
Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

1 of 142 12/2/2004 10:17 AM

Web Services Business Process
Execution Language
Working Draft 01, 08 September 2004
Document identifier:

wsbpel-specification-draft-01

Location:

http://www.oasis-open.org/apps/org/workgroup/wsbpel/

Editors:

Sid Askary <saskary@nuperus.com>
Ben Bloch <ben_b54@hotmail.com>
Francisco Curbera, IBM <curbera@us.ibm.com>
Yaron Goland, BEA <ygoland@bea.com>
Neelakantan Kartha, Sterling Commerce <N_Kartha@stercomm.com>
Canyang Kevin Liu, SAP <kevin.liu@sap.com>
Satish Thatte, Microsoft <satisht@microsoft.com>
Prasad Yendluri, webMethods <pyendluri@webmethods.com>
Alex Yiu, Oracle <alex.yiu@oracle.com>

Contributors:

{FirstName} {Last Name}, {Organization}

Editor’s Notes – KevinL – this section should be consolidated with Appendix H

Abstract:

This document defines a notation for specifying business process behavior based on Web Services.
This notation is called Business Process Execution Language for Web Services (abbreviated to
BPEL4WS in the rest of this document). Processes in BPEL4WS export and import functionality by
using Web Service interfaces exclusively.

Business processes can be described in two ways. Executable business processes model actual
behavior of a participant in a business interaction. Business protocols, in contrast, use process
descriptions that specify the mutually visible message exchange behavior of each of the parties
involved in the protocol, without revealing their internal behavior. The process descriptions for
business protocols are called abstract processes. BPEL4WS is meant to be used to model the behavior

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

2 of 142 12/2/2004 10:17 AM

of both executable and abstract processes.

BPEL4WS provides a language for the formal specification of business processes and business
interaction protocols. By doing so, it extends the Web Services interaction model and enables it to
support business transactions. BPEL4WS defines an interoperable integration model that should
facilitate the expansion of automated process integration in both the intra-corporate and the
business-to-business spaces.

Status:

This is a draft version of the WS-BPEL TC specification, updated from the origninal BPEL4WS V1.1
specification dated May 5, 2003 that was submitted to the WS BPEL TC. See:
http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/2046/BPEL%20V1-1%20May%2

If you are on the <wsbpel@lists.oasis-open.org> list for committee members, send comments
there. If you are not on that list, subscribe to the <wsbpel-comment@lists.oasis-open.org> list and
send comments there. To subscribe, send an email message to
<mailto:wsbpel-comment-request@lists.oasis-open.org> with the word "subscribe"as the
body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the WS-BPEL TC web page
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

Copyright © 2004 OASIS Open, Inc. All Rights Reserved.

Table of Contents
1. Introduction
2. Notational Conventions
3. Relationship with Other Specifications
4. What Changed from BPEL4WS 1.0

4.1. Core Concepts Clarification
4.2. Terminology Changes
4.3. Feature Changes

5. Core Concepts and Usage Patterns
6. Defining a Business Process

6.1. Initial Example
6.2. The Structure of a Business Process
6.3. Language Extensibility
6.4. The Lifecycle of a Business Process

7. Partner Link Types, Partner Links, and Endpoint References
7.1. Partner Link Types
7.2. Partner Links
7.3. Business Partners
7.4. Endpoint References

8. Message Properties
8.1. Motivation
8.2. Defining Properties

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

3 of 142 12/2/2004 10:17 AM

9. Data Handling
9.1. Expressions
9.2. Variables
9.3. Assignment

10. Correlation
10.1. Message Correlation
10.2. Defining and Using Correlation Sets

11. Basic Activities
11.1. Standard Attributes for Each Activity
11.2. Standard Elements for Each Activity
11.3. Invoking Web Service Operations
11.4. Providing Web Service Operations
11.5. Updating Variable Contents
11.6. Signaling Faults
11.7. Waiting
11.8. Doing Nothing

12. Structured Activities
12.1. Sequence
12.2. Switch
12.3. While
12.4. Pick
12.5. Flow

13. Scopes
13.1. Data Handling and Partner Links
13.2. Error Handling in Business Processes
13.3. Compensation Handlers
13.4. Fault Handlers
13.5. Event Handlers
13.6. Serializable Scopes

14. Extensions for Executable Processes
14.1. Expressions
14.2. Variables
14.3. Assignment
14.4. Correlation
14.5. Web Service Operations
14.6. Terminating a Service Instance
14.7. Compensation
14.8. Event Handlers

15. Extensions for Business Protocols
15.1. Variables
15.2. Assignment

16. Examples
16.1. Shipping Service
16.2. Loan Approval
16.3. Multiple Start Activities

17. Security Considerations

Appendixes

A. Standard Faults
B. Attributes and Defaults

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

4 of 142 12/2/2004 10:17 AM

C. XSD Schemas
D. Notices
E. Intellectual Property Rights
F. Revision History
G. References
H. Committee Members (Non-Normative)

1. Introduction
The goal of the Web Services effort is to achieve universal interoperability between applications by using
Web standards. Web Services use a loosely coupled integration model to allow flexible integration of
heterogeneous systems in a variety of domains including business-to-consumer, business-to-business and
enterprise application integration. The following basic specifications originally defined the Web Services
space: SOAP, Web Services Description Language (WSDL), and Universal Description, Discovery, and
Integration (UDDI). SOAP defines an XML messaging protocol for basic service interoperability. WSDL
introduces a common grammar for describing services. UDDI provides the infrastructure required to publish
and discover services in a systematic way. Together, these specifications allow applications to find each other
and interact following a loosely coupled, platformindependent model.

Systems integration requires more than the ability to conduct simple interactions by using standard protocols.
The full potential of Web Services as an integration platform will be achieved only when applications and
business processes are able to integrate their complex interactions by using a standard process integration
model. The interaction model that is directly supported by WSDL is essentially a stateless model of
synchronous or uncorrelated asynchronous interactions. Models for business interactions typically assume
sequences of peer-to-peer message exchanges, both synchronous and asynchronous, within stateful,
long-running interactions involving two or more parties. To define such business interactions, a formal
description of the message exchange protocols used by business processes in their interactions is needed. The
definition of such business protocols involves precisely specifying the mutually visible message exchange
behavior of each of the parties involved in the protocol, without revealing their internal implementation. There
are two good reasons to separate the public aspects of business process behavior from internal or private
aspects. One is that businesses obviously do not want to reveal all their internal decision making and data
management to their business partners. The other is that, even where this is not the case, separating public
from private process provides the freedom to change private aspects of the process implementation without
affecting the public business protocol.

Business protocols must clearly be described in a platform-independent manner and must capture all
behavioral aspects that have cross-enterprise business significance. Each participant can then understand and
plan for conformance to the business protocol without engaging in the process of human agreement that adds
so much to the difficulty of establishing cross-enterprise automated business processes today.

What are the concepts required to describe business protocols? And what is the relationship of these concepts
to those required to describe executable processes? To answer these questions, consider the following::

· Business protocols invariably include data-dependent behavior. For example, a supply-chain protocol
depends on data such as the number of line items in an order, the total value of an order, or a
deliver-by deadline. Defining business intent in these cases requires the use of conditional and
time-out constructs.

· The ability to specify exceptional conditions and their consequences, including recovery sequences, is
at least as important for business protocols as the ability to define the behavior in the "all goes well"

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

5 of 142 12/2/2004 10:17 AM

case.

· Long-running interactions include multiple, often nested units of work, each with its own data
requirements. Business protocols frequently require cross-partner coordination of the outcome (success
or failure) of units of work at various levels of granularity.

If we wish to provide precise predictable descriptions of service behavior for crossenterprise business
protocols, we need a rich process description notation with many features reminiscent of an executable
language. The key distinction between public message exchange protocols and executable internal processes is
that internal processes handle data in rich private ways that need not be described in public protocols.

In thinking about the data handling aspects of business protocols it is instructive to consider the analogy with
network communication protocols. Network protocols define the shape and content of the protocol envelopes
that flow on the wire, and the protocol behavior they describe is driven solely by the data in these envelopes.
In other words, there is a clear physical separation between protocol-relevant data and "payload" data. The
separation is far less clear cut in business protocols because the protocol-relevant data tends to be embedded
in other application data.

BPEL4WS uses a notion of message properties to identify protocol-relevant data embedded in messages.
Properties can be viewed as "transparent" data relevant to public aspects as opposed to the "opaque" data that
internal/private functions use. Transparent data affects the public business protocol in a direct way, whereas
opaque data is significant primarily to back-end systems and affects the business protocol only by creating
nondeterminism because the way it affects decisions is opaque. We take it as a principle that any data that is
used to affect the behavior of a business protocol must be transparent and hence viewed as a property.

The implicit effect of opaque data manifests itself through nondeterminism in the behavior of services
involved in business protocols. Consider the example of a purchasing protocol. The seller has a service that
receives a purchase order and responds with either acceptance or rejection based on a number of criteria,
including availability of the goods and the credit of the buyer. Obviously, the decision processes are opaque,
but the fact of the decision must be reflected as behavior alternatives in the external business protocol. In other
words, the protocol requires something like a switch activity in the behavior of the seller's service but the
selection of the branch taken is nondeterministic. Such nondeterminism can be modeled by allowing the
assignment of a nondeterministic or opaque value to a message property, typically from an enumerated set of
possibilities. The property can then be used in defining conditional behavior that captures behavioral
alternatives without revealing actual decision processes. BPEL4WS explicitly allows the use of
nondeterministic data values to make it possible to capture the essence of public behavior while hiding private
aspects.

The basic concepts of BPEL4WS can be applied in one of two ways. A BPEL4WS process can define a
business protocol role, using the notion of abstract process. For example, in a supply-chain protocol, the buyer
and the seller are two distinct roles, each with its own abstract process. Their relationship is typically modeled
as a partner link. Abstract processes use all the concepts of BPEL4WS but approach data handling in a way
that reflects the level of abstraction required to describe public aspects of the business protocol. Specifically,
abstract processes handle only protocol-relevant data. BPEL4WS provides a way to identify protocol-relevant
data as message properties. In addition, abstract processes use nondeterministic data values to hide private
aspects of behavior.

It is also possible to use BPEL4WS to define an executable business process. The logic and state of the
process determine the nature and sequence of the Web Service interactions conducted at each business partner,
and thus the interaction protocols. While a BPEL4WS process definition is not required to be complete from a
private implementation point of view, the language effectively defines a portable execution format for
business processes that rely exclusively on Web Service resources and XML data. Moreover, such processes

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

6 of 142 12/2/2004 10:17 AM

execute and interact with their partners in a consistent way regardless of the supporting platform or
programming model used by the implementation of the hosting environment.

Even where private implementation aspects use platform-dependent functionality, which is likely in many if
not most realistic cases, the continuity of the basic conceptual model between abstract and executable
processes in BPEL4WS makes it possible to export and import the public aspects embodied in business
protocols as process or role templates while maintaining the intent and structure of the protocols. This is
arguably the most attractive prospect for the use of BPEL4WS from the viewpoint of unlocking the potential
of Web Services because it allows the development of tools and other technologies that greatly increase the
level of automation and thereby lower the cost in establishing cross-enterprise automated business processes.

In summary, we believe that the two usage patterns of business protocol description and executable business
process description require a common core of process description concepts. In this specification we clearly
separate the core concepts from the extensions required specifically for the two usage patterns. The
BPEL4WS specification is focused on defining the common core, and adds only the essential extensions
required for each usage pattern.

BPEL4WS defines a model and a grammar for describing the behavior of a business process based on
interactions between the process and its partners. The interaction with each partner occurs through Web
Service interfaces, and the structure of the relationship at the interface level is encapsulated in what we call a
partner link. The BPEL4WS process defines how multiple service interactions with these partners are
coordinated to achieve a business goal, as well as the state and the logic necessary for this coordination.
BPEL4WS also introduces systematic mechanisms for dealing with business exceptions and processing faults.
Finally, BPEL4WS introduces a mechanism to define how individual or composite activities within a process
are to be compensated in cases where exceptions occur or a partner requests reversal.

BPEL4WS is layered on top of several XML specifications: WSDL 1.1, XML Schema 1.0, and XPath1.0.
WSDL messages and XML Schema type definitions provide the data model used by BPEL4WS processes.
XPath provides support for data manipulation. All external resources and partners are represented as WSDL
services. BPEL4WS provides extensibility to accommodate future versions of these standards, specifically the
XPath and related standards used in XML computation.

2. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in [RFC 2119].

Namespace URIs of the general form "some-URI" represent some application-dependent or context-dependent
URI as defined in [RFC 2396].

This specification uses an informal syntax to describe the XML grammar of the XML fragments that follow:

· The syntax appears as an XML instance, but the values indicate the data types instead of values.

· Grammar in bold has not been introduced earlier in the document, or is of particular interest in an
example.

· <-- description --> is a placeholder for elements from some "other" namespace (like ##other in XSD).

· Characters are appended to elements, attributes, and as follows: "?" (0 or 1), "*" (0 or more), "+" (1 or

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

7 of 142 12/2/2004 10:17 AM

more). The characters "[" and "]" are used to indicate that contained items are to be treated as a group
with respect to the "?", "*", or "+" characters.

· Elements and attributes separated by "|" and grouped by "(" and ")" are meant to be syntactic
alternatives.

· The XML namespace prefixes (defined below) are used to indicate the namespace of the element being
defined.

· Examples starting with <?xml contain enough information to conform to this specification; other
examples are fragments and require additional information to be specified in order to conform.

· XSD schemas and WSDL definitions are provided as a formal definition of grammars [XML Schema
Part 1] and [WSDL 1.1].

This specification uses a number of namespace prefixes throughout; their associated URIs are listed below.
Note that the choice of any namespace prefix is arbitrary and not semantically significant.

· xsi - "http://www.w3.org/2001/XMLSchema-instance"

· xsd - "http://www.w3.org/2001/XMLSchema"

· wsdl - "http://schemas.xmlsoap.org/wsdl/"

· plnk – "http://schemas.xmlsoap.org/ws/2004/03/partner-link/"

· bpws – “http://schemas.xmlsoap.org/ws/2004/03/business-process/”

3. Relationship with Other Specifications
BPEL4WS depends on the following XML-based specifications: WSDL 1.1, XML Schema 1.0 and XPath 1.0.

Among these, WSDL has the most influence on the BPEL4WS language. The BPEL4WS process model is
layered on top of the service model defined by WSDL 1.1. At the core of the BPEL4WS process model is the
notion of peer-to-peer interaction between services described in WSDL; both the process and its partners are
modeled as WSDL services. A business process defines how to coordinate the interactions between a process
instance and its partners. In this sense, a BPEL4WS process definition provides and/or uses one or more
WSDL services, and provides the description of the behavior and interactions of a process instance relative to
its partners and resources through Web Service interfaces. That is, BPEL4WS defines the message exchange
protocols followed by the business process of a specific role in the interaction.

The definition of a BPEL4WS business process also follows the WSDL model of separation between the
abstract message contents used by the business process and deployment information (messages and portType
versus binding and address information). In particular, a BPEL4WS process represents all partners and
interactions with these partners in terms of abstract WSDL interfaces (portTypes and operations); no
references are made to the actual services used by a process instance.

However, the abstract part of WSDL does not define the constraints imposed on the communication patterns
supported by the concrete bindings. Therefore a BPEL4WS process may define behavior relative to a partner
service that is not supported by all possible bindings, and it may happen that some bindings are invalid for a

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

8 of 142 12/2/2004 10:17 AM

BPEL4WS process definition.

A BPEL4WS process is a reusable definition that can be deployed in different ways and in different scenarios,
while maintaining a uniform application-level behavior across all of them. Note that the description of the
deployment of a BPEL4WS process is out of scope for this specification.

Introduction of service reference container (“bpws:service-ref”) is meant to avoid inventing a private
BPEL4WS mechanism for web service endpoint references and to provide pluggability of different versions of
service referencing or endpoint addressing schemes being used within a BPEL program without having
explicit dependency to a particular version of specification.

With respect to [WS-I Basic Profile] (Basic Profile 1.0) all BPEL implementations SHOULD be configurable
such that they can participate in Basic Profile 1.0 compliant interactions. A BPEL implementation MAY allow
the Basic Profile 1.0 configuration to be disabled, even for scenarios encompassed by the Basic Profile 1.0.

4. What Changed from BPEL4WS 1.0
The BPEL4WS 1.1 specification is an enhancement of the BPEL4WS 1.0 specification [15]. The 1.1 version
has five new authors who brought a fresh viewpoint and deep industry experience. Their contributions are
reflected in a number of enhancements in this version.

The 1.1 version incorporates numerous corrections and clarifications based on the feedback received on the
1.0 version. In addition, the 1.1 version differs from the 1.0 version in the following substantive ways.

4.1. Core Concepts Clarification

We believe that the two usage patterns of business protocol description and executable business process
description require a common core of process description concepts. In the 1.1 version of the specification we
clearly separate the core concepts from the extensions required specifically for the two usage patterns. The
main body of the specification defines the core concepts. The Extensions for Executable Processes and the
Extensions for Business Protocols are defined in separate sections at the end of the specification. The
separation of core concepts from extensions allows features required for specific usage patterns to be defined
in a composable manner. It is conceivable that further extensions will be developed over time as the usage of
the specification matures.

4.2. Terminology Changes

The following terminology changes have occurred

· Service Links are now called Partner Links

· Service Link Types are now called Partner Link Types

· Service References are now called Endpoint References

· Containers are now called Variables

The formal syntax has also been changed to reflect these terminology changes, including the replacement of
the current partner element with a partnerLink element to reflect the fact that such a link is a conversational
interface rather than reflective of a business relationship. A partner element reflective of a business
relationship is added as described in the next section.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

9 of 142 12/2/2004 10:17 AM

4.3. Feature Changes

The following changes have been made:

· The terminate activity is now strictly limited to executable processes.

· Partner Link Type Roles are now limited to a single WSDL portType.

· A new partner element is added to allow grouping of Partner Links based on expected business
enterprise relationships.

· Endpoint references are now manifested as a service reference container (“bpws:service-ref”).

· Message Properties are now limited to only be simple types.

· Web service interactions in abstract processes are now permitted to omit references to variables for
inbound and outbound message data.

· Opaque assignment in abstract processes may now target Boolean variables, and variables of simple
but unbounded types. In the latter case the semantics requires creation of a unique value similar to a
GUID.

· The syntax for defining variables has been changed to use three mutually exclusive attributes
messagetype, type and element. The first points to a WSDL message type definition. The second points
to an XML Schema simple type. The third points to an XML Schema global element definition. This
allows one to define variables using something other than WSDL message types. Only variables that
are defined using messagetypes can be used as input or output targets in messaging operations.

· The ability to provide an in-line WSDL message type has been removed, since the vast majority of the
uses of this feature will be replaced by the usage of XML Schema simple types and global elements.

· Correlation sets have now been added to the uniqueness requirement so that it is not legal to have two
web service interactions outstanding if they have the same partner, port type, operation and correlation
set(s).

· In case of activity termination, the activities wait, reply and invoke are added to receive as being instantly
terminated rather than being allowed to finish.

· The variable provided as the value of the faultVariable attribute in a catch handler to hold fault data is
now scoped to the fault handler itself rather than being inherited from the associated scope.

· Variables and correlation sets can now be associated with local scopes rather than with the process as a
whole. This permits easier management of visibility and lifetime for variables and repeated initiation
of local correlation sets to allow multiple correlated conversations during, e.g., iterative behavior.

· Event handlers can now be associated with scopes, to permit a process or scope to be prepared to
receive external events and requests concurrently with the main activity of the process or scope. This is
especially helpful for events and requests that cannot be “scheduled” relative to the main activity, but
may occur at unpredictable times.

· The Future Directions section has been dropped since this version forms the starting point for a formal
standards process, which will define those directions.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

10 of 142 12/2/2004 10:17 AM

5. Core Concepts and Usage Patterns
As noted in the introduction, we believe that the two usage patterns of business protocol description and
executable business process description require a common core of process description concepts. In this
specification we clearly separate the core concepts from the extensions required specifically for the two usage
patterns. The BPEL4WS specification is focused on defining the common core, and adds only the essential
extensions required for each usage pattern. These extensions are described in separate sections (Extensions for
Executable Processes and Extensions for Business Protocols).

In a number of cases, the behavior of a process in a certain combination of circumstances is undefined, e.g.,
when a variable is used before being initialized. In the definition of the core concepts we simply note that the
semantics in such cases is not defined.

BPEL4WS takes it as a general principle that compliant implementations MAY choose to perform static
analysis to detect and reject process definitions that may have undefined semantics. Such analysis is
necessarily pessimistic and therefore might in some cases prevent the use of processes that would not, in fact,
create situations with undefined semantics, either in specific uses or in any use.

In the executable usage pattern for BPEL4WS, situations of undefined semantics always result in standard
faults in the BPEL4WS namespace. These cases will be described as part of the Extensions for Executable
Processes in the specification. However, it is important to note that BPEL4WS uses two standard internal
faults for its core control semantics, namely, bpws:forcedTermination and bpws:joinFailure. These are the
only two standard faults that play a role in the core concepts of BPEL4WS. Of course, the occurrence of faults
specified in WSDL portType definitions during web service invocation is accounted for in the core concepts
as well.

6. Defining a Business Process
6.1. Initial Example

Before describing the structure of business processes in detail, this section presents a simple example of a
BPEL4WS process for handling a purchase order. The aim is to introduce the most basic structures and some
of the fundamental concepts of the language.

The operation of the process is very simple, and is represented in the following figure. Dotted lines represent
sequencing. Free grouping of sequences represents concurrent sequences. Solid arrows represent control links
used for synchronization across concurrent activities. Note that this is not meant to be a definitive graphical
notation for BPEL4WS processes. It is used here informally as an aid to understanding.

On receiving the purchase order from a customer, the process initiates three tasks concurrently: calculating the
final price for the order, selecting a shipper, and scheduling the production and shipment for the order. While
some of the processing can proceed concurrently, there are control and data dependencies between the three
tasks. In particular, the shipping price is required to finalize the price calculation, and the shipping date is
required for the complete fulfillment schedule. When the three tasks are completed, invoice processing can
proceed and the invoice is sent to the customer.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

11 of 142 12/2/2004 10:17 AM

The WSDL portType offered by the service to its customers (purchaseOrderPT) is shown in the following
WSDL document. Other WSDL definitions required by the business process are included in the same WSDL
document for simplicity; in particular, the portTypes for the Web Services providing price calculation,
shipping selection and scheduling, and production scheduling functions are also defined there. Observe that
there are no bindings or service elements in the WSDL document. A BPEL4WS process is defined "in the
abstract" by referencing only the portTypes of the services involved in the process, and not their possible
deployments. Defining business processes in this way allows the reuse of business process definitions over
multiple deployments of compatible services.

The partner link types included at the bottom of the WSDL document represent the interaction between the
purchase order service and each of the parties with which it interacts (see Partner Link Types, Partner Links,
and Endpoint References). Partner link types can be used to represent dependencies between services,
regardless of whether a BPEL4WS business process is defined for one or more of those services. Each partner
link type defines up to two "role" names, and lists the portTypes that each role must support for the interaction
to be carried out successfully. In this example, two partner link types, "purchasingLT" and "schedulingLT",
list a single role because, in the corresponding service interactions, one of the parties provides all the invoked
operations: The "purchasingLT" partner link represents the connection between the process and the requesting
customer, where only the purchase order service needs to offers a service operation ("sendPurchaseOrder");
the "schedulingLT" partner link represents the interaction between the purchase order service and the
scheduling service, in which only operations of the latter are invoked. The two other partner link types,
"invoicingLT" and "shippingLT", define two roles because both the user of the invoice calculation and the
user of the shipping service (the invoice or the shipping schedule) must provide callback operations to enable
asynchronous notifications to be asynchronously sent ("invoiceCallbackPT" and "shippingCallbackPT"
portTypes).

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"

 xmlns:sns="http://manufacturing.org/xsd/purchase"

 xmlns:pos="http://manufacturing.org/wsdl/purchase"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <xsd:schema >
 <xsd:import
 namespace="http://manufacturing.org/xsd/purchase"

 schemalocation="http://manufacturing.org/xsd/purchase.xsd"/>
 </xsd:schema>
 </types>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

12 of 142 12/2/2004 10:17 AM

 <message name="POMessage">

 <part name="customerInfo" type="sns:customerInfo"/>

 <part name="purchaseOrder" type="sns:purchaseOrder"/>

 </message>

 <message name="InvMessage">

 <part name="IVC" type="sns:Invoice"/>

 </message>

 <message name="orderFaultType">

 <part name="problemInfo" element=”sns:OrderFault"/>

 </message>

 <message name="shippingRequestMessage">

 <part name="customerInfo" element="sns:customerInfo"/>

 </message>

 <message name="shippingInfoMessage">

 <part name="shippingInfo" element="sns:shippingInfo"/>

 </message>

 <message name="scheduleMessage">

 <part name="schedule" element="sns:scheduleInfo"/>

 </message>

<!-- portTypes supported by the purchase order process -->

 <portType name="purchaseOrderPT">

 <operation name="sendPurchaseOrder">

 <input message="pos:POMessage"/>

 <output message="pos:InvMessage"/>

 <fault name="cannotCompleteOrder"

 message="pos:orderFaultType"/>

 </operation>

 </portType>

 <portType name="invoiceCallbackPT">

 <operation name="sendInvoice">

 <input message="pos:InvMessage"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

13 of 142 12/2/2004 10:17 AM

 </operation>

 </portType>

 <portType name="shippingCallbackPT">

 <operation name="sendSchedule">

 <input message="pos:scheduleMessage"/>

 </operation>

 </portType>

<!-- portType supported by the invoice services -->

 <portType name="computePricePT">

 <operation name="initiatePriceCalculation">

 <input message="pos:POMessage"/>

 </operation>

 <operation name="sendShippingPrice">

 <input message="pos:shippingInfoMessage"/>

 </operation>

 </portType>

<!-- portType supported by the shipping service -->

 <portType name="shippingPT">

 <operation name="requestShipping">

 <input message="pos:shippingRequestMessage"/>

 <output message="pos:shippingInfoMessage"/>

 <fault name="cannotCompleteOrder"

 message="pos:orderFaultType"/>

 </operation>

 </portType>

<!-- portType supported by the production scheduling process -->

 <portType name="schedulingPT">

 <operation name="requestProductionScheduling">

 <input message="pos:POMessage"/>

 </operation>

 <operation name="sendShipingSchedule">

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

14 of 142 12/2/2004 10:17 AM

 <input message="pos:scheduleMessage"/>

 </operation>

 </portType>

<plnk:partnerLinkType name="purchasingLT">

 <plnk:role name="purchaseService">

 <plnk:portType name="pos:purchaseOrderPT"/>

 </plnk:role>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="invoicingLT">

 <plnk:role name="invoiceService">

 <plnk:portType name="pos:computePricePT"/>

 </plnk:role>

 <plnk:role name="invoiceRequester">

 <plnk:portType name="pos:invoiceCallbackPT"/>

 </plnk:role>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="shippingLT">

 <plnk:role name="shippingService">

 <plnk:portType name="pos:shippingPT"/>

 </plnk:role>

 <plnk:role name="shippingRequester">

 <plnk:portType name="pos:shippingCallbackPT"/>

 </plnk:role>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="schedulingLT">

 <plnk:role name="schedulingService">

 <plnk:portType name="pos:schedulingPT"/>

 </plnk:role>

</plnk:partnerLinkType>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

15 of 142 12/2/2004 10:17 AM

</definitions>

The business process for the order service is defined next. There are four major sections in this process
definition:

· The <variables> section defines the data variables used by the process, providing their definitions in
terms of WSDL message types, XML Schema simple types, or XML Schema elements. Variables
allow processes to maintain state data and process history based on messages exchanged.

· The <partnerLinks> section defines the different parties that interact with the business process in the
course of processing the order. The four partnerLinks shown here correspond to the sender of the order
(customer), as well as the providers of price (invoicingProvider), shipment (shippingProvider), and
manufacturing scheduling services (schedulingProvider). Each partner link is characterized by a
partner link type and a role name. This information identifies the functionality that must be provided
by the business process and by the partner service for the relationship to succeed, that is, the portTypes
that the purchase order process and the partner need to implement.

· The <faultHandlers> section contains fault handlers defining the activities that must be performed in
response to faults resulting from the invocation of the assessment and approval services. In BPEL4WS,
all faults, whether internal or resulting from a service invocation, are identified by a qualified name. In
particular, each WSDL fault is identified in BPEL4WS by a qualified name formed by the target
namespace of the WSDL document in which the relevant portType and fault are defined, and the
ncname of the fault. It is important to note, however, that because WSDL 1.1 does not require that fault
names be unique within the namespace where the operation is defined, all faults sharing a common
name and defined in the same namespace are indistinguishable. In spite of this serious WSDL
limitation, BPEL4WS provides a uniform naming model for faults, in the expectation that future
versions of WSDL will provide a better fault-naming model.

· The rest of the process definition contains the description of the normal behavior for handling a
purchase request. The major elements of this description are explained in the section following the
process definition.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<process name="purchaseOrderProcess"

 targetNamespace="http://acme.com/ws-bp/purchase"

 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"

 xmlns:lns="http://manufacturing.org/wsdl/purchase">

<documentation xml:lang="EN">A simple example of a BPEL4WS process for handling a purchase

<partnerLinks>

 <partnerLink name="purchasing"

 partnerLinkType="lns:purchasingLT"

 myRole="purchaseService"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

16 of 142 12/2/2004 10:17 AM

 <partnerLink name="invoicing"

 partnerLinkType="lns:invoicingLT"

 myRole="invoiceRequester"

 partnerRole="invoiceService"/>

 <partnerLink name="shipping"

 partnerLinkType="lns:shippingLT"

 myRole="shippingRequester"

 partnerRole="shippingService"/>

 <partnerLink name="scheduling"

 partnerLinkType="lns:schedulingLT"

 partnerRole="schedulingService"/>

</partnerLinks>

<variables>

 <variable name="PO" messageType="lns:POMessage"/>

 <variable name="Invoice" messageType="lns:InvMessage"/>

 <variable name="POFault" messageType="lns:orderFaultType"/>

 <variable name="shippingRequest" messageType="lns:shippingRequestMessage"/>

 <variable name="shippingInfo" messageType="lns:shippingInfoMessage"/>

 <variable name="shippingSchedule" messageType="lns:scheduleMessage"/>

</variables>

<faultHandlers>

 <catch faultName="lns:cannotCompleteOrder"
 faultVariable="POFault"
 faultMessageType="lns:orderFaultType">

 <reply partnerLink="purchasing"

 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder"

 variable="POFault"

 faultName="cannotCompleteOrder"/>

 </catch>

</faultHandlers>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

17 of 142 12/2/2004 10:17 AM

<sequence>

 <receive partnerLink="purchasing"

 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder"

 variable="PO">

 </receive>

 <flow>
 <documentation>
 A parallel flow to handle shipping, invoicing and scheduling
 </documentation>

 <links>

 <link name="ship-to-invoice"/>

 <link name="ship-to-scheduling"/>

 </links>

 <sequence>

 <assign>

 <copy>

 <from variable="PO" part="customerInfo"/>

 <to variable="shippingRequest"

 part="customerInfo"/>

 </copy>

 </assign>

 <invoke partnerLink="shipping"

 portType="lns:shippingPT"

 operation="requestShipping"

 inputVariable="shippingRequest"

 outputVariable="shippingInfo">

 <sources>
 <source linkName="ship-to-invoice"/>

 </sources>

 </invoke>

 <receive partnerLink="shipping"

 portType="lns:shippingCallbackPT"

 operation="sendSchedule"

 variable="shippingSchedule">

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

18 of 142 12/2/2004 10:17 AM

 <sources>
 <source linkName="ship-to-scheduling"/>

 </sources>

 </receive>

 </sequence>

 <sequence>

 <invoke partnerLink="invoicing"

 portType="lns:computePricePT"

 operation="initiatePriceCalculation"

 inputVariable="PO">

 </invoke>

 <invoke partnerLink="invoicing"

 portType="lns:computePricePT"

 operation="sendShippingPrice"

 inputVariable="shippingInfo">

 <targets>
 <target linkName="ship-to-invoice"/>

 </targets>

 </invoke>

 <receive partnerLink="invoicing"

 portType="lns:invoiceCallbackPT"

 operation="sendInvoice"

 variable="Invoice"/>

 </sequence>

 <sequence>

 <invoke partnerLink="scheduling"

 portType="lns:schedulingPT"

 operation="requestProductionScheduling"

 inputVariable="PO">

 </invoke>

 <invoke partnerLink="scheduling"

 portType="lns:schedulingPT"

 operation="sendShippingSchedule"

 inputVariable="shippingSchedule">

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

19 of 142 12/2/2004 10:17 AM

 <targets>
 <target linkName="ship-to-scheduling"/>

 </targets>

 </invoke>

 </sequence>

 </flow>

 <reply partnerLink="purchasing"

 portType="lns:purchaseOrderPT"

 operation="sendPurchaseOrder"

 variable="Invoice"/>

 </sequence>

</process>

6.2. The Structure of a Business Process

This section provides a quick summary of the BPEL4WS syntax. It provides only a brief overview; the details
of each language construct are described in the rest of this document.

The basic structure of the language is:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<process name="ncname" targetNamespace="uri"

 queryLanguage="anyURI"?

 expressionLanguage="anyURI"?

 suppressJoinFailure="yes|no"?

 abstractProcess="yes|no"?

 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/">

<import namespace="uri" location="uri" importType="uri"/>*

<partnerLinks>?

<!-- Note: At least one role must be specified. -->

 <partnerLink name="ncname" partnerLinkType="qname"

 myRole="ncname"? partnerRole="ncname"?>+

 </partnerLink>

</partnerLinks>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

20 of 142 12/2/2004 10:17 AM

<partners>?

 <partner name="ncname">+

 <partnerLink name="ncname"/>+

 </partner>

</partners>

<variables>?

 <variable name="ncname" messageType="qname"?

 type="qname"? element="qname"?/>+

</variables>

<correlationSets>?

 <correlationSet name="ncname" properties="qname-list"/>+

</correlationSets>

<faultHandlers>?

<!-- Note: There must be at least one fault handler or default. -->

 <catch faultName="qname"? faultVariable="ncname"?
 faultMessageType="qname"?>*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

</faultHandlers>

<eventHandlers>?

<!-- Note: There must be at least one onEvent or onAlarm handler. -->

 <onEvent partnerLink="ncname" portType="qname"?

 operation="ncname" messageType="qname" variable="ncname">*

 <correlations>?

 <correlation set="ncname"
 initiate="yes|rendezvous|no"?/>+

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

21 of 142 12/2/2004 10:17 AM

 </correlations>

 activity

 </onEvent>

 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>duration-expr</repeatEvery>? ac

 </onAlarm>

</eventHandlers>

 activity

</process>

The top-level attributes are as follows:

· queryLanguage. This attribute specifies the default XML query language used for selection of nodes in
assignment, property definition, and other uses. The default value for this attribute is XPath 1.0,
represented by the URI of the XPath 1.0 specification:
http://www.w3.org/TR/1999/REC-xpath-19991116.

· expressionLanguage. This attribute specifies the expression language used in the process. The default
for this attribute is XPath 1.0, represented by the URI of the XPath 1.0 specification:
http://www.w3.org/TR/1999/REC-xpath-19991116.

· suppressJoinFailure. This attribute determines whether the joinFailure fault will be suppressed for all
activities in the process. The effect of the attribute at the process level can be overridden by an activity
using a different value for the attribute. The default for this attribute is "no" at the process level. When
this attribute is not specified for an activity, it inherits its value from its closest enclosing activity or
from the process if no enclosing activity specifies this attribute.

· abstractProcess. This attribute specifies whether the process being defined is abstract (rather than
executable). The default for this attribute is "no".

Note that: <documentation> construct may be added to virtually all BPEL4WS constructs as the formal way to
annotate processes definition with human documentation. Examples of <documentation> construct can be
found in previous section. Detailed description of <documention> is provided in next section, as it is a part of
“Language Extensibility”.

The token "activity" can be any of the following:

· <receive>

· <reply>

· <invoke>

· <assign>

· <throw>

· <terminate>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

22 of 142 12/2/2004 10:17 AM

· <wait>

· <empty>

· <sequence>

· <switch>

· <while>

· <pick>

· <flow>

· <scope>

· <compensate>

· <rethrow>

The syntax of each of these elements, except <terminate>, <compensate> and <rethrow>, is considered in the
following paragraphs.

· Although <terminate> is permitted as an interpretation of the token activity, it is only available in
executable processes and as such is defined in the section on Extensions for Executable Processes.

· <compensate> activity can be used ONLY within a fault handler or a compensation handler (i.e.
<catch>, <catchAll> and <compensationHandler> elements).

· <rethrow> activity can be used ONLY within a fault handler (i.e. <catch> and <catchAll> elements).

The <receive> construct allows the business process to do a blocking wait for a matching message to arrive.
The portType attribute on the <receive> activity is optional. If the portType attribute is included for
readability, the value of the portType attribute MUST match the portType value implied by the combination of
the specified partnerLink and the role implicitly specified by the activity (See also partnerLink description in
the next section).

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<receive partnerLink="ncname" portType="qname"? operation="ncname"

 variable="ncname"? createInstance="yes|no"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="ncname" initiate="yes|rendezvous|no"?/>+

 </correlations>

</receive>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

23 of 142 12/2/2004 10:17 AM

The <reply> construct allows the business process to send a message in reply to a message that was received
through a <receive>. The combination of a <receive> and a <reply> forms a request-response operation on the
WSDL portType for the process. The portType attribute on the <reply> activity is optional. If the portType
attribute is included for readability, the value of the portType attribute MUST match the portType value
implied by the combination of the specified partnerLink and the role implicitly specified by the activity (See
also partnerLink description in the next section).

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<reply partnerLink="ncname" portType="qname"? operation="ncname"

 variable="ncname"? faultName="qname"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="ncname" initiate="yes|rendezvous|no"?/>+

 </correlations>

</reply>

The <invoke> construct allows the business process to invoke a one-way or requestresponse operation on a
portType offered by a partner. The portType attribute on the <invoke> activity is optional. If the portType
attribute is included for readability, the value of the portType attribute MUST match the portType value
implied by the combination of the specified partnerLink and the role implicitly specified by the activity (See
also partnerLink description in the next section).

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<invoke partnerLink="ncname" portType="qname"? operation="ncname"

 inputVariable="ncname"? outputVariable="ncname"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="ncname" initiate="yes|rendezvous|no"?

 pattern="in|out|out-in"/>+

 </correlations>

 <catch faultName="qname" faultVariable="ncname"?

 faultMessageType="qname"?>*

 activity

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

24 of 142 12/2/2004 10:17 AM

 </catch>

 <catchAll>?

 activity

 </catchAll>

 <compensationHandler>?

 activity

 </compensationHandler>

</invoke>

The <assign> construct can be used to update the values of variables with new data. An <assign> construct
can contain any number of elementary assignments. The syntax of the assignment activity is:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<assign standard-attributes>

 standard-elements

 <copy>+

 from-spec

 to-spec

 </copy>

</assign>

The <throw> construct generates a fault from inside the business process.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<throw faultName="qname" faultVariable="ncname"? standard-attributes>

 standard-elements

</throw>

The <wait> construct allows you to wait for a given time period or until a certain time has passed. Exactly one
of the expiration criteria must be specified.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<wait standard-attributes>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

25 of 142 12/2/2004 10:17 AM

 standard-elements
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)

</wait>

The <empty> construct allows you to insert a "no-op" instruction into a business process. This is useful for
synchronization of concurrent activities, for instance.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<empty standard-attributes>

 standard-elements

</empty>

The <sequence> construct allows you to define a collection of activities to be performed sequentially in
lexical order.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<sequence standard-attributes>

 standard-elements

 activity+

</sequence>

The <switch> construct allows you to select exactly one branch of activity from a set of choices.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<switch standard-attributes>

 standard-elements

 <case>+
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>

 activity

 </case>

 <otherwise>?

 activity

 </otherwise>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

26 of 142 12/2/2004 10:17 AM

</switch>

The <while> construct allows you to indicate that an activity is to be repeated until a certain success criteria
has been met.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<while standard-attributes>
 standard-elements
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>

 activity

</while>

The <pick> construct allows you to block and wait for a suitable message to arrive or for a time-out alarm to
go off. When one of these triggers occurs, the associated activity is performed and the pick completes.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<pick createInstance="yes|no"? standard-attributes>

 standard-elements

 <onMessage partnerLink="ncname" portType="qname"?

 operation="ncname" variable="ncname"?>+

 <correlations>?

 <correlation set="ncname" initiate="yes|rendezvous|no"?/>+

 </correlations>

 activity

 </onMessage>

 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>duration-expr</repeatEvery>?

 activity

 </onAlarm>

</pick>

The portType attribute on the <onMessage> activity is optional. If the portType attribute is included for
readability, the value of the portType attribute MUST match the portType value implied by the combination of

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

27 of 142 12/2/2004 10:17 AM

the specified partnerLink and the role implicitly specified by the activity (See also partnerLink description in
the next section).

The <flow> construct allows you to specify one or more activities to be performed concurrently. Links can be
used within concurrent activities to define arbitrary control structures.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<flow standard-attributes>

 standard-elements

 <links>?

 <link name="ncname">+

 </links>

 activity+

</flow>

The <scope> construct allows you to define a nested activity with its own associated variables, fault handlers,
and compensation handler.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<scope variableAccessSerializable="yes|no" standard-attributes>

 standard-elements
 <partnerLinks>?
 ... see above under <process> for syntax ...

 </partnerLinks>

 <variables>?

 ... see above under <process> for syntax ...

 </variables>

 <correlationSets>?

 ... see above under <process> for syntax ...

 </correlationSets>

 <faultHandlers>?

 ... see above under <process> for syntax ...

 </faultHandlers>

 <compensationHandler>?

 ... see above under <process> for syntax ...

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

28 of 142 12/2/2004 10:17 AM

 </compensationHandler>

 <eventHandlers>?

 ...

 </eventHandlers>

 activity

</scope>
1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

The <compensate> construct is used to invoke compensation on an inner scope that has already completed
normally. This construct can be invoked only from within a fault handler or another compensation handler.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<compensate scope="ncname"? standard-attributes>

 standard-elements

</compensate>

Note that the "standard-attributes" referred to above are:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

name="ncname"? suppressJoinFailure="yes|no"?

where the default values are as follows:

· name: No default value (that is, the default is unnamed)

· suppressJoinFailure: When this attribute is not specified for an activity, it inherits its value from its
closest enclosing activity or from the process if no enclosing activity specifies this attribute.

and that the "standard-elements" referred to above are:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<targets>?

 <target linkName="ncname">+
 <joinCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

29 of 142 12/2/2004 10:17 AM

 </joinCondition>
 </target>
</targets>
<sources>?

 <source linkName="ncname">+
 <transitionCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...
 </transitionCondition>
 </source>
</sources>

6.3. Language Extensibility

BPEL4WS contains constructs that are generally sufficient for expressing abstract and executable business
processes. In some cases, however, it might be necessary to “extend” the BPEL4WS language with additional
constructs from other XML namespaces.

BPEL4WS supports extensibility by allowing namespace-qualified attributes to appear on any BPEL4WS
element and by allowing elements from other namespaces to appear within BPEL4WS defined elements. This
is allowed in the XML Schema specifications for BPEL4WS.

Extensions MUST NOT change the semantics of any element or attribute from the BPEL4WS namespace.

The <documentation> construct is designed to be an integral part of Language Extensibility. The content of
<documentation> are for human-consumption. Example types for those content are: plain text, HTML and
XHTML. Tool-implementation specific information (e.g. the graphical layout details) should be added
through elements and attributes of other namespaces, using the general BPEL4WS Language Extensibility
mechanism.

6.4. Document Linking

A BPEL4WS process definition relies on XML Schema and WSDL 1.1 for the definition of datatypes and
service interfaces. Process definitions also rely on other constructs such as partner link types, message
properties and property aliases (defined later in this specification) which are defined within WSDL 1.1
documents using the WSDL 1.1 language extensibility feature.

The <import> element is used within a BPEL4WS process to explicitly indicate a dependency on external
XML Schema or WSDL definitions. Any number of <import> elements may appear as initial children of the
<process> element, before any other child element. Each <import> element contains three mandatory
attributes

· namespace. The namespace attribute specifies the URI namespace of the imported definitions.
· location. The location attribute contains a URI indicating the location of a document that contains

relevant definitions in the namespace specified. The document located at the URI MUST contain
definitions belonging to the same namespace as indicated by the namespace attribute.

· importType. The importType attribute identifies the type of document being imported by providing the
URI of the encoding language. The value MUST be set to "http://www.w3.org/2001/XMLSchema"
when importing XML Schema 1.0 documents, and to "http://schemas.xmlsoap.org/wsdl/" when
importing WSDL 1.1 documents.

The presence of an <import> element should be interpreted as a hint to the BPEL4WS processor. In particular,
processors are not required to retrieve the imported document from the location specified on the <import>
element.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

30 of 142 12/2/2004 10:17 AM

6.5 The Lifecycle of a Business Process

As noted in the introduction, the interaction model that is directly supported by WSDL is essentially a
stateless client-server model of synchronous or uncorrelated asynchronous interactions. BPEL4WS, builds on
WSDL by assuming that all external interactions of the business process occur through Web Service
operations. However, BPEL4WS business processes represent stateful long-running interactions in which each
interaction has a beginning, defined behavior during its lifetime, and an end. For example, in a supply chain, a
seller's business process might offer a service that begins an interaction by accepting a purchase order through
an input message, and then returns an acknowledgement to the buyer if the order can be fulfilled. It might later
send further messages to the buyer, such as shipping notices and invoices. The seller's business process
remembers the state of each such purchase order interaction separately from other similar interactions. This is
necessary because a buyer might be carrying on many simultaneous purchase processes with the same seller.
In short, a BPEL4WS business process definition can be thought of as a template for creating business process
instances.

The creation of a process instance in BPEL4WS is always implicit; activities that receive messages (that is,
receive activities and pick activities) can be annotated to indicate that the occurrence of that activity causes
a new instance of the business process to be created. This is done by setting the createInstance attribute of
such an activity to "yes". When a message is received by such an activity, an instance of the business process
is created if it does not already exist (see Providing Web Service Operations and Pick).

To be instantiated, each business process must contain at least one such "start activity." This must be an initial
activity in the sense that there is no basic activity that logically precedes it in the behavior of the process.

If more than one start activity is enabled concurrently, then all such activities must use at least one correlation
set and must use the same correlation sets (see Correlation and the Multiple Start Activities
example).

If exactly one start activity is expected to instantiate the process, the use of correlation sets is unconstrained.
This includes a pick with multiple onMessage branches; each such branch can use different correlation sets or
no correlation sets.

A business process instance is terminated in one of the following ways:

· When the activity that defines the behavior of the process as a whole completes. In this case the
termination is normal.

· When a fault reaches the process scope, and is either handled or not handled. In this case the
termination is considered abnormal even if the fault is handled and the fault handler does not rethrow
any fault. A compensation handler is never installed for a scope that terminates abnormally.

· When a process instance is explicitly terminated by a terminate activity (see Terminating the
Service Instance). In this case the termination is abnormal.

The structure of the main processing section is defined by the outer <sequence> element, which states that the
three activities contained inside are performed in order. The customer request is received (<receive> element),
then processed (inside a <flow> section that enables concurrent behavior), and a reply message with the final
approval status of the request is sent back to the customer (<reply>). Note that the <receive> and <reply>
elements are matched respectively to the <input> and <output> messages of the "sendPurchaseOrder"
operation invoked by the customer, while the activities performed by the process between these elements
represent the actions taken in response to the customer request, from the time the request is received to the
time the response is sent back (reply).

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

31 of 142 12/2/2004 10:17 AM

A receive activity for an inbound request/response operation is said to be open if that activity has been
performed and no corresponding reply activity has been performed. If the process instance reaches the
end of its behavior, and one or more receive activities remain open, then the status of the instance
becomes undefined. This condition indicates a modeling error that was not detected by static analysis.

The example makes the implicit assumption that the customer request can be processed in a reasonable
amount of time, justifying the requirement that the invoker wait for a synchronous response (because this
service is offered as a request-response operation). When that assumption does not hold, the interaction with
the customer is better modeled as a pair of asynchronous message exchanges. In that case, the
"sendPurchaseOrder" operation is a one-way operation and the asynchronous response is sent by invoking a
second one-way operation on a customer "callback" interface. In addition to changing the signature of
"sendPurchaseOrder" and defining a new portType to represent the customer callback interface, two
modifications need to be made in the preceding example to support an asynchronous response to the customer.
First, the partner link type "purchasingLT" that represents the process-customer connection needs to include a
second role ("customer") listing the customer callback portType. Second, the <reply> activity in the process
needs to be replaced by an <invoke> on the customer callback operation.

The processing taking place inside the <flow> element consists of three <sequence> blocks running
concurrently. The synchronization dependencies between activities in the three concurrent sequences are
expressed by using "links" to connect them. The links are defined inside the flow and are used to connect a
source activity to a target activity. (Note that each activity declares itself as the source or target of a link by
using the nested <source> and <target> elements.) In the absence of links, the activities nested directly inside
a flow proceed concurrently. In the example, however, the presence of two links introduces control
dependencies between the activities performed inside each sequence. For example, while the price calculation
can be started immediately after the request is received, shipping price can only be added to the invoice after
the shipper information has been obtained; this dependency is represented by the link (named
"ship-to-invoice") that connects the first call on the shipping provider ("requestShipping") with sending
shipping information to the price calculation service ("sendShippingPrice"). Likewise, shipping scheduling
information can only be sent to the manufacturing scheduling service after it has been received from the
shipper service; thus the need for the second link ("ship-to-scheduling").

Observe that information is passed between the different activities in an implicit way through the sharing of
globally visible data variables. In this example, the control dependencies represented by links are related to
corresponding data dependencies, in one case on the availability of the shipper rates and in another on the
availability of a shipping schedule. The information is passed from the activity that generates it to the activity
that uses it by means of two global data variables ("shippingInfo" and "shippingSchedule").

Certain operations can return faults, as defined in their WSDL definitions. For simplicity, it is assumed here
that the two operations return the same fault ("cannotCompleteOrder"). When a fault occurs, normal
processing is terminated and control is transferred to the corresponding fault handler, as defined in the
<faultHandlers> section. In this example the handler uses a <reply> element to return a fault to the customer
(note the "faultName" attribute in the <reply> element).

Finally, it is important to observe how an assignment activity is used to transfer information between data
variables. The simple assignments shown in this example transfer a message part from a source variable to a
message part in a target variable, but more complex forms of assignments are also possible.

7. Partner Link Types, Partner Links, and Endpoint
References

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

32 of 142 12/2/2004 10:17 AM

A very important, if not the most important, use case for BPEL4WS will be in describing cross-enterprise
business interactions in which the business processes of each enterprise interact through Web Service
interfaces with the processes of other enterprises. An important requirement for realistic modeling of business
processing in this environment is the ability to model the required relationship with a partner process. WSDL
already describes the functionality of a service provided by a partner, at both the abstract and concrete levels.
The relationship of a business process to a partner is typically peer-to-peer, requiring a two-way dependency
at the service level. In other words, a partner represents both a consumer of a service provided by the business
process and a provider of a service to the business process. This is especially the case when the interactions
are based on asynchronous messaging rather than on remote procedure calls. The notion of Partner links is
used to directly model peer-to-peer conversational partner relationships. Partner links define the shape of a
relationship with a partner by defining the message and port types used in the interactions in both directions.
However, the actual partner service may be dynamically determined within the process. BPEL4WS uses a
notion of endpoint reference, manifested as a service reference container (“bpws:service-ref”), to represent the
dynamic data required to describe a partner service endpoint.

It is important to emphasize that the notions of partner link and endpoint reference used here are preliminary.
The specification for these concepts as they relate to Web Services is still evolving, and we expect normative
definitions for them to emerge in future. The BPEL4WS specification will be updated to conform to the
expected future standards.

7.1. Partner Link Types

A partner link type characterizes the conversational relationship between two services by defining the "roles"
played by each of the services in the conversation and specifying the portType provided by each service to
receive messages within the context of the conversation. The following example illustrates the basic syntax of
a partner link type declaration:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<partnerLinkType name="BuyerSellerLink"

 xmlns="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">

 <role name="Buyer">

 <portType name="buy:BuyerPortType"/>

 </role>

 <role name="Seller">

 <portType name="sell:SellerPortType"/>

 </role>

</partnerLinkType>

Each role specifies exactly one WSDL portType.

In the common case, portTypes of the two roles originate from separate namespaces. However, in some cases,
both roles of a partner link type can be defined in terms of portTypes from the same namespace. The latter
situation occurs for partner link types that define "callback" relationships between services.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

33 of 142 12/2/2004 10:17 AM

The partner link type definition can be a separate artifact independent of either service's WSDL document.
Alternatively, the partner link type definition can be placed within the WSDL document defining the
portTypes from which the different roles are defined.

The extensibility mechanism of WSDL 1.1 is used to define partnerLinkType as a new definition type to be
placed as an immediate child element of a <wsdl:definitions> element in all cases. This allows reuse of the
WSDL target namespace specification and, more importantly, its import mechanism to import portTypes. For
cases where a partnerLinkType declaration is linking the portTypes of two different services, the
partnerLinkType declaration can be placed in a separate WSDL document (with its own targetNamespace).

The syntax for defining a partnerLinkType is:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<definitions name="ncname" targetNamespace="uri"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 ...

 <plnk:partnerLinkType name="ncname">

 <plnk:role name="ncname">

 <plnk:portType name="qname"/>

 </plnk:role>

 <plnk:role name="ncname">?

 <plnk:portType name="qname"/>

 </plnk:role>

 </plnk:partnerLinkType>

 ...

</definitions>

This defines a partner link type in the namespace indicated by the value of the "targetNamespace" attribute of
the WSDL document element. The portTypes identified within roles are referenced by using QNames as for
all top-level WSDL definitions.

Note that in some cases it can be meaningful to define a partner link type containing exactly one role instead
of two. That defines a partner linking scenario where one service expresses a willingness to link with any
other service, without placing any requirements on the other service.

Examples of partnerLinkType declarations are found in various business process examples in this
specification.

7.2. Partner Links

The services with which a business process interacts are modeled as partner links in BPEL4WS. Each partner
link is characterized by a partnerLinkType. More than one partner link can be characterized by the same

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

34 of 142 12/2/2004 10:17 AM

partnerLinkType. For example, a certain procurement process might use more than one vendor for its
transactions, but might use the same partnerLinkType for all vendors.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<partnerLinks>

 <partnerLink name="ncname" partnerLinkType="qname"

 myRole="ncname"? partnerRole="ncname"?>+

 </partnerLink>

</partnerLinks>

Each partnerLink is named, and this name is used for all service interactions via that partnerLink. This is
critical, for example, in correlating responses to different partnerLinks for simultaneous requests of the same
kind (see Invoking Web Service Operations and Providing Web Service Operations).

The role of the business process itself is indicated by the attribute myRole and the role of the partner is
indicated by the attribute partnerRole. In the degenerate case where a partnerLinkType has only one role, one
of these attributes is omitted as appropriate.

Note that the partnerLink declarations specify the shape of the relationships that the BPEL4WS process will
employ in its behavior. Before operations on a partner's service can be invoked via a partnerLink, the binding
and communication data for the partner service must be available. The relevant information about a partner
service can be set as part of business process deployment. This is outside the scope of BPEL4WS. However, it
is also possible to select and assign actual partner services dynamically, and BPEL4WS provides the
mechanisms to do so via assignment of endpoint references. In fact, because the partners are likely to be
stateful, the service endpoint information needs to be extended with instance-specific information. BPEL4WS
allows the endpoint references implicitly present in partnerLinks to be both extracted and assigned
dynamically, and also to be set more than once. See Assignment for the mechanisms used for dynamic
assignment of endpoint references to partner services.

A partnerLink can be declared within a process or scope element. The name of a partnerLink should be unique
within its own scope. Access to partnerLink follows common lexical scoping rules, similar to the rules for
variables. A partnerLink resolves to the nearest enclosing scope, regardless of the type of the partnerLink. If a
local partnerLink declared in an enclosing scope, the local partnerLink will be used in local assignments and
message sending/receiving activities. The lifecyle of a partnerLink is same as the lifecycle of the scope
declaring the partnerLink. The initial binding information of a partnerLink can be set as a part of business
process deployment, regardless whether it is declared on the process or scope element level.

7.3. Business Partners

While a partner link represents a conversational relationship between two partner processes, relationships with
a business partner in general require more than a single conversational relationship to be established. To
represent the capabilities required from a business partner, BPEL4WS uses the partner element. A partner is
defined as a subset of the partner links of the process, as shown in the example below.

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

35 of 142 12/2/2004 10:17 AM

<partner name="SellerShipper"

 xmlns="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">

 <partnerLink name="Seller"/>

 <partnerLink name="Shipper"/>

</partner>

Partner definitions are optional and need not cover all the partner links defined in the process. From the
process perspective a partner definition introduces a constraint on the functionality that a business partner is
required to provide. In the example above, the partner definition states that the same business partner
(“SellerShipper”) is required to provide the services associated with the the roles of seller and shipper. Partner
definitions MUST NOT overlap, that is, a partner link MUST NOT appear in more than one partner definition.

The syntax for partner definitions is given below:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<partners>

 <partner name="ncname">+

 <partnerLink name="ncname"/>+

 </partner>

</partners>

7.4. Endpoint References

WSDL makes an important distinction between portTypes and ports. PortTypes define abstract functionality
by using abstract messages. Ports provide actual access information, including communication service
endpoints and (by using extension elements) other deployment related information such as public keys for
encryption. Bindings provide the glue between the two. While the user of a service must be statically
dependent on the abstract interface defined by portTypes, some of the information contained in port
definitions can typically be discovered and used dynamically.

The fundamental use of endpoint references is to serve as the mechanism for dynamic communication of
port-specific data for services. An endpoint reference makes it possible in BPEL4WS to dynamically select a
provider for a particular type of service and to invoke their operations. BPEL4WS provides a general
mechanism for correlating messages to stateful instances of a service, and therefore endpoint references that
carry instance-neutral port information are often sufficient. However, in general it is necessary to carry
additional instance-identification tokens in the endpoint reference itself.

Every partner role in a partnerLink in a BPEL4WS process instance is assigned a unique endpoint reference in
the course of the deployment of the process or dynamically by an activity within the process.

Endpoint references associated with parterRole and myRole of partnerLinks are manifested as service
reference containers (“bpws:service-ref”). This container is used as envelope to wrap around the actual

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

36 of 142 12/2/2004 10:17 AM

endpoint reference value, when a BPEL4WS process interacts the endpoint reference of a partnerLink. It
provides pluggability of different versions of service endpoint referencing schemes being used within a BPEL
program. The design pattern here is similar to those of expression language, also known as open-content
models.

The “bpws:service-ref” has a required attribute called “reference-scheme” to denote the namespace URI of the
service endpoint reference scheme which is being used.

When BPEL4WS users interact and manipulate endpoint references of partnerLinks, The “bpws:service-ref”
element are NOT exposed to BPEL4WS users in all cases. For example, when people try to do an assignment
from the endpoint reference of myRole of partnerLink-A to that of partnerRole of partner-B. On the contrary,
if people try to do assignment from a messageType or element based variable through expression or from a
literal-form of from-spec, the “bpws:service-ref” is visible to BPEL4WS users.

8. Message Properties
8.1. Motivation

The data in a message consists conceptually of two parts: application data and protocolrelevant data, where
the protocols can be business protocols or infrastructure protocols providing higher quality of service. An
example of business protocol data is the correlation tokens that are used in correlation sets (see Correlation).
Examples of infrastructure protocols are security, transaction, and reliable messaging protocols. The business
protocol data is usually found embedded in the application-visible message parts, whereas the infrastructure
protocols almost always add implicit extra parts to the message types to represent protocol headers that are
separate from application data. Such implicit parts are often called message context because they relate to
security context, transaction context, and other similar middleware context of the interaction. Business
processes might need to gain access to and manipulate both kinds of protocol-relevant data. The notion of
message properties is defined as a general way of naming and representing distinguished data elements within
a message, whether in application-visible data or in message context. For a full accounting of the service
description aspects of infrastructure protocols, it is necessary to define notions of service policies, endpoint
properties, and message context. This work is outside the scope of BPEL4WS. Message properties are defined
here in a sufficiently general way to cover message context consisting of implicit parts, but the use in this
specification focuses on properties embedded in application-visible data that is used in the definition of
business protocols and abstract business processes.

8.2. Defining Properties

A property definition creates a globally unique name and associates it with an XML Schema simple type. The
intent is not to create a new type. The intent is to create a name that has greater significance than the type
itself. For example, a sequence number can be an integer, but the integer type does not convey this
significance, whereas a globally named sequence-number property does. Properties can occur anywhere in a
message, including in the message context.

A typical use for a property in BPEL4WS is to name a token for correlation of service instances with
messages. For example, a social security number might be used to identify an individual taxpayer in a
long-running multiparty business process regarding a tax matter. A social security number can appear in many
different message types, but in the context of a tax-related process it has a specific significance as a taxpayer
ID. Therefore a global name is given to this use of the type by defining a property, as in the following
example:

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

37 of 142 12/2/2004 10:17 AM

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<definitions name="properties"

 targetNamespace="http://example.com/properties.wsdl"

 xmlns:tns="http://example.com/properties.wsdl"

 xmlns:txtyp="http://example.com/taxTypes.xsd"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <! -- import schema taxTypes.xsd -- >
 <!-- define a correlation property -->

 <bpws:property name="taxpayerNumber"

 type="txtyp:SSN"/>

 ...

</wsdl:definitions>

In correlation, the property name must have global significance to be of any use. Properties such as price, risk,
response latency, and so on, which are used in conditional behavior in a business process, have similar global
and public significance. It is likely that they will be mapped to multiple messages, and therefore they need to
be globally named as in the case of correlation properties. Such properties are essential, especially in abstract
processes.

The WSDL extensibility mechanism is used to define properties so that the target namespace and other useful
aspects of WSDL are available.

The BPEL4WS standard namespace, "http//schemas.xmlsoap.org/ws/2004/03/business-process/", is
used for property definitions. The syntax for a property definition is a new kind of WSDL definition as
follows:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<wsdl:definitions name="ncname">

 <bpws:property name="ncname" type="qname"/>

 ...

</wsdl:definitions>

Properties used in business protocols are typically embedded in application-visible message data. The notion
of aliasing is introduced to map a global property to a field in a specific message part. The property name
becomes an alias for the message part and location, and can be used as such in Expressions and Assignment
in abstract business processes. As an example, consider the following WSDL message definition:

1234567890123456789012345678901234567890123456789012345678901234567890

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

38 of 142 12/2/2004 10:17 AM

 1 2 3 4 5 6

<definitions name="messages"

 targetNamespace="http://example.com/taxMessages.wsdl"

 xmlns:txtyp="http://example.com/taxTypes.xsd"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a WSDL application message -->
 <message name="taxpayerInfo">
 <part name="identification" element="txtyp:socialsecnumber"/>
 </message>
 ...
</definitions>

The definition of a global property and its location in a particular field of the message are shown in the next
WSDL fragment:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<definitions name="properties"

 targetNamespace="http://example.com/properties.wsdl"

 xmlns:tns="http://example.com/properties.wsdl"

 xmlns:txtyp="http://example.com/taxTypes.xsd"

 xmlns:txmsg="http://example.com/taxMessages.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a correlation property -->

 <bpws:property name="taxpayerNumber" type="txtyp:SSN"/>

 ...

 <bpws:propertyAlias propertyName="tns:taxpayerNumber"

 messageType="txmsg:taxpayerInfo" part="identification">

 <query>
 /txtyp:socialsecnumber
 </query>

 </bpws:propertyAlias>

</definitions>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

39 of 142 12/2/2004 10:17 AM

The bpws:propertyAlias defines a globally named property tns:taxpayerNumber as an alias for a location
in the identification part of the message type txmsg:taxpayerInfo.

The syntax for a propertyAlias definition is:

1234567890123456789012345678901234567890123456789012345678901234567890

 1 2 3 4 5 6

<definitions name="ncname"

 ...

>

 <bpws:propertyAlias propertyName="qname"

 messageType="qname" part="ncname">
 <query queryLanguage="anyURI"?>?
 ... queryString ...
 </query>
 </bpws:propertyAlias>

 ...

</wsdl:definitions>

The interpretation of the message and part attributes, as well as the <query> element is the same as in the
corresponding from-spec in copy assignments (see Assignment).

9. Data Handling
Business processes model stateful interactions. The state involved consists of messages received and sent as
well as other relevant data such as time-out values. The maintenance of the state of a business process requires
the use of state variables, which are called variables in BPEL4WS. Furthermore, the data from the state needs
to be extracted and combined in interesting ways to control the behavior of the process, which requires data
expressions. Finally, state update requires a notion of assignment. BPEL4WS provides these features for XML
data types and WSDL message types. The XML family of standards in these areas is still evolving, and using
the process-level attributes for query and expression languages provides for the incorporation of future
standards.

The extensions required for abstract and executable processes are concentrated in the datahandling feature set.
Executable processes are permitted to use the full power of data selection and assignment but are not
permitted to use nondeterministic values. Abstract processes are restricted to limited manipulation of values
contained in message properties but are permitted to use nondeterministic values to reflect the consequences
of hidden private behavior. Detailed differences are specified in the following sections.

9.1. Expressions

BPEL4WS uses several types of expressions. The kinds of expressions used are as follows (relevant usage
contexts are listed in parentheses):

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

40 of 142 12/2/2004 10:17 AM

· Boolean-valued expressions (transition conditions, join conditions, while condition, and switch cases)

· Deadline-valued expressions ("until" attribute of onAlarm and wait)

· Duration-valued expressions ("for" attribute of onAlarm and wait, repeatEvery attribute of onAlarm)

· General expressions (assignment)

BPEL4WS provides an extensible mechanism for the language used in these expressions. The language is
specified by the expressionLanguage attribute of the process element. In addition, language constructs that
require or allow conditional expressions (such as “switch”, “while” and others) provide the ability to override
the default expression language for individual expressions. Compliant implementations of the current version
of BPEL4WS MUST support the use of XPath 1.0 as the expression language. XPath 1.0 is indicated by the
default value of the expressionLanguage attribute, which is:

http://www.w3.org/TR/1999/REC-xpath-19991116

Given an expression language, it must be possible to query data from variables, to extract property values, and
to query the status of links from within expressions. This specification defines those functions for XPath 1.0
only, and it is expected that other expressionlanguage bindings will provide equivalent functionality. The rest
of this section is specific to XPath 1.0.

BPEL4WS introduces several extension functions to XPath's built-in functions to enable XPath 1.0
expressions to access information from the process. The extensions are defined in the standard BPEL4WS
namespace http://schemas.xmlsoap.org/ws/2004/03/businessprocess/. The prefix "bpws:" is associated with
this namespace.

Any qualified names used within XPath expressions are resolved by using namespace declarations currently in
scope in the BPEL4WS document at the location of the expression.

The following functions are defined by this specification:

bpws:getVariableProperty ('variableName', 'propertyName')

This function extracts global property values from variables. The first argument names the source variable for
the data and the second is the qualified name (QName) of the global property to select from that variable (see
Message Properties). If the given property does not appear in any of the parts of the variable's message type,
then the semantics of the process is undefined. The return value of this function is a node set containing the
single node representing the property. If the given property definition selects a node set of a size other than
one, then the semantics of the process is undefined.

bpws:getLinkStatus ('linkName')

This function returns a Boolean indicating the status of the link (see Link Semantics). If the status of the link
is positive the value is true, and if the status is negative the value is false. This function MUST NOT be used
anywhere except in a join condition. The linkName argument MUST refer to the name of an incoming link for
the activity associated with the join condition. These restrictions MUST be statically enforced.

These BPEL4WS-defined extension functions are available for use within all XPath 1.0 expressions.

The syntax of XPath 1.0 expressions for BPEL4WS is considered in the following paragraphs.

9.1.1. Boolean Expressions

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

41 of 142 12/2/2004 10:17 AM

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in Boolean
values.

9.1.2. Deadline-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in values
that are of the XML Schema types dateTime or date. Note that XPath 1.0 is not XML Schema aware. As such,
none of the built-in functions of XPath 1.0 are capable of producing or manipulating dateTime or date values.
However, it is possible to write a constant (literal) that conforms to XML Schema definitions and use that as a
deadline value or to extract a field from a variable (part) of one of these types and use that as a deadline value.
XPath 1.0 will treat that literal as a string literal, but the result can be interpreted as a lexical representation of
a dateTime or date value.

9.1.3. Duration-Valued Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in values
that are of the XML Schema type duration. The preceding discussion about XPath 1.0's XML Schema
unawareness applies here as well.

9.1.4. General Expressions

These are expressions that conform to the XPath 1.0 Expr production where the evaluation results in any
XPath value type (string, number, or Boolean).

Expressions with operators are restricted as follows:

· All numeric values including arbitrary constants are permitted with the equality or relational operators
(<, <=, =, !=, >=, >").

· Values of integral (short, int, long, unsignedShort, and so on) type including constants are permitted in
numeric expressions, provided that only integer arithmetic is performed. In practice, this means that
division is disallowed. It is difficult to enforce this restriction in XPath 1.0 because XPath 1.0 lacks
integral support for types. The restriction should be taken as a statement of intent that will be enforced
in the future when expression languages with more refined type systems become available.

· Only equality operators (=, !=) are permitted when used with values of string type including constants.

These restrictions reflect XPath 1.0 syntax and semantics. Future alternative standards in this space are
expected to provide stronger type systems and therefore support more nuanced constraints. The restrictions are
motivated by the fact that XPath general expressions are meant to be used to perform business protocol-related
computation such as retry loops, line-item counts, and so on, that must be transparent in the process definition.
They are not meant to provide arbitrary computation. This is the motivation for the constraint that numerical
expressions deal only with integer computation, and for disallowing arbitrary string manipulation through
expressions.

9.2. Variables

Business processes specify stateful interactions involving the exchange of messages between partners. The
state of a business process includes the messages that are exchanged as well as intermediate data used in
business logic and in composing messages sent to partners.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

42 of 142 12/2/2004 10:17 AM

Variables provide the means for holding messages that constitute the state of a business process. The messages
held are often those that have been received from partners or are to be sent to partners. Variables can also hold
data that are needed for holding state related to the process and never exchanged with partners.

The type of each variable may be a WSDL message type, an XML Schema simple type or an XML Schema
element. The syntax of the variables declaration is:

<variables>

 <variable name="ncname" messageType="qname"?

 type=”qname”? element=”qname”?/>+

</variables>

The name of a variable should be unique within its own scope. Variable access follows common lexical
scoping rules. A variable resolves to the nearest enclosing scope, regardless of the type of the variable. If a
local variable has the same name as a variable defined in an enclosing scope, the local variable will be used in
local assignments and/or getVariableProperty functions.

The messageType, type or element attributes are used to specify the type of a variable. Exactly one of these
attributes must be used. Attribute messageType refers to a WSDL message type definition. Attribute type
refers to an XML Schema simple type. Attribute element refers to an XML Schema element. An XML
Schema complex type must beassociated with an element to be used by a BPEL4WS variable.

An example of a variable declaration using a message type declared in a WSDL document with the
targetNamespace "http://example.com/orders":

<variable xmlns:ORD="http://example.com/orders"

 name="orderDetails" messageType="ORD:orderDetails"/>

Variables associated with message types can be specified as input or output variables for invoke, receive, and
reply activities (see Invoking Web Service Operations and Providing Web Service Operations). When an
invoke operation returns a fault message, this causes a fault in the current scope. The fault variable in the
corresponding fault handler is initialized with the fault message received (see Scopes and Fault Handlers).

Each variable is declared within a scope and is said to belong to that scope. Variables that belong to the global
process scope are called global variables. Variables may also belong to other, non-global scopes, and such
variables are called local variables. Each variable is visible only in the scope in which it is defined and in all
scopes nested within the scope it belongs to. Thus, global variables are visible throughout the process. It is
possible to "hide" a variable in an outer scope by declaring a variable with an identical name in an inner scope.
These rules are exactly analogous to those in programming languages with lexical scoping of variables.

A global variable is in an uninitialized state at the beginning of a process. A local variable is in an
uninitialized state at the start of the scope it belongs to. Note that non-global scopes in general start and
complete their behavior more than once in the lifetime of the process instance they belong to. Variables can be
initialized by a variety of means including assignment and receiving a message. Variables can be partially
initialized with property assignment or when some but not all parts in the message type of the variable are
assigned values.

9.3. Assignment

Copying data from one variable to another is a common task within a business process. The assign activity

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

43 of 142 12/2/2004 10:17 AM

can be used to copy data from one variable to another, as well as to construct and insert new data using
expressions. The use of expressions is primarily motivated by the need to perform simple computation (such
as incrementing sequence numbers) that is required for describing business protocol behavior. Expressions
operate on message selections, properties, and literal constants to produce a new value for a variable property
or selection. Finally, this activity can also be used to copy endpoint references to and from partner links.

The assign assign contains one or more elementary assignments.

<assign standard-attributes>

 standard-elements

 <copy>+

 from-spec

 to-spec

 </copy>

</assign>

The assign activity copies a type-compatible value from the source ("from-spec") to the destination
("to-spec"). The from-spec MUST be one of the following forms except for the opaque form available in
abstract processes:

<from variable="ncname" part="ncname"?/>

<from partnerLink="ncname" endpointReference="myRole|partnerRole"/>

<from variable="ncname" property="qname"/>

<from> <expression expressionLanguage="anyURI"?>general-expr</expression> </from>

<from> ... literal value ... </from>

The to-spec MUST be one of the following forms:

<to variable="ncname" part="ncname"?/>

<to partnerLink="ncname"/>

<to variable="ncname" property="qname"/>

In the first from-spec and to-spec variants the variable attribute provides the name of a variable. If the type
of the variable is a WSDL messge type the optional part attribute MAY be used to provide the name of a part
within that variable. When the variable is defined using XML Schema simple type or element, the part
attribute MUST NOT be used.

The second from-spec and to-spec variants allow dynamic manipulation of the endpoint references
associated with partner links. The value of the partnerLink attribute is the name of a partnerLink declared in
the process. In the case of from-specs, the role must also be specified because a process might need to
communicate an endpoint reference corresponding to either its own role or the partner's role within the
partnerLink. The value “myRole” means that the endpoint reference of the process with respect to that
partnerLink is the source, while the value “partnerRole” means that the partner’s endpoint reference for the
partnerLink is the source. For the to-spec, the assignment is only possible to the partnerRole, hence there is no
need to specify the role. The type of the value used in partnerLink-style from/to-specs is always an endpoint
reference (see Partner Link Types, Partner Links, and Endpoint References).

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

44 of 142 12/2/2004 10:17 AM

The third from-spec and to-spec variants allow explicit manipulation of message properties (see Message
Properties) occurring in variables. The property forms are especially useful for abstract processes, because
they provide a way to clearly define how distinguished data elements in messages are being used.

The fourth ("expression") from-spec variant allows processes to perform simple computations on properties
and variables (for example, increment a sequence number).

The fifth from-spec variant allows a literal value to be given as the source value to assign to a destination.
The type of the literal value MUST be the type of the destination (to-spec). The type of the literal value MAY
be optionally indicated inline with the value by using XML Schema's instance type mechanism (xsi:type).

9.3.1. Type Compatibility in Assignment

For an assignment to be valid, the data referred to by the from and to specifications MUST be of compatible
types. The following points make this precise:

· The from-spec is a variable of a WSDL message type and the to-spec is a variable of a WSDL message
type. In this case both variables MUST be of the same message type, where two message types are said
to be equal if their qualified names are the same.

· The from-spec is a variable of a WSDL message type and the to-spec is not, or vice versa. This is not
legal because parts of variables, selections of variable parts, or endpoint references cannot be assigned
to/from variables of WSDL message types directly.

· In all other cases, the types of the source and destination are XML Schema types or elements, and the
constraint is that the source value MUST possess the element or type associated with the destination.
Note that this does not require the types associated with the source and destination to be the same. In
particular, the source type MAY be a subtype of the destination type. In the case of variables defined
by reference to an element, moreover, both the source and the target MUST be the same element.

The semantics of a process in which any of the matching constraints above is violated is undefined.

9.3.2. Assignment Example

The example assumes the following complex type definition in the namespace
"http://tempuri.org/bpws/example":

<complexType name="tAddress">

 <sequence>

 <element name="number" type="xsd:int"/>

 <element name="street" type="xsd:string"/>

 <element name="city" type="xsd:string"/>

 <element name="phone">

 <complexType>

 <sequence>

 <element name="areacode" type="xsd:int"/>

 <element name="exchange" type="xsd:int"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

45 of 142 12/2/2004 10:17 AM

 <element name="number" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 </sequence>

</complexType>

<element name = “address” type = “tAddress”/>

Assume that the following WSDL message definition exists for the same target namespace:

<message name="person" xmlns:x="http://tempuri.org/bpws/example">

 <part name="full-name" type="xsd:string"/>

 <part name="address" element="x:address"/>

</message>

Also assume the following BPEL4WS variable declarations:

<variable name="c1" messageType="x:person"/>

<variable name="c2" messageType="x:person"/>

<variable name="c3" element="x:address"/>

The example illustrates copying one variable to another as well as copying a variable part to a variable of
compatible element type:

<assign>

 <copy>

 <from variable="c1"/>

 <to variable="c2"/>

 </copy>

 <copy>

 <from variable="c1" part = “address”/>

 <to variable="c3"/>

 </copy>

</assign>

10. Correlation
The information provided so far suggests that the target for messages that are delivered to a business process
service is the WSDL port of the recipient service. This is an illusion because, by their very nature, stateful

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

46 of 142 12/2/2004 10:17 AM

business processes are instantiated to act in accordance with the history of an extended interaction.
Therefore, messages sent to such processes need to be delivered not only to the correct destination port, but
also to the correct instance of the business process that provides the port. The infrastructure hosting the
process must do this in a generic manner, to avoid burdening every process implementation with the need to
implement a custom mechanism for instance routing. Messages, which create a new business process instance,
are a special case, as described in The Lifecycle of a Business Process.

In the object-oriented world, such stateful interactions are mediated by object references, which intrinsically
provide the ability to reach a specific object (instance) with the right state and history for the interaction. This
works reasonably well in tightly coupled implementations where a dependency on the structure of the
implementation is normal. In the loosely coupled world of Web Services, the use of such references would
create a fragile web of implementation dependencies that would not survive the independent evolution of
business process implementation details at each business partner. In this world, the answer is to rely on the
business data and communication protocol headers that define the wirelevel contract between partners and to
avoid the use of implementation-specific tokens for instance routing whenever possible.

Consider the usual supply-chain situation where a buyer sends a purchase order to a seller. Suppose that the
buyer and seller have a stable business relationship and are statically configured to send documents related to
the purchasing interaction to the URLs associated with the relevant WSDL service ports. The seller needs to
asynchronously return an acknowledgement for the order, and the acknowledgement must be routed to the
correct business process instance at the buyer. The obvious and standard mechanism to do this is to carry a
business token in the order message (such as a purchase order number) that is copied into the
acknowledgement for correlation. The token can be in the message envelope in a header or in the business
document (purchase order) itself. In either case, the exact location and type of the token in the relevant
messages is fixed and instance independent. Only the value of the token is instance dependent. Therefore, the
structure and position of the correlation tokens in each message can be expressed declaratively in the business
process description. The BPEL4WS notion of correlation set, described in the following section, provides this
feature. The declarative information allows a BPEL4WS-compliant infrastructure to use correlation tokens to
provide instance routing automatically.

The declarative specification of correlation relies on declarative properties of messages. A property is simply a
"field" within a message identified by a query—by default the query language is XPath 1.0. This is only
possible when the type of the message part or binding element is described by using an XML Schema. The use
of correlation tokens and endpoint references is restricted to message parts described in this way. To be clear,
the actual wire format of such types can still be non-XML, for example, EDI flat files, based on different
bindings for port types.

10.1. Message Correlation

During its lifetime, a business process instance typically holds one or more conversations with partners
involved in its work. Conversations may be based on sophisticated transport infrastructure that correlates the
messages involved in a conversation by using some form of conversation identity and routes them
automatically to the correct service instance without the need for any annotation within the business process.
However, in many cases correlated conversations involve more than two parties or use lightweight transport
infrastructure with correlation tokens embedded directly in the application data being exchanged. In such
cases, it is often necessary to provide additional application-level mechanisms to match messages and
conversations with the business process instances for which they are intended.

Correlation patterns can become quite complex. The use of a particular set of correlation tokens does not, in
general, span the entire interaction between a service instance and a partner (instance), but spans a part of the
interaction. Correlated exchanges may nest and overlap, and messages may carry several sets of correlation

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

47 of 142 12/2/2004 10:17 AM

tokens. For example, a buyer might start a correlated exchange with a seller by sending a purchase order (PO)
and using a PO number embedded in the PO document as the correlation token. The PO number is used in the
PO acknowledgement by the seller. The seller might later send an invoice that carries the PO number, to
correlate it with the PO, and also carries an invoice number so that future payment-related messages need to
carry only the invoice number as the correlation token. The invoice message thus carries two separate
correlation tokens and participates in two overlapping correlated exchanges.

BPEL4WS addresses correlation scenarios by providing a declarative mechanism to specify correlated groups
of operations within a service instance. A set of correlation tokens is defined as a set of properties shared by
all messages in the correlated group. Such a set of properties is called a correlation set.

Correlation sets are declared within scopes and associated with them in a manner that is analogous to variable
declarations. Each correlation set is declared within a scope and is said to belong to that scope. Correlation
sets that belong to the global process scope are called global correlation sets. Correlation sets may also belong
to other, non-global scopes, and such correlation sets are called local correlation sets. Each correlation set is
only visible in the scope in which it is defined and in all scopes nested within the scope it belongs to. Thus,
global correlation sets are visible throughout the process. It is possible to "hide" a correlation set in an outer
scope by declaring a correlation set with an identical name in an inner scope.

A global correlation set is in an uninitiated state at the beginning of a process. A local correlation set is in an
uninitiated state at the start of the scope it belongs to. Note that non-global scopes in general start and
complete their behavior more than once in the lifetime of the process instance they belong to.

Correlation sets resemble late-bound constants rather than variables in their semantics. The binding of a
correlation set is triggered by a specially marked message send or receive operation. A correlation set can be
initiated only once during the lifetime of the scope it belongs to. Thus, a global correlation set can only be
initiated at most once during the lifetime of the process instance. Its value, once initiated, can be thought of as
an alias for the identity of the business process instance. A local correlation set is available for binding each
time the corresponding scope starts, but once initiated must retain its value until the scope completes.

In multiparty business protocols, each participant process in a correlated message exchange acts either as the
initiator or as a follower of the exchange. The initiator process sends the first message (as part of an operation
invocation) that starts the conversation, and therefore defines the values of the properties in the correlation set
that tag the conversation. All other participants are followers that bind their correlation sets in the
conversation by receiving an incoming message that provides the values of the properties in the correlation
set. Both initiator and followers must mark the first activity in their respective groups as the activity that binds
the correlation set.

10.2. Defining and Using Correlation Sets

The examples in this section show correlation being used on almost every messaging activity (receive, reply,
and invoke). This is because BPEL4WS does not assume the use of any sophisticated conversational transport
protocols for messaging. In cases where such protocols are used, the explicit use of correlation in BPEL4WS
can be reduced to those activities that establish the conversational connections.

Each correlation set in BPEL4WS is a named group of properties that, taken together, serve to define a way of
identifying an application-level conversation within a business protocol instance. A given message can carry
multiple correlation sets. After a correlation set is initiated, the values of the properties for a correlation set
must be identical for all the messages in all the operations that carry the correlation set and occur within the
corresponding scope until its completion. This correlation consistency constraint MUST be observed in all
cases of initiate values. The legal values of the initiate attribute are: "yes", "rendezvous", "no". The

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

48 of 142 12/2/2004 10:17 AM

default value of the initiate attribute is "no".

· When the initiate attribute is set to "yes", the related activity MUST attempt to initiate the
correlation set.

o If the correlation set is already initiated and the initiate attribute is set to "yes", the
semantics is undefined.

· When the initiate attribute is set to "rendezvous", the related activity MUST attempt to initiate the
correlation set, if the correlation set is NOT initiated yet.

o If the correlation set is already initiated and the initiate attribute is set to "rendezvous", the
correlation consistency constraint MUST be observed. If the constraint is violated, the
semantics is undefined.

· When the initiate attribute is set to "no", the related activity MUST NOT attempt to initiate the
correlation set.

o If an activity with the "initiate" attribute set to "no" attempts to use a correlation set that
has not been previously initiated, the semantics is undefined.

o If the correlation set is already initiated and the initiate attribute is set to "no", the
correlation consistency constraint MUST to be observed. If the constraint is violated, the
semantics is undefined.

If multiple correlation sets are used in a message activity, then the consistency constraint MUST be observed
for all correlation sets used. For example, the correlation sets used in an inbound message activity (e.g.
receive) must all match message for that message to be delivered to the activity in the given process instance.
If one of initiated correlation set does NOT match with the message, the semantics is undefined.

As the following examples illustrate, a correlation set is initiated when the activity within which it is used
applies the attribute initiate="yes" to the set.

<correlationSets>?

 <correlationSet name="ncname" properties="qname-list"/>+

</correlationSets>

Following is an extended example of correlation. It begins by defining four message properties: customerID,
orderNumber, vendorID and invoiceNumber. All of these properties are defined as part of the
"http://example.com/supplyCorrelation.wsdl" namespace defined by the document.

<definitions name="properties"

 targetNamespace="http://example.com/supplyCorrelation.wsdl"

 xmlns:tns="http://example.com/supplyCorrelation.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define correlation properties -->

 <bpws:property name="customerID" type="xsd:string"/>

 <bpws:property name="orderNumber" type="xsd:int"/>

 <bpws:property name="vendorID" type="xsd:string"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

49 of 142 12/2/2004 10:17 AM

 <bpws:property name="invoiceNumber" type="xsd:int"/>

</definitions>

Note that these properties are global names with known (simple) XMLSchema types. They are abstract in the
sense that their occurrence in messages needs to be separately specified (see Message Properties). The
example continues by defining purchase order and invoice messages and by using the concept of aliasing to
map the abstract properties to fields within the message data identified by selection.

<definitions name="correlatedMessages"

 targetNamespace="http://example.com/supplyMessages.wsdl"

 xmlns:tns="http://example.com/supplyMessages.wsdl"

 xmlns:cor=http://example.com/supplyCorrelation.wsdl
 xmlns:po = “http://example.com/po.xsd”

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!—define schema types for PO and invoice information -->

<types>

 <xsd:schema targetNamespace = “http://example.com/po.xsd”>

 <xsd:complexType name="PurchaseOrder">

 <xsd:element name="CID" type="xsd:string"/>

 <xsd:element name="order" type="xsd:int"/>

 ...

 </xsd:complexType>

 <xsd:complexType name="PurchaseOrderResponse">

 <xsd:element name="CID" type="xsd:string"/>

 <xsd:element name="order" type="xsd:int"/>

 ...

 </xsd:complexType>

 <xsd:complexType name="PurchaseOrderRejectType">

 <xsd:element name="CID" type="xsd:string"/>

 <xsd:element name="order" type="xsd:int"/>

 <xsd:element name="reason" type="xsd:string"/>

 ...

 </xsd:complexType>

 <xsd:complexType name="InvoiceType">

 <xsd:element name="VID" type="xsd:string"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

50 of 142 12/2/2004 10:17 AM

 <xsd:element name="invNum" type="xsd:int"/>

 </xsd:complexType>
 <xsd:element name = “PurchaseOrderReject” type= “po:PurchaseOrderRejectType”>
 <xsd:element name = “Invoice” type= “po:invoiceType”>

 </xsd:schema>

</types>

<message name="POMessage">

 <part name="PO" type="po:PurchaseOrder"/>

</message>

<message name="POResponse">

 <part name="RSP" type="po:PurchaseOrderResponse"/>

</message>

<message name="POReject">

 <part name="RJCT" element="po:PurchaseOrderReject"/>

</message>

<message name="InvMessage">

 <part name="IVC" element = “po:Invoice"/>

</message>

<bpws:propertyAlias propertyName="cor:customerID"

 messageType="tns:POMessage" part="PO">

 <bpws:query>
 /PO/CID
 </bpws:query>
</bpws:propertyAlias>

<bpws:propertyAlias propertyName="cor:orderNumber"

 messageType="tns:POMessage" part="PO">

 <query>
 /PO/Order
 </query>
</bpws:propertyAlias>

<bpws:propertyAlias propertyName="cor:vendorID"

 messageType="tns:InvMessage" part="IVC">

 <query>
 /IVC/VID
 </query>
</bpws:propertyAlias>

<bpws:propertyAlias propertyName="cor:invoiceNumber"

 messageType="tns:InvMessage" part="IVC">

 <query>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

51 of 142 12/2/2004 10:17 AM

 /IVC/InvNum
 </query>
</bpws:propertyAlias>

 ...

</definitions>

Finally, the portType used is defined, in a separate WSDL document.

<definitions name="purchasingPortType"

 targetNamespace="http://example.com/puchasing.wsdl"

 xmlns:smsg="http://example.com/supplyMessages.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <! – import supplyMessage.wsdl -- >

 <portType name="PurchasingPT">

 <operation name="SyncPurchase">

 <input message="smsg:POMessage"/>

 <output message="smsg:POResponse"/>

 <fault name="tns:RejectPO" message="smsg:POReject"/>

 </operation>

 <operation name="AsyncPurchase">

 <input message="smsg:POMessage"/>

 </operation>

 </portType>

 <portType name="BuyerPT">

 <operation name="AsyncPurchaseResponse">

 <input message="smsg:POResponse"/>

 </operation>

 <operation name="AsyncPurchaseReject">

 <input message="smsg:POReject"/>

 </operation>

 </portType>

</definitions>

Both the properties and their mapping to purchase order and invoice messages will be used in the following
correlation examples.

<correlationSets

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

52 of 142 12/2/2004 10:17 AM

 xmlns:cor="http://example.com/supplyCorrelation.wsdl">

 <!-- Order numbers are particular to a customer,

 this set is carried in application data -->

 <correlationSet name="PurchaseOrder"

 properties="cor:customerID cor:orderNumber"/>

 <!-- Invoice numbers are particular to a vendor,

 this set is carried in application data -->

 <correlationSet name="Invoice"

 properties="cor:vendorID cor:invoiceNumber"/>

</correlationSets>

Correlation set names are used in invoke, receive, and reply activities (see Invoking Web Service Operations
and Providing Web Service Operations), in the onMessage branches of pick activities, and in the onEvent
variant of event handlers (see Pick and Message Events). These sets are used to indicate which correlation sets
(i.e., the corresponding property sets) occur in the messages being sent and received. The initiate attribute
is used to indicate whether the set is being initiated. When the attribute is set to "yes" the set is initiated with
the values of the properties occurring in the message being sent or received. (Please see the beginning of this
section for details of of initiate attribute.) Finally, in the case of invoke, when the operation invoked is
synchronous request/response, a pattern attribute is used to indicate whether the correlation applies to the
outbound (request) message, the inbound (response) message, or both. These ideas are explained in more
detail in the context of the use of correlation in the rest of this example.

A message can carry the tokens of one or more correlation sets. The first example shows an interaction in
which a purchase order is received in a one-way inbound request and a confirmation including an invoice is
sent in the asynchronous response. The PurchaseOrder correlationSet is used in both activities so that the
asynchronous response can be correlated to the request at the buyer. The receive activity initiates the
PurchaseOrder correlationSet. The buyer is therefore the initiator and the receiving business process is a
follower for this correlationSet. The invoke activity sending the asynchronous response also initiates a new
correlationSet Invoice. The business process is the initiator of this correlated exchange and the buyer is a
follower. The response message is thus a part of two separate conversations, and forms the bridge between
them.

In the following, the prefix SP: represents the namespace "http://example.com/puchasing.wsdl".

<receive partnerLink="Buyer" portType="SP:PurchasingPT"

 operation="AsyncPurchase"

 variable="PO">

 <correlations>

 <correlation set="PurchaseOrder" initiate="yes"/>

 </correlations>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

53 of 142 12/2/2004 10:17 AM

</receive>

<invoke partnerLink="Buyer" portType="SP:BuyerPT"

 operation="AsyncPurchaseResponse" inputVariable="POResponse">

 <correlations>

 <correlation set="PurchaseOrder" initiate="no" pattern="out"/>

 <correlation set="Invoice" initiate="yes" pattern="out"/>

 </correlations>

</invoke>

Alternatively, the response might have been a rejection (such as an "out-of-stock" message), which in this case
terminates the conversation correlated by the correlationSet PurchaseOrder without starting a new one
correlated with Invoice. Note that the initiate attribute is missing. It therefore has the default value of
"no".

<invoke partnerLink="Buyer" portType="SP:BuyerPT"

 operation="AsyncPurchaseReject" inputVariable="POReject">

 <correlations>

 <correlation set="PurchaseOrder" pattern="out"/>

 </correlations>

</invoke>

The use of correlation with synchronous Web Service invocation is illustrated by the alternative synchronous
purchasing operation used by an invoke activity used in the buyer's business process.

<invoke partnerLink="Seller" portType="SP:PurchasingPT"

 operation="SyncPurchase"

 inputVariable="sendPO"

 outputVariable="getResponse">

 <correlations>

 <correlation set="PurchaseOrder" initiate="yes" pattern="out"/>

 <correlation set="Invoice" initiate="yes" pattern="in"/>

 </correlations>

 <catch faultName="SP:RejectPO" faultVariable="POReject"
 faultMessageType="smsg:POReject">

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

54 of 142 12/2/2004 10:17 AM

 <!-- handle the fault -->

 </catch>

</invoke>

Note that an invoke consists of two messages: an outgoing request message and an incoming reply message.
The correlation sets applicable to each message must be separately considered because they can be different.
In this case the PurchaseOrder correlation applies to the outgoing request that initiates it, while the Invoice
correlation applies to the incoming reply and is initiated by the reply. Because the PurchaseOrder correlation
is initiated by an outgoing message, the buyer is the initiator of that correlation but a follower of the Invoice
correlation because the values of the correlation properties for Invoice are initiated by the seller in the reply
received by the buyer.

11. Basic Activities
11.1. Standard Attributes for Each Activity

Each activity has optional standard attributes: a name and an indicator whether a join fault should be
suppressed if it occurs. See Flow for a full discussion of these two attributes.

name="ncname"?

suppressJoinFailure="yes|no"?>

When the suppressJoinFailure attribute is not specified for an activity, it inherits its value from
its closest enclosing activity or from the process if no enclosing activity specifies this attribute.

11.2. Standard Elements for Each Activity

Each BPEL4WS activity has nested standard elements <source> and <target> within the optional containers
<sources> and <targets>. The use of these elements is required for establishing synchronization relationships
through links (see Flow). Each link is defined independently and given a name. The link name is used as value
of the linkName attribute of the <source> element. An activity MAY declare itself to be the source of one or
more links by including one or more <source> elements. Each <source> element MUST use a distinct link
name. Similarly, an activity MAY declare itself to be the target of one or more links by including one or more
<target> elements. Each <source> element associated with a given activity MUST use a link name distinct
from all other <source> elements at that activity. Each <target> element associated with a given activity
MUST use a link name distinct from all other <target> elements at that activity. Each <source> element MAY
optionally specify a transition condition that functions as a guard for following this specified link (see Flow).
If the transition condition is omitted, it is deemed to be present with the constant value true.

<sources>?
 <source linkName="ncname">+
 <transitionCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...
 </transitionCondition>
 </source>
</sources>

<targets>?
 <joinCondition expressionLanguage="anyURI"?>?
 ... bool-expr ...

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

55 of 142 12/2/2004 10:17 AM

 </joinCondition>
 <target linkName="ncname"/>+
</targets>?

The value of the <joinCondition> element is a Boolean-valued expression in the expression language
indicated by the expressionLanguage attribute, or in the default expression language for this process (see
Expressions). If no join condition is specified, the join condition is the logical OR of the link status of all
incoming links of this activity (see 12.5.1 Link semantics).

11.3. Invoking Web Service Operations

Web Services provided by partners (see Partner Link Types, Partner Links, and Endpoint References)
can be used to perform work in a BPEL4WS business process. Invoking an operation on such a service is a
basic activity. Recall that such an operation can be a synchronous request/response or an asynchronous
one-way operation. BPEL4WS uses the same basic syntax for both with some additional options for the
synchronous case.

An asynchronous invocation requires only the input variable of the operation because it does not expect a
response as part of the operation (see Providing Web Service Operations). A synchronous invocation
requires both an input variable and an output variable. One or more correlation sets can be specified to
correlate the business process instance with a stateful service at the partner’s side (see Correlation).
However, these attributes are both syntactically optional since they are absolutely required only in executable
processes.

In the case of a synchronous invocation, the operation might return a WSDL fault message. This results in a
BPEL4WS fault. Such a fault can be caught locally by the activity, and in this case the specified activity will
be performed. If a fault is not caught locally by the activity it is thrown to the scope that encloses the activity
(see Scopes and Fault Handlers).

Note that a WSDL fault is identified in BPEL4WS by a qualified name formed by the target namespace of the
corresponding portType and the fault name. This uniform naming mechanism must be followed even though it
does not accurately match WSDL’s faultnaming model. Because WSDL does not require that fault names be
unique within the namespace where the service operation is defined, all faults sharing a common name and
defined in the same namespace are indistinguishable in BPEL4WS. In WSDL 1.1 it is necessary to specify a
portType name, an operation name, and the fault name to uniquely identify a fault. This limits the ability to
use fault-handling mechanisms to deal with invocation faults. This is an important shortcoming of the WSDL
fault model that will be removed in future versions of WSDL.

Finally, an activity can be associated with another activity that acts as its compensation action. This
compensation handler can be invoked either explicitly or by the default compensation handler of the enclosing
scope (see Scopes and Compensation Handlers).

Semantically, the specification of local fault and/or compensation handlers is equivalent to the presence of an
implicit scope immediately enclosing the activity and providing those handlers. The name of such an implicit
scope is always the same as the name of the activity it encloses.

<invoke partnerLink="ncname" portType="qname"? operation="ncname"

 inputVariable="ncname"? outputVariable="ncname"?

 standard-attributes>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

56 of 142 12/2/2004 10:17 AM

standard-elements

<correlations>?

 <correlation set="ncname" initiate="yes|no"?

 pattern="in|out|out-in"/>+

</correlations>

<catch faultName="qname" faultVariable="ncname"?
 faultMessageType="qname"?>*

 activity

</catch>

<catchAll>?

 activity

</catchAll>

<compensationHandler>?

 activity

</compensationHandler>

</invoke>

See Correlation for an explanation of the correlation semantics. The following example shows an invocation
with a nested compensation handler. Other examples are shown throughout the specification.

<invoke partnerLink="Seller" portType="SP:Purchasing"

 operation="SyncPurchase"

 inputVariable="sendPO"

 outputVariable="getResponse">

 <compensationHandler>

 <invoke partnerLink="Seller" portType="SP:Purchasing"

 operation="CancelPurchase"

 inputVariable="getResponse"

 outputVariable="getConfirmation">

 </compensationHandler>

</invoke>

11.4. Providing Web Service Operations

A business process provides services to its partners through receive activities and corresponding reply
activities. A receive activity specifies the partner link it expects to receive from, and the port type (optional)
and operation that it expects the partner to invoke. In addition, it may specify a variable that is to be used to
receive the message data received. However, this attribute is syntactically optional since it is absolutely
required only in executable processes.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

57 of 142 12/2/2004 10:17 AM

In addition, receive activities play a role in the lifecycle of a business process. The only way to instantiate a
business process in BPEL4WS is to annotate a receive activity with the createInstance attribute set to
"yes" (see Pick for a variant). The default value of this attribute is "no". A receive activity annotated in this
way MUST be an initial activity in the process, that is, the only other basic activities may potentially be
performed prior to or simultaneously with such a receive activity MUST be similarly annotated receive
activities.

It is permissible to have the createInstance attribute set to "yes" for a set of concurrent initial activities. In
this case the intent is to express the possibility that any one of a set of required inbound messages can create
the process instance because the order in which these messages arrive cannot be predicted. All such receive
activities MUST use the same correlation sets (see Correlation). Compliant implementations MUST ensure
that only one of the inbound messages carrying the same correlation set tokens actually instantiates the
business process (usually the first one to arrive, but this is implementation dependent). The other incoming
messages in the concurrent initial set MUST be delivered to the corresponding receive activities in the
already created instance.

A business process instance MUST NOT simultaneously enable two or more receive activities for the same
partnerLink, portType, operation and correlation set(s). Note that receive is a blocking activity in the sense
that it will not complete until a matching message is received by the process instance. The semantics of a
process in which two or more receive actions for the same partnerLink, portType, operation and correlation
set(s) may be simultaneously enabled is undefined. For the purposes of this constraint, an onMessage clause in
a pick and an onEvent event handler are equivalent to a receive (see Pick and Message Events).

It is worth pointing out that race conditions may occur in business process execution. Messages that target a
particular process instance may arrive before the corresponding receive activity is started. For example, it
is perfectly reasonable to model a process that receives a series of messages in a while loop where all the
messages use the same correlation. At run time, the messages will arrive independent of the iterations of the
loop. But the fact that the correlation is already initiated should enable the runtime engine and messaging
platform to recognize that these messages are correlated to the process instance and handle those messages
appropriately. For another example, a process may invoke a remote service, initiate a correlation set for an
expected callback message, and the callback message may arrive before the corresponding receive activity is
started for a variety of reasons. The correlation data in the arriving message should enable the engine to
recognize the message is targeted for this process instance and handle it appropriately. Process engines may
employ different mechanisms to handle such race conditions. This specification does not mandate any specific
mechanism. For the purposes of handling race conditions, an onMessage clause in a pick and an onMessage
event handler are equivalent to a receive (see Pick and Message Events).

<receive partnerLink="ncname" portType="qname"? operation="ncname"

 variable="ncname"? createInstance="yes|no"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="ncname" initiate="yes|no"?/>+

 </correlations>

</receive>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

58 of 142 12/2/2004 10:17 AM

A reply activity is used to send a response to a request previously accepted through a receive activity. Such
responses are only meaningful for synchronous interactions. An asynchronous response is always sent by
invoking the corresponding one-way operation on the partner link. A reply activity may specify a variable
that contains the message data to be sent in reply. However, this attribute is syntactically optional since it is
absolutely required only in executable processes.

The correlation between a request and the corresponding reply is based on the constraint that more than one
outstanding synchronous request from a specific partner link for a particular portType, operation and
correlation set(s) MUST NOT be outstanding simultaneously. The semantics of a process in which this
constraint is violated is undefined. For the purposes of this constraint, an onMessage clause in a pick is
equivalent to a receive (see Pick). Moreover, a reply activity must always be preceded by a receive activity
for the same partner link, portType and (request/response) operation, such that no reply has been sent for that
receive activity. The semantics of a process in which this constraint is violated is undefined.

<reply partnerLink="ncname" portType="qname"? operation="ncname"

 variable="ncname"? faultName="qname"?

 standard-attributes>

 standard-elements

 <correlations>?

 <correlation set="ncname" initiate="yes|no"?/>+

 </correlations>

</reply>

Note that the <reply> activity corresponding to a given request has two potential forms. If the response to the
request is normal, the faultName attribute is not used and the variable attribute, when present, will indicate
a variable of the normal response message type. If, on the other hand, the response indicates a fault, the
faultName attribute is used and the variable attribute, when present, will indicate a variable of the message
type for the corresponding fault.

11.5. Updating Variable Contents

Variable update occurs through the assignment activity, which is described in Assignment.

11.6. Signaling Faults

The throw activity can be used when a business process needs to signal an internal fault explicitly. Every fault
is required to have a globally unique QName. The throw activity is required to provide such a name for the
fault and can optionally provide a variable of data that provides further information about the fault. A fault
handler can use such data to analyze and handle the fault and also to populate any fault messages that need to
be sent to other services.

BPEL4WS does not require fault names to be defined prior to their use in a throw element. An application or
process-specific fault name can be directly used by using an appropriate QName as the value of the faultName
attribute and providing a variable with the fault data if required. This provides a very lightweight mechanism
to introduce application-specific faults.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

59 of 142 12/2/2004 10:17 AM

<throw faultName="qname" faultVariable="ncname"? standard-attributes>

 standard-elements

</throw>

A simple example of a throw activity that does not provide a variable of fault data is:

<throw xmlns:FLT="http://example.com/faults" faultName="FLT:OutOfStock"/>

11.7. Waiting

The wait activity allows a business process to specify a delay for a certain period of time or until a certain
deadline is reached (see Expressions for the grammar of duration expressions and deadline expressions).

<wait standard-attributes>

 standard-elements
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)

</wait>

A typical use of this activity is to invoke an operation at a certain time (in this case a constant, but more
typically an expression dependent on process state):

<sequence>

 <wait><until>'2002-12-24T18:00+01:00'</until></wait>

 <invoke partnerLink="CallServer" portType="AutomaticPhoneCall"

 operation="TextToSpeech"

 inputVariable="seasonalGreeting">

 </invoke>

</sequence>

11.8. Doing Nothing

There is often a need to use an activity that does nothing, for example when a fault needs to be caught and
suppressed. The empty activity is used for this purpose. The syntax is obvious and minimal.

<empty standard-attributes>

 standard-elements

</empty>

12. Structured Activities
Structured activities prescribe the order in which a collection of activities take place. They describe how a
business process is created by composing the basic activities it performs into structures that express the
control patterns, data flow, handling of faults and external events, and coordination of message exchanges

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

60 of 142 12/2/2004 10:17 AM

between process instances involved in a business protocol.

The structured activities of BPEL4WS include:

· Ordinary sequential control between activities is provided by sequence, switch, and while.

· Concurrency and synchronization between activities is provided by flow.

· Nondeterministic choice based on external events is provided by pick.

The set of structured activities in BPEL4WS is not intended to be the minimal required set

Structured activities can be used recursively in the usual way. A key point to understand is that structured
activities can be nested and combined in arbitrary ways. This provides a somewhat unusual but very attractive
free blending of the graph-like and program-like control regimes that have traditionally been seen as
alternatives rather than orthogonal composable features. A simple example of such blended usage is found in
the Initial Example.

It is important to emphasize that the word activity is used throughout the following to include both basic
and structured activities.

12.1. Sequence

A sequence activity contains one or more activities that are performed sequentially, in the order in which
they are listed within the <sequence> element, that is, in lexical order. The sequence activity completes when
the final activity in the sequence has completed.

<sequence standard-attributes>

 standard-elements

 activity+

</sequence>

Example:

<sequence>

 <flow>

 ...

 </flow>

 <scope>

 ...

 </scope>

 <pick>

 ...

 </pick>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

61 of 142 12/2/2004 10:17 AM

</sequence>

12.2. Switch

The switch structured activity supports conditional behavior in a pattern that occurs quite often. The activity
consists of an ordered list of one or more conditional branches defined by case elements, followed optionally
by an otherwise branch. The case branches of the switch are considered in the order in which they appear.
The first branch whose condition holds true is taken and provides the activity performed for the switch. If no
branch with a condition is taken, then the otherwise branch is taken. If the otherwise branch is not
explicitly specified, then an otherwise branch with an empty activity is deemed to be present. The switch
activity is complete when the activity of the selected branch completes.

<switch standard-attributes>

 standard-elements

 <case>+
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>

 activity

 </case>

 <otherwise>?

 activity

 </otherwise>

</switch>

Example:

<switch xmlns:inventory="http://supply-chain.org/inventory"

 xmlns:FLT="http://example.com/faults">

 <case>
 <condition>
 bpws:getVariableProperty(stockResult,level) > 100
 </condition>

 <flow>

 <!-- perform fulfillment work -->

 </flow>

 </case>

 <case>
 <condition>
 bpws:getVariableProperty(stockResult,level) >= 0
 </condition>

 <throw faultName="FLT:OutOfStock"

 variable="RestockEstimate"/>

 </case>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

62 of 142 12/2/2004 10:17 AM

 <otherwise>

 <throw faultName="FLT:ItemDiscontinued"/>

 </otherwise>

</switch>

12.3. While

The while activity supports repeated performance of a specified iterative activity. The iterative activity is
performed as long as the given Boolean while condition holds true at the beginning of each iteration.

<while standard-attributes>

 standard-elements
 <condition expressionLanguage="anyURI"?>
 ... bool-expr ...
 </condition>

 activity

</while>

Example:

 ...

<variable name="orderDetails" type="xsd:integer"/>

 ...

<while>
 <condition>

 bpws:getVariableData(orderDetails) > 100
 </condition>

 <scope>

 ...

 </scope>

</while>

12.4. Pick

The pick activity awaits the occurrence of one of a set of events and then performs the activity associated
with the event that occurred. The occurrence of the events is often mutually exclusive (the process will either
receive an acceptance message or a rejection message, but not both). If more than one of the events occurs,
then the selection of the activity to perform depends on which event occurred first. If the events occur almost
simultaneously, there is a race and the choice of activity to be performed is dependent on both timing and
implementation.

The form of pick is a set of branches of the form event/activity, and exactly one of the branches will be
selected based on the occurrence of the event associated with it before any others. Note that after the pick
activity has accepted an event for handling, the other events are no longer accepted by that pick. The possible
events are the arrival of some message in the form of the invocation of an inbound one-way or

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

63 of 142 12/2/2004 10:17 AM

request/response operation, or an "alarm" based on a timer (in the sense of an alarm clock).

A special form of pick is used when the creation of an instance of the business process could occur as a result
of receiving one of a set of possible messages. In this case, the pick itself has a createInstance attribute
with a value of yes (the default value of the attribute is no). In such a case, the events in the pick must all be
inbound messages and each of those is equivalent to a receive with the attribute "createInstance=yes".
No alarms are permitted for this special case.

Each pick activity MUST include at least one onMessage event. The semantics of the onMessage event is
identical to a receive activity regarding the optional nature of the variable attribute, the handling of race
conditions, and the constraint regarding simultaneous enablement of conflicting receive actions. For the last
case, recall that the semantics of a process in which two or more receive actions for the same partner link,
portType, operation and correlation set(s) may be simultaneously enabled is undefined (see Providing Web
Service Operations). Enablement of each onMessage handler is equivalent to enablement of the
corresponding receive activity for the purposes of this constraint.

<pick createInstance="yes|no"? standard-attributes>

 standard-elements

 <onMessage partnerLink="ncname" portType="qname"?

 operation="ncname" variable="ncname"?>+

 <correlations>?

 <correlation set="ncname" initiate="yes|no"?/>+

 </correlations>

 activity

 </onMessage>

 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>duration-expr</repeatEvery>?

 activity

 </onAlarm>

</pick>

The pick activity completes when one of the branches is triggered by the occurrence of its associated event
and the corresponding activity completes. The following example shows a typical usage of pick. Such a pick
activity can occur in a loop that is accepting line items for a large order, but a completion action is enabled as
an alternative event.

<pick>

 <onMessage partnerLink="buyer"

 portType="orderEntry"

 operation="inputLineItem"

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

64 of 142 12/2/2004 10:17 AM

 variable="lineItem">

 <!-- activity to add line item to order -->

 </onMessage>

 <onMessage partnerLink="buyer"

 portType="orderEntry"

 operation="orderComplete"

 variable="completionDetail">

 <!-- activity to perform order completion -->

 </onMessage>

<!-- set an alarm to go after 3 days and 10 hours -->

 <onAlarm>
 <for>'P3DT10H'</for>

 <!-- handle timeout for order completion -->

 </onAlarm>

</pick>

12.5. Flow

The flow construct provides concurrency and synchronization. The grammar for flow is:

<flow standard-attributes>

 standard-elements

 <links>?

 <link name="ncname">+

 </links>

 activity+

</flow>

The standard attributes and standard elements for activities nested within a flow are especially significant
because the standard attributes and elements primarily exist to provide flow-related semantics to activities.

The most fundamental semantic effect of grouping a set of activities in a flow is to enable concurrency. A
flow completes when all of the activities in the flow have completed. Completion of an activity in a flow
includes the possibility that it will be skipped if its enabling condition turns out to be false (see
Dead-Path-Elimination). Thus the simplest use of flow is equivalent to a nested concurrency construct. In
the following example, the two invoke activities are enabled to start concurrently as soon as the flow is
started. The completion of the flow occurs after both the seller and the shipper respond (assuming the invoke
operations were synchronous request/response). The bank is invoked only after the flow completes.

<sequence>

 <flow>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

65 of 142 12/2/2004 10:17 AM

 <invoke partnerLink="Seller" .../>

 <invoke partnerLink="Shipper" .../>

 </flow>

 <invoke partnerLink="Bank" .../>

</sequence>

More generally, a flow activity creates a set of concurrent activities directly nested within it. It further enables
expression of synchronization dependencies between activities that are nested directly or indirectly within it.
The link construct is used to express these synchronization dependencies. A link has a name and all the
links of a flow activity MUST be defined separately within the flow activity. The standard source and target
elements of an activity are used to link two activities. The source of the link MUST specify a source element
specifying the link's name and the target of the link MUST specify a target element specifying the link's
name. The source activity MAY also specify a transition condition by including a <transitionCondition>
element under the <source> element. If the transition condition is omitted, it is deemed to be present with a
value of "true". Targets MAY also specify a joinCondition by including the <joinCondition> element. This
is described further in 12.5.1. Every link declared within a flow activity MUST have exactly one activity
within the flow as its source and exactly one activity within the flow as its target. Moreover, at most one link
may be used to connect two activities; that is, two different links MUST NOT share the same source and
target activities. Finally, the source and target of a link MAY be nested arbitrarily deeply within the
(structured) activities that are directly nested within the flow, except for the boundary-crossing restrictions.

The following example shows that links can cross the boundaries of structured activities. There is a link
named "CtoD" that starts at activity C in sequence Y and ends at activity D, which is directly nested in the
enclosing flow. The example further illustrates that sequence X must be performed prior to sequence Y
because X is the source of the link named "XtoY" that is targeted at sequence Y.

<flow>

 <links>

 <link name="XtoY"/>

 <link name="CtoD"/>

 </links>

 <sequence name="X">
 <sources>
 <source linkName="XtoY"/>
 </sources>
 <invoke name="A" .../>

 <invoke name="B" .../>

 </sequence>

 <sequence name"Y">
 <targets>
 <target linkName="XtoY"/>
 </targets>
 <receive name="C" ...>
 <sources>
 <source linkName="CtoD"/>
 </sources>

 </receive>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

66 of 142 12/2/2004 10:17 AM

 <invoke name="E" .../>

 </sequence>

 <invoke partnerLink="D" ...>
 <targets>
 <target linkName="CtoD"/>
 </targets>

 </invoke>

</flow>

A link is said to cross the boundary of a syntactic construct if the source or target activity for the link is nested
within the construct while the link is declared outside the construct. Note that it is possible for a link to cross
the boundary of a syntactic construct even in those cases where both the source and the target activities are
nested within the same construct (so long as the link is declared outside that construct).A link MUST NOT
cross the boundary of a while activity, a serializable scope, an event handler or a compensation handler (see
Scopes for the specification of event, fault and compensation handlers). In addition, a link that crosses a
fault-handler boundary MUST be outbound, that is, it MUST have its source activity within the fault handler
and its target activity within a scope that encloses the scope associated with the fault handler. Finally, a link
MUST NOT create a control cycle, that is, the source activity must not have the target activity as a logically
preceding activity, where an activity A logically precedes an activity B if the initiation of B semantically
requires the completion of A. Therefore, directed graphs created by links are always acyclic.

12.5.1. Link Semantics

In the rest of this section, the links for which activity A is the source will be referred to as A's outgoing links,
and the links for which activity A is the target will be referred to as A's incoming links. If activity X is the
target of a link that has activity Y as the source, X has a synchronization dependency on Y.

Every activity that is the target of a link has an implicit or explicit “join condition” associated with it. This
applies even when an activity has exactly one incoming link. Explicit join conditions are provided by the
<joinCondition> element under the <targets> element. If the explicit join condition is missing, the implicit
condition requires the status of at least one incoming link to be positive (see below for an explanation of
link status). A join condition is a Boolean expression (see Expressions). The expression for a join condition
for an activity MUST be constructed using only Boolean operators and the bpws:getLinkStatus function
(see Expressions) applied to incoming links at the activity.

Without considering links, the semantics of business processes, scopes, and structured activities determine
when a given activity is ready to start. For example, the second activity in a sequence is ready to start as soon
as the first activity completes. An activity that defines the behavior of a branch in a switch is ready to start if
and when that branch is chosen. Similarly, an activity nested directly within a flow is ready to start as soon as
the flow itself starts, because flow is fundamentally a concurrency construct.

If an activity that is ready to start in this sense has incoming links, then it does not start until the status of all
its incoming links has been determined and the (implicit or explicit) join condition associated with the activity
has been evaluated.

The link status is a tri-state flag associated with each declared link. This flag may be in the following three
states: "positive", "negative", or "unset". Each time a certain flow activity is activated, the link status of all
the links declared in that activity is "unset", that is the lifetime of the status of a link is exactly the lifetime of
the flow activity within which it is declared.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

67 of 142 12/2/2004 10:17 AM

The precise semantics of link status evaluation are as follows:

When activity A completes, the following steps are performed to determine the effect of the synchronization
links on other activities:

· Determine the status of all outgoing links for A. The status will be either positive or negative. To
determine the status for each link its transitionCondition is evaluated. Note that the evaluation is
carried out with the actual values of the variables referenced in the transition condition expression. If
some of the variables are modified in a concurrent behavior path, the result of the transition condition
evaluation may depend nondeterministically on the timing of behavior among concurrent activities. If
the value is true the status is positive, otherwise it is negative.

NOTE: The transition condition is evaluated after the activity has completed. If an error occurs while
evaluating the transition condition, that error does not affect the completion status of the activity and is
handled by the source activity's enclosing scope. If the target of the link is outside the source activity's
enclosing scope then the status of the link is negative (see the Dead-Path-Elimination section
below). If the target is within the enclosing scope the status is irrelevant since the scope has faulted. It
is important to keep in mind that in the case of source activities that are themselves scopes, completion
does not necessarily imply successful completion. A scope may suffer an internal fault and yet
complete (unsuccessfully) if there is a corresponding fault handler associated with the scope and that
fault handler completes without throwing a fault. In the case of a link L with a scope S as its source
activity, a fault resulting from an error in evaluating the transition condition for L would be propagated
to the enclosing scope for S.

· For each activity B that has a synchronization dependency on A, check whether:

o B is ready to start (except for its dependency on incoming links) in the sense described above.

o The status of all incoming links for B has been determined.

· If both these conditions are true, then evaluate the join condition for B. If the join condition evaluates
to false, a standard bpws:joinFailure fault is thrown, otherwise activity B is started.

If, during the performance of structured activity S, the semantics of S dictate that activity X nested within S
will not be performed as part of the behavior of S, then the status of all outgoing links from X is set to
negative. An example is an activity within a branch that is not taken in a switch activity, or activities that were
not completed in a scope in which processing was halted due to a fault, including a bpws:joinFailure (see
Scopes and Compensation Handlers).

Note that onEvent event handlers are permitted to have several simultaneously active instances. A private
copy of all process data and control behavior defined within an event handler is provided to each instance of
an event handler. This includes the behavior of links defined within an event handler. Each instance of the
event handler must independently evaluate the status of the link as needed.

Note that in general multiple target activities will be enabled based on the completion of an activity with
multiple outgoing links; because of this, such an activity is often called a fork activity.

When a flow activity is nested within another flow activity, the inner flow activity may define a link with the
same name as in the enclosing flow activity. When this happens, a source or target reference to such link from
an activity matches the innermost link visible to the activity and hides all other links with the same name.
Consider the following example:

 <flow name="F1">

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

68 of 142 12/2/2004 10:17 AM

 <links>

 <link name="L1"/> <!-- L1 is defined here and ... -->

 </links>
 <sequence name="S1">
 <flow name="F2">
 <links>
 <link name="L1"/> <!-- ... here -->
 </links>
 <sequence name="S2">

 <receive name="R">

 <sources>
 <source linkName="L1"/> <!—This matches F2.L1 and not F1.L1 -->
 </sources>
 </receive>
 <invoke name="I" .../>
 </sequence>
 ...
 </flow>
 ...
 </sequence>
 ...

</flow>A link with the name “L1” is defined in the flow “F1” as well in its nested flow “F2”. The source
reference to link with the name L1 from the receive activity R, matches the link L1 defined in F2 as it is the
inner most link with that name visible to the acitivity.

12.5.2. Dead-Path-Elimination (DPE)

In cases where the control flow is largely defined by networks of links, the normal interpretation of a false join
condition for activity A is that A should not be performed, rather than that a fault has occurred. Moreover,
there is a need to propagate the consequences of this decision by assigning a negative status to the outgoing
links for A. BPEL4WS makes it easy to express these semantics by using an attribute suppressJoinFailure
on an activity. A value of "yes" for this attribute has the effect of suppressing the bpws:joinFailure fault for
the activity and all nested activities, except where the effect is overridden by using the suppressJoinFailure
attribute with a value of "no" in a nested activity. Suppressing the bpws:joinFailure is equivalent to the
fault being logically caught by a special default handler attached to an implicit scope that immediately
encloses just the activity with the join condition. The default handler behavior is an empty activity, that is, the
handler suppresses the fault and does nothing about it. However, because the activity with the join condition
was not performed, its outgoing links are automatically assigned a negative status according to the rules of
Link Semantics. Thus within an activity with the value of the suppressJoinFailure attribute set to "yes",
the semantics of a join condition that evaluates to false are to skip the associated activity and to set the status
of all outgoing links from that activity to negative. This is called dead-pathelimination because in a graph-like
interpretation of networks of links with transition conditions, these semantics have the effect of propagating
negative link status transitively along entire paths formed by consecutive links until a join condition is reached
that evaluates to true.

Note that the name of the implicit scope (created to suppress the bpws:joinFailure) that immediately encloses
an activity with a join condition is exactly the same as the name of the activity itself. In case this is an invoke
activity (see Invoking Web Service Operations) with an inlined fault or compensation handler, the implicit
scope for the fault and compensation handlers is merged with the implicit scope described here, which adds an
additional fault handler for the bpws:joinFailure.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

69 of 142 12/2/2004 10:17 AM

The default value of the suppressJoinFailure attribute of the global process element is "no". This is to
avoid unexpected behavior in simple use cases where complex graphs are not involved and links without
transition conditions are used for synchronization. The designers of such use cases are likely to be naive about
link semantics and are likely to be surprised by the consequences of a default interpretation that suppresses a
well-defined fault. For example, consider the interpretation of the Initial Example with the
suppressJoinFailure attribute set to "yes". Suppose further that the invocations of the shippingProvider
are enclosed in a scope that provides a fault handler (see Scopes and Fault Handlers). If one of these
invocations were to fault, the status of the outgoing link from the invocation would be negative, and the
(implicit) join condition at the target of the link would be false, but the resulting bpws:joinFailure would be
implicitly suppressed and the target activity would be silently skipped within the sequence instead of causing
the expected fault.

If universal suppression of the bpws:joinFailure is desired, it is easy to achieve by using the
suppressJoinFailure attribute with a value of "yes" in the overall process element at the root of the
business process definition.

12.5.3. Flow Graph Example

In the following example, the activities with the names getBuyerInformation, getSellerInformation,
settleTrade, confirmBuyer, and confirmSeller are nodes of a graph defined through the flow activity.
The following links are defined:

· The link named buyToSettle starts at getBuyerInformation (specified through the corresponding
source element nested in getBuyerInformation) and ends at settleTrade (specified through the
corresponding target element nested in settleTrade).

· The link named sellToSettle starts at getSellerInformation and ends at settleTrade.

· The link named toBuyConfirm starts at settleTrade and ends at confirmBuyer.

· The link named toSellConfirm starts at settleTrade and ends at confirmSeller.

Based on the graph structure defined by the flow, the activities getBuyerInformation and
getSellerInformation can run concurrently. The settleTrade activity is not performed before both of
these activities are completed. After settleTrade completes the two activities, confirmBuyer and
confirmSeller are performed concurrently again.

<flow suppressJoinFailure="yes">

 <links>

 <link name="buyToSettle"/>

 <link name="sellToSettle"/>

 <link name="toBuyConfirm"/>

 <link name="toSellConfirm"/>

 </links>

 <receive name="getBuyerInformation">

 <sources>
 <source linkName="buyToSettle"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

70 of 142 12/2/2004 10:17 AM

 </sources>

 </receive>

 <receive name="getSellerInformation">

 <sources>
 <source linkName="sellToSettle"/>

 </sources>

 </receive>

 <invoke name="settleTrade"
 <targets>

 <joinCondition>
 bpws:getLinkStatus('buyToSettle') and

 bpws:getLinkStatus('sellToSettle')
 </joinCondition>

 <target linkName="buyToSettle"/>

 <target linkName="sellToSettle"/>
 </targets>

 <sources>
 <source linkName="toBuyConfirm"/>

 <source linkName="toSellConfirm"/>

 </sources>

 </invoke>

 <reply name="confirmBuyer">

 <targets>
 <target linkName="toBuyConfirm"/>

 </targets>

 </reply>

 <reply name="confirmSeller">

 <targets>
 <target linkName="toSellConfirm"/>

 </targets>

 </reply>

</flow>

12.5.4. Links and Structured Activities

Links can cross the boundaries of structured activities. When this happens, care must be taken to ensure the
intended behavior of the business process. The following example illustrates the behavior when links target
activities within structured constructs.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

71 of 142 12/2/2004 10:17 AM

The following flow is intended to perform the sequence of activities A, B, and C. Activity B has a
synchronization dependency on the two activities X and Y outside of the sequence, that is, B is a target of
links from X and Y. The join condition at B is missing, and therefore implicitly assumed to be the default,
which is the disjunction of the status of the links targeted to B. The condition is therefore true if at least one of
the incoming links has a positive status. In this case that condition reduces to the Boolean condition P(X,B)
OR P(Y,B) based on the transition conditions on the links.

In the flow, the sequence S and the two receive activities X and Y are all concurrently enabled to start when
the flow starts. Within S, after activity A is completed, B cannot start until the status of its incoming links
from X and Y is determined and the implicit join condition is evaluated. When activities X and Y complete,
the join condition for B is evaluated.

Suppose that the expression P(X,B) OR P(Y,B) evaluates to false. In this case, the standard fault
bpws:joinFailure will be thrown, because the environmental attribute suppressJoinFailure is set to "no".
Thus the behavior of the flow is interrupted and neither B nor C will be performed.

If, on the other hand, the environmental attribute suppressJoinFailure is set to "yes", then B will be
skipped but C will be performed because the bpws:joinFailure will be suppressed by the implicit scope
associated with B.

<flow suppressJoinFailure="no">

 <links>

 <link name="XtoB"/>

 <link name="YtoB"/>

 </links>

 <sequence name="S">

 <receive name="A" ...>

 ...

 </receive>

 <receive name="B" ...>

 <targets>
 <target linkName="XtoB"/>

 <target linkName="YtoB"/>

 </targets>

 ...

 </receive>

 <receive name="C" ...>

 ...

 </receive>

 </sequence>

 <receive name="X" ...>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

72 of 142 12/2/2004 10:17 AM

 <sources>
 <source linkName="XtoB">
 <transitionCondition>P(X,B)</transitionCondition>
 </source>

 </sources> ...

 </receive>

 <receive name="Y" ...>

 <sources>
 <source linkName="YtoB">
 <transitionCondition>P(Y,B)</transitionCondition>
 </source>

 </sources>

 ...

 </receive>

</flow>

Finally, assume that the preceding flow is slightly rewritten by linking A, B, and C through links (with
transition conditions with constant truth-value of "true") instead of putting them into a sequence. Now, B and
thus C will always be performed. Because the join condition is a disjunction and the transition condition of
link AtoB is the constant "true", the join condition will always evaluate to "true", independent from the values
of P(X,B) and P(Y,B).

<flow suppressJoinFailure="no">

 <links>

 <link name="AtoB"/>

 <link name="BtoC"/>

 <link name="XtoB"/>

 <link name="YtoB"/>

 </links>

 <receive name="A">

 <sources>
 <source linkName="AtoB"/>

 </sources>

 </receive>

 <receive name="B">

 <targets>
 <target linkName="AtoB"/>

 <target linkName="XtoB"/>

 <target linkName="YtoB"/>
 </targets>
 <sources>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

73 of 142 12/2/2004 10:17 AM

 <source linkName="BtoC"/>
 </sources>

 </receive>

 <receive name="C">

 <targets>
 <target linkName="BtoC"/>

 </targets>

 </receive>

 <receive name="X">

 <sources>
 <source linkName="XtoB">
 <transitionCondition>P(X,B)</transitionCondition>
 </source>

 </sources>

 </receive>

 <receive name="Y">

 <sources>
 <source linkName="YtoB">
 <transitionCondition>P(Y,B)</transitionCondition>
 </source>

 </sources>

 </receive>

</flow>

13. Scopes
The behavior context for each activity is provided by a scope. A scope can provide fault handlers, event
handlers, a compensation handler, data variables, partner links, and correlation sets.

All scope elements are syntactically optional and some have default semantics when omitted. The syntax and
semantics of scopes are explained in detail below.

<scope variableAccessSerializable="yes|no" standard-attributes>

 standard-elements
 <partnerLinks>?
 ...

 </partnerLinks>

 <variables>?

 ...

 </variables>

 <correlationSets>?

 ...

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

74 of 142 12/2/2004 10:17 AM

 </correlationSets>

 <faultHandlers>?

 ...

 </faultHandlers>

 <compensationHandler>?

 ...

 </compensationHandler>

 <eventHandlers>?

 ...

 </eventHandlers>

 activity

</scope>

Each scope has a primary activity that defines its normal behavior. The primary activity can be a complex
structured activity, with many nested activities within it to arbitrary depth. The scope is shared by all the
nested activities. In the following example, the scope has a primary flow activity, which contains two
concurrent invoke activities. Either of the invoke activities can receive one or more types of fault responses.
The fault handlers for the scope are shared by both invoke activities and can be used to catch the faults caused
by the possible fault responses.

<scope>

 <faultHandlers>?

 ...

 </faultHandlers>

 <flow>

 <invoke partnerLink="Seller" portType="Sell:Purchasing"

 operation="SyncPurchase"

 inputVariable="sendPO"

 outputVariable="getResponse"/>

 <invoke partnerLink="Shipper"

 portType="Ship:TransportOrders"

 operation="OrderShipment"

 inputVariable="sendShipOrder"

 outputVariable="shipAck"/>

 </flow>

</scope>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

75 of 142 12/2/2004 10:17 AM

13.1. Data Handling and Partner Links

A scope can declare variables and parter links that live only within the scope. For further information see the
chapter about Data Handling and Partner Links respectively.

13.2. Error Handling in Business Processes

Business processes are often of long duration and use asynchronous messages for communication. They also
manipulate sensitive business data in back-end databases and line-of-business applications. Error handling in
this environment is both difficult and business critical. The use of ACID transactions is usually limited to local
updates because of trust issues and because locks and isolation cannot be maintained for the long periods
during which technical and business errors and fault conditions can occur in a business process instance. As a
result, the overall business transaction can fail or be cancelled after many ACID transactions have been
committed during its progress, and the partial work done must be undone as best as possible. Error handling in
business processes therefore relies heavily on the well-known concept of compensation, that is,
application-specific activities that attempt to reverse the effects of a previous activity that was carried out as
part of a larger unit of work that is being abandoned. There is a long history of work in this area regarding the
use of Sagas [Sagas] and open nested transactions [Trends]. BPEL4WS provides a variant of such a
compensation protocol by providing the ability for flexible control of the reversal. BPEL4WS achieves this by
providing the ability to define fault handling and compensation in an application-specific manner, resulting in
a feature called Long-Running (Business) Transactions (LRTs).

It is important to understand that the notion of LRT described here is meant to be used purely within a
platform-specific implementation. There is no prescribed requirement that the business process be distributed
or span multiple vendors and platforms. Additionally, it is important to understand that the notion of LRT
described here is purely local and occurs within a single business process instance. There is no distributed
coordination regarding an agreed-upon outcome among multiple-participant services. The achievement of
distributed agreement is an orthogonal problem outside the scope of BPEL4WS.

As an example of an LRT, consider the planning and fulfillment of a travel itinerary. This can be viewed as an
LRT in which individual service reservations can use nested transactions within the scope of the overall LRT.
If the itinerary is cancelled, the reservation transactions must be compensated for by cancellation transactions,
and the corresponding payment transactions must be compensated accordingly. For ACID transactions in
databases the transaction coordinator(s) and the resources that they control know all of the uncommitted
updates and the order in which they must be reversed, and they are in full control of such reversal. In the case
of business transactions, the compensation behavior is itself a part of the business logic and protocol, and must
be explicitly specified. For example, there might be penalties or fees applied for cancellation of an airline
reservation depending on the class of ticket and the timing. If a payroll advance has been given to pay for the
travel, the reservation must be successfully cancelled before the payroll advance for it can be reversed in the
form of a payroll deduction. This means the compensation actions might need to run in the same order as the
original transactions, which is not the standard or default in most transaction systems. Using activity scopes as
the definition of logical units of work, the LRT feature of BPEL4WS addresses these requirements.

13.3. Compensation Handlers

Scopes can delineate a part of the behavior that is meant to be reversible in an applicationdefined way by a
compensation handler. Scopes with compensation and fault handlers can be nested without constraint to
arbitrary depth.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

76 of 142 12/2/2004 10:17 AM

13.3.1. Defining a Compensation Handler

A compensation handler is simply a wrapper for a compensation activity as shown below.

<compensationHandler>?

 activity

</compensationHandler>

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke activity to inline
a compensation handler rather than explicitly using an immediately enclosing scope. For example:

<invoke partnerLink="Seller" portType="SP:Purchasing"

 operation="SyncPurchase"

 inputVariable="sendPO"

 outputVariable="getResponse">

 <correlations>

 <correlation set="PurchaseOrder" initiate="yes"

 pattern="out"/>

 </correlations>

 <compensationHandler>

 <invoke partnerLink="Seller" portType="SP:Purchasing"

 operation="CancelPurchase"

 inputVariable="getResponse"

 outputVariable="getConfirmation">

 <correlations>

 <correlation set="PurchaseOrder" pattern="out"/>

 </correlations>

 </invoke>

 </compensationHandler>

</invoke>

In this example, the original invoke activity makes a purchase and in case that purchase needs to be
compensated, the compensationHandler invokes a cancellation operation at the same port of the same
partnerLink, using the response to the purchase request as the input.

In standard syntax (without the invoke shortcut) this example would be equivalently expressed as follows:

<scope>

 <compensationHandler>

 <invoke partnerLink="Seller" portType="SP:Purchasing"

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

77 of 142 12/2/2004 10:17 AM

 operation="CancelPurchase"

 inputVariable="getResponse"

 outputVariable="getConfirmation">

 <correlations>

 <correlation set="PurchaseOrder" pattern="out"/>

 </correlations>

 </invoke>

 </compensationHandler>

 <invoke partnerLink="Seller" portType="SP:Purchasing"

 operation="SyncPurchase"

 inputVariable="sendPO"

 outputVariable="getResponse">

 <correlations>

 <correlation set="PurchaseOrder" initiate="yes"

 pattern="out"/>

 </correlations>

 </invoke>

</scope>

Note that the variable getResponse is not local to the scope to which the compensation handler is attached
and can be reused later for other purposes before compensation for this scope is invoked. The current state of
non-local variables is available in compensation handlers as explained more fully below. But assuming the
compensation handler needs the specific response to the invoke operation that is being reversed, that response
would most conveniently be stored in a variable local to the scope, e.g., by making getResponse local to the
scope.

13.3.2. Process State Usage in Compensation Handlers

Compensation handlers always use the current state of the process, specifically the state of variables declared
in their associated scope and all enclosing scopes. The variables include partnerLinks at the process scope.
Compensation handlers are able to both get and set the values of all such variables. Other parts of the process
will see the changes made to shared variables by compensation handlers, and conversely, compensation
handlers will see changes made to shared variables by other parts of the process, including situations where a
compensation handler runs concurrently with other parts of the process. Compensation handlers will need to
use serializable scopes when they touch state in enclosing scopes to avoid interference if concurrency is
expected.

The current state of the process consists of the current local state of all scopes that have been started. This
includes scopes that have completed successfully but for which the associated compensation handler has not
been invoked. For successfully completed uncompensated scopes their current local state is the state as it was
at the time of completion. Such scopes are in suspended animation because their compensation handlers are
still available and therefore their execution may continue in compensation mode. Note that a scope may have

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

78 of 142 12/2/2004 10:17 AM

been executed several times in a loop, and the current state of the process includes the state of each
successfully completed (and uncompensated) iteration through the scope. We refer to the preserved state of a
successfully completed uncompensated scope as a scope snapshot.

The behavior of a compensation handler can be thought of as an optional continuation of the behavior of the
associated scope and as such its usage of variables is similar to the usage that occurred in the body of the
scope itself, including update actions. This includes variables in both the local scope and all enclosing
scopes. For the variables in the local scope, the compensation handler starts with the scope snapshot. Note
that the compensation handler may itself have been called from an enclosing compensation handler. It will
then share the continuation of the state of the enclosing scope that its caller is using. In the picture below
showing three nested scopes S1, S2 and S3, and their compensation handlers C1, C2, C3, and failure handlers
F1 and F2, we may have an error handling call stack F1->C2->C3. In that case C3 will share the state of S2
as it is being seen and used by C2, and the current state of the uncompleted scope S1.

13.3.3. Invoking a Compensation Handler

The compensation handler can be invoked by using the compensate activity, which names the scope for
which the compensation is to be performed, that is, the scope whose compensation handler is to be invoked. A
compensation handler for a scope is available for invocation only when the scope completes normally.
Invoking a compensation handler that has not been installed is equivalent to the empty activity (it is a
no-op)—this ensures that fault handlers do not have to rely on state to determine which nested scopes have
completed successfully. The semantics of a process in which an installed compensation handler is invoked
more than once is undefined.

Note that in case an invoke activity has a compensation handler defined inline, the name of the activity is the
name of the scope to be used in the compensate activity.

<compensate scope="ncname"? standard-attributes>

 standard-elements

</compensate>

The ability to explicitly invoke the compensate activity is the underpinning of the application-controlled
error-handling framework of BPEL4WS. This activity can be used only in the following parts of a business
process:

· In a fault handler of the scope that immediately encloses the scope for which compensation is to be
performed.

· In the compensation handler of the scope that immediately encloses the scope for which compensation
is to be performed.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

79 of 142 12/2/2004 10:17 AM

Example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the instances of the compensation handlers in the
successive iterations are invoked in reverse order.

If the compensation handler for a scope is absent, the default compensation handler invokes the compensation
handlers for the immediately enclosed scopes in the reverse order of the completion of those scopes.

The <compensate/> form, in which the scope name is omitted in a compensate activity, causes this default
behavior to be invoked explicitly. This is useful when an enclosing fault or compensation handler needs to
perform additional work, such as updating variables or sending external notifications, in addition to
performing default compensation for inner scopes. Note that the <compensate/> activity in a fault or
compensation handler attached to scope S causes the default-order invocation of compensation handlers for
completed scopes directly nested within S. The use of this activity can be mixed with any other user-specified
behavior except the explicit invocation of <compensate scope="Sx"/> for scope Sx nested directly within S.
Explicit invocation of compensation for such a scope nested within S disables the availability of default-order
compensation, as expected.

13.4. Fault Handlers

Fault handling in a business process can be thought of as a mode switch from the normal processing in a
scope. Fault handling in BPEL4WS is always treated as "reverse work" in that its sole aim is to undo the
partial and unsuccessful work of a scope in which a fault has occurred. The completion of the activity of a
fault handler, even when it does not rethrow the fault handled, is never considered successful completion of
the attached scope and compensation is never enabled for a scope that has had an associated fault handler
invoked.

The optional fault handlers attached to a scope provide a way to define a set of custom fault-handling
activities, syntactically defined as catch activities. Each catch activity is defined to intercept a specific kind
of fault, defined by a globally unique fault QName and a variable for the data associated with the fault. If the
fault name is missing, then the catch will intercept all faults with the right type of fault data. The fault variable
is specified using the faultVariable attribute in a catch handler. The variable is deemed to be declared by
virtue of being used as the value of this attribute and is local to the fault handler. It is not visible or usable
outside the fault handler in which it is declared. The fault variable is optional because a fault might not have
additional data associated with it.

A fault response to an invoke activity is one source of faults, with obvious name and data aspects based on the
definition of the fault in the WSDL operation. A programmatic throw activity is another source, again with
explicitly given name and data. The core concepts and exexutable pattern extensions of BPEL4WS define
several standard faults with their names and data, and there might be other platform-specific faults such as
communication failures that can occur in a business process instance. A catchAll clause can be added to
catch any fault not caught by a more specific catch handler.

<faultHandlers>?

 <!-- there must be at least one fault handler or default -->

 <catch faultName="qname"? faultVariable="ncname"?
 faultMessageType="qname"?>*

 activity

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

80 of 142 12/2/2004 10:17 AM

 </catch>

 <catchAll>?

 activity

 </catchAll>

</faultHandlers>

The faultMessageType is technically redundant when the faultName used is derived from a WSDL 1.1 fault
message defined as a fault response to a synchronous operation, since the WSDL fault response has a defined
message type. However, the faultName may reflect a purely internal custom fault in a process, or the
faultName may be missing. In such cases, the faultVariable, which is local to the fault handler and declared
by its occurrence in the catch element, will not have a defined type. To avoid this possibility, although the
faultName, faultVariable and faultMessageType attributes are all optional, the faultVariable and
faultMessageType declarations go together, i.e., they must either both be present or both absent. Moreover,
the faultName and faultVariable attributes cannot both be absent.

Because of the flexibility allowed in expressing the faults that a catch activity can handle, it is possible for a
fault to match more than one fault handler. The following rules are used to select the catch activity that will
process a fault:

· If the fault has no associated fault data, a catch activity that specifies a matching faultName value
and no faultVariable attribute will be selected if present. Otherwise, the default catchAll handler is
selected if present.

· If the fault has associated fault data, a catch activity specifying a matching faultName value and a
faultVariable whose type (WSDL message type) matches the type of the fault’s data will be selected
if present. Otherwise, a catch activity with no specified faultName and with a faultVariable whose
type matches the type of the fault data will be selected if present. Otherwise, the default catchAll
handler is selected if present.

If no catch or catchall is selected, the fault is not caught by the current scope and is rethrown to the
immediately enclosing scope (see Implicit Fault and Compensation Handlers for a more complete
description of the default fault and compensation handling behavior). If the fault occurs in (or is rethrown to)
the global process scope, and there is no matching fault handler for the fault at the global level, the process
terminates abnormally, as though a terminate activity had been performed.

Consider the following example:

<faulthandlers>

 <catch faultName="x:foo">

 <empty/>

 </catch>

 <catch faultVariable="bar" faultMessageType="tns:barType">

 <empty/>

 </catch>

 <catch faultName="x:foo" faultVariable="bar"

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

81 of 142 12/2/2004 10:17 AM

 faultMessageType="tns:barType">

 <empty/>

 </catch>

 <catchAll>

 <empty/>

 </catchAll>

</faulthandlers>

Assume that a fault named ”x:foo” is thrown. The first catch will be selected if the fault carries no fault data.
If there is fault data associated with the fault, the third catch will be selected if and only if the type of the
fault’s data matches the type of variable “bar”, otherwise the default catchall handler will be selected.
Finally, a fault with a fault variable whose type matches the type of “bar” and whose name is not “x:foo” will
be processed by the second catch. All other faults will be processed by the default catchall handler.

A fault caught by a <catchAll> handler or by a custom fault handler that does not specify a faultName, may
need to be rethrown. However the <throw> activity that requires a faultName can not be used here as the
faultName is not available. Hence all fault handlers are allowed to rethrow the original fault with a <rethrow>
activity that is defined to be an empty element. An example is shown below:

<faulthandlers>

 <catch faultName="x:foo">

 <empty/>

 </catch>

 <catch faultVariable="bar" faultMessageType="y:myMsgType">

 ….
 <rethrow/> <!- rethow of original fault -->

 </catch>

 <catchAll>

 ….
 <rethrow/> <!- rethow of original fault -->

 </catchAll>

</faulthandlers>

Although the use of compensation can be a key aspect of the behavior of fault handlers, each handler performs
an arbitrary activity, which can even be <empty/>. When a fault handler is present, it is in charge of handling
the fault. It might rethrow the same fault or a different one, or it might handle the fault by performing cleanup
and allowing normal processing to continue in the enclosing scope.

A scope in which a fault occurred is considered to have ended abnormally, whether or not the fault was caught
and handled without rethrow by a fault handler. A compensation handler is never installed for a scope in
which a fault occurred.

When a fault handler for scope S handles a fault that occurred in S without rethrowing, links that have S as the
source will be subject to regular evaluation of status after the fault has been handled, because processing in the

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

82 of 142 12/2/2004 10:17 AM

enclosing scope is meant to be continued.

As explained in Invoking Web Service Operations, there is a special shortcut for the invoke activity to inline
fault handlers rather than explicitly using an immediately enclosing scope. For example:

<invoke partnerLink="Seller"

 portType="SP:Purchasing"

 operation="SyncPurchase"

 inputVariable="sendPO"

 outputVariable="getResponse">

 <catch faultName="SP:POFault" faultVariable="POFault"
 faultMessageType="lns:orderFaultType">

 <!-- handle the fault -->

 </catch>

</invoke>

In this example, the original invoke makes a purchase and a fault handler is inlined to handle the case where
the purchase request results in a fault response. In standard syntax (without the invoke shortcut), this example
would be equivalently expressed as follows:

<scope>

 <faultHandlers>

 <catch faultName="SP:POFault" faultVariable="POFault">

 faultMessageType="lns:orderFaultType">

 <!-- handle the fault -->

 </catch>

 </faultHandlers>

 <invoke partnerLink="Seller"

 portType="SP:Purchasing"

 operation="SyncPurchase"

 inputVariable="sendPO"

 outputVariable="getResponse">

 </invoke>

</scope>

The compensation handler for scope C becomes available for invocation by the fault and compensation
handlers for its immediately enclosing scope exactly when scope C completes normally. A fault handler for
scope C is available for invocation exactly when C has commenced but has not been completed. If the scope
faults before completion, then the appropriate fault handler gets control and all other fault handlers are
uninstalled. It is never possible to run more than one fault handler for the same scope under any
circumstances.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

83 of 142 12/2/2004 10:17 AM

Note that availability also applies to Implicit Fault and Compensation Handlers.

The behavior of a fault handler for scope C begins by implicitly terminating all activities that are currently
active and directly enclosed within C (see Semantics of Activity Termination). The termination of these
activities occurs before the specific behavior of a fault handler is started. This also applies to the implicit fault
handlers described below. The activity of a fault handler is deemed to occur in the scope to which the fault
handler is attached.

13.4.1. Implicit Fault and Compensation Handlers

Because the visibility of scope names and therefore of compensation handlers is limited to the next enclosing
scope, the ability to compensate a scope would be lost if the enclosing scope did not have a compensation
handler or was missing a fault handler for some fault. Because many faults are not programmatic or the result
of operation invocation, it is not reasonable to expect an explicit handler for every fault in every scope.
BPEL4WS therefore provides default compensation and fault handlers when these are missing. The behavior
of these implicit handlers is to run available compensation handlers in the reverse order of completion of the
corresponding scopes. This is defined in more precise terms below.

Whenever a fault handler (for any fault) or the compensation handler is missing for any given scope, they are
implicitly created with the following behavior:

Fault handler:

· Run all available compensation handlers for immediately enclosed scopes in the reverse order of
completion of the corresponding scopes.

· Rethrow the fault to the next enclosing scope.

Compensation handler:

· Run all available compensation handlers for immediately enclosed scopes in the reverse order of
completion of the corresponding scopes.

13.4.2. Semantics of Activity Termination

As stated above, the behavior of a fault handler for scope C begins by implicitly terminating all activities
directly enclosed within C that are currently active. The following paragraphs define what this means for all
BPEL4WS activity types.

The assign activities are sufficiently short-lived that they are allowed to complete rather than being
interrupted when termination is forced. The evaluation of expressions when already started is also allowed to
complete. Each wait, receive, reply and invoke activity is interrupted and terminated prematurely. When
a synchronous invoke activity (corresponding to a request/reply operation) is interrupted and terminated
prematurely, the response (if received) for such a terminated activity is silently discarded. The notion of
termination does not apply to empty, terminate, and throw.

All structured activity behavior is interrupted. The iteration of while is interrupted and termination is applied
to the loop body activity. If switch has selected a branch, then the termination is applied to the activity of the
selected branch. The same applies to pick. If either of these activities has not yet selected a branch, then the
switch and the pick are terminated immediately. The sequence and flow constructs are terminated by
terminating their behavior and applying termination to all nested activities currently active within them.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

84 of 142 12/2/2004 10:17 AM

Scopes provide the ability to control the semantics of forced termination to some degree. When the activity
being terminated is in fact a scope, the behavior of the scope is interrupted and the fault handler for the
standard bpws:forcedTermination fault is run. Note that this applies only if the scope is in normal
processing mode. If the scope has already experienced an internal fault and invoked a fault handler, then as
stated above, all other fault handlers including the handler for bpws:forcedTermination are uninstalled, and
the forced termination has no effect. The already active fault handler is allowed to complete.

The fault handler for the bpws:forcedTermination fault is designed like other fault handlers, but this fault
handler cannot rethrow any fault. Even if an uncaught fault occurs during its behavior, it is not rethrown to the
next enclosing scope. This is because the enclosing scope has already faulted, which is what is causing the
forced termination of the nested scope.

In other respects this is a normal fault handler. Its behavior begins by implicitly (recursively) terminating all
activities directly enclosed within its associated scope that are currently active. It can invoke compensate
activities. And when it is missing, it is provided by using the same implicit behavior that is used for all other
implicit fault handlers.

Note that forced termination of nested scopes occurs in innermost-first order as a result of the rule (quoted
above) that the behavior of any fault handler begins by implicitly (recursively) terminating all activities
directly enclosed within its associated scope that are currently active.

13.4.3. Handling Faults That Occur Inside Fault and Compensation Handlers

Compensation handlers are always invoked directly or indirectly as part of the processing of some fault
handler E. The behavior of a compensation handler invoked by E can cause a fault to be thrown. Such a fault,
if uncaught by scopes within the chain of compensation handlers invoked by E, is treated as being a fault
within E.

If a fault occurs in a fault handler E for a scope C, the fault can be caught through the use of a scope within
E. If the fault is not caught by a scope within E, it is immediately thrown to the parent scope of C and the
behavior of E terminates prematurely. In effect, no distinction is made between faults that E rethrows
deliberately and faults that occur as undesired faults in E.

13.5. Event Handlers

The whole process as well as each scope can be associated with a set of event handlers that are invoked
concurrently if the corresponding event occurs. The actions taken within an event handler can be any type of
activity, such as sequence or flow, but invocation of compensation handlers using the <compensate/> activity
is not permitted. As stated earlier, the <compensate/> activity can only be used in fault and compensation
handlers. There are two types of events. First, events can be incoming messages that correspond to a
request/response or one-way operation in WSDL. For instance, a status query is likely to be a request/response
operation, whereas a cancellation may be a oneway operation. Second, events can be alarms, that go off after
user-set times. The grammar for the set of event handlers associated with a scope or process is

<eventHandlers>?

 <!-- there must be at least one onEvent or onAlarm handler -->

 <onEvent partnerLink="ncname" portType="qname"?

 operation="ncname" messageType="qname"

 variable="ncname">*

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

85 of 142 12/2/2004 10:17 AM

 <correlations>?

 <correlation set="ncname" initiate="yes|no"/>+

 </correlations>

 activity

 </onEvent>

 <onAlarm>*
 (<for expressionLanguage="anyURI"?>duration-expr</for> |
 <until expressionLanguage="anyURI"?>deadline-expr</until>)?
 <repeatEvery expressionLanguage="anyURI"?>duration-expr</repeatEvery>?

 activity

 </onAlarm>

</eventHandlers>

The portType attribute on <onEvent> is optional. If the portType attribute is included for readability, the value
of the portType attribute MUST match the portType value implied by the combination of the partnerLink
specified and the associated role.

It is important to emphasize that event handlers are considered a part of the normal behavior of the scope,
unlike fault and compensation handlers.

13.5.1. Message Events

The onEvent tag indicates that the specified event waits for a message to arrive. The interpretation of this
tag and its attributes is very similar to a receive activity. The partnerLink attribute defines the partner link on
which the request is expected to arrive; the partnerLink must be defined in the partnerLinks section.
The portType and operation attributes define the appropriate port type and operation that is invoked by the
partner in order to cause the event. The variable attribute identifies a variable local to the eventHandler that
will contain the message received from the partner. The messageType attribute specifies the type of the
variable by referencing a message type definition using its QName. The type of the variable (as specified by
the messageType attribute) must be the same as the type of the input message defined by operation referenced
by the operation attribute. The variable and messageType attributes constitute the declaration of a variable of
that name and type within an implicit scope associated with the event handler. Upon receipt of the input
message the event handler assigns the input message to the variable before proceeding to perform the event
handler activity. Since the variable is declared within a scope associated with the event handler, each instance
of the event handler (whether executed serially or concurrently relative to other instances) contains a private
copy of the variable, which is not shared with other instances.

Note that the operation specified in the onEvent handler may be either an asynchronous (oneway) or a
synchronous (request/response) operation. In the latter case the event handler is expected to use a reply
activity to send the response. The usage and interpretation of correlation is exactly the same as for receive
activities. It should also be noted that an event cannot create a process instance.

The semantics of the onEvent event is identical to a receive activity regarding the optional nature of the
variable attribute, the handling of race conditions, and the constraint regarding simultaneous enablement of
conflicting receive actions. For the last case, recall that the semantics of a process in which two or more
receive actions for the same partner link, portType, operation and correlation set(s) may be simultaneously
enabled is undefined (see Providing Web Service Operations). Enablement of each onEvent event handler

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

86 of 142 12/2/2004 10:17 AM

is equivalent to enablement of the corresponding receive activity for the purposes of this constraint.

As specified in the grammar above, event handlers for message events are not permitted to carry the
createInstance attribute. A business process instance cannot be created by a message event. This is because the
event handler cannot be enabled until the instance is created.

When the message constituting an event arrives, the activity specified in the corresponding handler is carried
out. The key point to understand is that the business process is enabled to receive such messages concurrently
with the normal activity of the scope to which the event handler is attached. This allows such events to occur
(or not occur) at arbitrary times and an arbitrary number of times while the corresponding scope (which may
be the entire business process instance) is active.

The following example shows the usage of an event handler to support the termination of a process instance
through an external message. Alternatively, the event handler could throw a fault to cause the ongoing work to
be undone and compensated.

<process name=“orderCar”>

 ...

 <eventHandlers>

 <onEvent partnerLink=“buyer”

 portType=“ns:car”

 operation=“cancel”
 messageType=“ns:cancelOrder”

 variable=“cancelDetails”>

 <terminate/>

 </onEvent>

 ...

 </eventHandlers>

 ...

</process>

In this example, if the buyer invokes the cancel operation on the port type car, the terminate activity is carried
out, which results in immediate termination of the process instance without the ongoing work being undone
and compensated. And this event is attached to the global process scope and is therefore available during the
lifetime of the entire business process instance.

13.5.2. Alarm events

The onAlarm tag marks a timeout event. The for expression specifies the duration after which the event will
be signaled. The clock for the duration starts at the point in time when the associated scope starts. The
alternative until expression specifies the specific point in time when the alarm will be fired. Only one of
these two expressions may occur in any onAlarm event. The third alternate repeatEvery expression also
specifies a duration. When the repeatEvery expression is specified, the alarm will be fired repeatedly once
each time the duration period expires, while the associate scope is active. The repeatEvery expression may
be specified on its own or with either the for or the until expression. If the repeatEvery expression is

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

87 of 142 12/2/2004 10:17 AM

specified alone, the clock for the very first duration starts at the point in time when the associated scope starts.
If the repeatEvery is expression is specified with either the for or the until expression, the first alarm is not
fired until the time specified in the for or until expression expires; thereafter it is fired repeatedly at the
interval specified by the repeatEvery expression.

13.5.3. Enablement of Events

The event handlers associated with a scope are enabled when the associated scope starts .

If the event handler is associated with the global process scope, the event handler is enabled as soon as the
process instance is created. The process instance is created when the first receive activity that provides for
the creation of a process instance (indicated via the createInstance attribute set to "yes") has received and
processed the corresponding message. This allows the alarm time for a global alarm event to be specified
using the data provided within the message that creates a process instance, as shown in the following example:

<wsdl:definitions

 targetNamespace="http://www.example.com/wsdl/exmple"

 ...>

 <wsdl:message name=“orderDetails”>

 <part name=“processDuration” type=“xsd:duration”/>

 </wsdl:message>

</wsdl:definitions>

The message type above is used in

<process name=“orderCar”

 xmlns:def="http://www.example.com/wsdl/example" ...>

 ...

 <eventHandlers>

 <onAlarm>
 <for>bpws:getVariableData(orderDetails,processDuration) </for>

 ...

 </onAlarm>

 ...

 </eventHandlers>

 ...

 <variable name=“orderDetails” messageType="def:orderDetails"/>

 </variable>

 ...

 <receive name=“getOrder”

 partnerLink=“buyer”

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

88 of 142 12/2/2004 10:17 AM

 portType=“car”

 operation=“order”

 variable=“orderDetails”

 createInstance=“yes”/>

</process>

The onAlarm tag specifies a timer event that is fired when the duration specified in the processDuration
field in the orderDetails variable is exceeded. The value of the field is provided via the getOrder activity
that receives message containing the order details and causes the creation of a process instance for that order.

13.5.4. Processing of Events

13.5.4.1. ALARM EVENTS

The counting of time for an alarm event with a duration starts when the enclosing event handler is activated.
An alarm event goes off when the specified time or duration has been reached. Except for the repeatEvery
alarm, an alarm event is carried out at most once while the corresponding scope is active; the event is disabled
for the rest of the activity of the corresponding scope after it has occurred and the specified processing has
been carried out. The repeatEvery alarm event is created repeatedly each time the duration expires, while the
associated scope is active.

13.5.4.2. MESSAGE EVENTS

A message event occurs when the appropriate message is received on the specified partner link using the
specified port type and operation. When such an event occurs, the corresponding activity is carried out.
However, the event remains enabled, even for concurrent use. Thus a particular message event can occur
multiple times while the corresponding scope is active. See below for concurrency considerations.

13.5.5. Disablement of Events

All event handlers associated with a scope are disabled when the normal processing of the scope is complete.
The already dispatched event handlers are allowed to complete. The completion of the scope as a whole is
delayed until all active event handlers have completed.

13.5.6. Fault Handling Considerations

As we stated above, event handlers are considered a part of the normal processing of the scope, i.e., active
event handlers are concurrent activities within the scope. Faults within event handlers are therefore faults
within the associated scope. Moreover, if a fault occurs within a scope, the behavior of the fault handler
begins by implicitly terminating all activities directly enclosed within the scope that are currently active. This
includes the activities within currently active event handlers.

13.5.7. Concurrency Considerations

Multiple onEvent and onAlarm events can occur concurrently and they are treated as concurrent activities
even if they are request/response events representing the same partner link, port type, operation and

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

89 of 142 12/2/2004 10:17 AM

correlation sets. The constraint that there can be at most one outstanding synchronous request on a given
partner link at a given port type and operation applies here as well (see Providing Web Service Operations).
Concurrent invocation of event handlers necessarily relies heavily on the use of serializable scoping to ensure
consistent access to shared variables.

Note that, unlike onAlarm event handlers, individual onEvent event handlers are permitted to have several
simultaneously active instances. A private copy of all process data and control behavior defined within an
event handler is provided to each instance of an event handler. This includes the behavior of links defined
within an event handler. Each instance of the event handler must independently evaluate the status of the link
as needed.

13.6. Serializable Scopes

When the variableAccessSerializable attribute is set to "yes", the scope provides concurrency control in
governing access to shared variables. Such a scope is called a serializable scope. Serializable scopes must
not be nested. A scope marked with variableAccessSerializable="yes" must not contain other
serializable scopes, but may contain scopes that are not marked as serializable. In the latter case, access to
shared variables from within such enclosed scopes is controlled by the enclosing serializable scope.

Suppose two concurrent serializable scopes, S1 and S2, access a common set of variables (external to them)
for read or write operations. The semantics of serializability ensure that the results of their behavior would be
no different if all conflicting activities (read/write and write/write activities) on any shared variable were
conceptually reordered in such a way that either all activities within S1 are completed before those in S2 or
vice versa. The actual mechanisms used to ensure serializability are implementation dependent.

Note that serialization of variable access cannot lead to internal deadlock in a BPEL process instance. The
reason being that, conceptually, a serializable scope is not started until it can gain sufficiently exclusive access
to all the non-local variables it needs.

The use of error handling features in a serializable scope is governed by the following rules:

· The fault handlers for a serializable scope share the serializability domain of the associated scope, that
is, in case a fault occurs in a serializable scope, the behavior of the fault handler is considered part of
the serializable behavior (in commonly used implementation terms, locks are not released when
making the transition to the fault handler). This is because the repair of the fault needs a shared
isolation environment to provide predictable behavior.

· The compensation handler for a serializable scope does not share the serializability domain of the
associated scope.

For a serializable scope with a compensation handler, the creation of the scope snapshot for compensation is
part of the serializable behavior. In other words, it is always possible to reorder behavior steps as if the scope
had sufficiently exclusive access to the shared variables all the way to completion, including the creation of
the scope snapshot. Note that the serialization semantics does not extend to the compensation handler.It is
useful to note that the semantics of serializable scopes are very similar to the standard isolation level
"serializable" used in database transactions.

Finally, if a serializable scope has an event handler associated with it, no scope within the body of the event
handler can be serializable. If on the other hand a non-serializable scope has an event handler associated with
it, a scope in the body of the event handler can be serializable.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

90 of 142 12/2/2004 10:17 AM

14. Extensions for Executable Processes
In this section we define the essential extensions required for the use of BPEL4WS to define executable
processes. The extensions are grouped by the core concepts to which they apply.

14.1. Expressions

These extensions refer to the Expressions feature of BPEL4WS.

The first extension defines a standard fault for errorneous use of the XPath 1.0 function defined for extracting
global property values from variables.

bpws:getVariableProperty ('variableName', 'propertyName')

The first argument names the source variable for the data and the second is the qualified name (QName) of the
global property to select from that variable (see Message Properties). If the given property does not appear in
any of the parts of the variable's message type or the given property definition selects a node set of a size other
than one, then the standard fault bpws:selectionFailure MUST be thrown by a compliant implementation.

The second extension defines an additional XPath 1.0 function usable only in executable processes. This
function extracts arbitrary values from variables.

bpws:getVariableData ('variableName', 'partName'?, 'locationPath'?)

The first argument names the source variable for the data, the second and third arguments are optional. When
present, the second names the part to select from that variable, and the third optional argument, when present,
provides an absolute location path (with '/' meaning the root of the document fragment representing the entire
part) to identify the root of a subtree within the document fragment representing the part.

When only the first argument is present, the function extracts the value of the variable, which in this case must
be defined using an XML Schema simple type or element. Otherwise, the return value of this function is a
node set containing the single node representing either an entire part of a message type(if the second argument
is present and the third argument is absent) or the result of the selection based on the locationPath (if both
optional arguments are present). If the given locationPath selects a node set of a size other than one during
execution, then the standard fault bpws:selectionFailure MUST be thrown by a compliant implementation.

14.2. Variables

These extensions apply to the Variables feature of BPEL4WS.

An attempt during process execution to use any part of a variable before it is initialized MUST result in the
standard bpws:uninitializedVariable fault.

14.3. Assignment

These extensions apply to the Assignment feature of BPEL4WS.

The first extension adds an additional assignment form.

In the first from-spec and to-spec variants of assignment, an optional <query> element may be used in
executable processes, yielding the forms

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

91 of 142 12/2/2004 10:17 AM

<from variable="ncname" part="ncname"?/>
 <query queryLanguage="anyURI"?>?
 ... query expression ...
 </query>
</from>

<to variable="ncname" part="ncname"?>
 <query queryLanguage="anyURI"?>?
 ... query expression ...
 </query>
</to>

The <query> element contains a query string to identify a single value within a source or target variable
part. BPEL4WS provides an extensible mechanism for the language used in these queries. The default query
language is specified by the queryLanguage attribute of the <process> element. The queryLanguage attribute
on the <query> element MAY be used to override the default query language for a specific <query> element.
Compliant implementations of the current version of BPEL4WS MUST support the use of XPath 1.0 as the
query language. XPath 1.0 is indicated by the default value of the queryLanguage attribute, which is:

http://www.w3.org/TR/1999/REC-xpath-19991116

For XPath 1.0, the value of the query expression MUST be an absolute locationPath (with '/' meaning the
root of the document fragment representing the entire part). It is used to identify the root of a subtree within
the document fragment representing the part. For XPath 1.0, when the message part is described by a Schema
element definition, the qualified element name provides the first location step in the XPath expression (after
the '/' representing the root of the fragment.) When the part is described by a Schema complex type definition,
the first location step in the XPath expression contains the (unqualified) name of the message part. This is
equivalent to the assumption that the document fragment corresponding to the message part has a top element
with the same local name as the part name and a null namespace URI. The usage of the query string in this last
case is illustrated by the next example. Consider the WSDL message defined in the WSDL fragment below.

<definitions name="messages"

 targetNamespace="http://example.com/taxMessages.wsdl"

 xmlns:potyp="http://example.com/POTypes.xsd"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <xsd:schema targetNamespace="http://example.com/POTypes.xsd">

 <xsd:complexType name="PurchaseOrder">

 <xsd:element name="CID" type="xsd:string"/>
 <xsd:element name="order" type="xsd:int"/>

 </xsd:complexType>
 <xsd:schema>
 </types>

 <!-- define a WSDL application message -->
 <message name="OrderInfo">
 <part name="PO" type="potyp:PurchaseOrder"/>
 </message>
 ...
</definitions>

To reference the field “CID” within a variable typed according to this WSDL message, a from specification

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

92 of 142 12/2/2004 10:17 AM

would need to include the variable and part names as well as a <query> element. The first location step in the
query expression is then given by the name of the message part, “PO”:

<from variable="Order" part="PO">
 <query>
 /PO/CID
 <query/>
</from>

The location path MUST select exactly one node. If the location path selects zero nodes or more than one
node during execution, then the standard fault bpws:selectionFailure MUST be thrown by a compliant
implementation.

The second extension defines a standard fault for violation of type matching constraints. If any of the
matching constraints defined in the section Type Compatibility in Assignment is violated during execution,
the standard fault bpws:mismatchedAssignmentFailure MUST be thrown by a compliant implementation.

The second extension defines the behavior of assignment in the presence of failure during execution. An
important characteristic of assignment in BPEL4WS is that assignment activities are atomic. If there is any
fault during the execution of an assignment activity, the destination variables are left unchanged as they were
at the start of the activity. This applies regardless of the number of assignment elements within the overall
assignment activity.

14.4. Correlation

After a correlation set is initiated, the values of the properties for a correlation set must be identical for all
the messages in all the operations that carry the correlation set and occur within the corresponding scope until
its completion. This correlation consistency constraint must be observed in all cases of initiate values.
The legal values of the initiate attribute are: "yes", "rendezvous", "no", where "no" is the default value.

· When the initiate attribute is set to "yes", the related activity MUST attempt to initiate the
correlation set.

o If the correlation set is already initiated and the initiate attribute is set to "yes", the standard
fault bpws:correlationViolation MUST be thrown by a compliant implementation.

· When the initiate attribute is set to "rendezvous", the related activity MUST attempt to initiate the
correlation set, if the correlation set is NOT initiated yet.

o If the correlation set is already initiated and the initiate attribute is set to "rendezvous", the
correlation consistency constraint MUST be observed. If the constraint is violated, the standard
fault bpws:correlationViolation MUST be thrown by a compliant implementation.

· When the initiate attribute is set to "no", the related activity MUST NOT attempt to initiate the
correlation set.

o If an activity with the initiate attribute set to "no" attempts to use a correlation set that has
not been previously initiated, the standard fault bpws:correlationViolation MUST be
thrown by a compliant implementation.

o If the correlation set is already initiated and the initiate attribute is set to "no", the
correlation consistency constraint MUST to be observed. If the constraint is violated, the
standard fault bpws:correlationViolation MUST be thrown by a compliant
implementation.

If multiple correlation sets are used in a message activity, then the consistency constraint MUST be observed
for all correlation sets used. If one of initiated correlation set does NOT match with the message, the standard
fault bpws:correlationViolation MUST be thrown by a compliant implementation.

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

93 of 142 12/2/2004 10:17 AM

14.5. Web Service Operations

The first extension defines a standard fault for the case where multiple conflicting receive activities create
ambiguity about message delivery.

If during the execution of a business process instance, two or more receive activities for the same partner link,
portType, operation and correlation set(s) are in fact simultaneously enabled, then the standard fault
bpws:conflictingReceive MUST be thrown by a compliant implementation.

The second extension defines a standard fault for the case where multiple outstanding synchronous requests
create an ambiguity about response correlation.

If more than one outstanding synchronous request on a specific partner link for a particular portType,
operation and correlation set(s) is outstanding simultaneously during the execution of a business process
instance, then the standard fault bpws:conflictingRequest MUST be thrown by a compliant
implementation. Note that this is semantically different from the bpws:conflictingReceive, because it is
possible to create the conflictingRequest by consecutively receiving the same request on a specific partner
link for a particular portType, operation and correlation set(s). If a reply activity is being carried out during
the execution of a business process instance and no synchronous request is outstanding for the specified
partnerLink, portType, operation and correlation set(s), then the standard fault bpws:invalidReply MUST be
thrown by a compliant implementation.

The third extension specifies that the inputVariable attribute for invoke and the variable attribute for
receive and reply activities are not optional in executable processes. In addition, the outputVariable
attribute is not optional for invokewhen the operation concerned is a request/response operation.

The fourth extension concerns incompleted inbound requests. A receive activity for an inbound
request/response operation is said to be open if that activity has been performed and no corresponding
reply activity has been performed. If the process instance reaches the end of its behavior, and one or
more receive activities remain open, then the standard fault bpws:missingReply MUST be thrown by
a compliant implementation.

14.6. Terminating a Service Instance

The terminate activity can be used to immediately terminate the behavior of a business process instance
within which the terminate activity is performed. All currently running activities MUST be terminated as
soon as possible without any fault handling or compensation behavior.

<terminate standard-attributes>

 standard-elements

</terminate>

14.7. Compensation

If an installed compensation handler is invoked more than once during the execution of a process instance, a
compliant implementation MUST throw the standard bpws:repeatedCompensation fault.

14.8. Event Handlers

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

94 of 142 12/2/2004 10:17 AM

This extension explains the relationship of onEvent event handlers to the standard fault extension in Web
Service Operations for multiple conflicting receive activities create ambiguity about message delivery
Enablement of an onEvent event handler is equivalent to enablement of a receive activity for the semantics of
the occurrence of the bpws:conflictingReceiveFault fault (see Providing Web Service Operations).

The variable (inputVariable) attribute of onEvent handlers is not optional. In addition, the
outputVariable attribute is not optional for invoke when the operation concerned is a request/response
operation.

15. Extensions for Business Protocols
There are two extensions for the business protocol usage pattern.

15.1. Variables

This extension clarifies the rules regarding variable initialization in abstract processes. Unlike executable
processes, variables in abstract processes do not need to be fully initialized before being used since some
computation is left implicit in abstract processes. However, since message properties are meant to represent
"transparent," i.e., protocol relevant data, BPEL4WS requires that all message properties in a message must be
initialized before the message can be used, for example before the variable of the message is used as the
inputVariable in a Web Service operation invocation.

In many cases, the level of abstraction appropriate in abstract processes makes it unnecessary to use message
variables in web service interaction activities, when the intent is to simply constrain the sequencing of such
activities, and the actual message data is not relevant. To simplify these common cases it is permissible, in
abstract processes, to omit the variable reference attributes from the <invoke/>, <receive/>, and <reply/>
activities. The meaning of such an omission must be stated clearly. If no variable is specified for an incoming
message, then the abstract process may not refer subsequently to the message or its properties (if any). If the
variable reference is omitted for an outgoing message, then any properties of the message are considered to
have been initialized through opaque assignment, as described in the following section.

When variable references are omitted, correlation set references may be interpreted as follows:

· For an incoming message which initializes a correlation set (initiator case), the correlation set is
deemed to be initialized.

· For an outgoing message which initializes a correlation set (initiator case), the correlation tokens
(which are message properties) are initialized through implicit opaque assignment as described above.

· For an outgoing message which references but does not initialize a correlation set (follower case), the
proper initialization of the message properties is implicit. In this case, the already initialized
correlation set itself provides the token values for the outgoing message.

Note that it is not possible to mix the variable-using and variable-less web service interaction styles freely. If a
correlation set is initialized by rule 1 or 2 above, then outgoing messages in the same correlated exchange
must also refrain from referencing a message variable. This restriction applies because it is not possible to
initialize the properties of the outgoing messages from the correlation set alone.

15.2. Assignment

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

95 of 142 12/2/2004 10:17 AM

This extension adds a special form of assignment to abstract processes to permit the modeling of the
non-deterministic effects of private computation on external protocol behavior.

Abstract processes add a sixth from-spec variant to allow an opaque value to be assigned based on
non-deterministic choice, yielding the form:

<from opaque="yes">

The value of this form in the interpretation of assignment is chosen nondeterministically from the XSD value
space of the target. It can only be used in assignments where the "tospec" refers to a variable property. Two
distinct use cases exist for opaque assignment. If the value space of the target is suitably constrained, then
opaque assignment is a useful way to describe behavioral alternatives where the mechanism for choosing the
alternative is private or otherwise external to the process specification. For this use case, the XSD type of the
target property must be one of the following:

· xsd:boolean

· A type derived from xsd:string and restricted by enumeration

· A type derived from any XSD integral numeric type restricted by either enumeration or a combination
of minExclusive or minInclusive and maxExclusive or maxInclusive

A second use cases exists for target properties which don’t meet these requirements. When the target’s value
space is not constrained, it is useful to think of opaque assignment as providing a unique identifier.
Semantically, each opaque assignment of this form should be considered to generate a unique value similar to
a GUID. This style of opaque assignment is most useful to model the initialization of properties used for
correlation.

A process that uses assignment of opaque values is clearly not executable in the normal sense. However, it is
feasible to emulate possible execution traces using assignment of random values of the correct type.

16. Examples
16.1. Shipping Service

This example presents the use of a BPEL4WS abstract process to describe a rudimentary shipping service.
This service handles the shipment of orders. From the service point of view, orders are composed of a number
of items. The shipping service offers two types of shipment: shipments where the items are held and shipped
together and shipment where the items are shipped piecemeal until all of the order is accounted for.

16.1.1. Service Description

The context for the shipping service is a two-party interaction between a customer and the service. This is
modeled in the following partnerLinkType definition:

<plnk:partnerLinkType name="shippingLT">

 <plnk:role name="shippingService">

 <plnk:portType name="shippingServicePT"/>

 </plnk:role>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

96 of 142 12/2/2004 10:17 AM

 <plnk:role name="shippingServiceCustomer">

 <plnk:portType name="shippingServiceCustomerPT"/>

 </plnk:role>

</plnk:partnerLinkType>

The corresponding message and portType definitions are as follows:

<wsdl:definitions

 targetNameSpace="http://ship.org/wsdl/shipping"

 xmlns:ship= ...>

 <! -- import ship schema -- >

 <message name="shippingRequestMsg">

 <part name="shipOrder" type="ship:shipOrder"/>

 </message>

 <message name="shippingNoticeMsg">

 <part name="shipNotice" type="ship:shipNotice"/>

 </message>

 <portType name="shippingServicePT">

 <operation name="shippingRequest">

 <input message="shippingRequestMsg"/>

 </operation>

 </portType>

 <portType name="shippingServiceCustomerPT">

 <operation name="shippingNotice">

 <input message="shippingNoticeMsg"/>

 </operation>

 </portType>

</wsdl:definitions>

16.1.2. Message Properties

The properties relevant to the service behavior are:

· The ship order ID that is used to correlate the ship notice(s) with the ship order (shipOrderID)

· Whether the order is to be shipped complete or not (shipComplete)

· The total number of items in the order (itemsTotal)

· The number of items referred to in a ship notice so that, when partial shipments are acceptable, we can

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

97 of 142 12/2/2004 10:17 AM

use this, along with itemsTotal, to track the overall fulfillment of the shipment (itemsCount)

Here are the definitions for the properties and their aliases:

<wsdl:definitions

 targetNamespace="http://example.com/shipProps/"

 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:ship = “http://example.com/ship.xsd”>

 <!-- types used in abstract processes are required to be finite domains.

 The itemCountType is restricted by range -->

 <wsdl:types>

 <xsd:schema targetNamespace =“http://example.com/ship.xsd”>

 <xsd:simpleType name="itemCountType">

 <xsd:restriction base="xsd:int">

 <xsd:minInclusive value="1"/>

 <xsd:maxInclusive value="50"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:schema>

 </wsdl:types>

 <bpws:property name="shipOrderID" type="xsd:int"/>

 <bpws:property name="shipComplete" type="xsd:boolean"/>

 <bpws:property name="itemsTotal" type="ship:itemCountType"/>

 <bpws:property name="itemsCount" type="ship:itemCountType"/>

 <bpws:property name="numItemsShipped" type="ship:itemCountType"/>

<bpws:propertyAlias propertyName="tns:shipOrderID"

 messageType="sns:shippingRequestMsg"

 part="shipOrder">

 <query>
 /shipOrder/ShipOrderRequestHeader/shipOrderID
 </query>

</bpws:propertyAlias>

<bpws:propertyAlias propertyName="tns:shipOrderID"

 messageType="sns:shippingNoticeMsg"

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

98 of 142 12/2/2004 10:17 AM

 part="shipNotice">

 <query>
 /shipNotice/ShipNoticeHeader/shipOrderID

 </query>

</bpws:propertyAlias>

<bpws:propertyAlias propertyName="tns:shipComplete"

 messageType="sns:shippingRequestMsg"

 part="shipOrder">

 <query>
 /shipOrder/ShipOrderRequestHeader/shipComplete

 </query>

</bpws:propertyAlias>

<bpws:propertyAlias propertyName="tns:itemsTotal"

 messageType="sns:shippingRequestMsg"

 part="shipOrder">

 <query>
 /shipOrder/ShipOrderRequestHeader/itemsTotal

 </query>

</bpws:propertyAlias>

<bpws:propertyAlias propertyName="tns:itemsCount"

 messageType="sns:shippingNoticeMsg"

 part="shipNotice">

 <query>
 /shipNotice/ShipNoticeHeader/itemsCount
 </query>

</bpws:propertyAlias>

</wsdl:definitions>

16.1.3. Process

Next is the process definition. For brevity, the abstract process definition does not include, for example, the
handling of error conditions (business or otherwise) that a complete description would account for. The rough
outline of the process is as follows:

receive shipOrder

switch

 case shipComplete

 send shipNotice

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

99 of 142 12/2/2004 10:17 AM

 otherwise

 itemsShipped := 0

 while itemsShipped < itemsTotal

 itemsCount := opaque // non-deterministic assignment

 // corresponding e.g. to

 // internal interaction with

 // back-end system

 send shipNotice

 itemsShipped = itemsShipped + itemsCount

And here is the more complete version:

<process name="shippingService"

 targetNamespace="http://acme.com/shipping"

 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"

 xmlns:sns="http://ship.org/wsdl/shipping"

 xmlns:props="http://example.com/shipProps/"

 abstractProcess="yes">

<partnerLinks>

 <partnerLink name="customer"

 partnerLinkType="sns:shippingLT"

 partnerRole="shippingServiceCustomer"

 myRole="shippingService"/>

</partnerLinks>

<variables>

 <variable name="shipRequest"

 messageType="sns:shippingRequestMsg"/>

 <variable name="shipNotice"

 messageType="sns:shippingNoticeMsg"/>

 <variable name="itemsShipped"

 type="props:itemCountType"/>

</variables>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

100 of 142 12/2/2004 10:17 AM

<correlationSets>

 <correlationSet name="shipOrder"

 properties="props:shipOrderID"/>

</correlationSets>

<sequence>

 <receive partnerLink="customer"

 portType="sns:shippingServicePT"

 operation="shippingRequest"

 variable="shipRequest">

 <correlations>

 <correlation set="shipOrder" initiate="yes"/>

 </correlations>

 </receive>

 <switch>

 <case>
 <condition>

bpws:getVariableProperty('shipRequest','props:shipComplete')
 </condition>

 <sequence>

 <assign>

 <copy>

 <from variable="shipRequest" property="props:itemsCount"/>

 <to variable="shipNotice" property="props:itemsCount"/>

 </copy>

 </assign>

 <invoke partnerLink="customer"

 portType="sns:shippingServiceCustomerPT"

 operation="shippingNotice"

 inputVariable="shipNotice">

 <correlations>

 <correlation set="shipOrder" pattern="out"/>

 </correlations>

 </invoke>

 </sequence>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

101 of 142 12/2/2004 10:17 AM

 </case>

 <otherwise>

 <sequence>

 <assign>

 <copy>

 <from><expression>"0"</expression></from>

 <to variable="itemsShipped"/>

 </copy>

 </assign>

 <while>
 <condition> bpws:getVariableData('itemsShipped') <

 bpws:getVariableProperty('shipRequest','props:itemsTotal')
 </condition>

 <sequence>

 <assign>

 <copy>

 <from opaque="yes"/>

 <to variable="shipNotice" property="props:itemsCount"/>

 </copy>

 </assign>

 <invoke partnerLink="customer"

 portType="sns:shippingServiceCustomerPT"

 operation="shippingNotice"

 inputVariable="shipNotice">

 <correlations>

 <correlation set="shipOrder" pattern="out"/>

 </correlations>

 </invoke>

 <assign>

 <copy>

 <from> <expression>

 bpws:getVariableData('itemsShipped')

 +

 bpws:getVariableProperty('shipNotice',

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

102 of 142 12/2/2004 10:17 AM

 'props:itemsCount')
 </expression></from>

 <to variable="itemsShipped"/>

 </copy>

 </assign>

 </sequence>

 </while>

 </sequence>

 </otherwise>

 </switch>

</sequence>

</process>

16.2. Loan Approval

This example considers a simple loan approval Web Service that provides a port where customers can send
their requests for loans. Customers of the service send their loan requests, including personal information and
amount being requested. Using this information, the loan service runs a simple process that results in either a
"loan approved" message or a "loan rejected" message. The approval decision can be reached in two different
ways, depending on the amount requested and the risk associated with the requester. For low amounts (less
than $10,000) and low-risk individuals, approval is automatic. For high amounts or medium and high-risk
individuals, each credit request needs to be studied in greater detail. Thus, to process each request, the loan
service uses the functionality provided by two other services. In the streamlined processing available for
lowamount loans, a "risk assessment" service is used to obtain a quick evaluation of the risk associated with
the requesting individual. A full-fledged "loan approval" service (possibly requiring direct involvement of a
loan expert) is used to obtain in-depth assessments of requests when the streamlined approval process does not
apply.

16.2.1. Service Description

The WSDL portType supported by this service is shown below ("loanServicePT" portType). It is assumed that
an independent "loan.org" consortium has provided definitions of the loan service portType as well as the risk
assessment and in-depth loan approval service, so all the required WSDL definitions appear in the same
WSDL document. In particular, the portTypes for the Web Services providing the risk assessment and
approval functions, and all the required partner link types that relate to the use of these portTypes, are also
defined there.

<definitions

 targetNamespace="http://loans.org/wsdl/loan-approval"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:lns=http://loans.org/wsdl/loan-approval
 xmlns:ens = “http://loans.org/xsd/error-messages” >

 <! -- import schemas -- >

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

103 of 142 12/2/2004 10:17 AM

 <message name="creditInformationMessage">

 <part name="firstName" type="xsd:string"/>

 <part name="name" type="xsd:string"/>

 <part name="amount" type="xsd:integer"/>

 </message>

 <message name="approvalMessage">

 <part name="accept" type="xsd:string"/>

 </message>

 <message name="riskAssessmentMessage">

 <part name="level" type="xsd:string"/>

 </message>

 <message name="errorMessage">

 <part name="errorCode" element ="ens:integer"/>

 </message>

 <portType name="loanServicePT">

 <operation name="request">

 <input message="lns:creditInformationMessage"/>

 <output message="lns:approvalMessage"/>

 <fault name="unableToHandleRequest"

 message="lns:errorMessage"/>

 </operation>

 </portType>

 <portType name="riskAssessmentPT">

 <operation name="check">

 <input message="lns:creditInformationMessage"/>

 <output message="lns:riskAssessmentMessage"/>

 <fault name="loanProcessFault"

 message="lns:errorMessage"/>

 </operation>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

104 of 142 12/2/2004 10:17 AM

 </portType>

 <portType name="loanApprovalPT">

 <operation name="approve">

 <input message="lns:creditInformationMessage"/>

 <output message="lns:approvalMessage"/>

 <fault name="loanProcessFault"

 message="lns:errorMessage"/>

 </operation>

 </portType>

 <plnk:partnerLinkType name="loanPartnerLinkType">

 <plnk:role name="loanService">

 <plnk:portType name="lns:loanServicePT"/>

 </plnk:role>

 </plnk:partnerLinkType>

 <plnk:partnerLinkType name="loanApprovalLinkType">

 <plnk:role name="approver">

 <plnk:portType name="lns:loanApprovalPT"/>

 </plnk:role>

 </plnk:partnerLinkType>

 <plnk:partnerLinkType name="riskAssessmentLinkType">

 <plnk:role name="assessor">

 <plnk:portType name="lns:riskAssessmentPT"/>

 </plnk:role>

 </plnk:partnerLinkType>

</definitions>

16.2.2. Process

In the business process defined below, the interaction with the customer is represented by the initial <receive>
and the matching <reply> activities. The use of risk assessment and loan approval services is represented by
<invoke> elements. All these activities are contained within a <flow>, and their (potentially concurrent)
behavior is staged according to the dependencies expressed by corresponding <link> elements. Note that the

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

105 of 142 12/2/2004 10:17 AM

transition conditions attached to the <source> elements of the links determine which links get activated. Dead
path elimination is enabled by the value "yes" taken by the "suppressJoinFailure" attribute on the <process>
element. This implies that as certain links are set false the consequences of this decision can be propagated
and the excecution of certain activities can be skipped.

Because the operations invoked can return a fault of type "loanProcessFault", a fault handler is provided.
When a fault occurs, control is transferred to the fault handler, where a <reply> element is used to return a
fault response of type "unableToHandleRequest" to the loan requester.

<process name="loanApprovalProcess"

 targetNamespace="http://acme.com/loanprocessing"

 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"

 xmlns:lns="http://loans.org/wsdl/loan-approval"

 suppressJoinFailure="yes">

 <partnerLinks>

 <partnerLink name="customer"

 partnerLinkType="lns:loanPartnerLinkType"

 myRole="loanService"/>

 <partnerLink name="approver"

 partnerLinkType="lns:loanApprovalLinkType"

 partnerRole="approver"/>

 <partnerLink name="assessor"

 partnerLinkType="lns:riskAssessmentLinkType"

 partnerRole="assessor"/>

 </partnerLinks>

 <variables>

 <variable name="request"

 messageType="lns:creditInformationMessage"/>

 <variable name="risk"

 messageType="lns:riskAssessmentMessage"/>

 <variable name="approval"

 messageType="lns:approvalMessage"/>

 <variable name="error"

 messageType="lns:errorMessage"/>

 </variables>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

106 of 142 12/2/2004 10:17 AM

 <faultHandlers>

 <catch faultName="lns:loanProcessFault"

 faultVariable="error"
 faultMessageType="lns:errorMessage">

 <reply partnerLink="customer"

 portType="lns:loanServicePT"

 operation="request"

 variable="error"

 faultName="unableToHandleRequest"/>

 </catch>

 </faultHandlers>

 <flow>

 <links>

 <link name="receive-to-assess"/>

 <link name="receive-to-approval"/>

 <link name="approval-to-reply"/>

 <link name="assess-to-setMessage"/>

 <link name="setMessage-to-reply"/>

 <link name="assess-to-approval"/>

 </links>

 <receive partnerLink="customer"

 portType="lns:loanServicePT"

 operation="request"

 variable="request" createInstance="yes">

 <sources>
 <source linkName="receive-to-assess">

 <transitionCondition>

 bpws:getVariableData('request','amount')<
10000
 </transitionCondition>
 </source>

 <source linkName="receive-to-approval">

 <transitionCondition>
 bpws:getVariableData('request','amount')>=10000
 </transitionCondition>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

107 of 142 12/2/2004 10:17 AM

 </source>

 </sources>

 </receive>

 <invoke partnerLink="assessor"

 portType="lns:riskAssessmentPT"

 operation="check"

 inputVariable="request"

 outputVariable="risk">

 <targets>
 <target linkName="receive-to-assess"/>

 </targets>

 <sources>
 <source linkName="assess-to-setMessage">

 <transitionCondition>

 bpws:getVariableData('risk','level')='low'
 </transitionCondition>
 </source>

 <source linkName="assess-to-approval">

 <transitionCondition>

 bpws:getVariableData('risk','level')!='low'
 </transitionCondition>
 </source>

 </sources>

 </invoke>

 <assign>

 <targets>
 <target linkName="assess-to-setMessage"/>

 </targets>

 <sources>
 <source linkName="setMessage-to-reply"/>>

 </sources>

 <copy>

 <from><expression>'yes'</expression></from>

 <to variable="approval" part="accept"/>

 </copy>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

108 of 142 12/2/2004 10:17 AM

 </assign>

 <invoke partnerLink="approver"

 portType="lns:loanApprovalPT"

 operation="approve"

 inputVariable="request"

 outputVariable="approval">

 <targets>
 <target linkName="receive-to-approval"/>

 <target linkName="assess-to-approval"/>

 </targets>

 <sources>
 <source linkName="approval-to-reply" />

 </sources>

 </invoke>

 <reply partnerLink="customer"

 portType="lns:loanServicePT"

 operation="request"

 variable="approval">

 <targets>
 <target linkName="setMessage-to-reply"/>

 <target linkName="approval-to-reply"/>

 </targets>

 </reply>

 </flow>

</process>

16.3. Multiple Start Activities

A process can have multiple activities that create a process instance. An example of this situation is a
(simplified) business process run by an auction house. The purpose of the business process is to collect
information from the buyer and the seller of a particular auction, report the appropriate auction results to some
auction registration service, and then send the registration result back to the seller and the buyer. Thus the
business process starts with two activities, one for receiving the seller information and one for receiving the
buyer information. Because a particular auction is uniquely identified by an auction ID, the seller and the
buyer need to provide this information when sending in their data. The sequence in which the seller and buyer
requests arrive at the auction house is random. Thus, when such a request comes in, it needs to be checked
whether a business process instance exists already or not. If not, a business process instance is created. After

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

109 of 142 12/2/2004 10:17 AM

both requests have been received, the auction registration service is invoked. Because the invocation is done
asynchronously, the auction house passes the auction ID to the auction registration service. The auction
registration service returns this auction ID in its answer so that the auction house can locate the proper
business process instance. Because there are many buyers and sellers, each of them needs to provide their
endpoint references, so that the auction service can respond properly. In addition, the auction house needs to
provide its own endpoint reference to the auction registration service so that the auction registration service
can send the response back to the auction house.

16.3.1. Service Description

The auction service offers two port types, called sellerPT and buyerPT, with appropriate operations for
accepting the data provided by the seller and the buyer. Because the processing time of the business process is
lengthy, the auction service responds to the seller and buyer through appropriate port types, sellerAnswerPT
and buyerAnswerPT. These portTypes are properly combined into two partner link types, one for the seller
called sellerAuctionHouseLT and one for the buyer called buyerAuctionHouseLT.

The auction service needs two port types, called auctionRegistrationPT and auctionRegistrationAnswerPT,
that provide for the invocation of the auction registration service. The port types are part of the appropriate
partner link type auctionHouseAuctionRegistrationServiceLT.

<definitions

 targetNamespace="http://www.auction.com/wsdl/auctionService"

 xmlns:tns="http://www.auction.com/wsdl/auctionService"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- Messages for communication with the seller -->

 <message name="sellerData">

 <part name="creditCardNumber" type="xsd:string"/>

 <part name="shippingCosts" type="xsd:integer"/>

 <part name="auctionId" type="xsd:integer"/>

 <part name="endpointReference" type="bpws:ServiceRefType"/>

 </message>

 <message name="sellerAnswerData">

 <part name="thankYouText" type="xsd:string"/>

 </message>

<!-- Messages for communication with the buyer -->

 <message name="buyerData">

 <part name="creditCardNumber" type="xsd:string"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

110 of 142 12/2/2004 10:17 AM

 <part name="phoneNumber" type="xsd:string"/>

 <part name="ID" type="xsd:integer"/>

 <part name="endpointReference" type="bpws:ServiceRefType"/>

 </message>

 <message name="buyerAnswerData">

 <part name="thankYouText" type="xsd:string"/>

 </message>

<!-- Messages for communication with the auction registration service -->

 <message name="auctionData">

 <part name="auctionId" type="xsd:integer"/>

 <part name="amount" type="xsd:integer"/>

 </message>

 <message name="auctionAnswerData">

 <part name="registrationId" type="xsd:integer"/>

 <part name="auctionId" type="xsd:integer"/>

 <part name="auctionHouseEndpointReference"

 type="bpws:ServiceRefType"/>

 </message>

<!-- Port types for interacting with the seller -->

 <portType name="sellerPT">

 <operation name="submit">

 <input message="tns:sellerData"/>

 </operation>

 </portType>

 <portType name="sellerAnswerPT">

 <operation name="answer">

 <input message="tns:sellerAnswerData"/>

 </operation>

 </portType>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

111 of 142 12/2/2004 10:17 AM

<!-- Port types for interacting with the buyer -->

 <portType name="buyerPT">

 <operation name="submit">

 <input message="tns:buyerData"/>

 </operation>

 </portType>

 <portType name="buyerAnswerPT">

 <operation name="answer">

 <input message="tns:buyerAnswerData"/>

 </operation>

 </portType>

<!-- Port types for interacting with the auction registration service -->

 <portType name="auctionRegistrationPT">

 <operation name="process">

 <input message="tns:auctionData"/>

 </operation>

 </portType>

 <portType name="auctionRegistrationAnswerPT">

 <operation name="answer">

 <input message="tns:auctionAnswerData"/>

 </operation>

 </portType>

<!-- Context type used for locating business process via auction Id -->

 <bpws:property name="auctionId"

 type="xsd:string"/>

 <bpws:propertyAlias propertyName="tns:auctionId"

 messageType="tns:sellerData"

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

112 of 142 12/2/2004 10:17 AM

 part="auctionId"/>

 <bpws:propertyAlias propertyName="tns:auctionId"

 messageType="tns:buyerData"

 part="ID"/>

 <bpws:propertyAlias propertyName="tns:auctionId"

 messageType="tns:auctionData"

 part="auctionId"/>

 <bpws:propertyAlias propertyName="tns:auctionId"

 messageType="tns:auctionAnswerData"

 part="auctionId"/>

<!-- Partner link type for seller/auctionHouse -->

 <plnk:partnerLinkType name="tns:sellerAuctionHouseLT">

 <plnk:role name="auctionHouse">

 <plnk:portType name="tns:sellerPT"/>

 </plnk:role>

 <plnk:role name="seller">

 <plnk:portType name="tns:sellerAnswerPT"/>

 </plnk:role>

 </plnk:partnerLinkType>

<!-- Partner link type for buyer/auctionHouse -->

 <plnk:partnerLinkType name="buyerAuctionHouseLT">

 <plnk:role name="auctionHouse">

 <plnk:portType name="tns:buyerPT"/>

 </plnk:role>

 <plnk:role name="buyer">

 <plnk:portType name="tns:buyerAnswerPT"/>

 </plnk:role>

 </plnk:partnerLinkType>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

113 of 142 12/2/2004 10:17 AM

<!-- Partner link type for auction house/auction

registration service -->

 <plnk:partnerLinkType name="auctionHouseAuctionRegistrationServiceLT">

 <plnk:role name="auctionRegistrationService">

 <plnk:portType name="tns:auctionRegistrationPT"/>

 </plnk:role>

 <plnk:role name="auctionHouse">

 <plnk:portType name="tns:auctionRegistrationAnswerPT"/>

 </plnk:role>

 </plnk:partnerLinkType>

</definitions>

16.3.2. Process

The BPEL4WS definition for the business process offered by the auction house follows:

<process name="auctionService"

 targetNamespace="http://www.auction.com"

 variableAccessSerializable="no"

 xmlns:as="http://www.auction.com/wsdl/auctionService"

 xmlns:addr="http://www.some.org/addressing"

 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/">

<!-- Partners -->

 <partnerLinks>

 <partnerLink name="seller"

 partnerLinkType="as:sellerAuctionHouseLT"

 myRole="auctionHouse" partnerRole="seller"/>

 <partnerLink name="buyer"

 partnerLinkType="as:buyerAuctionHouseLT"

 myRole="auctionHouse" partnerRole="buyer"/>

 <partnerLink name="auctionRegistrationService"

 partnerLinkType=

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

114 of 142 12/2/2004 10:17 AM

 "as:auctionHouseAuctionRegistrationServiceLT"

 myRole="auctionHouse"

 partnerRole="auctionRegistrationService"/>

 </partnerLinks>

<!-- Variables -->

 <variables>

 <variable name="sellerData" messageType="as:sellerData"/>

 <variable name="sellerAnswerData" messageType="as:sellerAnswerData"/>

 <variable name="buyerData" messageType="as:buyerData"/>

 <variable name="buyerAnswerData" messageType="as:buyerAnswerData"/>

 <variable name="auctionData"

 messageType="as:auctionData"/>

 <variable name="auctionAnswerData"

 messageType="as:auctionAnswerData"/>

 </variables>

<!-- Correlation set for correlating buyer and seller request

as well as auction house and auction registration service exchange -->

 <correlationSets>

 <correlationSet name="auctionIdentification"

 properties="as:auctionId"/>

 </correlationSets>

<!-- Structure of the business process -->

 <sequence>

<!-- Process buyer and seller request concurrently

Either one can create a process instance -->

 <flow>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

115 of 142 12/2/2004 10:17 AM

<!-- Process seller request -->

 <receive name="acceptSellerInformation"

 partnerLink="seller"

 portType="as:sellerPT"

 operation="provide"

 variable="sellerData"

 createInstance="yes">

 <correlations>

 <correlation set="auctionIdentification"

 initiate="yes"/>

 </correlations>

 </receive>

<!-- Process buyer request -->

 <receive name="acceptBuyerInformation"

 partnerLink="buyer"

 portType="as:buyerPT"

 operation="provide"

 variable="buyerData"

 createInstance="yes">

 <correlations>

 <correlation set="auctionIdentification"

 initiate="yes"/>

 </correlations>

 </receive>

 </flow>

<!-- Invoke auction registration service by setting the target endpoint

reference and setting my own endpoint reference for call back

and receiving the answer Correlation of request and answer is

via auction Id -->

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

116 of 142 12/2/2004 10:17 AM

 <assign>

 <copy>

 <from>
 <service-ref>

 <addr:EndpointReference>

 <addr:Address>xs:anyURI</addr:Address>

 <addr:ServiceName>as:RegistrationService</addr:ServiceName>

 </addr:EndpointReference>
 </service-ref>

 </from>

 <to partnerLink="auctionRegistrationService"/>

 </copy>

 </assign>

 <assign>

 <copy>

 <from partnerLink="auctionRegistrationService"

 endpointReference="myRole"/>

 <to variable="auctionData"

 part="auctionHouseServiceRef"/>

 </copy>

 </assign>

 <invoke name="registerAuctionResults"

 partnerLink="auctionRegistrationService"

 portType="as:auctionRegistrationPT"

 operation="process"

 inputVariable="auctionData">

 <correlations>

 <correlation set="auctionIdentification"/>

 </correlations>

 </invoke>

 <receive name="receiveAuctionRegistrationInformation"

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

117 of 142 12/2/2004 10:17 AM

 partnerLink="auctionRegistrationService"

 portType="as:auctionRegistrationAnswerPT"

 operation="answer"

 variable="auctionAnswerData">

 <correlations>

 <correlation set="auctionIdentification"/>

 </correlations>

 </receive>

<!-- Send responses back to seller and buyer -->

 <flow>

<!-- Process seller response by setting the seller to

the endpoint reference provided by the seller

and invoking the response -->

 <sequence>

 <assign>

 <copy>

 <from variable="sellerData"

 part="endpointReference"/>

 <to partnerLink="seller"/>

 </copy>

 </assign>

 <invoke name="respondToSeller"

 partnerLink="seller"

 portType="as:sellerAnswerPT"

 operation="answer"

 inputVariable="sellerAnswerData"/>

 </sequence>

<!-- Process buyer response by setting the buyer to

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

118 of 142 12/2/2004 10:17 AM

the endpoint reference provided by the buyer

and invoking the response -->

 <sequence>

 <assign>

 <copy>

 <from variable="buyerData"

 part="endpointReference"/>

 <to partnerLink="buyer"/>

 </copy>

 </assign>

 <invoke name="respondToBuyer"

 partnerLink="buyer"

 portType="as:buyerAnswerPT"

 operation="answer"

 inputVariable="buyerAnswerData"/>

 </sequence>

 </flow>

 </sequence>

</process>

17. Security Considerations
Because messages can be modified or forged, it is strongly RECOMMENDED that business process
implementations use WS-Security to ensure messages have not been modified or forged while in transit or
while residing at destinations. Similarly, invalid or expired messages could be re-used or message headers not
specifically associated with the specific message could be referenced. Consequently, when using WS-Security,
signatures MUST include the semantically significant headers and the message body (as well as any other
relevant data) so that they cannot be independently separated and re-used.

Messaging protocols used to communicate among business processes are subject to various forms of replay
attacks. In addition to the mechanisms listed above, messages SHOULD include a message timestamp (as
described in WS-Security) within the signature. Recipients can use the timestamp information to cache the
most recent messages for a business process and detect duplicate transmissions and prevent potential replay
attacks.

It should also be noted that business process implementations are subject to various forms of denial-of-service
attacks. Implementers of business process execution systems compliant with this specification should take this

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

119 of 142 12/2/2004 10:17 AM

into account.

A. Standard Faults
The following list specifies the standard faults defined within the BPEL4WS specification. All these faults are
named within the BPEL4WS namespace standard prefix bpws: corresponding to URI
"http://schemas.xmlsoap.org/ws/2004/03/business-process/".

Table A.1. Standard Faults

Fault name Reason

selectionFailure Thrown when a selection operation performed either in a function such as
bpws:getVariableData, or in an assignment, encounters an error.

conflictingReceive
Thrown when more than one receive activity or equivalent (currently,
onMessage branch in a pick activity) are enabled simultaneously for the
same partner link, port type, operation and correlation set(s).

conflictingRequest
Thrown when more than one synchronous inbound request on the same
partner link for a particular port type, operation and correlation set(s) are
active.

mismatchedAssignmentFailure Thrown when incompatible types are encountered in an assign activity.
joinFailure Thrown when the join condition of an activity evaluates to false.
forcedTermination Thrown as the result of a fault in an enclosing scope.

correlationViolation Thrown when the contents of the messages that are processed in an invoke,
receive, or reply activity do not match specified correlation information.

uninitializedVariable Thrown when there is an attempt to access the value of an uninitialized part
in a message variable.

repeatedCompensation Thrown when an installed compensation handler is invoked more than once.

invalidReply
Thrown when a reply is sent on a partner link, portType and operation for
which the corresponding receive with the same correlation has not been
carried out.

missingReply Thrown when a receive has been executed, and the process instance reaches
the end of its execution without a corresponding reply having been executed.

B. Attributes and Defaults
The following list specifies the defaults for all standard attributes at the process and activity level. The table
does not include activity-specific attributes (such as partnerLink in an invoke activity).

Table B.1. Attributes and Defaults

Parameter Default
queryLanguage http://www.w3.org/TR/1999/REC-xpath-19991116
expressionLanguage http://www.w3.org/TR/1999/REC-xpath-19991116

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

120 of 142 12/2/2004 10:17 AM

Parameter Default

suppressJoinFailure
no — but for process element only. When this attribute is not specified for an
activity, it inherits its value from its closest enclosing activity, or from the
process if no enclosing activity specifies this attribute.

variableAccessSerializable no
abstractProcess no
initiate no
pattern No default
createInstance no
joinCondition Disjunction of the status of the incoming links
transitionCondition true

C. XSD Schemas
BPEL4WS Schema

[Editor Note: Sept 01, 2004: Before the finalization of the specification, if there are any discrepancies
(caused by manual mistakes) between the XSD Schemas Appendix of the specification and standalone XSD
files, the standalone XSD files would be the primary source of truth. We copy XML Schemas and their
changes into this appendix mainly for the convenience of reviewers.]

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://schemas.xmlsoap.org/ws/2004/03/business-process/" xmlns="h

 <import namespace="http://schemas.xmlsoap.org/wsdl/" schemaLocation="http://schemas.xm
 <import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.w
 <element name="documentation" id="documentation">
 <complexType mixed="true">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <any processContents="lax"/>
 </sequence>
 <attribute name="source" type="anyURI"/>
 <attribute ref="xml:lang"/>
 </complexType>
 </element>
 <complexType name="tExtensibleElements">
 <annotation>
 <documentation>
 This type is extended by other component types
 to allow elements and attributes from
 other namespaces to be added.
 </documentation>
 </annotation>
 <sequence>
 <element ref="bpws:documentation" minOccurs="0" maxOccurs="unbounded" />
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unboun
 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>
 </complexType>
 <element name="process" type="bpws:tProcess"/>
 <complexType name="tProcess">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="import" type="bpws:tImport" minOccurs="0"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

121 of 142 12/2/2004 10:17 AM

 <element name="partnerLinks" type="bpws:tPartnerLinks" minOccurs="0"/>
 <element name="partners" type="bpws:tPartners" minOccurs="0"/>
 <element name="variables" type="bpws:tVariables" minOccurs="0"/>
 <element name="correlationSets" type="bpws:tCorrelationSets" minOccurs
 <element name="faultHandlers" type="bpws:tFaultHandlers" minOccurs="0"
 <element name="compensationHandler" type="bpws:tCompensationHandler" m
 <element name="eventHandlers" type="bpws:tEventHandlers" minOccurs="0"
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="targetNamespace" type="anyURI" use="required"/>
 <attribute name="queryLanguage" type="anyURI" default="http://www.w3.org/T
 <attribute name="expressionLanguage" type="anyURI" default="http://www.w3
 <attribute name="suppressJoinFailure" type="bpws:tBoolean" default="no"/>
 <attribute name="enableInstanceCompensation" type="bpws:tBoolean" default=
 <attribute name="abstractProcess" type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
 </complexType>
 <group name="activity">
 <annotation>
 <documentation>
 Addtional constraint:
 - rethrow activity can be used ONLY within a fault handler
 (i.e. "catch" element of bpws:tCatch type and
 "catchAll" element of bpws:tActivityOrCompensateContainer type)
 - compensate activity can be used ONLY within a fault handler or a compen
 (i.e. bpws:tActivityOrCompensateContainer type)
 </documentation>
 </annotation>
 <choice>
 <element name="empty" type="bpws:tEmpty"/>
 <element name="invoke" type="bpws:tInvoke"/>
 <element name="receive" type="bpws:tReceive"/>
 <element name="reply" type="bpws:tReply"/>
 <element name="assign" type="bpws:tAssign"/>
 <element name="wait" type="bpws:tWait"/>
 <element name="throw" type="bpws:tThrow"/>
 <element name="rethrow" type="bpws:tRethrow"/>
 <element name="terminate" type="bpws:tTerminate"/>
 <element name="flow" type="bpws:tFlow"/>
 <element name="switch" type="bpws:tSwitch"/>
 <element name="while" type="bpws:tWhile"/>
 <element name="sequence" type="bpws:tSequence"/>
 <element name="pick" type="bpws:tPick"/>
 <element name="scope" type="bpws:tScope"/>
 <element name="compensate" type="bpws:tCompensate"/>
 </choice>
 </group>
 <complexType name="tImport">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="namespace" type="anyURI"/>
 <attribute name="location" type="anyURI"/>
 <attribute name="importType" type="bpws:importedURI"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tPartnerLinks">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partnerLink" type="bpws:tPartnerLink" maxOccurs="unboun
 </sequence>
 </extension>
 </complexContent>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

122 of 142 12/2/2004 10:17 AM

 </complexType>
 <complexType name="tPartnerLink">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="partnerLinkType" type="QName" use="required"/>
 <attribute name="myRole" type="NCName"/>
 <attribute name="partnerRole" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tPartners">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partner" type="bpws:tPartner" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tPartner">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="partnerLink" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tFaultHandlers">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="catch" type="bpws:tCatch" minOccurs="0" maxOccurs="unbo
 <element name="catchAll" type="bpws:tActivityOrCompensateContainer" mi
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCatch">
 <complexContent>
 <extension base="bpws:tActivityOrCompensateContainer">
 <attribute name="faultName" type="QName"/>
 <attribute name="faultVariable" type="NCName"/>
 <attribute name="faultMessageType" type="QName"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tActivityContainer">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <group ref="bpws:activity"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

123 of 142 12/2/2004 10:17 AM

 <complexType name="tActivityOrCompensateContainer">
 <annotation>
 <documentation>
 An empty extension from bpws:tActivityContainer to denote where the compen
 </documentation>
 </annotation>
 <complexContent>
 <extension base="bpws:tActivityContainer"/>
 </complexContent>
 </complexType>
 <complexType name="tEventHandlers">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="onEvent" type="bpws:tOnMessage" minOccurs="0" maxOccurs
 <element name="onAlarm" type="bpws:tOnAlarm" minOccurs="0" maxOccurs="
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tOnMessage">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="messageType" type="QName" use="required"/>
 <attribute name="variable" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tOnAlarm">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="for" type="bpws:tDuration-expr" minOccurs="0"/>
 <element name="until" type="bpws:tDeadline-expr" minOccurs="0"/>
 <element name="repeatEvery" type="bpws:tDuration-expr" minOccurs="
 <group ref="bpws:activity"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCompensationHandler">
 <complexContent>
 <extension base="bpws:tActivityOrCompensateContainer"/>
 </complexContent>
 </complexType>
 <complexType name="tVariables">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="variable" type="bpws:tVariable" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tVariable">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="messageType" type="QName" use="optional"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

124 of 142 12/2/2004 10:17 AM

 <attribute name="type" type="QName" use="optional"/>
 <attribute name="element" type="QName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCorrelationSets">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlationSet" type="bpws:tCorrelationSet" maxOccurs="
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCorrelationSet">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="properties" use="required">
 <simpleType>
 <list itemType="QName"/>
 </simpleType>
 </attribute>
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tActivity">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="targets" type="bpws:tTargets" minOccurs="0"/>
 <element name="sources" type="bpws:tSources" minOccurs="0"/>
 </sequence>
 <attribute name="name" type="NCName"/>
 <attribute name="suppressJoinFailure" type="bpws:tBoolean" use="optional"/
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tTargets">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="joinCondition" type="bpws:tCondition"/>
 <element name="target" type="bpws:tTarget" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tSources">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="source" type="bpws:tSource" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tSource">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="transitionCondition" type="bpws:tCondition"/>
 </sequence>
 <attribute name="linkName" type="NCName" use="required"/>
 </extension>
 </complexContent>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

125 of 142 12/2/2004 10:17 AM

 </complexType>
 <complexType name="tTarget">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="linkName" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tEmpty">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
 </complexType>
 <complexType name="tCorrelations">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlation" type="bpws:tCorrelation" maxOccurs="unboun
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCorrelation">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="set" type="NCName" use="required"/>
 <attribute name="initiate" default="no">
 <simpleType>
 <restriction base="string">
 <enumeration value="yes"/>
 <enumeration value="rendezvous"/>
 <enumeration value="no"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCorrelationsWithPattern">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlation" type="bpws:tCorrelationWithPattern" maxOcc
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCorrelationWithPattern">
 <complexContent>
 <extension base="bpws:tCorrelation">
 <attribute name="pattern">
 <simpleType>
 <restriction base="string">
 <enumeration value="in"/>
 <enumeration value="out"/>
 <enumeration value="out-in"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tInvoke">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

126 of 142 12/2/2004 10:17 AM

 <element name="correlations" type="bpws:tCorrelationsWithPattern" minO
 <element name="catch" type="bpws:tCatch" minOccurs="0" maxOccurs="unbo
 <element name="catchAll" type="bpws:tActivityOrCompensateContainer" mi
 <element name="compensationHandler" type="bpws:tCompensationHandler" m
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="inputVariable" type="NCName" use="optional"/>
 <attribute name="outputVariable" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="variable" type="NCName" use="optional"/>
 <attribute name="createInstance" type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tReply">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName" use="required"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="variable" type="NCName" use="optional"/>
 <attribute name="faultName" type="QName"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tAssign">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="copy" type="bpws:tCopy" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tCopy">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element ref="bpws:from"/>
 <element ref="bpws:to"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="from" type="bpws:tFrom"/>
 <complexType name="tFrom">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element ref="bpws:query" minOccurs="0"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

127 of 142 12/2/2004 10:17 AM

 <element ref="bpws:expression" minOccurs="0" />
 </sequence>
 <attribute name="variable" type="NCName"/>
 <attribute name="part" type="NCName"/>
 <attribute name="property" type="QName"/>
 <attribute name="partnerLink" type="NCName"/>
 <attribute name="endpointReference" type="bpws:tRoles"/>
 <attribute name="opaque" type="bpws:tBoolean"/>
 </extension>
 </complexContent>
 </complexType>
 <element name="to">
 <complexType>
 <complexContent>
 <restriction base="bpws:tFrom">
 <sequence>
 <element ref="bpws:query" minOccurs="0"/>
 </sequence>
 <attribute name="opaque" type="bpws:tBoolean" use="prohibited"/>
 <attribute name="endpointReference" type="bpws:tRoles" use="prohibited
 </restriction>
 </complexContent>
 </complexType>
 </element>
 <complexType name="tWait">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="for" type="bpws:tDuration-expr" minOccurs="0"/>
 <element name="until" type="bpws:tDeadline-expr" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tThrow">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="faultName" type="QName" use="required"/>
 <attribute name="faultVariable" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tRethrow">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
 <!-- Empty -->
 </complexType>
 <complexType name="tCompensate">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="scope" type="NCName"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tTerminate">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
 </complexType>
 <complexType name="tFlow">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="links" type="bpws:tLinks" minOccurs="0"/>
 <group ref="bpws:activity" maxOccurs="unbounded"/>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

128 of 142 12/2/2004 10:17 AM

 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tLinks">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="link" type="bpws:tLink" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tLink">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tSwitch">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="case" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="condition" type="bpws:tBoolean-expr
 <group ref="bpws:activity"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="otherwise" type="bpws:tActivityContainer" minOccurs="0"
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tWhile">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="condition" type="bpws:tBoolean-expr" />
 <group ref="bpws:activity"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tSequence">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <group ref="bpws:activity" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tPick">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="onMessage" type="bpws:tOnMessage" maxOccurs="unbounded"
 <element name="onAlarm" type="bpws:tOnAlarm" minOccurs="0" maxOccurs="

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

129 of 142 12/2/2004 10:17 AM

 </sequence>
 <attribute name="createInstance" type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="tScope">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="partnerLinks" type="bpws:tPartnerLinks" minOccurs="0"/>
 <element name="variables" type="bpws:tVariables" minOccurs="0"/>
 <element name="correlationSets" type="bpws:tCorrelationSets" minOccurs
 <element name="faultHandlers" type="bpws:tFaultHandlers" minOccurs="0"
 <element name="compensationHandler" type="bpws:tCompensationHandler" m
 <element name="eventHandlers" type="bpws:tEventHandlers" minOccurs="0"
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="variableAccessSerializable" type="bpws:tBoolean" default=
 </extension>
 </complexContent>
 </complexType>
 <element name="query" type="bpws:tQuery"/>
 <element name="expression" type="bpws:tExpression"/>
 <complexType name="tQuery" mixed="true">
 <sequence>
 <any minOccurs="0"/>
 </sequence>
 <attribute name="queryLanguage" type="anyURI"/>
 </complexType>
 <complexType name="tExpression" mixed="true">
 <sequence>
 <any minOccurs="0"/>
 </sequence>
 <attribute name="expressionLanguage" type="anyURI"/>
 </complexType>
 <complexType name="tCondition">
 <complexContent>
 <extension base="bpws:tExpression" />
 </complexContent>
 </complexType>
 <simpleType name="importedURI">
 <restriction base="anyURI">
 <enumeration value="http://www.w3.org/2001/XMLSchema"/>
 <enumeration value="http://schemas.xmlsoap.org/wsdl/"/>
 </restriction>
 </simpleType>
 <complexType name="tBoolean-expr">
 <complexContent>
 <extension base="bpws:tExpression" />
 </complexContent>
 </complexType>
 <complexType name="tDuration-expr">
 <complexContent>
 <extension base="bpws:tExpression" />
 </complexContent>
 </complexType>
 <complexType name="tDeadline-expr">
 <complexContent>
 <extension base="bpws:tExpression" />
 </complexContent>
 </complexType>
 <simpleType name="tBoolean">
 <restriction base="string">
 <enumeration value="yes"/>
 <enumeration value="no"/>
 </restriction>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

130 of 142 12/2/2004 10:17 AM

 </simpleType>
 <simpleType name="tRoles">
 <restriction base="string">
 <enumeration value="myRole"/>
 <enumeration value="partnerRole"/>
 </restriction>
 </simpleType>
 <element name="service-ref" type="bpws:ServiceRefType">
 <annotation>
 <documentation>
 This element can be used within the literal version of from-spec.
 </documentation>
 </annotation>
 </element>
 <complexType name="ServiceRefType">
 <annotation>
 <documentation>
 This type definition is for service reference container.
 This container is used as envelope to wrap around the actual endpoint refe
 when a BPEL process interacts the endpoint reference of a partnerLink.
 It provides pluggability of different versions of service referencing sche
 being used within a BPEL program. The design pattern here is similar to th
 expression language.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##other" processContents="lax" minOccurs="1" maxOccurs="1"/>
 </sequence>
 <attribute name="reference-scheme" type="anyURI" use="required"/>
 </complexType>
</schema>

Partner Link Type Schema

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2004/03/partner-link/"
 targetNamespace="http://schemas.xmlsoap.org/ws/2004/03/partner-link/"
 elementFormDefault="qualified">

 <annotation>
 <documentation>
 Partner Link Type Schema
 2004-03-24: YIU-OSS: Alex Yiu: Extracted from wsbpel-specification
 2004-03-24: YIU-OSS: Alex Yiu: Updated targetNamespace with "2004/0
 </documentation>
 </annotation>

 <element name="partnerLinkType" type="plnk:tPartnerLinkType"/>

 <complexType name="tPartnerLinkType">
 <sequence>
 <element name="role" type="plnk:tRole" minOccurs="1" maxOccurs="2"/>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </complexType>

 <complexType name="tRole">
 <sequence>
 <element name="portType" minOccurs="1" maxOccurs="1">
 <complexType>
 <attribute name="name" type="QName" use="required"/>
 </complexType>
 </element>
 </sequence>

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

131 of 142 12/2/2004 10:17 AM

 <attribute name="name" type="NCName" use="required"/>
 </complexType>
</schema>

Message Properties Schema

<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 elementFormDefault="qualified">

 <annotation>
 <documentation>
 Message Properties Schema
 2004-03-24: YIU-OSS: Alex Yiu: Extracted from wsbpel-specification-draft.doc (Re
 2004-03-24: YIU-OSS: Alex Yiu: Updated targetNamespace with "2004/03"
 2004-03-24: YIU-OSS: Alex Yiu: Adding minOccurs="0" to query element; fix the syn
 2004-04-07: YIU-OSS: Alex Yiu: removed unnecessary wsbp xmlns
 </documentation>
 </annotation>

 <element name="property">
 <complexType>
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="type" type="QName" use="required"/>
 </complexType>
 </element>

 <element name="propertyAlias">
 <complexType>
 <sequence>
 <element name="query" minOccurs="0">
 <complexType mixed="true">
 <sequence>
 <any minOccurs="0" maxOccurs="1" processContents="lax"/>
 </sequence>
 <attribute name="queryLanguage" type="anyURI"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="propertyName" type="QName"
 use="required"/>
 <attribute name="messageType" type="QName"
 use="required"/>
 <attribute name="part" type="NCName"/>

 </complexType>
 </element>

</schema>

D. Notices
Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001,
2002, 2003. All Rights Reserved.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might
be claimed to pertain to the implementation or use of the technology described in this document or the extent
to which any license under such rights might or might not be available; neither does it represent that it has
made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

132 of 142 12/2/2004 10:17 AM

OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementors or users of this
specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to implement this specification.
Please address the information to the OASIS Executive Director.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not be
modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for
the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the
OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This and the information contained and the information is provided on an "AS IS" basis and DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTY
THAT THE USE OF THE INFORMATION HEREIN NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this
specification. For more information consult the online list of claimed rights.

E. Intellectual Property Rights
For information on wether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section
of the WS-BPEL Technical Committee web page (http://www.oasis-open.org/committees/wsbpel)

F. Revision History

Revision
01.000 10 June 2003 First Draft. Produced from May 05 2003 version

of BPEL 1.1 Prasad Yendluri

Revision
01.001 16 Oct 2003 First Draft uploaded to CVS system Kevin Liu

Revision
01.002 16 Oct 2003 Notes to editor for to do items Kevin Liu

Revision
01.003 18 Oct 2003 Applied Issue-27 Resolution (impact of error on

evaluation condition on a link) Prasad Yendluri

Revision
01.004 21 Oct 2003 Applied Issue-36 Resolution (Change

onMessage Event Handler to onEvent) Prasad Yendluri

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

133 of 142 12/2/2004 10:17 AM

Revision
01.005 22 Oct 2003 Created this revision history section Prasad Yendluri

Revision
01.006 22 October 2003 Applied Issue-23 Resolution (clarify that

redundancy of structured activities is desirable)
Yaron Y.
Goland

Revision
01.007 27 October 2003

Added the words "properly configured" to the
change made in Revision 006 per Satish's
request.

Yaron Y.
Goland

Revision
01.008 2 Nov 2003 Incorporated resolution of Issue 3 (current state

influence in compensation handlers) Satish R. Thatte

Revision
01.009 2 Nov 2003 Incorporated resolutions of issues 41 and 45 and

corrected a number of XML errors

Revision
01.010 10 November 2003 Applied resolution to issue 32 (link semantics in

event handlers) Sid Askary

Revision
01.011 17 November 2003 Applied resolution of issues 7, 39, 46 Francisco

Curbera
Revision
01.012 23 Nov 2003 Revisited all previous changes and corrected

them for clarity and completeness Satish R. Thatte

Revision
01.013 01 February 2004 Applied resolution of issues 72, 73, 74 Ben Bloch

Revision
01.014 09 February 2004 Applied resolution of issues 67, 68, 79 Satish R. Thatte

Revision
01.015 17 February 2004 Applied resolution of issues 13, 85. Added

example to Section 14.3
Francisco
Curbera

Revision
01.016 19 February 2004

Fixed Section 12.5 sentence about
<joinCondition> and added BP/use case
comment in Section 3

Ben Bloch

Revision
01.017 20 February 2004 Applied resolution of issue 70.

Removed editor’s notes for “Editors” section Kevin Liu

Revision
01.018

27 February
2004

Applied resolution of issue 50. Added a new
standard fault missingReply

Neelakantan
Kartha

Revision
01.019 09 March 2004 Miscellaneous revisions of prior edits Satish R. Thatte

Revision
01.020 12 March 2004 Applied resolutions 13 and 68 to schema,

corrected xsd definitions for <import> element
Francisco
Curbera

Revision
01.021 14 March 2004

Applied resolutions for issues 80 and 95
(rethrow in <catchAll> etc. and corresponding
schema changes to add the <rethrow>
definition)

Prasad Yendluri

Revision
01.022 24 March 2004 Added namespace prefix list to end of section 2;

added editor notes for to do items Kevin Liu

Revision
01.023 6 April 2004 Incorporated 104 and fixed examples and

pseudo syntax to reflect resolution of issue 68 Satish R. Thatte

Revision
01.024 07 April 2004

Corrected the namespace for bpws and plnk to
be in sync with the latest schema and updated
all examples not to declare the namespace

Prasad Yendluri

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

134 of 142 12/2/2004 10:17 AM

explicitly so that when we update the
namespace the examples are not impacted.

Revision
01.025 07 April 2004 Fixed the default namespace values that were

missed in the last pass. Prasad Yendluri

Revision
01.026

07 April 2004 (1) Copy and paste the updated and corrected
schema back to the main spec doc
(2) Applied resolution for Issue 69 from Maciej
Szefle in Section 12.5 and 12.5.1

Alex Yiu

Revision
01.027 23 April 2004 Applied resolution of issue 62. Checked that

issue 45 had already been applied.
Francisco
Curbera

Revision
01.028 05 May 2004 Picked up the new OASIS Logo Prasad Yendluri

Revision
01.029 06 May 2004 Applied resolution of issue101 Prasad Yendluri

Revision
01.030 06 May 2004 Inserted the lost pictures (with proper

hyperlinks) back into the document. Prasad Yendluri

Revision
01.031 06 May 2004 Applied resolution of issue117 Prasad Yendluri

Revision
01.032 11 May 2004 Incorporated resolution for issue 33 Kevin Liu

Revision
01.033 02 June 2004 Revised wording for resolution of issue 33 Kevin Liu

Revision
01.034 20 June 2004 Applied resolution of issues 25 and 53 Satish Thatte

Revision
01.035 28 June 2004

Applied resolution:
issue 94 in Section 6.2 and schema;
issue 75 in Section 6.2, 7.2, 13, 13.1 and
schema;
issue 37 in Section 6.2, 10.2, 14.4 and schema;
issue 114 in Section 10.2 and 14.4

Alex Yiu

Revision
01.036 15 July 2004

Applied resolution of issue 43. Changed schema
in the doc and pseudo-schema fragments
scattered thruought the specification.

Prasad Yendluri

Revision
01.037 15 July 2004 Applied resolution of issue 44. Prasad Yendluri

Revision
01.038 19 July 2004 Applied resolution of issue 34 Alex Yiu

Revision
01.039 28 July 2004 Applied resolution of issue 128, plus made all

examples WS-I BP compliant Kevin Liu

Revision
01.040 01 Sept 2004 Re-sychronize XSD Appendix with XSD files

from CVS Alex Yiu

Revision
01.041 01 Sept 2004

Applying Issue 146: Making tVariable
Extensible
Applying Issue 149: Adding formal
documentation support to BPEL

Alex Yiu

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

135 of 142 12/2/2004 10:17 AM

Revision
01.042 01 Sept 2004 Fixed a typo in XSD Alex Yiu

Revision
01.043 01 Sept 2004 A bunch of misc cleanup for Issue 13 Alex Yiu

Revision
01.044 08 Sept 2004

Created the first clean copy and performed misc
clean-up that surfaced after clean-up, including
messed formatting, TOC links, Appendix
ordering and numbering and messed formatting.

Prasad Yendluri

G. References (Normative)
[XMLSpec] XML Specification, W3C Recommendation.

[SOAP 1.1] Simple Object Access Protocol (SOAP) 1.1, W3C Note

[WSDL 1.1] Web Services Definition Language (WSDL) 1.1, W3C Note

[UDDI] Universal Description, Discovery and Integration, Industry Initiative

[XLANG] Web Services for Business Process Design

[WSFL] Web Service Flow Language 1.0

[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation

[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation

[XPATH 1.0] XML Path Language (XPath) Version 1.0, W3C Recommendation

[Sagas] Sagas H. Garcia-Molina and K. Salem, Proc. ACM SIGMOD (1987).

[Trends] Trends in systems aspects of database management," I.L. Traiger, Proc. 2nd Intl. , Conf. on
Databases (ICOD-2), Wiley and Sons 1983.

[RFC 2119] RFC 2119: Key words for use in RFCs to Indicate Requirement Levels, S. Bradner. IETF (Internet
Engineering Task Force), 1997.

[RFC 2396] RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[BPEL4WS 1.0] Business Process Execution Language for Web Services Version 1.0, BEA, IBM and
Microsoft, August 2002.

[WS-I Basic Profile] WS-I Basic Profile, Web Services Interoperability Organization

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

136 of 142 12/2/2004 10:17 AM

H. Committee Members (Non-Normative)
The following individuals were members of the committee during the formulation of this document:

· Lars Abrell

· Ravi Akireddy

· Hedy Alban

· Randall Anderson, Macgregor

· Tony Andrews, Microsoft

· Assaf Arkin,Intalio

· Sid Askary

· Kent Below, IBM

· Terry Bjornsen, Booz Allen Hamilton

· Mike Blevins, BEA

· Ben Bloch

· Alex Boisvert, Intalio, Inc.

· Subhra Bose, Reuters America

· George Brown, Intel

· Steve Brown, Metastorm

· Justin Brunt, WfMC

· Navin Budhiraja, Vitria

· David Burdett, CommerceOne

· Laurence Cable

· Ryan Cairnsi, OpenStorm Software

· Arun Candadai

· fred carter, AmberPoint

· Andy Chan, FileNet

· Sarat Chand, PeopleSoft

· Chia Chao, IONA

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

137 of 142 12/2/2004 10:17 AM

· Martin Chapman, Oracle

· Dave Chappell, Sonic Software

· Jamie Clark, OASIS

· Doron Cohen, BMC Software

· Ugo Corda, SeeBeyond

· Robin Cover, OASIS

· Fred Cummins, EDS

· Francisco Curbera, IBM

· Sanjay Dalal, BEA

· Khoi Dang, FileNet

· Michael DeBellis, Fujitsu

· Linda DeMichiel, Sun Microsystems

· Jens Doerpmund, Hewlett-Packard

· Bernd Eckenfels, Seeburger, AG

· Rami Elron, BMC Software

· John Evdemon, Microsoft (TC-Chair)

· B.J. Fesq

· Rabih Filfili, Microsoft

· Layna Fischer, BPMI.org

· Layna Fischer, WfMC

· Tony Fletcher, Choreology

· Bill Flood, Sybase

· Daniel Foody, Actional

· Steven Forgey, SeeBeyond

· Franz Fritz, SAP

· Yuzo Fujishima, NEC Corporation

· Shoichi Fukuda, Fujitsu

· Peter Furniss, Choreology

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

138 of 142 12/2/2004 10:17 AM

· Jean-Luc Giraud, Axway software

· Yaron Goland, BEA

· Alastair Green, Choreology

· Ajay Gummadi

· Michael Hafner, SAP

· Tommy Hansen, FileNet

· Kevin Hein, Teamplate

· Scott Hinkelman, IBM

· Chunbo Huang, BEA

· Yin-Leng Husband, Hewlett-Packard

· David Ingham, Arjuna Technologies

· Ram Jeyaraman, Sun Microsystems

· Diane Jordan, IBM (TC-Chair)

· Bala Kamallakharan, Cap Gemini Ernst and Young

· Neelakantan Kartha, Sterling Commerce

· Nicholas Kassem, Sun Microsystems

· Nickolas Kavantzas, Oracle

· Michael Keay

· Debra Kellington, Convergys

· Edwin Khodabakchian, Collaxa

· Sun-Ho Kim

· Yoav Kirsch, Business Layers

· Melanie Kudela, Uniform Code Council

· Pradeep Kumar, MRO Software

· Sanjeev Kumar

· Chris Kurt, Microsoft

· Kelvin Lawrence, IBM

· Philip Lee, BPMI.org

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

139 of 142 12/2/2004 10:17 AM

· Frank Leymann, IBM

· Yanming Li, France Telecom

· Paul Lipton, Computer Associates

· Mark Little, Arjuna Technologies

· Melton Littlepage, Booz Allen Hamilton

· Canyang Kevin Liu, SAP

· Brian Lorenz, Sybase

· Hop Luu, FileNet

· Art Machado, PeopleSoft

· Balinder Malhi, Microsoft

· Sumeet Malhotra, Unisys

· Rajesh Manglani, Uniform Code Council

· Bernard Manouvrier, Axway software

· Mike Marin, FileNet

· Monica Martin, Sun Microsystems

· Tod Matola, Sterling Commerce

· carol mcdonald, Sun Microsystems

· Bimal Mehta, Microsoft

· Vinkesh Mehta, CommerceOne

· Glenn Mi, Collaxa

· Jeff Mischkinsky, Oracle

· JP Morgenthal, Software AG

· Tim Moses, Entrust

· Kenji Nagahashi, Fujitsu

· Trevor Naidoo, IDS Scheer

· Goran Olsson, Oracle

· Srinivas Padmanabhuni, Infosys

· John Parkinson, Cap Gemini Ernst and Young

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

140 of 142 12/2/2004 10:17 AM

· Sanjay Patil, IONA

· Mark Potts, Talking Blocks

· Rajesh Pradhan, Iopsis Software

· Matthew Pryor, BPMI.org

· Ken Pugsley, PeopleSoft

· Andrew Pugsley, Hewlett-Packard

· Jon Pyke, WfMC

· Harvey Reed, Sonic Software

· Sundari Revanur, IONA

· Greg Ritzinger, Novell

· Anthony Roby, Accenture

· Jorge Rodriguez, IBM

· Dieter Roller, IBM

· Darran Rolls, Waveset Technologies

· Phil Rossomando, Unisys

· Steve Ross-Talbot, Enigmatec

· Michael Rowley, BEA

· Waqar Sadiq, EDS

· Yuji Sakata

· Krishna Sankar, Cisco Systems

· Bob Schmidt, Microsoft

· Marc-Thomas Schmidt, IBM

· Yoko Seki, Hitachi

· Pinaki Shah, E2Open

· Vishwanath Shenoy, Infosys

· Frank Siebenlist, Argonne National Laboratory

· Parijat Sinha, Convergys

· Dale Skeen, Vitria

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

141 of 142 12/2/2004 10:17 AM

· Howard Smith, BPMI.org

· Gavenraj Sodhi, Business Layers

· Vinay Srinivasaiah, SeeBeyond

· Venkat Srinivasan, SeeBeyond

· Nallan Sriraman, Reuters America

· Sally St. Amand

· Donald Steiner, WebV2

· Karl-Heinz Sternemann, BizTalk Competence Center

· Nikola Stojanovic

· Keith Swenson, Fujitsu

· Maciej Szefler, FiveSight Technologies

· Pal Takacsi-Nagy, BEA

· Ran Tamir, BMC Software

· Bob Taylor, Hewlett-Packard

· Sazi Temel, BEA

· Ron Ten-Hove, Sun Microsystems

· Aniruddha Thakur, Oracle

· Satish Thatte, Microsoft

· Steve Towers, BPM Group

· Derick Townsend, OpenStorm Software

· Ivana Trickovic, SAP

· Kenwood Tsai, Documentum

· William Vambenepe, Hewlett-Packard

· Danny van der Rijn, Tibco

· Gloria Vargas, Reuters America

· Ganesh Vednere, Cap Gemini Ernst and Young

· Claus von Riegen, SAP

· Jim Webber, Arjuna Technologies

Web Services Business Process Execution Language http://www.oasis-open.org/apps/org/workgroup/wsbpel/download.php/9...

142 of 142 12/2/2004 10:17 AM

· David Webber

· Michael Weiner, IBM

· Pete Wenzel, SeeBeyond

· Stuart Wheater,Arjuna Technologies

· Stephen White

· Scott Woodgate, Microsoft

· Prasad Yendluri, webMethods

· Eric Yuan, Booz Allen Hamilton

· Sinisa Zimek, SAP

· Michael zur Muehlen, WfMC

