
An Efficient Data Extraction and Storage Utility For XML Documents

Ismailcem Budak Arpinar1, John Miller2, and Amit P. Sheth3

LSDIS Lab
Computer Science Department

University of Georgia
Hardman Hall, Athens, GA – 30602

1 budak@ainge.cs.uga.edu, 2 jam@cs.uga.edu, 3 amit@cs.uga.edu

Abstract. A flexible filtering technique and data extraction mechanism for XML
documents are presented. A relational database schema is created on the fly to store
filtered and extracted XML elements and attributes. Building an XML based
workflow process repository provides a motivation. Dynamic XML technology
combined with Java reflection provides for an efficient traversal method for XML
hierarchies to locate the elements/attributes to be filtered.

1 Introduction

In this paper, a mechanism to provide selective extraction of data objects from XML
documents, the storage of these documents in a relational database, and retrieval and
reconstruction of XML documents from extracted data objects is discussed. The
motivation is provided by a need for a Workflow Process Repository in a Workflow
Management System (WFMS) [5], namely METEOR WFMS, to store meta-data about
workflow designs, organizations, informational resources and computational resources.
Thus meta-data is composed of different XML documents representing different
components of a workflow process.

The repository, involving the Data Extraction and Storage Utility (i.e., Extractor), has
the following main capabilities:

Filtering of XML objects that need to extracted,
Generating relational schemas for on-the-fly storage of XML documents,
Loading data from XML documents into relational tables,
Re-creating original XML documents as needed,
Querying, browsing, and versioning.

Our scheme has superiority over other storage alternatives for XML documents in
terms of practicality and flexibility. Practicality arises because of the obvious
acceptance and wide us of Relational Database Management Systems (RDBMSs);
flexibility is provided by selective extraction mechanism (i.e., filtering) employed by
the Extractor, which is not available in similar approaches [3] using a RDBMS. Other
approaches, such as XML databases (e.g., Lore [4]), might have superiority over our
approach in terms of efficient storage and querying XML documents [1,2].

2 Motivation and Repository Architecture

The motivation behind building an XML based workflow repository is providing for
multi-organizational workflow processes, and supporting reusability, adaptability and

survivability of both intra- and inter-organizational workflows. Multiple organizations on
the Web can post their services into the repository as workflow steps, and these steps can
be incorporated into other organizations’ workflow processes using repository’s querying
and browsing capabilities. Even the organizations can use their own local repositories to
reuse existing workflow components, eliminating design of new workflows from scratch.
Finally, the survivability is supported by replacing failed workflow components with
functionally equivalent components at run-time, thus changing workflow schemas on the
fly. These new components are searched in the repository using the graphical query
composer and placed into the new workflow schema by a “drag-and-drop”.

The workflow repository architecture is depicted in Figure 1. Dynamic XML1
(DXML) provides ability to access and manipulate XML objects like regular Java
objects. This provides a greater flexibility in traversing the XML documents over other
methods involving Document Object Model (DOM). The Document Type Definitions
(DTDs) are processed to generate classes for each element defined in a DTD. XML
objects that need to be extracted and mapping between relational tables/attributes, and
XML elements/attributes are defined in a spec file. Relational schemas are created
dynamically using this specification, and Extractor uses generated classes and Java
reflection to "extract" XML objects to be stored in the corresponding relations.

Figure 1. An Overview of Repository Architecture

The XML documents themselves are stored as Character Large Objects (CLOBs)2, and
the extracted information is correlated with corresponding CLOBs using foreign keys. In
this way, extracted information can be queried (or browsed through), and once desired

1 DXML is a trademark of ObjectSpace, Inc.
2 Large Data Object (LOB) or similar data types are used where CLOB is not supported by a RDBMS.

NetworkTask.dtd
RoleDomain.dtd
DataClass.dtd

Xgen
(Dynamic

XML)

/networktask/*.java
/roledomain/*.java
/dataclass/*.java

*.xml

Extractor

TABLE
TABLE_MAP

(e.g., Task = NetworkTask SimpleSubtaskList Task *)
ATTRIBUTE_FILTER

PRIMARY_KEYS
FOREIGN_KEYS

specspec

Java Reflection:
get…SimpleSubTaskLists();
get...Tasks();
get…TaskName();
…

Database
Utility

RDBMS
Oracle,

MySQL, etc.

CLOB
Utility

Schema
Generator

SCHEMA

JDBC

object is located, original XML documents (e.g., workflow schemas) can be reproduced
from the database.

3 Data Filtering and Extraction From XML Documents

An XML-relational mapping scheme is used to create a relational schema corresponding
the “filtered” hierarchy of an XML document. Actually, both an XML document and a
relational database can be viewed as trees. In Figure 2, a tree representation of the XML
document below, namely SampleFlow.xml3 describing workflow steps (i.e., tasks) is
depicted.

<?xml version="1.0"?>
<!DOCTYPE NetworkTask SYSTEM "NetworkTask.dtd">

<NetworkTask id="1">
 <Task id="2">
 <Name>SampleFlow</Name>
 <TaskType>Non-transactional WorkFlow</TaskType>
 </Task>
 <SimpleSubTaskList>
 <Task id="3">
 <Name>Start</Name>
 <TaskType>Human</TaskType>
 </Task>
 <Task id="4">
 <Name>Close</Name>
 <TaskType>Transactional</TaskType>
 </Task>
 </SimpleSubTaskList>
</NetworkTask>

Figure 2. A Tree Representing the XML Document Hierarchy

3 A highly simplified version of the actual XML document is presented here.

Name TaskType IdName TaskType Id Name TaskType IdName TaskType Id

Root

NetworkTask

Task SimpleSubTaskList Id

TaskTaskName TaskType IdName TaskType Id

SampleFlow Non-transactional-
Workflow

2

Start Human

1

43 Close Transactional

DocNode

ElementNode

AttributeNode

ValueNode

Legend

Filtering is realized in terms of (1) mapping only “selected” elements to relations, and (2)
mapping only “selected” elements or attributes to relational attributes. To achieve (1),
TABLE and TABLE_MAP structures are used to define relations and paths to find
corresponding elements in the XML tree respectively.

public static final String []
TABLE = {
 "xmldoc",
 "networktask",
 "task",
 "dataobject",
 "roledomain",
 "wfrole"};

public static final String [] TABLE_MAP = {
 "", // special root table (no data from
XML document itself)
 "NetworkTask Task",
 "NetworkTask SimpleSubTaskList Task *",
 "DataClass",
 "RoleDomain",
 "RoleDomain Role *"};

For example, the path for a networktask is "NetworkTask Task"4 (the orange path in
Figure 3), and the path for a task is “NetworkTask SimpleSubtaskList Task *”
which is depicted as a turquoise path. Star (*) means task is multivalued. Extractor uses
these specifications to recursively traverse XML tree structure from the Root downward
using the interfaces and classes generated by DXML. The elements that will be extracted,
which are underlined in Figure 3, constitute a filtered subset of elements in the tree and
are not necessarily leaf nodes of the paths (e.g., NetworkTask). Note that complete
extraction algorithm is not discussed here, because of space limitations.

Figure 3. Specification of Tables and Table Map

The property (2) above is realized by filtering only a selected subset of attributes
associated with the leaf nodes of the paths. Actually, these paths constitute lattices with a
single start node and a single termination node if we keep only one of the multivalued
elements. Thus, every attribute/element of a termination node is actually associated with
the start node4, which represents a relation. For example, Name and TaskType are children
of a leaf node (i.e., Task) and constitute filtered elements and attributes for NetworkTask

4 The Root can be eliminated.

Name TaskType Id Name TaskType Id

Root

NetworkTask

Task SimpleSubTaskList Id

TaskTaskName TaskType Id

SampleFlow Non-transactional-
Workflow

2

Start Human

1

43 Close Transactional

Root

NetworkTask

relation (Figure 4). Notice that these elements/attributes are not associated with their
direct parent (i.e., Task), because it is not filtered as a relation at the previous step.

Figure 4. Filtering Elements and Attributes

The employed two filtering techniques ((1)&(2)) allow users to control creation of
database schemas and provide an efficient storage mechanism for the selected
components, because instead of whole document important parts of the document for a
user are specified and extracted.

The resulting relational database is depicted in Figure 5. Filtered elements (i.e.,
NetworkTask and Task) are mapped to relations, and filtered elements/attributes (e.g.,
Name and TaskType) are mapped to attributes. A special relation, namely XmlDoc, is used
to store XML documents themselves in DocumentText attribute as CLOBs. A VersionNo
attribute is placed to support different versions of the same XML document.

Remaining entities that are needed to complete a relational schema are primary and
foreign keys. Simply the relation(s) referenced are indicated for each relation, and foreign
key(s) are produced to reference that relation(s)'s primary keys. A generated name for a
foreign key is "<relation-name>_<primary-key>" of what it references. For example,
for Task "XmlDoc_DocumentId" references the XML Document. In general, a filtered
XML element in the tree can reference one of the primary keys of a parent element,
which is also filtered, or XML document to which it belongs. Finally, the primary keys
are specified and they are underlined in Figure 5.

4 Conclusions

Recently, XML gains a great acceptance as a data interchange format on the Web. Thus,
providing storage and querying capabilities for XML attains interests of many researches.
However, a broadly accepted solution is still missing. We believe that our approach
provides for a flexible and practical solution until XML DBMSs are improved and
standardized. Furthermore, the XML based workflow repository provides easy exchange
of workflow process definitions between companies, and an integration tool to enable
coordination of companies’ business processes.

Name TaskType Id Name TaskType Id

Root

NetworkTask

Task SimpleSubTaskList Id

TaskTaskName TaskType Id

SampleFlow Non-transactional-
Workflow

2

Start Human

1

43 Close Transactional

Figure 5. Dynamically Created Relational Database

References

[1] “The XML Query Algebra”, W3C Working Draft, December 2000.

[2] S. Abiteboul, P. Buneman, and D. Suciu, “Data on the Web”, Morgan Kaufmann, 2000.

[3] R. Bourret, C. Bornhovd, and A. Buchmann, “A Generic Load/Extract Utility for Data Transfer Between

XML Documents and Relational Databases”, WECWIS 2000, Milpitas, CA.

[4] L. McHugh, S. Abitebul, R. Goldman, D. Quass, and J. Widom, “Lore: A Database Management System
for Semistructured Data”, ACM SIGMOD Record, 26(3), 1997.

[5] A. Sheth, W. Aalst, and B. Arpinar, “Processes Driving the Networked Economy: Process Portals,

Process Vortexes, and Dynamically Trading Processes, IEEE Concurrency, July-September 1999.

NetworkTask TaskTask

SampleFlow Non-transactional-
Workflow

Start Human Close Transactional

XmlDoc

Database

Relation

Attribute

Value

Legend

Database

Name

TaskType

XmlDoc-
DocumentId

XmlDoc-
DocumentId

XmlDoc-
DocumentId

Name

TaskType

Name

TaskType
Dtd

DocumentText

XmlFileNameDocumentId

VersionNo

