND WITH ALL
FAULTS, and hereby disclaim all other warranties and conditions, either express, implied
or statutory, including, but not limited to, any (if any) implied warranties, duties or
conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of
lack of negligence, all with regard to the document.

ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR
NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS WITH
REGARD TO THE BPEL Specification. IN NO EVENT WILL BEA OR IBM OR
MICROSOFT OR SAP OR SIEBEL BE LIABLE TO ANY OTHER PARTY FOR THE
COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS,
LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL,
DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT,
TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR
ANY OTHER AGREEMENT RELATING TO the BPEL Specification, WHETHER OR
NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

No rights are granted by implication, estoppel or otherwise.

Page 4: [8] Change Unknown
Field Code Changed

Page 4: [8] Change Unknown
Field Code Changed

Page 4: [9] Change Unknown
Field Code Changed

Page 4: [9] Change Unknown
Field Code Changed

Page 4: [10] Change Unknown
Field Code Changed

Page 4: [10] Change Unknown
Field Code Changed

Page 4: [11] Change Unknown
Field Code Changed

Page 4: [11] Change Unknown
Field Code Changed

Page 4: [12] Change Unknown
Field Code Changed

Page 4: [12] Change Unknown
Field Code Changed

Page 4: [13] Change Unknown
Field Code Changed

Page 4: [14] Deleted DianeJordan 6/2/2003 1:18 PM

4.1.2 FEAtUIe ENNANCEIMEIIS ...oevvennneeeeeeeeeeeeee e e e e e e e e e e et eee e e e e e e e e e e eeeeaaaeeeeeereeeaaaaaaaeaeeeeaes

Page 4: [15] Change Unknown
Field Code Changed

Page 4: [16] Change Unknown
Field Code Changed

Page 4: [17] Change Unknown

Field Code Changed

Page 4: [18] Change Unknown
Field Code Changed

Page 4: [18] Change Unknown
Field Code Changed

Page 4: [19] Change Unknown
Field Code Changed

Page 4: [19] Change Unknown
Field Code Changed

Page 4: [20] Change Unknown
Field Code Changed

Page 4: [20] Change Unknown
Field Code Changed

Page 4: [21] Change Unknown
Field Code Changed

Page 4: [21] Change Unknown
Field Code Changed

Page 4: [22] Change Unknown
Field Code Changed

Page 4: [22] Change Unknown
Field Code Changed

Page 4: [23] Change Unknown
Field Code Changed

Page 4: [23] Change Unknown
Field Code Changed

Page 4: [24] Deleted

Service Linking, Partners

DianeJordan

6/2/2003 1:18 PM

Page 4: [24] Deleted

Service

DianeJordan

6/2/2003 1:18 PM

Page 4: [25] Change Unknown
Field Code Changed

Page 4: [26] Change Unknown
Field Code Changed

Page 4: [27] Change Unknown

Field Code Changed

Page 4: [28] Change Unknown

Field Code Changed
Page 4: [29] Change Unknown
Field Code Changed
Page 4: [30] Change Unknown
Field Code Changed
Page 4: [31] Change Unknown
Field Code Changed
Page 4: [32] Deleted DianeJordan 6/2/2003 1:18 PM

7.3 SErVICE RETETEICES ..o

Page 4: [33] Change Unknown
Field Code Changed
Page 4: [34] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 2
Page 4: [35] Change Unknown
Field Code Changed
Page 4: [36] Change Unknown
Field Code Changed
Page 4: [37] Formatted DianeJordan 6/2/2003 1:18 PM
Font: Times New Roman
Page 4: [38] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 1,tocl
Page 4: [39] Change Unknown
Field Code Changed
Page 4: [40] Change Unknown
Field Code Changed
Page 4: [41] Formatted DianeJordan 6/2/2003 1:18 PM
Font: Not Bold, No underline, Complex Script Font: 12 pt, Not Bold, Not All caps
Page 4: [42] Change Unknown
Field Code Changed
Page 4: [43] Deleted DianeJordan 6/2/2003 1:18 PM
8.2 DEfINING PrOPEITICS....uviiciiiiiiieeiiieeciie et e et te et e te e e stte e et e e s treeebaeesssaeessseeeesseeessseeennseeennses
Page 4: [44] Change Unknown
Field Code Changed
Page 4: [45] Change Unknown
Field Code Changed
Page 4: [46] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 2
Page 4: [47] Change Unknown
Field Code Changed

Page 4: [48] Change Unknown

Field Code Changed

Page 4: [49] Change Unknown
Field Code Changed

Page 4: [50] Change Unknown
Field Code Changed

Page 5: [51] Formatted
TOC 3

DianeJordan

6/2/2003 1:18 PM

Page 4: [52] Change Unknown
Field Code Changed

Page 4: [53] Change Unknown
Field Code Changed

Page 4: [54] Change Unknown
Field Code Changed

Page 4: [55] Change Unknown
Field Code Changed

Page 5: [56] Formatted
TOC 2

DianeJordan

6/2/2003 1:18 PM

Page 4: [57] Change Unknown
Field Code Changed

Page 4: [58] Change Unknown
Field Code Changed

Page 4: [59] Change Unknown
Field Code Changed

Page 5: [60] Deleted
2

DianeJordan

6/2/2003 1:18 PM

Page 5: [60] Deleted

EXAMPIC....ceiiiiiieiiecie ettt ettt ettt et e st e e be e tb e b e e s st e enteeeabeesbeentbeeteennaeans

DianeJordan

6/2/2003 1:18 PM

Page 4: [61] Change
Field Code Changed

Unknown

Page 5: [62] Formatted
TOC 3

DianeJordan

6/2/2003 1:18 PM

Page 4: [63] Change Unknown
Field Code Changed

Page 4: [64] Change Unknown
Field Code Changed

Page 5: [65] Formatted

Font: Times New Roman

DianeJordan

6/2/2003 1:18 PM

Page 5: [66] Formatted
TOC 1,tocl

DianeJordan

6/2/2003 1:18 PM

Page 4: [67] Change

Unknown

Field Code Changed

Page 4: [68] Change Unknown
Field Code Changed
Page 5: [69] Formatted DianeJordan 6/2/2003 1:18 PM
Font: Not Bold, No underline, Complex Script Font: 12 pt, Not Bold, Not All caps
Page 4: [70] Change Unknown
Field Code Changed
Page 5: [71] Deleted DianeJordan 6/2/2003 1:18 PM
2 Defining and Using
Page 5: [71] Deleted DianeJordan 6/2/2003 1:18 PM
T 1O PP OT PP
Page 4: [72] Change Unknown
Field Code Changed
Page 5: [73] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 2
Page 4: [74] Change Unknown
Field Code Changed
Page 4: [75] Change Unknown
Field Code Changed
Page 5: [76] Formatted DianeJordan 6/2/2003 1:18 PM
Font: Times New Roman
Page 5: [77] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 1,tocl
Page 4: [78] Change Unknown
Field Code Changed
Page 5: [79] Deleted DianeJordan 6/2/2003 1:18 PM

11.1 Standard Attributes for EACh ACHVILY.......cccuiiiiieiiieiiieieeeie ettt

Page 4: [80] Change Unknown
Field Code Changed
Page 5: [81] Formatted DianeJordan 6/2/2003 1:18 PM
Font: Not Bold, No underline, Complex Script Font: 12 pt, Not Bold, Not All caps
Page 4: [82] Change Unknown
Field Code Changed
Page 5: [83] Deleted DianeJordan 6/2/2003 1:18 PM
2

Page 5: [83] Deleted DianeJordan 6/2/2003 1:18 PM

Elements

Page 4: [84] Change Unknown
Field Code Changed
Page 4: [85] Change Unknown
Field Code Changed
Page 5: [86] Deleted DianeJordan 6/2/2003 1:18 PM

11.3 Invoking Web Service OPerations..........ceeeueeriieriieriienieenieeeieesiieseeesseesseesseesneesseesseesseenns

Page 4: [87] Change Unknown
Field Code Changed

Page 4: [88] Change Unknown
Field Code Changed

Page 4: [89] Change Unknown
Field Code Changed

Page 4: [89] Change Unknown
Field Code Changed

Page 4: [90] Change Unknown
Field Code Changed

Page 4: [90] Change Unknown
Field Code Changed

Page 4: [91] Change Unknown
Field Code Changed

Page 4: [91] Change Unknown
Field Code Changed

Page 4: [92] Change Unknown
Field Code Changed

Page 4: [92] Change Unknown
Field Code Changed

Page 4: [93] Change Unknown
Field Code Changed

Page 4: [93] Change Unknown
Field Code Changed

Page 4: [94] Change Unknown
Field Code Changed

Page 4: [94] Change Unknown
Field Code Changed

Page 4: [95] Change Unknown
Field Code Changed

Page 4: [95] Change Unknown
Field Code Changed

Page 4: [96] Change Unknown

Field Code Changed

Page 4: [96] Change Unknown
Field Code Changed

Page 4: [97] Change Unknown
Field Code Changed

Page 4: [97] Change Unknown
Field Code Changed

Page 4: [98] Change Unknown
Field Code Changed

Page 4: [98] Change Unknown
Field Code Changed

Page 4: [99] Change Unknown
Field Code Changed

Page 4: [99] Change Unknown
Field Code Changed

Page 4: [100] Change Unknown
Field Code Changed

Page 4: [100] Change Unknown
Field Code Changed

Page 4: [101] Change Unknown
Field Code Changed

Page 4: [101] Change Unknown
Field Code Changed

Page 4: [102] Change Unknown
Field Code Changed

Page 4: [102] Change Unknown
Field Code Changed

Page 4: [103] Change Unknown
Field Code Changed

Page 4: [103] Change Unknown
Field Code Changed

Page 4: [104] Change Unknown
Field Code Changed

Page 4: [104] Change Unknown
Field Code Changed

Page 4: [105] Change Unknown
Field Code Changed

Page 4: [105] Change Unknown
Field Code Changed

Page 4: [106] Change Unknown
Field Code Changed

Page 4: [106] Change Unknown

Field Code Changed

Page 4: [107] Change Unknown
Field Code Changed

Page 4: [107] Change Unknown
Field Code Changed

Page 4: [108] Change Unknown
Field Code Changed

Page 4: [108] Change Unknown
Field Code Changed

Page 4: [109] Change Unknown
Field Code Changed

Page 4: [109] Change Unknown
Field Code Changed

Page 4: [110] Change Unknown
Field Code Changed

Page 4: [110] Change Unknown
Field Code Changed

Page 4: [111] Change Unknown
Field Code Changed

Page 4: [111] Change Unknown
Field Code Changed

Page 4: [112] Change Unknown
Field Code Changed

Page 4: [112] Change Unknown
Field Code Changed

Page 4: [113] Change Unknown
Field Code Changed

Page 4: [114] Change Unknown
Field Code Changed

Page 4: [115] Change Unknown
Field Code Changed

Page 4: [116] Change Unknown
Field Code Changed

Page 6: [117] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 2

Page 4: [118] Change Unknown
Field Code Changed

Page 6: [119] Deleted DianeJordan 6/2/2003 1:18 PM

15 Extensions for BuSINESS ProtOCOLS.......oovi it

Page 4: [120] Change Unknown
Field Code Changed

Page 6: [121] Formatted

Font: Times New Roman

DianeJordan

6/2/2003 1:18 PM

Page 4: [122] Change
Field Code Changed

Unknown

Page 6: [123] Formatted
TOC 1,tocl

DianeJordan

6/2/2003 1:18 PM

Page 7: [124] Formatted
TOC 2

DianeJordan

6/2/2003 1:18 PM

Page 4: [125] Change
Field Code Changed

Unknown

Page 7: [126] Deleted
.1

DianeJordan

6/2/2003 1:18 PM

Page 7: [126] Deleted

DianeJordan

6/2/2003 1:18 PM

| 1T s o1 5 [) s DO SRS
Page 4: [127] Change Unknown
Field Code Changed
Page 4: [128] Change Unknown
Field Code Changed

Page 7: [129] Deleted

16.1.2 Message Properties

DianeJordan

6/2/2003 1:18 PM

Page 4: [130] Change Unknown
Field Code Changed

Page 4: [131] Change Unknown
Field Code Changed

Page 4: [132] Change Unknown
Field Code Changed

Page 7: [133] Formatted
TOC 3

DianeJordan

6/2/2003 1:18 PM

Page 4: [134] Change Unknown
Field Code Changed

Page 4: [135] Change Unknown
Field Code Changed

Page 7: [136] Deleted

16.2.1 Service Description

DianeJordan

6/2/2003 1:18 PM

Page 7: [137] Formatted
TOC 2

DianeJordan

6/2/2003 1:18 PM

Page 4: [138] Change Unknown
Field Code Changed
Page 4: [139] Change Unknown

Field Code Changed

Page 4: [140] Change Unknown
Field Code Changed
Page 4: [141] Change Unknown
Field Code Changed
Page 7: [142] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 3
Page 4: [143] Change Unknown
Field Code Changed

Page 7: [144] Deleted

16.3 Multiple Start Activities

DianeJordan

6/2/2003 1:18 PM

Page 4: [145] Change Unknown
Field Code Changed

Page 7: [146] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 2

Page 4: [147] Change Unknown
Field Code Changed

Page 7: [148] Deleted

16.3.1 Service Description

DianeJordan

6/2/2003 1:18 PM

Page 4: [149] Change Unknown
Field Code Changed
Page 4: [150] Change Unknown
Field Code Changed
Page 4: [151] Change Unknown
Field Code Changed
Page 7: [152] Formatted DianeJordan 6/2/2003 1:18 PM
TOC 3
Page 4: [153] Change Unknown
Field Code Changed

Page 7: [154] Deleted

17 Security Considerations

DianeJordan

6/2/2003 1:18 PM

Page 4: [155] Change
Field Code Changed

Unknown

Page 7: [156] Formatted
Font: Times New Roman

DianeJordan

6/2/2003 1:18 PM

Page 4: [157] Change
Field Code Changed

Unknown

Page 7: [158] Deleted

DianeJordan

6/2/2003 1:18 PM

18 ACKNOWICAZMENLES.ueiiiiiiiiieiieeie ettt ettt ettt ettt e et e e et e esbeessaeesbeessaeenseessseesseesssennseas

Page 4: [159] Change Unknown
Field Code Changed
Page 4: [160] Change Unknown
Field Code Changed
Page 4: [161] Change Unknown
Field Code Changed
Page 4: [162] Change Unknown
Field Code Changed
Page 7: [163] Deleted DianeJordan 6/2/2003 1:18 PM

Appendix A — Standard FaultS.........coouiiiiiiieiicccce e

Page 4: [164] Change Unknown
Field Code Changed
Page 4: [165] Change Unknown
Field Code Changed
Page 7: [166] Deleted DianeJordan 6/2/2003 1:18 PM

Appendix B — Attributes and Defaults...........cccoviiiiiiiiiiiiiieeeee e

Page 4: [167] Change Unknown
Field Code Changed
Page 4: [168] Change Unknown
Field Code Changed
Page 35: [169] Deleted DianeJordan 6/2/2003 1:18 PM

for the mechanisms used for dynamic assignment of service references to partners.

7.3Service References

WSDL makes an important distinction between portTypes and ports. PortTypes define
abstract functionality by using abstract messages. Ports provide actual access information,
including communication endpoints and (by using extension elements) other deployment-
related information such as public keys for encryption. Bindings provide the glue

between the two. While the user of a service must be statically dependent on the abstract
interface defined by portTypes, the information contained in port definitions can typically
be discovered and used dynamically.

The fundamental use of service references is to serve as the mechanism for dynamic
communication of port-specific data for services. A service reference makes it possible in

BPEL4WS to dynamically select a provider for a particular type of service and to invoke
their operations. BPEL4WS provides a general mechanism for correlating messages to
stateful instances of a service, and therefore service references that carry instance-neutral
port information are often sufficient. However, in general it is necessary to carry
additional instance-identification tokens in the service reference itself.
A service reference is defined as a typed reference that includes port-specific data for a
service, and optionally additional data regarding instance-identification tokens and other
relevant properties. Relevant WSDL schemas are used wherever possible to avoid
redundancy.
The syntactic structure of a service reference is:
<sref:serviceReference
xmlns:sref=""http://schemas.xmlsoap.org/ws/2003/03/service-reference/">
<wsdl:definitions> ... </wsdl:definitions>?
<sref:service name="gname" />
<sref:referenceProperties>?
<sref:property name="qname' >+
<!-- any element content -->
</sref:property>
</sref:referenceProperties>
</sref:serviceReference>

At a minimum, a service reference is the qualified name of a <wsdl:service> element

where that element is either inlined within the service reference or assumed to be already

known by the recipient of the service reference. The following is a minimal example of a

service reference:

<sref:serviceReference
xmlns:sref="http://schemas.xmlsoap.org/ws/2003/03/service-reference/"
xmlns:ns="http://example.com/services/">

<sref:service name="ns:myService"/>
</sref:serviceReference>

If the service is not assumed to be already known by reference, its definition can be
inlined in the service reference as a way of dynamically communicating the service
definition part of a WSDL document.
<sref:serviceReference
xmlns:sref="http://schemas.xmlsoap.org/ws/2003/03/service-reference/"
xmlns:ns="http://example.com/services/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:definitions
targetNamespace="http://example.com/services/" ...>
<wsdl:service name="myService">

</wsdl:service>
</wsdl:definitions>
<sref:service name="ns:myService"/>
</sref:serviceReference>

The inlined <wsdl : defi ni t i ons> element MUST NOT contain more than one
inline service definition. The standard use of <wsd| : def i ni t i ons> includes only a
single service definition. The presence of any other definitions can affect the portability
of service references.
Finally, the service reference might require additional tokens for purposes such as
identifying one or more service instances of interest. The service reference schema does
not assign any particular significance to these tokens. They are permitted as a convenient
way to carry metadata for a variety of purposes. The key point is that this data is always
associated with globally named properties (see Message Properties). As such, they have
semantics that are assumed to be known by the receiver of the service reference.
<sref:serviceReference

xmlns:sref="http://schemas.xmlsoap.org/ws/2003/03/service-reference/"

xmlns:ns="http://example.com/services/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<sref:service name="ns:myService"/>

<sref:referenceProperties>

<sref:property name="ns:instancelD">
74b915d0-33fb-4a81-b02b-5b760641c1d6
</sref:property>

</sref:referenceProperties>

</sref:serviceReference>

Every partner in a BPEL4WS process instance is assigned a unique service reference in
the course of the deployment or dynamically by an activity within the process.

Page 135: [170] Deleted DianeJordan 6/2/2003 1:18 PM

Service References Schema

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:sref="http://schemas.xmlsoap.org/ws/2003/03/service-reference/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://schemas.xmlsoap.org/ws/2003/03/service-reference/"
elementFormDefault="qualified">

<import namespace="http://schemas.xmlsoap.org/wsdl/"
schemal.ocation="http://schemas.xmlsoap.org/wsdl/"/>

<element name="serviceReference" type="sref:serviceReferenceType"/>

<complexType name="serviceReferenceType">
<sequence>
<element ref="wsdl:definitions" minOccurs="0"/>
<element name="service">
<complexType>
<attribute name="name" type="QName" use="required"/>

</complexType>
</element>
<element name="referenceProperties" minOccurs="0">
<complexType>
<sequence>
<element name="property" type="sref:referenceProperty Type"
maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>

<complexType name="referenceProperty Type'">

<sequence>
<any namespace="##other" minOccurs="0"/>
</sequence>
<attribute name="name" type="QName" use="required"/>
</complexType>

</schema>

