
1

An Analysis of XML Compression Efficiency

 Christopher J. Augeri1 Barry E. Mullins1
 Dursun A. Bulutoglu2 Rusty O. Baldwin1

1Department of Electrical and Computer Engineering

2Department of Mathematics and Statistics
Air Force Institute of Technology (AFIT)

Wright Patterson Air Force Base, Dayton, OH

{chris.augeri, barry.mullins}@afit.edu
{dursun.bulutoglu, rusty.baldwin}@afit.edu

Leemon C. Baird III

Department of Computer Science
United States Air Force Academy (USAFA)

USAFA, Colorado Springs, CO

leemon.baird@usafa.edu

ABSTRACT
XML simplifies data exchange among heterogeneous computers,
but it is notoriously verbose and has spawned the development of
many XML-specific compressors and binary formats. We present
an XML test corpus and a combined efficiency metric integrating
compression ratio and execution speed. We use this corpus and
linear regression to assess 14 general-purpose and XML-specific
compressors relative to the proposed metric. We also identify key
factors when selecting a compressor. Our results show XMill or
WBXML may be useful in some instances, but a general-purpose
compressor is often the best choice.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory—Data Compaction
and Compression; H.3.4 [Systems and Software]: performance
evaluation (efficiency and effectiveness)

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
XML, corpus, compression, binary format, linear regression

1. INTRODUCTION
Statistical methods are often used for analyzing experimental
data; however, computer science experiments often only provide a
comparison of means. We describe how we used more robust
statistical methods, i.e., linear regression, to analyze the
performance of 14 compressors against a corpus of XML files we
assembled with respect to an efficiency metric proposed herein.

Our end application is minimizing transmission time of an XML
file between wireless devices, e.g., nodes in a distributed sensor
network (DSN), for example, an unmanned aerial vehicle (UAV)
swarm. Thus, we focus on compressed file sizes and execution
times, foregoing the assessment of decompression time or whether
a particular compressor supports XML queries.

This paper is authored by employees of the U.S. Government and is in the
public domain. This research is supported in part by the Air Force
Communications Agency. The views expressed in this paper are those of
the authors and do not reflect the official policy or position of the U.S. Air
Force, Department of Defense, or the U.S. Government.
ExpCS, 13–14 June 2007, San Diego, CA
978-1-59593-751-3/07/06

We expand previous XML compression studies [9, 26, 34, 47] by
proposing the XML file corpus and a combined efficiency metric.
The corpus was assembled using guidelines given by developers
of the Canterbury corpus [3], files often used to assess compressor
performance. The efficiency metric combines execution speed
and compression ratio, enabling simultaneous assessment of these
metrics, versus prioritizing one metric over the other. We analyze
collected metrics using linear regression models (ANOVA) versus
a simple comparison of means, e.g., X is 20% better than Y.

2. XML OVERVIEW
XML has gained much acceptance since first proposed in 1998 by
the World-Wide Web Consortium (W3C). The XML format uses
schemas to standardize data exchange amongst various computing
systems. However, XML is notoriously verbose and consumes
significant storage space in these systems. To address these
issues, the W3C formed the Efficient XML Interchange Working
Group (EXIWG) to specify an XML binary format [15]. Although
a binary format foregoes interoperability, applications such as
wireless devices use them due to system limitations.

2.1 XML Format
The example file shown in Figure 1 highlights the salient features
of XML [17], e.g., XML is case-sensitive. A declaration (line 1)
specifies properties such as a text encoding. An attribute (line 3)
is similar to a variable, e.g., ‘author="B. A. Writer"’. A
comment begins with “<!--” (lines 4, 8). An element consists of
the elements, comments, or attributes between a tag pair, e.g.,
“<Chapter>” and “</Chapter>” (lines 5–7). An example of
an XML path is “/Book/Chapter”. A well-formed XML file
contains a single root element, e.g., “Book” (lines 2–12).

Figure 1. XML sample file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Book><Title>Bestseller</Title>
3 <Info author="B. A. Writer"></Info>
4 <!-- Write early, write often -->
5 <Chapter><Title>Plot begins</Title>
6 <Par>...dark and stormy...</Par>
7 </Chapter>
8 <!-- ... -->
9 <Chapter><Title>Plot ends</Title>

10 <Par>...antagonist destroyed!</Par>
11 </Chapter>
12 </Book>

2

2.2 XML Schemas
An XML schema specifies the structure and element types that
may appear in an XML file and can be specified in three ways:
implicitly by a raw XML file or explicitly via either a document
type definition (DTD) or an XML Schema Definition (XSD) file.
A schema for Figure 1 can be implicitly obtained via the path tree
defined by its tags. However, implicit schemas do not enable the
data validation possible by explicitly declaring a DTD or XSD.

The use of external schemas may result in smaller XML files and
also enables data validation. The least robust schema approach is
a DTD, whereas an XSD schema is itself an XML file. Certain
compressors require a schema file—we generated DTDs to enable
us to test these compressors (cf. Section 5.1). Further discussion
of XML is beyond the scope of this paper, however, we note two
parser models, SAX and DOM, are often used to read and write
XML files. Other standards, e.g., XPath, XQuery, and XSL,
provide robust mechanisms to access and query XML data.

3. INFORMATION AND COMPRESSION
We measure entropy as classically defined by Shannon [37] and
replicated here, using slightly modified notation, where,

() (){ }2
,

1 Pr log Pr
n

def

n
s s S

H s s
n ∀ ∈

⎡ ⎤= − ⋅ ⋅ ⎣ ⎦∑ , (1)

Sn denotes all words having n symbols, Pr(s) the probability that a
word, ,ns S∈ occurs, and Hn the entropy in bits per symbol.

For example, if S1 contains {A, B}, all 2-word combinations of S1
yields an S2 of {AA, AB, BA, BB}, S3 is {AAA, AAB, …, BBB},
and so forth. The true entropy, H∞, is obtained as n grows without
bound. If all words are equally probable and independent, the data
is not theoretically compressible; most real-world data is not
random, thus, some data compression is usually obtainable.
An optimal lossless compressor cannot encode a source message
containing m total symbols at less than m · H∞ bits on average.
Compressors cannot achieve optimal compression since perfectly
modeling a source requires collecting an infinite amount of data.
In practice, compressors are limited by the rapidly increasing time
and space requirements needed to track increasing word lengths.
The first-order Shannon entropy, H1, corresponds with a 0-order
Markov process; herein, we use both as appropriate. Simply put, a
1-order compressor can track word lengths of two symbols and an
11-order compressor can track words lengths of 12 symbols. This
can often be confusing, as some compressors use 1-byte character
symbols and others may use multi-byte words. We thus can view
a 7-order 1-bit compressor as a 0-order 1-byte compressor.
The compression process model used herein is shown in Figure 2.
A lossless transform is a pre-processing method that attempts to
reduce H∞ by ordering data in a canonical form. A lossy transform
reduces m, and in doing so, may reduce H∞. Lossy and lossless
transform(s) are optional, denoted by a shaded box. The
compression step attempts to store the data in a format using less
bits than the native format, i.e., it attempts to store the data at H∞.
A lossless transform, e.g., Burrows-Wheeler (cf. Section 4.1.2.3)
sends at least the original number of bits to the compressor. A
lossy transform, such as is used in the MP3 and JPEG file
formats, discards “extra” bits. Lossy transforms are not typically
applied to textual or numerical data, i.e., although humans can

often compensate for missing pixels (frequencies), it is often
difficult to guess absent characters (numbers). Following any pre-
processing transforms, a lossless compressor is applied; although
most files are smaller after this step, some files must be larger.
This effect may be observed when compressing small files,
previously compressed files, or encrypted files. All lossless
compression steps are reversed by decompression.

Information
Transform

{lossy, lossless}

Compression
(lossless)

Intermediate Stages
(encryption,
transmission,
storage, etc.)

Information
Transform
(lossless)

Decompression
(lossless)()b t

()b t

Figure 2. Compression and decompression pipeline stages

4. COMPRESSORS
General-purpose compressors can be classified within two classes,
arithmetic or dictionary. Arithmetic compressors typically have
large memory and execution time requirements, but are useful to
estimate entropy and as control algorithms. The dictionary, or zip,
compressors enjoy widespread use and most have open formats.
Some proprietary formats are 7-zip, CAB, RK, and StuffIt [13]
and may yield smaller files than the zip compressors. We note the
primary criterion for inclusion of an XML compressor within this
study is whether a publicly accessible implementation is available.
Our primary objective was to test any available XML compressor,
as evidenced by our use of Internet archives and a Linux emulator
to enable us to test certain compressors (cf. Appendices B and C).

4.1 General-Purpose
4.1.1 Arithmetic Compressors
An arithmetic compressor estimates the probability of a symbol
using a specific buffer and symbol length. Although floating-point
numbers are often used to explain arithmetic compression, most
implementations use integers and register shifts for efficiency.

An arithmetic compressor uses a static or dynamic model. A static
model can either be one based on historical data or generated
a priori before the data is actually encoded. If a compressor uses a
dynamic model, the model statistics are updated as a file is being
compressed; this approach is often used when multiple entropy
models are being tracked, such as in the PPM compressors. Given
the computational power required, however, dynamic models
have only recently been used in practice.

Since the CACM3 compressor [33] closely approximates H1, we
used it to validate our computation of H1 and to estimate the worst
expected compression ratio. The other arithmetic compressors,
PAQ [28] and PPM [7], provided an estimate, E[H∞], on the
entropy bound, H∞, achievable for each file, i.e., we used E[H∞]
to estimate the maximum expected compression of each test file.

3

4.1.1.1 CACM3
CACM3, or the Communications of the ACM compressor [33], is
well-known and is often used as a reference model for 0-order
arithmetic compression. This compressor uses three stages: model
updating, statistics gathering, and encoding. For example, the
model specifies if a 0-order character-based model or a multiple-
context 0-order word-based model is being used. Having multiple
contexts enables the compressor to maintain statistics for different
data types, e.g., binary versus textual data.

As expected, CACM3 closely approximates the 0-order entropy,
e.g., given several copies of the sentence, “The quick brown fox
jumps over a lazy dog.” CACM3 encodes it using 4.494 bits/byte,
within 1.22% of the true 0-order entropy, H1, 4.440 bits/byte. We
used CACM3 as a control algorithm to validate the computed H1.
CACM3 was within 10% of H1 of files larger than 1 KB (42 files)
and within 1% of H1 of files greater than 64 KB (22 files).

4.1.1.2 PPM
In the limit, Prediction by Partial Matching (PPM) compressors
are considered theoretically optimal [7, 32]. The goal of PPM is to
match the maximum possible symbol length; if a new symbol is
encountered, a special “escape” symbol is inserted, and a symbol
encoding is generated for the new symbol. Newer PPM variants,
such as PPMZ2 [4], use multiple contexts and encoders, along
with improved escape symbol encoding, to improve compression
performance.

4.1.1.3 PAQ
PAQ is the third arithmetic encoder and is best identified as a
PPM hybrid [28]. Although PAQ is a PPM variant, it may use
other techniques, e.g., run-length encoding (RLE), if it determines
these encodings yield more compression. PAQ is an open-source
compressor and several people contribute to its development. The
version used in this study is PAQsDaCC 4.1.

4.1.2 Dictionary Compressors
All of the commonly-used zip formats are at least partially based
on dictionary compression algorithms and have their roots in the
Lempel-Ziv (LZ77) algorithm [51]. At least one zip compressor is
typically used as a reference compressor in compression studies
or when presenting a new compression algorithm. We assessed
three common variants: WinZip® [45], GZIP [19], and BZIP [36].

4.1.2.1 WinZip®
The WinZip® compressor [45] uses the deflate format (RFC 1951)
by default. In version 10.0, BZIP2 [36] and PPMd [38] support
were also added. As its name suggests, PPMd is a PPM-based
compressor and often executes faster than other PPM. We tested
WinZip® in Deflate, Enhanced Deflate, and PPMd modes; the
PPMd variant was assessed using an evaluation version.

4.1.2.2 GZIP
GZIP [19] is a variant of the LZ77 algorithm [51], where symbol
combination match lengths are stored in a Huffman tree; another
Huffman tree stores match distances, where a match distance is
the distance between consecutive symbol combinations. The user
has the option of setting the maximum match length and match
distances to compare. The maximum match length in GZIP is
258 bytes and the maximum match distance is 32 KB.

4.1.2.3 BZIP2
The BZIP2 compressor [36] uses the lossless Burrows-Wheeler
transform (BWT) [5]. The BWT groups identical symbols by
sorting all possible rotations. For example, the text “.BANANA_”
becomes “BNN.AA_A” [6], where ‘_’ denotes the end-of-file
(EOF) symbol. The BWT exposes the true entropy of the original
file at lower Markov orders. Given the BWT was designed for
text data, BZIP2 can be expected to perform well on XML data.
The BWT is also effective on data other than plaintext characters.

4.2 Binary XML Formats
Binary formats encode XML documents as binary data. The intent
is to decrease the file size and reduce the required processing at
remote nodes. However, a binary format runs counter to the key
benefit of using XML—interoperability. If XML binary formats
are to succeed, an open standard must be established.

The primary impetus for binary XML is the limited capabilities of
wireless devices, e.g., cell phones and sensor networks. Further
pressure to use a binary format comes from the growth of large
repositories, e.g., databases that store data using an XML format.
Technically, both compressed and binary formats are “binary”
formats, versus plaintext, but binary formats may support random
access and queries, whereas compression formats often do not.

4.2.1 W3C Initiatives
The XML-binary Optimized Packaging (XOP) supports the
inclusion of binary data, e.g., image and sound files, in XML. The
XOP enabling mechanism is base64, the encoding used to send an
attachment via e-mail, and increases the data’s size by a 4:3 ratio.
Conversely, a “pure” binary format converts XML (including
“packaged” binary data!) to binary to reduce its storage footprint.

4.2.2 WBXML
The Wireless Binary XML (WBXML) format achieves two goals:
compression of XML and stream-level processing, and as its
name implies, was developed to support wireless devices. By
reducing file size, WBXML addresses a key power management
issue in mobile devices, while providing many of XML’s benefits
and incurring minimal overhead. Additionally, a schema can be
pre-loaded on the wireless device, further reducing the size of the
transmitted XML file. We used an existing converter [44] that
yields a WBXML-formatted file in this study.

4.2.3 XBIS
XBIS is a binary XML encoding format and stream encoder that
receives SAX events during decompression and also retains the
XML schema format of the native data [46]. XBIS influenced the
development of ASN.1; the implementation we used [46] also was
the source of two test corpus files.

4.2.4 ASN.1 / Fast Infoset
Abstract Syntax Notation One (ASN.1) is an International Tele-
communications Union (ITU) standard (X.891) predating XML
and WBXML. There are ways of translating between XML and
ASN.1, e.g., IBM’s ASN.1/XML translator. ASN.1 also has
support for binary versus plain-text encodings [1]. The Fast
Infoset (FIS) specification defines how to translate from XML to
binary using ASN.1 and is being modified to provide data security
features. Sun Microsystems is extending its Java programming
language to support FIS and is the variant we assessed [18].

4

4.3 Schema-Aware XML Compressors
4.3.1 XGRIND
XGrind is an early XML-specific compressor [42]. The resulting
files may be queried, thus, it may be viewed as a binary formatter.
XGrind compresses the XML and schema files to separate “*.xgr”
and “*.met” files, respectively. Other compressors were tested in
Microsoft Windows®, however, we had to use a Linux emulator,
CoLinux (cf. Appendix B), to test the available XGrind variant.

4.3.2 XMLPPM
XMLPPM [7] is based on a PPM algorithm. XMLPPM provides a
streaming access model (ESAX) and multiplexed hierarchical
PPM (MHM) models. The combined goal is to increase parsing
by using ESAX and compression performance by using MHM.
MHM uses different, i.e., multiple, PPM contexts depending on
whether tags, attributes, or elements are being currently encoded.
A DTD-based variant of XMLPPM has recently been developed.
The newest versions use PPMd as the internal PPM compressor.

4.3.3 XMILL
The XMill compressor applies a pre-processing transform and
then uses GZIP compression [27]. The pre-processing transform
separates the XML tree structure according to element names into
context-specific containers; the XML tree structure and containers
are then passed to GZIP. By default, each unique element name
specifies a unique container; users can also specify containers.
Containers are individually compressed by GZIP on the premise
that data in commonly named elements may have similar entropy.
This extended discussion of XMill is given based on the large set
of user options XMill possesses relative to the other compressors.
The default XMill usage is shown in row 1 of Table 1. The “//#”
specifies each unique element is mapped to one container. All
XML paths sharing the same trailing element name are placed in
the same container. Thus, the three paths “/db/car/color”,
“/db/paint/color”, and “/db/fruit/color” would
have their data values placed in one container. Again, this is under
the premise “color” elements may compress better if together.
Using the command in row 2 maps “/db/car/color” to its
own container. All other elements are grouped into last-element
containers, e.g., the “/db/fruit/color” and “/db/color”
paths would both be placed in the “color” element container.
The “-p //#” option is only listed for illustration; it is implicitly
added by XMill to provide a default container for all elements.
To list all XML elements in a file, use the command on row 3. To
force XMill to map all elements to the same container, the
command in row 4 should be used, where “t1” represents the
first element and “tn” is the last element. Quotes (‘"’) are needed
when a pipe (‘|’) is used or it is treated as a command-line pipe.
A simpler approach to mapping all elements to the same container
is to use the command given in row 5, as each element does not
have to then be explicitly identified. There is also a way to map
each unique path to its own container, shown in row 6.
XMill provides a set of compressors to use before compression by
GZIP. The default compressor is a non-compressing pass-through
compressor. However, a container’s compressor can be specified
by the user, e.g., row 7 uses a run-length encoder included with
XMill. Other proprietary compressors are also provided with
XMill or others can be linked by the user via command-line.

Table 1. XMill user command-line option examples

ID XMill Command-Line Example
1 xmill –p //# dat.xml

2 xmill –p //db/car/color -p //# dat.xml

3 xmill –v dat.xml

4 xmill –p "//(t1 | t2 | ... | tn)" dat.xml

5 xmill -p "//(*)" dat.xml

6 xmill –p (#)+ dat.xml

7 xmill –p "//(*)=>rl" dat.xml

8 xmill -p "//(#)=>t" dat.xml

Row 8 explicitly describes XMill’s default behavior: each unique
element is mapped to a container and the default pass-through text
compressor is used. There are also additional options available in
XMill; this level of customization is a unique feature of XMill.

4.3.4 XML-ZIP
XML-ZIP is an early XML-specific compressor that divides the
XML tree into a set of sub-tree files [50] and was discussed in at
least one earlier study [34]. The splitting depth parameter used in
XML-ZIP specifies that branches below the splitting depth are to
be compressed using zip compression. The top-level branches are
not compressed, but stored in their native form. All sub-tree
fragments are listed as a sub-tree file in the zip archive, where the
zip archive contains the following sub-files:

1. Encoded XML file of the original tree (text)
2. One or more nested sub-tree files (compressed)
3. Compressed element file mapping (text)

To apply XML-ZIP to an XML file, all comments should first be
removed and all tags listed one per line (a reformat in Microsoft
FrontPage® obtains the latter), e.g., as shown in Figure 1. If a
splitting depth of ‘2’ is specified, all branches at or below
“Book” would be individually compressed and the book title and
chapters are contained in separate sub-tree file fragments.
This process yields an encoded XML tree; the tree derived from
applying a splitting depth of ‘2’ to Figure 1 is shown in Figure 3.
This can be thought of as a dictionary look-up, where an element,
e.g., “<xmlzip id="2"/>”, is a single file in the archive. The
mapping of elements to files is given separately (item 3 above). In
this example, four compressed element files are in the zip archive,
along with the encoded XML tree and file mapping. XML-ZIP is
akin to XMill in that it applies a lossless pre-processing transform
and then uses a general-purpose compressor for compression.

Figure 3. XML-ZIP encoding tree example

1 <?xml version="1.0" encoding="utf-8"?>

2 <Book><Title><xmlzip id="1"/></Title>

3 <Info author="B. A. Writer">

4 <xmlzip id="2"/>

5 </Info>

6 <Chapter><xmlzip id="3"/>Chapter>

7 <Chapter><xmlzip id="4"/>Chapter>

8 </Book>

5

4.4 Additional Compressors (Non-Tested)
We recall our key criterion for testing an XML compressor herein
is access to a publicly available implementation; the compressors
in this section did not have such an implementation available.
Some of these are analyzed in previous studies [9, 34, 47], such as
AXECHOP [24], BOX [2], Millau [20, 41], and XCOMP [26].
We attempted to include Efficient XML [16] in this study, but did
not receive a response to our requests to do so. However, since
the time of this study, the EXIWG selected Efficient XML as the
basis of their XML binary format specification [15].

4.4.1 XML-Xpress
Intelligent Compression Technologies developed a compressor,
XML-Xpress [49] that requires a vendor-provided Schema Model
File (SMF). An SMF is a static statistics model tailored to a set of
similar XML files; this technique may approach the performance
of an arithmetic compressor but is difficult to scale. We used the
ham radio files shipped with XML-Xpress in our test corpus.

4.4.2 XPRESS
The XPRESS algorithm [31] introduces the concept of reverse
arithmetic encoding (RAE). In RAE, the entire XML hierarchy is
mapped over the real interval [0.0, 1.0). For instance, “/Book”
would be assigned to the range [0.0, 1.0). The sub-element
“/Book/Info” may potentially map to the range [0.0, 0.2) and
the element “/Book/Info/author” to [0.0, 0.15). XPRESS
supports queries of the resulting file without full decompression.

4.4.3 MPEG-7 (BiM)
The binary format for MPEG-7 can encode XML and is designed
for streaming media [9]. For example, MPEG-7 can take metadata
and encode it in binary, e.g., to facilitate closed-captioning. The
MPEG-7 format is also referred to as BiM.

4.4.4 Proprietary Formats
Oracle, IBM, and Microsoft each offer proprietary binary XML
formats in their respective database server products. The Open
Geospatial (OpenGIS) Consortium defined a binary XML format,
B-XML, based on the Geography Markup Language. CubeWerx
has implemented B-XML as CWXML; the XML files packaged
with CWXML were included in our test corpus.

5. METHODOLOGY
5.1 Test Files
Although several general-purpose compression corpora exist, an
XML test corpus does not yet exist. The W3C, in conjunction
with the National Institute of Standards and Technology (NIST),
is developing XML conformance tests. However, little work has
been done to develop an XML performance corpus. Although
benchmarks do not completely describe a system’s performance,
they do provide for consistency in the literature. This is especially
true if a benchmark, in this case, the proposed XML test corpus, is
crafted to represent a cross-section of source domains and system
demands, as shown in Table 2.

The corpus was assembled based on recommendations given by
the designers of the oft-cited Canterbury corpus [3]. For example,
files were chosen based on topical domain coverage, raw file size,
similarity to other corpora, e.g., the Canterbury [3] or Calgary
corpora [14], and their public availability, where source locations
of each file is provided in Appendix C.

A subset of the factors collected from the files is also given in
Table 2. The test files used ranged from less than 1 KB to 4 MB,
and one large ~40 MB file. Since parser quality varied among the
compressors tested, some preliminary processing of the corpus
files was necessary prior to beginning the experiments. The pre-
processing performed on each file is as follows:

1. Validation and Beautification: Tidy is an XML
and HTML validation and beautification tool [35]. It was
used to remove blank lines and to indent each level for
readability. Tidy also identifies certain validation errors;
those found were corrected before proceeding.

2. Schema Extraction: Although DTD and/or XSD
files were often available with the original XML files,
some schemas contained errors (as reported by Microsoft
FrontPage®). Since some compressors require a schema,
we had to define one for every test file. To minimize test
errors, we generated a schema for each file versus using
any provided schema(s) or schemas of any similar files.
We removed references to any existing schemas in a file
and generated an explicit schema for it by applying an
open-source Java-based implicit schema extractor [23].

3. Schema Cross-Check: Microsoft FrontPage® was
used to validate the XML file yielded by tidy and the
extracted implicit schema. We removed all comments,
since some compressors did not properly parse them, and
added a reference to the extracted schema, or DTD.

4. XML Factors: The only XML statistics calculator
we located was a PHP-based statistics package [48] and
that was slightly modified for our use. This package was
used to collect various properties of a file, e.g., its XML
tree depth. The PHP parser had some problems with
blank lines and comments; however, these issues were
resolved in the course of steps 1-3.

5. Line Count: This property is not provided by the
script in step 4. We gathered it via the command-line by
using “type foo.xml | find /v /c ""”.

6. Zero-Order Entropy (H1): We used another PHP
script to calculate 0-order entropy [30]. Since XML only
contains text, we assume each symbol is one byte, i.e.,
one ASCII character. Thus, we used the 1-byte Unicode
encoding (UTF-8, similar to ASCII) to save corpus files.

7. Entropy Estimate (E[H∞]): The estimate of true
entropy was based on the best compression achieved for
each file after executing the PAQ and PPM compressors
at their maximum compression settings.

The factors listed in Table 2 were used to fit our linear regression
models. The file and description columns identify the file name
and a description of the file’s origin. The file domain is a
subjective classification that will be explained shortly. The next
five columns list the uncompressed file size (in bytes), number of
lines, number of unique characters (1-byte symbols), number of
unique tags, and the XML tree depth (as defined by the XML tags
contained in each file). The value for H1 is given by step 6 above
and validated by CACM3; the value for E[H∞] is the result of the
best compression obtained for that file (typically PAQ) after being
compressed by every compressor tested.

6

Table 2. Corpus test file properties (cf. Appendix C)
File Name Description Domain Bytes Lines Chars Tags Depth H1 E[H∞]

AB_FR_META SI 40042243 841765 85 88 10 3.987 0.008
AB_NO_META SI 1171129 24652 83 85 10 3.989 0.011
AB_TR_META

Weather Data (2004):
France, Norway, Turkey SI 335 9 58 5 3 5.248 0.325

BB_1998STATS Baseball Stats (1998) DB 904261 25965 76 43 6 4.373 0.020
CB_CONTENT OpenDocument Sample File MU 814397 17714 94 35 11 4.890 0.046
CB_WMS_CAPS GIS Map Server Data DB 1004047 18557 87 35 10 4.849 0.035
LW_H2385_RH LW 5337 115 79 35 5 5.080 0.247
LW_H3738_IH LW 5167 118 78 25 8 5.046 0.276
LW_H3779_IH

US House Of Representatives:
Bill Resolutions LW 6336 132 75 27 9 4.811 0.249

LW_ROLL014 LW 100499 2651 82 32 5 4.751 0.040
LW_ROLL020 LW 100568 2652 82 32 5 4.751 0.040
LW_ROLL031

US House Of Representatives:
Roll Call Votes LW 100368 2655 82 32 5 4.756 0.040

NT_BOOLEAN NT 7563 142 85 6 6 5.127 0.157
NT_NORMSTRING NT 62800 1193 85 6 6 4.822 0.028
NT_POSLONG

NIST XML Data Type
Conformance Tests NT 81669 1584 85 6 6 4.850 0.026

OD_ALLEN DB 2445 63 75 17 4 5.149 0.065
OD_FORD DB 3958 99 73 17 4 5.072 0.039
OD_MILLER

Oracle Database
Sample Transactions DB 4430 111 76 17 4 5.061 0.037

PD_CONNOW LI 481983 13689 77 12 3 5.126 0.019
PD_CONUSMIL LI 191796 5406 77 12 3 5.136 0.025
PD_CONUSNM

DoD Per Diem Data (2003)
LI 290380 8287 77 12 3 5.117 0.020

PY_AS_YOU MU 244498 6360 76 18 6 4.655 0.125
PY_COM_ERR MU 170641 4160 76 16 6 4.728 0.125
PY_HAMLET

Shakespeare: As You Like It,
Comedy Of Errors, Hamlet MU 352466 8836 77 16 6 4.703 0.128

RS_AP RS 6203 120 80 7 4 5.057 0.247
RS_CNET_SMALL RS 7328 177 76 18 4 5.112 0.183
RS_CNET_LARGE DB 251900 5551 85 13 4 5.099 0.090
RS_REUTERS

RSS “Top Story” News Feeds:
AP, CNET, Reuters

RS 7868 149 80 12 4 5.329 0.179
WX_29 SI 41460 1104 73 40 7 4.603 0.032
WX_38 SI 26897 744 73 39 6 4.672 0.046
WX_39

NOAA Weather Forecasts
(3 locations) SI 26887 744 73 39 6 4.670 0.046

XB_FACTBOOK CIA World Factbook BK 5047775 106938 87 199 5 4.878 0.081
XB_PERIODIC Periodic Table of Elements SI 107147 2428 78 20 3 5.307 0.035
XG_STUDENT Student Degree Listing DB 30411 1000 74 6 3 5.216 0.067
XM_DBLP Bibliographic Database DB 107864 2939 83 18 4 5.063 0.090
XM_SHAKE Shakespeare: Antony & Cleopatra MU 318487 8228 76 17 6 4.723 0.120
XM_SPROT DNA Sequences SI 11946 350 78 28 5 5.257 0.164
XM_TPC Database Benchmarks DB 349213 12966 77 45 4 4.963 0.101
XM_TREEBANK Wall Street Journal Linguistics TR 9129 370 68 28 15 2.960 0.094
XM_WEBLOG Apache Web Server Log LI 2179 58 75 10 3 5.221 0.252
XX_F21000 DB 64055 2407 70 22 4 4.916 0.044
XX_F26000 DB 6573 245 70 22 4 4.945 0.108
XX_F29000

FCC Ham Radio Listings
DB 824 28 66 21 4 5.170 0.436

XZ_UNSPSC UN Product Catalog Code Tree LI 1128895 31086 82 6 6 4.517 0.040

The test files were grouped within a set of domains, based on our
subjective judgment, as listed in Table 3. We use these groupings
(cf. third column of Table 2) to determine if the source domain is
a significant factor in the linear regression models we develop.

Table 3. Corpus test file domains

Source Domain Short Name
Books BK
Databases DB
Directory Listings LI
Legal Documents LW
Office Documents MU
Source code (NIST) NT
RSS Feed (News) RS
Scientific Data (Numbers) SI
Deep Nesting (Trees) TR

5.2 Compressor Configuration and Execution
The compressors are enumerated in Table 4, along with their short
names and categorizations based on each compressor’s design and
description in the literature. The 3-letter short name, e.g., BZ2,
was used as part of the file name to archive the files produced by
each compressor and to identify axes of relevant figures herein.
The compressor class and application columns are used as factors
for linear regression model fitting, similar to the file domains.
The compressor class column entries, [ZIP, MAT, XBN, XSC]
correspond with the [zip, arithmetic, XML binary, XML schema-
aware]-based compressors, respectively. The application column
differentiates general-purpose (GLO) and domain-specific (XML)
compressors. The subjectivity used to obtain Table 4 is less than
that used to designate the test file domains in Table 3, since the
categorization in Table 4 is based on a compressor’s algorithm.

7

Table 4. Compressor classes

Compressor Short Name Class Application
BZIP2 BZ2 ZIP GLO
CACM3 CAC CTL GLO
FIS FIS XBN XML
GZIP GZP ZIP GLO
PAQ PAQ MAT GLO
PPMD PPD MAT GLO
PPMZ2 PPM MAT GLO
WBXML WBX XBN XML
WINZIP WZP ZIP GLO
XBIS XBS XBN XML
XGRIND XGR XSC XML
XMILL1 XM1 XSC XML
XMILL2 XM2 XSC XML
XMLPPM XPM XSC XML
XMLZIP XZP XSC XML

Each compressor was tested with its default settings; in addition,
six compressors, CACM3, GZIP, PAQ, XGrind, XMill, WinZip®,
were also tested at their maximum compression settings. The
compression execution commands are given in Table 5, where the
maximum compression settings, shown in gray, are not used for
default compression. Conversely, the “-en” and “H V” options
are not used for maximum compression in WinZip® and XGrind.

Any output from the compressors was redirected to archive files.
The redirection is omitted, but is of the form “1>>com.1.txt
2>>com.2.txt”, where “com” is replaced by the appropriate
3-letter code for a compressor (cf. Table 4). Output redirection,
e.g., “1 > dat.com”, is explicitly given for CACM3 and GZIP
compressors, since the compressed file is provided via standard
out (stdout) by these compressors.

Table 5. Compressor execution commands

Compressor Usage
BZIP2 BZIP2 -k -f -v foo.xml

CACM3 arith -e -t word -m 255 -c 20
foo.xml 1 > foo.cac

FIS
java -cp FastInfoset.jar
com.sun.xml.fastinfoset.tools.XML_
SAX_FI foo.xml foo.fis

GZIP GZIP -9 -c -f -v foo.xml 1>foo.gzp

PAQ pasqda -7 foo.paq foo.xml

PPMD wzzip –ep foo.ppd foo.xml

PPMZ2 ppmz2 -e foo.xml foo.ppm

WBXML xml2wbxml -k -o foo.wbx foo.tdy

WINZIP wzzip -en –ee foo.wzp foo.xml

XBIS

java -Dorg.xml.sax.driver=
com.bluecast.xml.Piccolo -cp
Piccolo.jar;saxxbis.jar;.;
test.RunTest XBIS foo.xml

XGRIND ./compress foo.tdy H V A N

XMILL1 xmill –m 470 -9 -f -v -w foo.xml

XMILL2 xmill -f -v -w -p "//(*)" foo.xml

XMLPPM xmlppm foo.xml foo.xpm

XMLZIP java -cp xml4j.jar;. XMLZip
foo.xml 2

5.3 Metrics
The metrics collected from the compressors were the compression
execution time and the compressed file size. Based on analysis of
the residuals and data distributions, transforms were needed to fit
a linear regression model. For all transforms, the logarithm is used
to linearly distribute the metric; its effect is most observable when
comparing execution times. A small value, ‘+b’, is used to shift
each transform, where b is the logarithm base used in a transform;
this biases a transform to positive values that are away from and
greater than zero. The biasing minimizes the chances of using a
numerically ill-conditioned model matrix for linear regression. In
the compression ratio transform,

comp_ratio 2 native complog 8 2y s s⎡ ⎤= ⋅ +⎣ ⎦ , (2)

we first convert file sizes to bits, where the native file size, snative,
is in the numerator to minimize the possibility of encountering a
negative logarithm. In the compressor execution speed transform,

comp_speed 10 native execlog 8 10y s t= ⋅ +⎡ ⎤⎣ ⎦ , (3)

we divide file size by execution time, where snative is in bytes and
execution time, texec, is continuously distributed over one 24-hour
day, (0.0, 1.0), e.g., if the execution of a run takes 12 hours, then
texec = 0.5. A greater value reflects a higher compression ratio or
execution speed in (2) and (3), respectively.

A key goal was to devise and assess a combined efficiency
metric. We used a slightly modified version of the only known
combined efficiency metric [40] as a control metric,

()()comp compmin 1
eff_old 10 exec

log 102
s sy t

−⎡ ⎤= +⋅⎣ ⎦ , (4)

where scomp and texec are the same values used in (2) and (3). We
denote the minimum size across all compressors for a given test
file by min(scomp). Unfortunately, although (4) combines space
and time, it yields poor residual plots and normal plots, along with
a low R2 value when fitted to linear models. Unlike other metrics
herein, a smaller value for (4) is better. Based on our observations
with respect to (4), we propose a new combined efficiency metric,

()()
2
native

comp compeff_prop 10

exec

minlog 10
s
s sy

t

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⋅⎜ ⎟= +⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

, (5)

where the exponential function is now eliminated and texec is in
the denominator. The numerator is a product of the best
compression ratio obtained for each test file, snative / min(scomp),
and that of a compressor, snative /scomp, in order to standardize the
results. Thus, this metric can only be computed after all test runs
are executed, since min(scomp) is the minimum of all compressors.
A higher value for yeff_prop reflects a better efficiency with respect
to compression ratio and execution speed for a given compressor.

In (5), we first included all aspects of compression performance,
i.e., compression ratio and execution time. In addition, we wanted
to improve on defects observed in the residual plots, normal plots,
and R2 of (4). Finally, we sought to define a metric useful in the
sense of the best possible efficiency, i.e., it succinctly captured
not just the performance of an individual compressor, but that it
did so with respect to E[H∞], hence the inclusion of min(scomp).

8

6. RESULTS
6.1 General Discussion
Of the 616 possible combinations (14 compressors x 44 test files),
595 test run combinations were successful (cf. Appendix A) and
thus usable for results analysis. The 244 maximum compression
test run results replaced the respective default compression results
when we analyzed maximum compression settings. Since XGrind
was run atop the CoLinux emulator (cf. Appendix B), we needed
to account for timing differences. XGrind execution times, texec,
were scaled based on GZIP taking ~1.047 times longer to run in
CoLinux, versus natively in Microsoft Windows, on all tests.

6.2 Test System Environment
All tests were executed on a machine having the specifications
given in Table 6. A 15-second pause was used between tests to
provide recovery time for subsystems, e.g., virtual memory. We
also randomly re-ordered all test combinations for similar reasons.

Table 6. Compression test system specifications

Category Value
Model Gateway E Series SL2 E 6300
CPU Pentium 4 HT CPU (520) @ 3.20 GHz
RAM 2 x 512 MB DDR2 DIMMs @ 400 MHz
Hard Disk 1 x Western Digital Caviar, 800BD-22JMA0

Hard Disk
Partitions

C: 56314 MB, ~10% free, 1024 MB VM (fixed)
D: 20003 MB, ~75% free, 3072 MB VM (fixed)

OS Windows XP Pro (SP2), CoLinux (XGrind only)

6.3 Compression Ratio and Execution Speed
The mean scores across the test corpus for each compressor with
respect to (2) and (3) is shown in Figure 4. The standard deviation
is denoted by the paired horizontal bars about each data point.
Since (2) and (3) use base-2 and base-10 logarithms, respectively,
a difference of one reflects a compressor achieves two (ten) times
the compression ratio (speed). For instance, PAQ yields twice the
compression ratio of GZIP, but it takes ~1000x longer to execute.

However, it is difficult, to draw any more precise conclusions by
comparing mean and standard deviation of individual metrics. We
assess metric interaction of compression ratio and execution time
using our proposed combined metric, yeff_prop, and we determine
factor interaction using linear regression models.

0

5

10

15

20

25

B
Z
2

C
A
C

F
I
S

G
Z
P

P
A
Q

P
P
D

P
P
M

W
B
X

W
Z
P

X
B
S

X
G
R

X
M
I

X
P
M

X
Z
P

Compressor

M
ea

n
V

al
ue

Compression Ratio Execution Speed
Figure 4. Compressor vs. {compression ratio, execution speed}

When using linear regression and analysis of variance (ANOVA),
the “F-test” reflects the variance, i.e., the sum of squares of the
estimated versus fitted values accounted for by the factor, where
larger is better. The “Prob > F” value reflects whether the F-test is
statistically significant; we used a significance level of 0.05.α =

Table 7 shows the linear regression model used for ycomp_ratio (2)
and ycomp_speed (3) using default compression. The first row shows
the overall model (using all factors) is significant. The file domain
(FileDom) and compressor class (ComClass) factors correspond
with Tables 3 and 4, respectively. Characters (chars), lines, tree
depth, E[H∞], and H1 factors are as listed in Table 2. The model
validates key expectations, e.g., E[H∞] predicts ycomp_ratio. The run
ID factor is not significant, i.e., the random run re-ordering was
effective. All interaction effects are negligible and are not shown.
The compressor class and H1 are valid factors to predict ycomp_ratio
and ycomp_speed. However, the file domain is significant only with
respect to ycomp_ratio. Thus, according to this model, the selection
of a compressor should be based on the compressor class and file
domain, in order to maximize the compression ratio.

Table 7. ANOVA — compression ratio and speed (default)

 ycomp_ratio (2) ycomp_speed (3)
Factor DF F-test Prob > F F-test Prob > F

All Factors 18 82.463 < 0.0001 24.847 < 0.0001
Run ID 1 1.184 0.1798 0.019 0.8895
FileDom 8 43.106 <0.0001 2.486 0.0117
ComClass 4 568.332 <0.0001 73.103 <0.0001
Chars 1 18.170 <0.0001 34.589 <0.0001
Lines 1 0.156 0.6258 2.504 0.1141
Depth 1 0.245 0.5418 2.093 0.1484
H1 1 15.431 <0.0001 21.576 <0.0001
E[H∞] 1 75.330 <0.0001 2.065 0.1513
Error 576 0.656 0.931
Totalcorr 594

6.4 Combined Efficiency
To model combined efficiency metrics, we only factors that were
significant with respect to predicting ycomp_ratio or ycomp_speed, thus
reducing the number of degrees of freedom (DF) from 18 to 15.
The linear model for default compression is shown in Table 8;
maximum compression results are again similar. We conclude the
file domain, compressor class and E[H∞] are the best factors to
assess overall efficiency. Excepting the difference with respect to
the H1 factor, we could potentially conclude from Table 8 that the
two metrics, yeff_old and yeff_prop, are equivalent.

Table 8. ANOVA — combined efficiency (default)

 yeff_old (4) yeff_prop (5)
Factor DF F-test Prob > F F-test Prob > F

All Factors 15 29.560 <0.0001 34.551 <0.0001
FileDom 8 3.289 0.0011 11.299 <0.0001
ComClass 4 72.050 <0.0001 93.324 <0.0001
Chars 1 0.861 0.3537 6.382 0.0118
H1 1 14.487 0.0002 0.2240 0.6362
E[H∞] 1 39.415 <0.0001 34.058 <0.0001
Error 579 4.8914 0.9745
Totalcorr 594

9

However, (5) yields a better predicted versus residual values plot,
a standard method of assessing model fitness. Several visual cues
in Figure 5a show (4) is fitted to a poor linear model or is a poor
metric. These residuals, plotted against the vertical axis, are not
equally distributed about zero, there is a noticeable diagonal slant
of the residuals, and a large set of outliers are present. Figure 5b
plots the residuals of our proposed efficiency metric (5); they are
not significant skewed and are distributed evenly about zero with
respect to the vertical axis.

-5

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Predicted

R
es

id
ua

l

(a) Control metric — yeff_old (4)

-4

-3

-2

-1

0

1

2

3

14 15 16 17 18 19 20

Predicted

R
es

id
ua

l

(b) Proposed metric — yeff_prop (5)

Figure 5. Predicted versus residual scores (efficiency)

Since we have shown the proposed efficiency metric results in a
suitable model, we can now attempt to assess which compressor is
most efficient. The scores for each file and the compressor means
are shown in Figure 6, but it is difficult using this (common)
approach to determine which compressors are the most efficient.

12

14

16

18

20

22

B
Z
2

C
A
C

F
I
S

G
Z
P

P
A
Q

P
P
D

P
P
M

W
B
X

W
Z
P

X
B
S

X
G
R

X
M
I

X
P
M

X
Z
P

Compressor

E
ffi

ci
en

cy
 (5

)

Figure 6. Compressor versus efficiency — yeff_prop (5)

A pair-wise means comparison can determine statistically similar
factors at a particular confidence level (again, 0.05α =). After
we construct the linear model for yeff_prop (Table 8), we applied
the Tukey-Kramer honestly significantly different (HSD) test to
obtain Table 9, where columns T1 – T7 group statistically similar
compressors. For instance, XMill, GZIP, WinZip®, and BZIP2 are
statistically equivalent with respect to yeff_prop (5). Furthermore,
the slowest compressor, XBIS, and the compressor yielding the
best compression ratio, PAQ, are also equivalent (and inefficient).

Table 9. Pair-wise Tukey-Kramer HSD tests — yeff_prop (5)
Compressor T1 T2 T3 T4 T5 T6 T7 Mean
XMILL X 18.787
GZIP X X 18.644
WINZIP X X 18.614
BZIP2 X X X 18.407
XMLPPM X X X 18.003
CACM3 X X 17.904
XGRIND X X X X 17.880
PPMZ2 X X X 17.780
PPMD X X 17.543
XMLZIP X X 17.350
FIS X 17.130
WBXML X 16.366
PAQ X X 16.272
XBIS X 15.576

From these results, we conclude XMill offers the best combined
efficiency, yeff_prop, and is statistically similar to WinZip®, GZIP,
and BZIP2. XMLZIP is hindered by its tendency to increase file
size. WinZip® increased one file by two bytes; no other increases
were observed. The new PPMd algorithm integrated in WinZip®

is an average compressor (for this corpus and metric). The binary
formats, Fast Infoset, WBXML, and XBIS, have a low efficiency.

6.5 File Size Categorization
We observe some performance differences if we filter the results
by uncompressed file size. Notably, WBXML achieves higher
efficiency on small files, i.e., those less than ~6 KB. It is also the
fastest compressor of these files and achieves compression on the
order of H1. Given WBXML has low computational overhead and
its widespread use, this result warrants further investigation. Other
XML binary formatters did not share WBXML’s execution speed
on small files. Ironically, WBXML is the slowest compressor on
larger test files; we were unable to determine if this effect is an
implementation or algorithm-specific issue.

0

5

10

15

20

25

B
Z
2

C
A
C

F
I
S

G
Z
P

P
A
Q

P
P
D

P
P
M

W
B
X

W
Z
P

X
B
S

X
G
R

X
M
I

X
P
M

X
Z
P

Compressor

M
ea

n
V

al
ue

Compression Ratio Execution Speed
Figure 7. Compressor vs. {compression ratio, speed} (< 6 KB)

10

Figure 8 plots the compression ratio for each corpus file listed in
Table 2, as yielded by the most efficient compressor, XMill, and
bounded by the compression ratios yielded by the CACM3 and
PAQ compressors, the compressors used to obtain H1 and E[H]∞,
respectively. The logarithmic horizontal axis visually reinforces
why we used a logarithmic transform in the compression metrics;
we otherwise would have been unable to apply linear regression.

Figure 8. Compression ratio of XMill

(most efficient compressor with respect to yeff_prop)

7. CONCLUSION
We proposed a corpus of XML test files for assessing compressor
performance and a combined efficiency metric, yeff_prop, to assess
compression ratio and speed simultaneously and then used linear
regression to rank the compressors with respect to the proposed
metric. For readers interested in applying the results of this study,
we recommend the following courses of action:

1. In most instances, a general-purpose compressor,
e.g., a zip utility, should be used. If maximum parsing
and compression speed is needed in an XML-intensive
application, compressors such as XMill may be useful.
This is contingent on the benefit gained over using
native XML along with general-purpose compressors.

2. The tested binary formatters often compress
small XML files well. Given the plethora of existing
binary formats, e.g., WBXML, FIS, and MPEG-7,
along with the EXIWG’s efforts, other binary formats
may not be needed. Our results indicate that binary
formats, e.g., WBXML, are best applied to small files.
This should be considered and verified as the EXIWG
prepares their binary format specification.

Several avenues of research were not investigated in this study;
we suggest future work explore one or more of the following:

1. The EXIWG recently identified Efficient XML
as the basis of its binary format [15]; it and other
recently developed binary formats or compressors
should be tested in future work. Although a publicly
accessible version of Efficient XML was not available
during this study (cf. Section 4.4), a development kit
has since been released on the vendor’s website [16].

2. Neither decompression performance nor memory
requirements were assessed in this study. In addition
to randomizing file and compressor combinations, the
use of two disks would also reduce system issues, e.g.,
fragmentation. We also conducted only one run of the
test file and compressor combinations—repeated trials
would enable determining confidence intervals.

3. In addition to discussing the validity and utility
of the proposed XML corpus and combined efficiency
metric, it would be useful to explore whether 2-stage
compression is useful, e.g., applying a pre-processing
transform such as XMill. This may lead to integrating
an XML model in a general-purpose compressor and
aid in limiting proliferation of proprietary solutions.

In sum, we have motivated the utility of an XML test file corpus,
akin to the Canterbury and Calgary corpora, along with the utility
of a combined efficiency metric for assessing compression ratio
and compression speed simultaneously. We have also provided
sufficient detail to enable experimental repeatability and relative
to studies that only compare means, we have shown the utility of
using linear regression for analyzing compressor performance.

Acknowledgement
We thank Andy Andrews for his suggestions and encouragement
while conducting this research. We also thank him for keeping us
abreast of recent developments in the XML domain.

1 10 100 1000

XZ_UNSPSC
XX_F29000
XX_F26000
XX_F21000

XM_WEBLOG
XM_TREEBANK

XM_TPC
XM_SPROT
XM_SHAKE

XM_DBLP
XG_STUDENT
XB_PERIODIC

XB_FACTBOOK
WX_39
WX_38
WX_29

RS_REUTERS
RS_CNET_SMALL
RS_CNET_LARGE

RS_AP
PY_HAMLET

PY_COM_ERR

PY_AS_YOU
PD_CONUSNM
PD_CONUSMIL

PD_CONNOW
OD_MILLER

OD_FORD
OD_ALLEN

NT_POSLONG
NT_NORMSTRING

NT_BOOLEAN
LW_ROLL031
LW_ROLL020
LW_ROLL014

LW_H3779_IH
LW_H3738_IH

LW_H2385_RH
CB_WMS_CAPS

CB_CONTENT
BB_1998STATS
AB_TR_META
AB_NO_META
AB_FR_META

Test File Compression Ratio

+

×

■

E[H∞]
(PAQ)

H1

(CACM3)

XMill

11

8. REFERENCES
[1] ASN.1 (Fast Infoset). http://asn1.elibel.tm.fr/xml/finf.htm.
[2] Binary Optimized XML (BOX). http://box.sourceforge.net.
[3] R. Arnold and T. Bell. A corpus for the evaluation of lossless

compression algorithms. In Proceedings of the IEEE Data
Compression Conference (DCC), pages 201–210, 1997.

[4] C. Bloom. PPMZ2. http://www.cbloom.com/src/ppmz.html.
[5] M. Burrows and D. Wheeler. A block sorting lossless data

compression algorithm. DEC, Technical Report 124, 1994.
[6] Burrows-Wheeler Transform. Wikipedia.

http://en.wikipedia.org/wiki/BWT.
[7] J. Cheney. Compressing XML with multiplexed hierarchical

PPM models. In Proc. of the IEEE Data Comp. Conf. 2001.
[8] J. Cleary and I. Witten. Data compression using adaptive

coding and partial string matching. IEEE Transactions on
Communications, 32(4):396–402, April 1984.

[9] M. Cokus and D. Winkowski. XML sizing and compression
study for military wireless data. In Proceedings of the XML
Conference and Exposition, Baltimore, MD, 2002.

[10] CoLinux. Cooperative Linux. http://www.colinux.org.
[11] CoLinux. http://www.informit.com/guides/

printerfriendly.asp?g=security&seqNum=25&rl=1.
[12] Cooperative Linux. http://colinux.wikia.com.
[13] Data Compression Info (formats). http://www.data-

compression.info/Algorithms/index.htm.
[14] Data Compression Info (corpora). http://www.data-

compression.info/Corpora/index.htm.
[15] Efficient XML Interchange Working Group (EXIWG).

http://www.w3.org/XML/EXI/.
[16] Efficient XML. AgileDelta. http://www.agiledelta.com/

product_efx.html.
[17] Extensible Markup Language (XML). W3C.

http://www.w3.org/XML/.
[18] Fast Infoset Project. https://fi.dev.java.net.
[19] J. Gailly and M. Adler. GZIP. http://www.gzip.org.
[20] M. Girardot and N. Sundaresan. Millau: an encoding format

for efficient representation and exchange of XML over the
web. In Proceedings of the Int'l WWW Conference on
Computer Networks, pages 747–765, June 2000.

[21] D. Hankerson, G. Harris, and P. Johnson, Jr. Intro to
Information Theory and Data Compression, CRC, 1997.

[22] S. Hariharan and P. Shankar. Compressing XML documents
with finite state automata. In Proc. of the Int'l Conference on
Implementation and Application of Automata, 2005.

[23] M. Kay. SAXON. http://users.breathe.com/mhkay/saxon/.
[24] G. Leighton, J. Diamond, and T. Müldner. AXECHOP: a

grammar-based compressor for XML. In Proc. of the IEEE
Data Compression Conference (DCC), page 467, 2005.

[25] G. Leighton. XML Compression Bibliography. http://pages.
cpsc.ucalgary.ca/~gleighto/research/xml-comp.html.

[26] W. Li. XCOMP: An XML Compression Tool. M.M. Thesis,
University of Waterloo, Waterloo, Ontario, 2003.

[27] H. Liefke and D. Suciu. XMill: an efficient compressor for
XML data. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 153–164, 2000.

[28] PAQ. http://cs.fit.edu/~mmahoney/compression.
[29] B. Martin and B. Jano, eds. WAP Binary XML Content

Format. http://www.w3.org/TR/wbxml/.
[30] P. Meagher. Calculating Entropy for Data Mining.

http://www.onlamp.com/pub/a/php/2005/01/06/entropy.html.
[31] J. Min, M. Park, and C. Chung. XPRESS: a queriable

compression for XML data. In Proc. of the ACM Int'l Conf.
on Management of Data (SIGMOD), pages 122–133, 2003.

[32] A. Moffat. Implementing the PPM data compression scheme.
IEEE Trans. on Comm., 38(11), pages 1917–1921, 1990.

[33] A. Moffat, R. Neal, and I. Witten. Arithmetic coding
revisited. ACM Trans. on Info. Sys., 16(3):256–294, 1998.

[34] W. Ng, W. Lam, and J. Cheng. Comparative analysis of
XML compression technologies. World Wide Web, 9(1):5–
33, Kluwer Academic Publishers, March 2006.

[35] D. Raggett. HTML Tidy Library. http://tidy.sourceforge.net.
[36] J. Seward. BZIP2. http://www.bzip.org.
[37] C. Shannon. Communication in the presence of noise.

Proceedings of the IRE, 37(1):10–21, 1949.
[38] D. Shkarin. PPM: one step to practicality. In Proceedings of

the Data Compression Conference (DCC). 202–211, 2002.
cf. http://www.winzip.com/ppmd_info.htm.

[39] D. Sklar. Wrangling CoLinux Networking. http://www.sklar.
com/blog/archives/55-Wrangling-CoLinux-Networking.html.

[40] Summary of the Multiple File Compression Test. http://
www.maximumcompression.com/data/summary_mf.php.

[41] N. Sundaresan and R. Moussa. Algorithms and programming
models for efficient representation of XML for Internet
applications. In Proc. of the Int’l Conf. on the WWW, 2001.

[42] P. Tolani and J. Haritsa. XGrind: A query-friendly XML
compressor. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 225–234, 2002.

[43] The Wayback Machine. http://www.archive.org.
[44] WBXML Library. http://libwbxml.aymerick.com.
[45] WinZip®. http://www.winzip.com.
[46] XBIS. http://xbis.sourceforge.net.
[47] XML and Compression. http://xml.coverpages.org/

xmlAndCompression.html.
[48] XML Statistics. http://pear.php.net/package/XML_Statistics
[49] XML-Xpress. ICT. http://www.ictcompress.com/

products_xmlxpress.html.
[50] XML-ZIP. XML Solutions. http://www.xmls.com.
[51] J. Ziv and A. Lempel. A universal algorithm for sequential

data compression. IEEE Trans. on Information Theory,
23(3):337–343, 1977.

12

APPENDIX A: Uncollected Test Samples
The compressor and test file combinations listed in Table 10 are
those that failed to complete. For the most part, these test failures
were attributed to parser errors in the compressor being tested.

However, WBXML failures were due to excessive execution
time; even after being granted several days of execution,
WBXML had not compressed the files listed in Table 10. Given
that WBXML is used with wireless devices, this may be
acceptable; however, this issue warrants further investigation.

Table 10. Failed compressor / corpus test file combinations

Compressor Test File
ab_FR_meta
ab_NO_meta
xb_factbook

WBXML

xz_UNSPSC-2
ab_FR_meta
cb_content XBIS
xm_treebank
ab_FR_meta1
ab_NO_meta2

cb_content
cb_wms_caps
lw_h* (all)
lw_roll* (all)2
nt* (all)
wx* (all)
xb_periodic
xm_dblp

XGRIND

xm_sprot

APPENDIX B: CoLinux Experiences
This appendix briefly summarizes how we installed the CoLinux
emulator [10] of the Linux operating system (cf. Sections 4.3.1
and 6.1), whose capabilities are similar to cygwin and VMWare,
two other ways of accessing Linux from a Windows environment.
Although CoLinux runs as an application in Microsoft Windows®,
its installation can be quite challenging [10, 11, 12, 39].
First, CoLinux requires an “installed” Linux distribution; we used
a 1+ GB compressed Debian variant, of the many available at the
CoLinux site [10]. Installing CoLinux on a Windows XP® system
may require disabling of some memory protection features and
system reboot after applying the “/NoExecute=AlwaysOff”
setting to the “boot.ini” file. This modification is typically used if
a hard system crash occurs when CoLinux is launched.
Since Windows XP® retains control of any physical devices, e.g.,
disk drives, a convenient method to share data between CoLinux
and Windows XP® is via a network link. This is readily achieved
by using a network bridge in Windows XP®; a bridge should be
disabled when CoLinux is not in use, especially prior to a system
restart, as it may prevent subsequent logons.
We used the file-sharing service Samba, which required a registry
modification to Windows XP® and a download via “apt-get” in
CoLinux (once the network bridge is established). Alternatively,
an FTP server could be installed on the Windows XP® system.

1 Indicates failure during max (not default) compression testing.

APPENDIX C: Corpus Test File Sources
We collected corpus files from several sources (cf. Section 5.1),
with a broad goal of spanning, as much as possible, the domains
and sizes of XML files in common use. As with any benchmark,
these files are only one set of test files that could be used to assess
a system’s performance. A key source was sample files packaged
with XML compressors. We then added XML-formatted versions
of files used in other compression studies or in other corpora. We
also added files of interest to our research, along with additional
ones to span the file sizes we determined to be relevant.

Since copyright restrictions may preclude us from providing the
native or modified XML files, we provide the source locations of
all test files used in this study in Table 11. Since pre-processing
steps used by researchers may vary, the results may differ slightly
between experiments; in addition to providing source locations,
Table 11 also illustrates the scope of files in the corpus. The first
two letters of each file’s name serves as its prefix (cf. Table 2).

Table 11. Corpus test file source locations

Prefix File Source Location (URL)

AB http://air-climate.eionet.eu.int/databases/airbase/
airbasexml/index_html#downld

BB http://www.ibiblio.org/xml/examples/
CB http://www.cubewerx.com/main/cwxml/
LW http://xml.house.gov/
NT http://xw2k.sdct.itl.nist.gov/brady/xml/

OD http://www.oracle.com/technology/tech/xml/xmldb/i
ndex.html

PD http://www.kensall.com/gov/perdiem/

PY

1. http://www.ibiblio.org/xml/examples/
shakespeare/

2. http://www.oasis-open.org/cover/
bosakShakespeare200.html

RS

1. http://hosted.ap.org/dynamic/fronts/
RSS_FEEDS?SITE=AP

2. http://www.cnet.com/4520-6022-5115113.html
3. http://reviews.cnet.com/4924-5_7-0.xml?

7eChoice=1&orderBy=-7rvDte&
maxhits=50000000

4. http://today.reuters.com/rss/newsrss.aspx

WX

1. http://weather.gov/xml/
2. http://weather.gov/forecasts/xml/SOAP_server/

ndfdXML.htm
3. http://weather.gov/forecasts/xml/SOAP_server/

ndfdSOAPByDay.htm
XB http://xbis.sourceforge.net/
XG http://sourceforge.net/projects/xgrind/
XM http://sourceforge.net/projects/xmill
XX http://www.ictcompress.com/downloadxml.html

XZ http://www.xmls.com —briefly, also at http://aslam.
szabist.edu.pk/XML+Solution/product/ xml_zip.html

