
WS-Security policy profile of
WS-PolicyConstraints

Working Draft 04, 1 December 2005
Authors:

Anne Anderson (anne.anderson@sun.com)

File name:
ws-security-profile-of-ws-policy-constraints

Abstract:
This document defines predicates for specifying constraints on the message security domain
covered by the OASIS WS-Security Standard. These predicates are expressed using the
generic policy constraint language WS-PolicyConstraints, which is based on the OASIS
eXtensible Access Control Language (XACML) Standard. By expressing constraints using this
generic constraint language, any policy processor for WS-PolicyConstraints can verify a
message against a WS-Security policy, and can automatically find a mutually acceptable WS-
Security policy based on the individual policies of two or more parties. No plug-ins or
modifications to the policy processor for WS-PolicyConstraints are required for handling this or
any other domain's policy constraints.

The profile defined here is not intended to replace WS-SecurityPolicy. It is a “proof-of-concept”
of the WS-PolicyConstraints approach that takes a well-known set of Assertions and
demonstrates that they can be expressed using WS-PolicyConstraints. To enable an easy
comparison between the two languages, this document has been organized according to the
Assertions defined in WS-SecurityPolicy v1.1 because its purpose is to explore various types of
Assertions and how they can be expressed using a domain-independent policy assertion
language such as WS-PolicyConstraints.

Status:
This version of the specification is a working draft.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 1 of 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

mailto:anne.anderson@sun.com

Table of Contents
1 Introduction (non-normative)...3

1.1 Notation...5

2 WS-Security..6

3 Policies about WS-Security..7

4 WS-SecurityPolicy..8

5 Using WS-PolicyConstraints for WS-Security Policies..9

5.1 Multiple constraints on a single nodeset...9

5.2 Limited XPath expressions..10

6 Actual WS-Security policy predicates...11

6.1 Specification version..11

6.2 Security tokens..12

6.3 Integrity Assertion..16

6.4 Confidentiality Assertion..18

6.5 Visibility Assertion..18

6.6 Security Header Assertion...19

6.7 MessageAge Assertion...20

7 Lessons learned and future work...21

7.1 XPath intersections..21

7.2 New functions..21

7.3 Constraints on the message processor..21

7.4 Overly constrained policies...22

7.5 Cost and value of abstraction..22

8 References..23

Revision History...24

Notices...25

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 2 of 25

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

1 Introduction (non-normative)
The policy framework currently expressed by WS-Policy [WSP] requires the definition of policy
“Assertions” (predicates) for each domain to which policy is to be applied. Three examples of
specifications defining such Assertions have been published to date:

• WS-PolicyAssertions [WSPA], defining some general-purpose Assertions,

• WS-SecurityPolicy [WSSP], defining policy Assertions for WS-Security [WSS] and other specifications
that might cover the same message security space, and

• WS-ReliabilityPolicy [WSRP], defining policy Assertions for WS-Reliable Messaging [WSR] and other
specifications that might cover the same reliable messaging space.

Each of these sets of Assertions is specific to its domain – they do not share syntax or semantics. In
order to support each such Assertion, each policy processor must be supplied with an Assertion-specific
code module that implements the semantics described in the specification. Such a module must be
developed for each platform that is to support the Assertion. Since there is no standard language for the
Assertions, the module must be extensively tested for interoperability, as different developers may
interpret the specification in different ways. Finally, the module must be deployed on each server that is
to support the Assertion. If the Assertion is modified, to support a new secure hash algorithm, for
example, this process must be repeated.

As policies are used with more and more domains, the number of domain-specific Assertion modules
that must be supported in each policy processor will increase, along with the possibility of interpretation
errors, version mismatches, and missing modules. If a customer defines a new type of policy for a new
application, the customer must arrange to have modules added to every policy processor for handling
the Assertions used the new policy type. It is important to understand that the WS-Policy Assertion
model requires that each policy processor be configured with code to recognize and implement each
Assertion in each domain with which that policy processor will be used.

While the authors of WS-Policy suggest that, in the future, policy Assertions should be defined as part of
the specification to which these policy Assertions apply, this serves only to reduce the total number of
specifications. The implementation of each specification must still include a new module that can handle
the Assertions defined in the specification.

An alternative to the Assertions model is specified in WS-PolicyConstraints [WSPC]. In this model, a
generic language for specifying policy predicates, or “constraints”, is defined. This generic language is
based on the OASIS eXtensible Access Control Markup Language [XACML] functions, as used in the
XACML Profile for web-services [WSPL]. Expressions in this standard language can then be used to
express policy predicates for any domain. Any policy processor that supports the generic language can
understand, match, and verify any policy written in the generic language, removing the need to have new
code modules for each new type of policy Assertion.

The following diagram illustrates this difference.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 3 of 25

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

In addition to enabling the use of generic policy processors, the WS-PolicyConstraints language provides
another benefit to web services policy, derived from XACML: many policy predicates can be evaluated
directly against a message to confirm that the message conforms to the policy. This is because XACML
function arguments can consist of XPath expressions to be evaluated against actual messages, which
could be SOAP or other types of messages. For example, assume a policy writer wants to constrain the
acceptable values for a username in the
“//S11:Envelope/S11:Header/wsse:Security/wsse:UsernameToken/wsse:UserName”
element of a SOAP message. The policy writer wants to limit the acceptable values to be names that
start with the string “Zoe”. Using WS-PolicyConstraints, the policy writer can specify that the value
obtained by evaluating the XPath expression
“//S11:Envelope/S11:Header/wsse:Security/wsse:UsernameToken/wsse:Username/text
()” against actual SOAP messages must match the regular expression string “Zoe.*” using the standard
XACML “string-regexp-match” function. In order to constrain the acceptable values for some other
element of the SOAP message, the policy writer can use the same function with different XPath
expression and regular expression arguments. Using WS-SecurityPolicy however, the policy writer must
express this policy using an instance of the “SecurityToken” element defined in WS-SecurityPolicy.
The policy writer must correctly use the “SecurityToken” element, its “Claims” element, its
“SubjectName” element, its “MatchType” XML attribute, and the values for the “MatchType” attribute,
as defined in the WS-SecurityPolicy specification. Likewise, the policy processor must contain a domain-
specific module for WS-SecurityPolicy that recognizes and correctly interprets all parts of a
“SecurityToken” element. This module must know that the value contained in the WS-SecurityPolicy
“SubjectName” element is a regular expression that must be matched against the value contained in
the “//S11:Envelope/S11:Header/wsse:Security/wsse:UsernameToken/wsse:Username”
element, even though there is no direct reference to this element in the policy: it is specified only in the
text of the WS-SecurityPolicy specification. The implementation of all this is specific to the “Username”
element: the WS-PolicyConstraints “Username” Assertion can't be used to make regular expression
matches against other elements of a message.

By using predicates that can refer to message elements directly, WS-PolicyConstraints greatly reduces
the number of new elements that must be defined to express policy information. With the current WS-
Policy Assertions model, however, a new element must be defined for each component of a message for
which policy is to be specified.

This document illustrates how the alternative WS-PolicyConstraints model could be used to express the
Assertions defined in WS-SecurityPolicy. It is intended to serve as a proof-of-concept for WS-
PolicyConstraints, as well as providing examples for the use of WS-PolicyConstraints that may be of help
to policy developers for other domains. This profile, however, is NOT an attempt to replace WS-
SecurityPolicy. Certain domain-specific Assertions, such as those in WS-SecurityPolicy, have gained
acceptance in the industry, and will need to be supported in policy processors. It may also be the case

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 4 of 25

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

that some types of new policy Assertions can not be expressed using WS-PolicyConstraints. The
expectation is that a code module to support policies written using WS-PolicyConstraints will exist in
parallel with code modules to support some set of domain-specific Assertions, such as those in WS-
SecurityPolicy. With careful design of the interface between the policy framework layer and the policy
Assertions layer, co-existence need not be a problem.

It is important to recognize that WS-PolicyConstraints must be used within a policy framework that
defines Boolean combinations of Assertions or constraints on individual policy items. This framework
could be WS-Policy or any other policy framework that addresses the same level of concerns addressed
by WS-Policy, that is, any framework that defines how to express Boolean combinations of constraints to
compose a policy.

1.1 Notation
The following XML Internal Entities are used to make the examples more compact and easier to read:

<!ENTITY xsd “http://www.w3.org/2001/XMLSchema#”/>
<!ENTITY xfunc “urn:oasis:names:tc:xacml:1.0:function:”/>
<!ENTITY xdata “urn:oasis:names:tc:xacml:1.0:data-type:”/>
<!ENTITY x509 “...the URI of the Web Services Security X.509
Certificate Token Profile...”/>

The following namespace identifiers are used:

wsse http://schemas.xmlsoap.org/ws/2002/12/secext
ds http://www.w3.org/2000/09/xmldsig#
xenc http://www.w3.org/2001/04/xmlenc#
wsu http://schemas.xmlsoap.org/ws/2002/07/utility
wsp http://schemas.xmlsoap.org/ws/2002/12/policy
xsd http://www.w3.org/2001/XMLSchema
wspc ...a new URI to be defined for WS-PolicyConstraints...
sp ...a new namespace for security policy elements

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 5 of 25

129

130

131

132

133

134

135

136

137

138

139

140

141
142
143
144
145

146

147
148
149
150
151
152
153
154

2 WS-Security
This section serves as a brief introduction to WS-Security.

WS-Security is a set of SOAP [SOAP] extensions that “provides three main mechanisms: ability to send
security tokens as part of a message, message integrity, and message confidentiality... These
mechanisms can be used independently (e.g. to pass a security token) or in a tightly coupled manner...”
[WSS Lines 125-132]. The extensions are added to the SOAP envelope header as part of a new
<wsse:Security> element.

The contents of this <wsse:Security> element can include some one or more of the following element
types, each of which might occur more than once:

1. A generic ID and reference mechanism: this can be used with other types defined either in WS-
Security or in other specifications to associate identifiers with elements, and to then reference those
identified elements from elsewhere in the <wsse:Security> header; a generic ID may also be used
in the <Body> of the SOAP message envelope,

2. <wsse:UsernameToken>: contains a username security token defined in the WS-Security
specification, and extended in the Web Services Security Username Token Profile 1.0,

3. <wsse:BinarySecurityToken>: contains a binary security token defined in the WS-Security
specification. There are specific subtypes defined for various X509 token types in the Web Services
Security X.509 Certificate Token Profile. There are specific subtypes defined for Kerberos token
types in the Web Services Security: Kerberos Token Profile (draft).

4. <ds:SignedInfo>: contains a signature conforming to the XML Digital Signature specification
[XDS],

5. <xenc:ReferenceList>: contains a manifest conforming to the XML Encryption specification
[XENC],

6. <xenc:EncryptedKey>: contains an encrypted key conforming to the XML Encryption
specification,

7. <wsu:Timestamp>: contains a time stamp defined in the WS-Security specification,

8. <wsse:SecurityTokenReference>: contains a reference to a security token, either using the
generic ID and reference mechanism, or a <wsse:SecurityTokenReference> element defined in
the WS-Security specification. A <wsse:SecurityTokenReference> element may contain a
<wsse:KeyIdentifier> element containing a key identifier type that is defined in WS-Security.

Each of these elements defines some XML attributes and sub-elements, but is also extensible. New
extension elements, such as new token types, etc. may also be added. Several token types are defined
in WS-Security profiles: UsernameToken Profile and X.509 Token Profile.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 6 of 25

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

3 Policies about WS-Security
Before starting, it is important to understand the target of a “WS-Security policy”. In some cases, policy
writers want to constrain the content of instances of the “Security” headers defined by WS-Security. In
other cases, policy writers may want to specify how these “Security” headers are created and processed.
As an example of the first type of policy, the policy may specify acceptable values for the “Password”
element in a WS-Security “UserNameToken”. This type of policy constraint can be checked against the
actual content of a message containing such a “Password” element. As an example of the second type
of policy, the policy may specify that the type of password used in the “Password” element in a
“UserNameToken” should be a password digest rather than a plain-text password. This type of policy
constraint can't be checked against the content of the message, since there is no element or attribute in
the “UserNameToken” that specifies the type of the password. The value of the “Password” element in
either case is a string. If the “Password” is incorrect, it is impossible in general to know whether it is
because the password value was incorrect or because it was supplied as a plain-text password rather
than as a password digest. If they are to communicate successfully, the producer of a “Security” header
containing a “Password” element must reach agreement with the consumers of that element about which
type of password will be used, but that agreement does not appear explicitly in the “Security” header
itself. Another example of policy information that does not appear in the message is a directive that new
“Security” headers should be pre-pended to existing ones. Producing messages in such a way aids
processing by message consumers, since “Security” headers often need to be verified in a particular
order (think of verifying a signature before decrypting the message versus decrypting the message first,
and then verifying the signature). But once again, the consumer of a message has no way of knowing
whether the producers of the “Security” headers actually pre-pended them: if the messages fail to verify,
the consumer has no way of knowing whether the headers were incorrect or whether they were not pre-
pended as expected.

Where policies concern information that does not appear in the “Security” header itself, or that can not be
expressed easily using direct references to the SOAP message, a new policy element or Attribute needs
to be defined to express such information. Such elements or Attributes do not need to be instantiated –
they may never appear in a message – but they are needed as a way of talking about how the “Security”
header is to be created and consumed – they are identifiers for the associated information. For example,
if the producer and the consumer both agree that PasswordType = “PasswordDigest”, and they produce
and consume the message accordingly, then there is no need for PasswordType = “PasswordDigest” to
appear in the message itself. Nevertheless, it may be useful to convey explicitly in a message the fact
that a “PasswordDigest” is being used.

Where new elements or Attributes are found to be needed to specify policies about information not
currently specified in a message, it may be an indication that new elements should be added to the
underlying specification in a future revision. If such new elements are defined in the underlying
specification with default values, this will encourage consistent use of message contents without making
messages that conform to the default any longer than currently. Alternatively, the underlying
specification could mandate certain processing actions or behaviors to enable consistent usage of
instances of the specification's schema.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 7 of 25

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

4 WS-SecurityPolicy
WS-SecurityPolicy defines the domain-specific policy Assertions to be used with WS-Policy when writing
policies about security information associated with a message. WS-SecurityPolicy is described as being
generic to any underlying security specification, and not confined to use with WS-Security. In practice,
WS-SecurityPolicy would have to be re-implemented for each underlying security specification if the
policies are to be verified, so most implementations can be expected to support only WS-Security.

When used with WS-Security, WS-SecurityPolicy defines 7 types of WS-Policy <Assertion> elements
that can be used to place constraints on the WS-Security <wsse:Security> header to be used in
SOAP messages:

1. <SpecVersion>: indicates support for WS-Security, including the Addendum.

2. <SecurityToken>: constrains the types and contents of security tokens supplied with a message.

3. <Integrity>: places constraints on digital signatures used in the message.

4. <Confidentiality>: places constraints on the use of encryption in the message.

5. <Visibility>: specifies portions of a message that must be able to be processed by an
intermediary or endpoint.

6. <SecurityHeader>: constrains aspects of the WS-Security <wsse:Security> header.

7. <MessageAge>: constrains the use of the <wsse:Timestamp> header from WS-Security

The <Assertion> elements defined in WS-SecurityPolicy include wsp:Preference and wsp:Usage
XML attributes. Since the most recent draft of WS-Policy omits these attributes, these are not described
below.

The schema for WS-SecurityPolicy [WSSP-Sch] is a collection of element definitions, many of which are
freely extensible. The Assertion elements in general are not structured in the schema itself, but
depend on using the extensibility of their parent elements. Putting the elements together in a meaningful
way requires studying the WS-SecurityPolicy specification.

Except for <SpecVersion>, <SecurityHeader>, and <MessageAge> the WS-SecurityPolicy
Assertions, are not specific to WS-Security, and might be used to apply to any security parameter
specification mechanism. [Note: <MessageAge> could have been generic, but the WS-SecurityPolicy
specification specifically ties it to the WS-Security <Timestamp> element]. The WS-SecurityPolicy
engine used to process and enforce policies using these Assertions must include specific code modules
to support the application of the Assertions to each specification mechanism, however, so the engine
must be modified to support WS-Security. If the Assertions are used to apply to some other specification
mechanism, the WS-SecurityPolicy engine must be modified again to support the new specification. Just
being non-specific to WS-Security does not automatically make WS-SecurityPolicy work with any
security parameter specification mechanism. Its semantics are still domain-specific.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 8 of 25

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

5 Using WS-PolicyConstraints for WS-Security
Policies

Many of the following WS-PolicyConstraints predicates are written directly against the WS-Security
specification. Where new elements or attributes are needed to specifying information that does not
appear in a message instance directly, the predicates are written against the element defined for this
purpose in the WS-SecurityPolicy specification. Note that using WS-SecurityPolicy in this way does not
mean that domain-specific policy processing modules are needed. The predicates are still expressed
using the generic WS-PolicyConstraints language and can be handled by a generic policy processor.
Using the element defined in WS-SecurityPolicy is only one possible approach. Using WS-
PolicyConstraints to express most policy constraints against the message itself means that additional
policy elements can usually be much simpler than those currently defined in WS-SecurityPolicy. In most
cases, a simple Attribute could be used instead.

Where predicates are written directly against the WS-Security specification, the predicates can be
directly enforced using an XACML Policy Decision Point engine, although the engine must be extended
to support some new functions and datatypes. It is expected that the number of such extensions will be
limited, since they are needed only for expressing policies about legacy data that is not in XML, such as
the contents of public key certificates. Future information appears likely to be defined in XML, and can
then be referenced using the existing standard XACML functions.

If security-related predicates are to be written using WS-PolicyConstraints against some schema other
than WS-Security, then the predicates would need to be reformulated. Since two parties in a message
exchange must agree on how they will specify their security information, however, it does not seem
overly restrictive to require that the actual policies be written against the specific format especially since
one of the payoffs is the ability to directly verify the policy against the messages. If more abstract
policies are needed, then new abstract elements can be defined (or re-use the ones defined in WS-
SecurityPolicy) and associated with sets of specific predicates for particular security header schemas.

5.1 Multiple constraints on a single nodeset
Frequently, a policy will require a single nodeset in a <wsse:Security> header to satisfy multiple
conditions. In these cases, the WS-PolicyConstraints “&wspc;function:limit-scope” may be used to
enclose the predicates that must be satisfied within a single nodeset. This function is defined as an
extension to XACML using XACML's extensible function capabilities. For example, if a particular
canonicalization method and a particular signature method must be used in a single <ds:Signature>
element, the following WS-PolicyConstraints predicate would be used.

<Apply FunctionId=”&wspc;function:limit-scope”>
 <AttributeValue
DataType=”&xsd;string”>//S11:Envelope/S11:Header/wsse:Security/ds:Signa
ture/ds:SignedInfo</AttributeValue>
 <Apply FunctionId=”&xfunc;anyURI-equal”>
 <AttributeSelector DataType=”&xsd;string” RequestContextPath=
”/ds:CanonicalizationMethod/@Algorithm”.>
 <AttributeValue DataType=”&xsd;anyURI”>
 http://www.w3.org/2001/10/xml-exc-c14n”</AttributeValue>
 </Apply>
 <Apply FunctionId=”&xfunc;anyURI-equal”>
 <AttributeSelector DataType=”&xsd;anyURI” RequestContextPath=
”/ds:SignatureMethod/@Algorithm”.>
 <AttributeValue DataType=”&xsd;anyURI”>
 http://www.w3.org/2000/09/xmldsig#hmac-sha1</AttributeValue>
 </Apply>
</Apply>

Only individual predicates will be shown below, but it should be remembered that the

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 9 of 25

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

&wspc;function:limit-scope function may be used to restrict any set of predicates to a single
nodeset.

5.2 Limited XPath expressions
In order for policy predicates in two different policies to be compared, it is necessary to be able to tell
whether the two predicates refer to the same underlying policy vocabulary item. Using full XPath, there
are multiple ways to refer to the same element or attribute in schema instances, and it is not possible to
determine the same element or attribute is being referenced.

WS-PolicyConstraints needs to use a subset of XPath such that it can be determined whether any two
XPath expressions refer to the same nodeset or nodesets. No such subset has been defined as far as
we know.

A proposed subset is used in these examples. This subset uses only absolute XPath expressions (i.e.
all start with //<doc root>), does not use any numbered elements (e.g. x[1]), does not use query functions
in the XPath expressions (e.g. [@PasswordType=”PasswordDigest”]), and references only text elements
or the values of XML attributes in the terminal element of the XPath expression.

This subset may be inadequate and is probably overly constrained, but further research is needed to
specify an optimal subset that retains as much expressivity as possible while preserving the ability to
match the potential nodesets specified by each XPath expression.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 10 of 25

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

6 Actual WS-Security policy predicates
This section contains actual predicates specified using WS-PolicyConstraints for each predicate defined
in a WS-SecurityPolicy Assertion.

6.1 Specification version
WS-SecurityPolicy uses the <wsp:SpecVersion> Assertion to indicate 'support for WS-Security
including the Addendum”. The example provided is:

<wsp:SpecVersion URI=”http://schemas.xmlsoap.org/ws/2002/07/secext”/>

The semantics of this Assertion are not entirely clear: is it intended to specify that a particular version of
WS-Security must be used, or that there must be an instance of a WS-Security <wsse:Security>
header using this version of the specification?

WS-PolicyConstraints can express either or both of these policy requirements precisely as follows.

The following predicate requires that a particular version of WS-Security be used. This type of predicate
is called a “WS-Security version predicate” in the subsequent discussion.

<Apply FunctionId=”&xfunc:anyURI-is-in”>
 <AttributeValue DataType=”&xsd;anyURI”>
 http://schemas/xmlsoap.org/ws/2002/07/secext</AttributeValue>
 <AttributeSelector
RequestContextPath=”//S11:Envelope/S11:Header/wsse:Security/@xmlns”
DataType=”&xsd;anyURI”/>
</Apply>

If more than one version of WS-Security is supported, then multiple instances of a “WS-Security version
predicate” may be used as follows:

<wsp:ExactlyOne>
 <...WS-Security version predicate #1.../>
 <...WS-Security version predicate #2.../>
</wsp:ExactlyOne>

In general, when using WS-PolicyConstraints, no predicate used merely to require the presence of a
<wsse:Security> header will be needed, since other predicates that require the header to contain
particular contents will occur and can only be satisfied if the header itself is present, as in the “WS-
Security version predicate” above. Nevertheless, if it is actually the case that some form of security
header must be present, but without any constraints on its contents, the following WS-PolicyConstraints
predicate can be used. This predicate is called “Security header present predicate” below.

<Apply FunctionId=”&wspc;function:must-be-present”>
 <AttributeValue
DataType=”&xsd;string”>/S11:Envelope/S11:Header/wsse:Security</Attribut
eValue>
</Apply>

If the <wsse:Security> header is optional, then “Security header present predicates” may be used as
follows, where “other predicates” are other predicates that must be satisfied in addition to the “Security
header present predicate”:

<wsp:ExactlyOne>
 <wsp:All>
 ...other predicates...
 <...Security header present predicate.../>
 </wsp:All>
 <wsp:All>
 ...other predicates...
 </wsp:All>
</wsp:ExactlyOne>

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 11 of 25

330

331

332

333

334

335

336

337

338

339

340

341

342

343
344
345
346
347
348
349

350

351

352
353
354
355

356

357

358

359

360

361

362
363
364
365
366

367

368

369

370
371
372
373
374
375
376
377
378

Alternatively, the WS-PolicyConstraints function “&wspc;function:must-not-be-present” can be
used. This may be especially attractive if the number of other, independent predicates is large. The
policy above would then look as follows:

<wsp:ExactlyOne>
 <wsp:All>
 ...other predicates not depending on Security header...
 <wsp:ExactlyOne>
 <wsp:All>
 <...Security header present predicate.../>
 ...other predicates depending on Security header...
 </wsp:All>
 <Apply FunctionId=”&wspc;function:must-not-be-present”>
 <AttributeValue
DataType=”&xsd;string”>//S11:Envelope/S11:Header/wsse:Security</Attribu
teValue>
 </wsp:ExactlyOne>
 </wsp:All>
</wsp:ExactlyOne>

6.2 Security tokens
WS-SecurityPolicy uses the <wsp:SecurityToken> Assertion to “describe what security tokens are
required and accepted by a Web service. It can also be used to express a Web Service's policy on
security tokens that are included when the service sends out a message (e.g., as a reply message).”

WS-Security does not define any standard elements or attributes for a security token: all security tokens
are defined in profiles. WS-PolicyConstraints examples are provided below for each token type listed in
Appendix I of WS-SecurityPolicy. If new token types are defined, the WS-SecurityPolicy specification
would need to be amended to support them, whereas corresponding WS-PolicyConstraints predicates
require only knowledge of the new security token profile schema, and can be written using the standard
WS-PolicyConstraints language.

There are a number of sub-elements included in a <wsp:SecurityToken> Assertion. We will first
describe those common to various security token profiles, then those specific to particular profiles, each
with its corresponding WS-PolicyConstraints predicate. Then we will show how the WS-
PolicyConstraints “limit-scope” function can be used to require that a collection of predicates must all be
true for a single security token in the <wsse:Security> header.

6.2.1 Common Token Profile Elements

/wssp:SecurityToken/wssp:TokenType

There are actually three token types defined in the Web Services Security X.509 Certificate Token
Profile. The Profile states that these URI fragments are relative to the URI for “this specification”, but
that URI is not clearly stated anywhere. The “Document Location” on the title page is shown as
“http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0”, so perhaps that is
what is meant. We use the XML Internal Entity “&x509;” to refer to the correct URI.

1. &x509;#X509v3: a single X.509 v3 signature-verification certificate.

2. &x509;#X509PKIPathv1: an ordered list of X.509 certificates packaged in a PKIPath.

3. &x509;#PKCS7: a list of X.509 certificates, and (optionally) CRLs packaged in a PKCS#7 wrapper.

WS-PolicyConstraints allows specification of each token type precisely:

<Apply FunctionId=”&wspc;must-be-present”>
 <AttributeValue
DataType=”&xsd;string”>//S11:Envelope/S11:Header/wsse:Security/&x509;#x
509v3</AttributeValue>
</Apply>

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 12 of 25

379

380

381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423
424
425
426
427

where the desired X.509 or other security token type would be specified in the XPath expression used in
the <AttributeValue>.

/wssp:SecurityToken/wssp:TokenIssuer

In an actual X.509 certificate, the Issuer will be embedded in the binary data of the certificate itself. If the
value in the certificate is required, then WS-PolicyConstraints will require that a new function must be
written to extract that value from a certificate reference. Note that any implementation of WS-
SecurityPolicy in which this Assertion will be applied to an actual X.509 certificate will require
implementation of an equivalent function internally.

If, rather than the value in an X.509 certificate, the policy refers to the value specified in an instance from
the XML Digital Signature standard that includes the issuer name, then no new function is required. The
following example shows a predicate that uses the XML Digital Signature element
<ds:X509IssuerName>, that must be present in the <ds:KeyInfo> in the <wsse:Security>
header. This example requires that the certificate issuer name be “DC=ACMECorp, DC=com”.

<Apply FunctionId=”&xfunc;x509Name-match”>
 <Apply FunctionId=”&xfunc;x509Name-one-and-only”>
 <AttributeSelector
RequestContextPath=”//S11:Envelope/S11:Header/wsse:Security/ds:KeyInfo/
wsse:SecurityTokenReference/ds:X509Data/ds:X509IssuerSerial/ds:X509Issu
erName/text()” DataType=”&xdata;x509Name”/>
 </Apply>
 <AttributeValue DataType=”&xdata;x509Name”>DC=ACMECorp,
DC=com</AttributeValue>
</Apply>

Token issuer constraints can similarly be constructed for other types of security tokens.

/wssp:SecurityToken/wssp:Claims/wssp:SubjectName

As with the previous “TokenIssuer” Assertion element, a “SubjectName” Assertion might refer to an
actual X.509 certificate included in a message, or to a description of such a certificate specified using
XML Digital Signature. As before, if the policy refers to the contents of an actual X.509 certificate, then
WS-PolicyConstraints will require that a new function be written to extract that value from a certificate
reference. Any implementation of WS-SecurityPolicy in which this Assertion element will constrain an
actual X.509 certificate instance will require implementation of an equivalent function.

The following WS-PolicyConstraints predicate assumes that the subject name from the contents of the
X509 certificate is provided in the XML Digital Signature description contained in the Security header.
This example requires that the certificate subject's name be “cn=Anne.Anderson, DC=Sun, DC=com”.

<Apply FunctionId=”&xfunc;x509Name-match”>
 <Apply FunctionId=”x509Name-one-and-only”>
 <AttributeSelector
RequestContextPath=”//S11:Envelope/S11:Header/wsse:Security/ds:KeyInfo/
wsse:SecurityTokenReference/ds:X509Data/ds:X509SubjectName/text()”
DataType=”&xdata;x509Name”/>
 </Apply>
 <AttributeValue DataType=”&xdata;x509Name”>CN=Anne.Anderson, DC=Sun,
DC=com</AttributeValue>
</Apply>

Subject name constraints can similarly be constructed for other types of security tokens.

/wssp:SecurityToken/wssp:Claims/wssp:SubjectName/@wssp:MatchType

The preceding example required the subject name to match the supplied value exactly. WS-
SecurityPolicy provides an XML attribute to be used for specifying either an exact match or a match
where the specified value must be the prefix of the value in the certificate. In WS-PolicyConstraints, this
information is provided via the matching function that is used. For example, if a prefix match is desired,

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 13 of 25

428

429

430

431

432

433

434

435

436

437

438

439

440

441
442
443
444
445
446
447
448
449
450

451

452

453

454

455

456

457

458

459

460

461

462
463
464
465
466
467
468
469
470
471

472

473

474

475

476

477

then the following WS-PolicyConstraints predicate may be used. In this example, the subject's X500
name must begin with “CN=Anne.Anderson,” where “CN” may be capitalized or not.

<Apply FunctionId=”&xfunc;x500Name-regexp-match”>
 <AttributeValue DataType=”&xsd;string”>^[Cc][Nn] *=
Anne.Anderson,.</AttributeValue>
 <Apply FunctionId=”x500Name-one-and-only”>
 <AttributeSelector
RequestContextPath=”/S11:Envelope/S11:Header/wsse:Security/ds:KeyInfo/w
sse:SecurityTokenReference/ds:X509Data/ds:X509SubjectName/text()”
DataType=”&xdata;x500Name”/>
 </Apply>
</Apply>

6.2.2 X.509v3 Token

/wssp:SecurityToken/wssp:Claims/wssp:X509Extension

This element in a WS-SecurityPolicy <SecurityToken> specifies the value, OID, and (optionally) the
criticality of a required X509Extension in the certificate. The XML Digital Signature specification does not
contain elements for describing extensions contained in an X509 certificate other than the
SubjectKeyInfo extension, so new functions must be written to extract this type of information from a
referenced certificate in a message.

The following example uses a new XACML extension function called “hexBinary-
getCertExtensionValue”. It takes as input a string value interpreted as the OID of the desired
extension, a string value indicating required criticality (with acceptable values of “Critical”,
“NotCritical”, and “CriticalOrNot”), and a reference to an ASN-encoded X.509 certificate,
encoded in ASN.1 with data type “&xml;hexBinary”. It returns a bag containing the values of all
extensions in the referenced certificate that match the requirements. The values are returned with data
type “&xml;hexBinary”.

The following example requires the value of the extension having OID “1.2.840.113549.1.1.5”,
without regard to criticality, to match the value “0xFFABC123” in hex binary form. In this case there may
be multiple certificates in the message, and by used of the “&xfunc;any-of” function, it is required that
at least one of them have this extension with this value.

<Apply FunctionId=”&wspc;function:limit-scope”>
 <AttributeValue DataType=”&xsd;string”>
//S11:Envelope/S11:Header/wsse:Security/wsse:BinarySecurityToken
 </AttributeValue>
 <Apply FunctionId=”&xfunc;anyURI-equal”>
 <AttributeValue DataType=”&xsd;anyURI”>#X509v3</AttributeValue>
 <AttributeSelector DataType=”&xsd;anyURI”
 RequestContextPath=”/@ValueType”/>
 </Apply>
 <Apply FunctionId=”&xfunc;anyURI-equal”>
 <AttributeValue
DataType=”&xsd;anyURI”>#hexBinary</AttributeValue>
 <AttributeSelector DataType=”&xsd;anyURI”
 RequestContextPath=”/@EncodingType”/>
 </Apply>
 <Apply FunctionId=”&xfunc;any-of”>
 <Apply FunctionId=”&xfunc;hexBinary-match”>
 <AttributeValue
DataType=”&xsd;hexBinary”>FFABC123</AttributeValue>
 <Apply FunctionId=”&wspc;function:hexBinary-
getCertExtensionValue”>
 <AttributeValue DataType=”&xsd;string”>
 1.2.840.113549.1.1.5</AttributeValue>
 <AttributeValue DataType=”&xsd;string”>

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 14 of 25

478

479

480
481
482
483
484
485
486
487
488
489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

 CriticalOrNot</AttributeValue>
 <AttributeSelector RequestContextPath=”/text()”
DataType=”&xsd;hexBinary”/>
 </Apply>
 </Apply>
</Apply>

6.2.3 Kerberos Token

6.2.3.1 /wssp:SecurityToken/wssp:Claims/wssp:ServiceName

This element in a WS-SecurityPolicy <SecurityToken> is used with a Kerberos token to specify the
service's PrincipalName (sname field defined in RFC1510). The draft Web Services Security
Kerberos Token Profile 1.0 specifies that a Kerberos ticket is included in a <wsse:Security> header
using the <wsse:BinarySecurityToken> described in WS-Security. Since this token is not in an
XML format, a special function must be written to extract the sname field.

The following WS-PolicyConstraints version of this constraint uses a new XACML extension function
called “string-getKrb5SName”. It takes as input a reference to a Kerberos ticket in a
<wsse:BinarySecurityToken>. It returns the service's sname as a string.

The following example requires the value of the service name to match the regular expression
“.*\.WORLD”. In this case there may be Kerberos tickets in the message, and it is required that at least
one of them have this service name.

<Apply FunctionId=”&wspc;function:limit-scope”>
 <AttributeValue DataType=”&xsd;string”>
 //S11:Envelope/S11:Header/wsse:Security/wsse:BinarySecurityToken/
 </AttributeValue>
 <Apply FunctionId=”&xfunc;anyURI-equal”> <!-- valueType -->
 <AttributeValue DataType=”&xsd;anyURI”>
http://www.docs.oasis-open.org/wss/2004/07/oasis-000000-wss-kerberos-
token-profile-1.0#Kerberosv5_AP_REQ
 </AttributeValue>
 <AttributeSelector DataType=”&xsd;anyURI” RequestContextPath=
 “/@ValueType”/>
 </Apply>
 <Apply FunctionId=”&xfunc;anyURI-equal”> <!-- encodingType -->
 <AttributeValue DataType=”&xsd;anyURI”>#base64Binary
 </AttributeValue>
 <AttributeSelector DataType=”&xsd;anyURI” RequestContextPath=
 “/@EncodingType”/>
 </Apply>
 <Apply FunctionId=”&xfunc;any-of”>
 <Apply FunctionId=”&xfunc;string-regexp-match”>
 <AttributeValue
DataType=”&xsd;string”>.*\.WORLD</AttributeValue>
 <Apply FunctionId=”&wspc;function:string-getKrb5SName”>
 <AttributeSelector RequestContextPath=
 ”/text()” DataType=”&xsd;base64Binary”/>
 </Apply>
 </Apply>
 </Apply>
</Apply>

6.2.4 Username Token

6.2.4.1 /wssp:SecurityToken/wssp:Claims/wssp:UsePassword

This element in WS-SecurityPolicy specifies the requirements on the <wsse:Password> element in the

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 15 of 25

532
533
534
535
536
537

538

539

540

541

542

543

544

545

546

547

548

549

550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

580

581

582

<wsse:UsernameToken>. The requirements are included in a Type XML attribute that may have the
value wsse:PasswordText or wsse:PasswordDigest. The Web Services Security Username
Token Profile 1.0 extends the <UsernameToken> element defined in WS-Security with a “Password”
element having a “Type” attribute.

Using WS-PolicyConstraints, requirements on the values for this “Type” attribute can be expressed as
follows.

<Apply FunctionId=”&xfunc;anyURI-is-in”>
 <AttributeValue
DataType=”&xsd;anyURI”>#PasswordText</AttributeValue>
 <AttributeSelector
 DataType=”&xsd;anyURI”
 RequestContextPath=
”//S11:Envelope/S11:Header/wsse:Security/wsse:UsernameToken/wsse:Passwo
rd/@Type”/>
</Apply>

6.3 Integrity Assertion
WS-SecurityPolicy uses the <wssp:Integrity> Assertion to indicate required signature formats.

The following elements and XML attributes are used in this Assertion and can be expressed using the
WS-PolicyConstraints predicates described below.

6.3.1 /wssp:Integrity/wssp:Algorithm/@wssp:Type

This XML Attribute is used in a <wssp:Integrity> Assertion to indicate an algorithm type, where the
values can be wsse:AlgCanonicalization, wsse:AlgSignature, or wsse:AlgTransform.

In WS-PolicyConstraints the algorithm type will be specified by the path selected for the algorithm
identifier in the next example.

6.3.2 /wssp:Integrity/wssp:Algorithm/@wssp:URI

This XML Attribute is used in a <wssp:Integrity> Assertion to indicate the URI associated with an
algorithm. The following WS-PolicyConstraints predicate can be used to indicate that a canonicalization
algorithm with the URI “http://www.w3.org/2001/10/xml-exc-c14n” is required.

<Apply FunctionId=”&xfunc;anyURI-is-in”>
 <AttributeValue DataType=”&xsd;anyURI”>
 http://www.w3.org/2001/10/xml-exc-c14n</AttributeValue>
 <AttributeSelector DataType=”&xsd;anyURI”
RequestContextPath=”//S11:Envelope/S11:Header/wsse:Security/ds:SignedIn
fo/ds:CanonicalizationMethod/@Algorithm”/>
</Apply>

6.3.3 /wssp:Integrity/wssp:TokenInfo/wssp:SecurityToken

This element “indicates a supported security token format or authority previously described”. This
element is under-specified in WS-SecurityPolicy so it is not possible to determine for sure what the
contents of of such a <wssp:SecurityToken> element should be. If the value is a
<wsse:Reference> to a previously specified <wssp:SecurityToken> element, then in WS-
PolicyConstraints, this Assertion would be replaced with a predicate that references the
<wsse:SecurityTokenReference> element in the signature's <ds:KeyInfo> element, as follows.

<Apply FunctionId=”&xfunc;anyURI-is-in”>
 <AttributeValue DataType=”&xsd;anyURI”>#X509Token</AttributeValue>
 <AttributeSelector DataType=”&xsd;anyURI” RequestContextPath=
“//S11:Envelope/S11:Header/wsse:Security/s:Signature/ds:KeyInfo/wsse:Se
curityTokenReference/wsse:Reference/@URI”/>

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 16 of 25

583

584

585

586

587

588

589
590
591
592
593
594
595
596
597

598

599

600

601

602

603

604

605

606

607

608

609

610

611
612
613
614
615
616
617

618

619

620

621

622

623

624

625
626
627
628
629

</Apply>

6.3.4 /wssp:Integrity/wssp:Claims

This element “contains data that is interpreted as describing general claims that must be expressed in
the security token.” In WS-SecurityPolicy, the specific claims would have to be specified in some
extension document, along with their interpretation, matching, and verification semantics.

In WS-PolicyConstraints, claims are just constraints. These can be created without requiring any
extensions. For example, if some particular string value is required in a UsernameToken, this could be
expressed as follows:

<Apply FunctionId=”&xfunc;string-is-in”>
 <AttributeValue DataType=”&xsd;string”>...required
value...</AttributeValue>
 <AttributeSelector DataType=”&xsd;string”
RequestContextPath=”//S11:Envelope/S11:Header/wsse:Security/wsse:Userna
meToken/...path to location of required value...”/>
</Apply>

For stating constraints about contents of BinarySecurityToken types, new XACML extension functions
will usually be needed to extract the desired field from the encoded token. Any implementation of WS-
SecurityPolicy must also have such extraction functions implemented internally.

6.3.5 /wssp:Integrity/wssp:MessageParts

This element's text contents “is an expression that specifies the targets to be signed. The evaluation of
the expression is determined by the optional dialect attribute.”

In WS-PolicyConstraints, this type of Assertion would be replaced with a predicate that constrains the
contents of the ds:Reference/@URI XML attribute in the <ds:SignedInfo> element. For example,
a requirement that the “Body” of the message must be signed would be expressed as follows:

<Apply FunctionId=”&xfunc:anyURI-is-in”>
 <AttributeValue DataType=”&xsd;anyURI”>#body</AttributeValue>
 <AttributeSelector DataType=”&xsd;anyURI”
RequestContextPath=”//S11:Envelope/S11:Header/wsse:Security/ds:Signatur
e/ds:SignedInfo/ds:Reference/@URI”/>
</Apply>

No specific predicate is needed in WS-PolicyConstraints to express the
<wssp:MessageParts[@dialect]> XML attribute, since WS-PolicyConstraints always uses XPath in
its <AttributeSelector> elements.

6.3.6 /wssp:Integrity/wssp:MessageParts/@Signer

In WS-SecurityPolicy, “this optional attribute contains a list of one or more URI references that indicate
which nodes must provide a signature”, where the pre-defined value is the WS-Security URI associated
with the role or actor XML attribute in the <wsse:Security> header element.

In WS-PolicyConstraints, this component of the <wssp:Integrity> Assertion can be expressed as
follows.

<Apply FunctionId=”&wspc;function:limit-scope”>
 <AttributeValue DataType=&xsd;string”>
 //S11:Envelope/S11:Header/wsse:Security/</AttributeValue>
 <Apply FunctionId=”&xfunc;anyURI-is-in”>
 <AttributeValue DataType=”&xsd;anyURI”>
 ...Actor URI...</AttributeValue>
 <AttributeSelector RequestContextPath=
”//S11:Envelope/S11:Header/wsse:Security/@S11:actor”/>
 </Apply>
 <Apply FunctionId=”&wspc;function:must-be-present”>

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 17 of 25

630

631

632

633

634

635

636

637

638
639
640
641
642
643
644

645

646

647

648

649

650

651

652

653

654
655
656
657
658
659

660

661

662

663

664

665

666

667

668

669
670
671
672
673
674
675
676
677
678

 <AttributeValue
DataType=”&xsd;string”>/ds:Signature</AttributeValue>
 </Apply>
</Apply>

This predicate would usually be used as part of one or more of the other predicates placing constraints
on the <ds:Signature> element for the specified actor.

6.4 Confidentiality Assertion
The <wssp:Confidentiality> Assertion places constraints on the use of encryption within the
message.

In WS-PolicyConstraints, the components of this Assertion would be replaced with predicates identical to
those specified above for the <wssp:Integrity> Assertion, except that the <AttributeSelector>
would select elements or XML attributes in the //S11:Envelope/S11:Body/xenc:EncryptedData
node. These predicates are not spelled out here as they are directly comparable to those shown above.

6.5 Visibility Assertion
The <wssp:Visibility> Assertion describes parts of the message that must either be unencrypted,
or must be encrypted for a particular wsse:actor or wsse:role.

In WS-PolicyConstraints, a requirement that parts of the message NOT be encrypted would be
expressed in a predicate such as the following, which requires that nothing in the body of the message
be encrypted.

<Apply FunctionId=”&wspc;function:must-not-be-present”>
 <AttributeSelector
RequestContextPath=”//S11:Envelope/S11:Body/xenc:EncryptedData”/>
</Apply>

The WS-SecurityPolicy specification does not describe how a <wssp:Visibility> element specifies
an encryption target for a particular actor. The example claims to require that the body be visible to the
“http://www.fabrikan123.com” endpoint, but that detail seems to have been omitted.

A requirement that a particular part of the message be encrypted for a particular intermediary would be
expressed in a predicate such as the following, which requires that the message contain an encrypted
key intended for recipient “http://www.fabrikan123.com”.

<Apply FunctionId=”&xfunc;string-is-in”/>
 <AttributeValue DataType=”&xsd;string”>
 http://www.fabrikan123.com</AttributeValue>
 <AttributeSelector DataType=”&xsd;string” RequestContextPath=
”//S11:Envelope/S11:Header/enc:EncryptedData/ds:KeyInfo/enc:EncryptedKe
y/@Recipient/>
</Apply>

This could be combined with a constraint indicating that this key is used to encrypt the <S11:Body> of
the message.

<Apply FunctionId=”&wspc;function:limit-scope”>
 <AttributeValue DataType=”&xsd;string”>
 //S11:Envelope/S11:Header/enc:EncryptedData</AttributeValue>
 <Apply FunctionId=”&xfunc;string-is-in”>
 <AttributeValue DataType=”&xsd;string”>
 http://www.fabrikan123.com</AttributeValue>
 <AttributeSelector DataType=”&xsd;string” RequestContextPath=
 ”/ds:KeyInfo/enc:EncryptedKey/@Recipient”/>
 </Apply>
 <Apply FunctionId=”xfunc;anyURI-is-in”>
 <AttributeValue DataType=”&xsd;anyURI”>#Body</AttributeValue>
 <AttributeSelector Datatype=”&xsd;anyURI” RequestContextPath=

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 18 of 25

679
680
681
682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698
699
700
701

702

703

704

705

706

707

708
709
710
711
712
713
714

715

716

717
718
719
720
721
722
723
724
725
726
727
728

 “/enc:CipherData/enc:CipherReference/@URI”/>
 </Apply>
</Apply>

6.6 Security Header Assertion
WS-SecurityPolicy uses the <wssp:SecurityHeader> Assertion to indicate requirements on the
<wsse:Security> elements in the header in a SOAP message.

The following elements and XML attributes are used in this Assertion and can be expressed using the
WS-PolicyConstraints predicates described below.

6.6.1 /SecurityHeader/@MustPrepend

This XML attribute is used to specify that, when new <wsse:Security> elements are added to a SOAP
message header, they must be prepended. This is helpful when processing order is important, such as
whether encryption is being done before or after signature generation.

This constraint is a requirement on the creation process for a WS-Security header rather than a
requirement on its content. In order to express this policy, a new policy variable or vocabulary item must
be created about which policy can be stated. As an example, we will use the new vocabulary item
defined in WS-SecurityPolicy for this, but this item could as easily be a new XACML Attribute or an XML
element simpler than the one defined in WS-SecurityPolicy. Note that, even though an element from
WS-SecurityPolicy is used in stating the policy, the policy processor does not need to understand
anything about WS-SecurityPolicy, and needs no new code in order to process this constraint.

<Apply FunctionId=”&xfunc;boolean-is-in”>
 <AttributeValue DataType=”&xsd;boolean”>true</AttributeValue>
 <AttributeSelector DataType=”&xsd;boolean” RequestContextPath=
 “//wsp:SecurityHeader/@MustPrepend”/>
</Apply>

This requirement can not be enforced by a policy processor, as the receiver has no way of knowing
whether the operations were actually done in the order indicated by the header elements. One symptom
of failure to perform operations in the specified order is that signatures will fail to verify and encryption
cannot be successfully decrypted, but unless the receiver tries all alternative orderings, there is no way
to distinguish this case from the case in which an invalid signature or encryption has been done. Even
though the requirement can not be enforced, it is important for the sender and the receiver to be able to
agree on their policy.

Since header order can be important, it may be appropriate for a future revision or profile of WS-Security
specify that <wsse:Security> header elements must occur in the order in which they are to be
processed.

6.6.2 /SecurityHeader/@MustManifestEncryption

This XML attribute “indicates that only encryptions listed or referenced from the <Security> header will
be processed; any encryptions in the message not referenced will be ignored. If false (the default), then
the processor MUST search the message for applicable encryptions to process.”

As with “@MustPrepend” above, this is a requirement on the creation and processing of a SOAP
message and its <wsse:Security> headers rather than a requirement on the content of the message
itself. In order to express this policy, a new policy variable or vocabulary item must be created about
which policy can be stated. As an example, we will use the new vocabulary item defined in WS-
SecurityPolicy for this, but this item could as easily be a new XACML Attribute or an XML element
simpler than the one defined in WS-SecurityPolicy. Note that, even though an element from WS-
SecurityPolicy is used in stating the policy, the policy processor does not need to understand anything
about WS-SecurityPolicy, and needs no new code in order to process this constraint.

<Apply FunctionId=”&xfunc;boolean-is-in”>
 <AttributeValue DataType=”&xsd;boolean”>true</AttributeValue>

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 19 of 25

729
730
731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748
749
750
751
752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775
776

 <AttributeSelector DataType=”&xsd;boolean” RequestContextPath=
 “//wsp:SecurityHeader/@MustManifestEncryption”/>
</Apply>

This requirement can not be enforced by a policy processor, as the receiver has no way of knowing
whether all encrypted elements in the body that the sender intended to have processed were actually
referenced form the <wsse:Security> header. Even though the requirement can not be enforced, it is
important for the sender and the receiver to be able to agree on their policy.

6.7 MessageAge Assertion
WS-SecurityPolicy uses the <wssp:MessageAge> Assertion to indicate requirements on the
<wsse:TimeStamp> element in the <Security> Header in a SOAP message.

The following elements and XML attributes are used in this Assertion and can be expressed using the
WS-PolicyConstraints predicates described below.

6.7.1 /MessageAge/@Age

This XML attribute “specifies the actual maximum age timeout for a message expressed in seconds.”

In WS-PolicyConstraints, such requirements can be specified by placing constraints on the value of the
<wsse:TimeStamp> element itself. For example, the following constraint requires a maximum age of
3600 seconds. We use the existing XACML Attribute for “current time”.

<Apply FunctionId=”&xfunc;dateTime-greater-than-or-equal”>
 <Apply FunctionId=”&func;dateTime-add-dayTimeDuration”>
 <Apply FunctionId=”&func;dateTime-one-and-only”>
 <AttributeSelector
RequestContextPath=”/S11:Envelope/S11:Header/wsse:Security/wsu:Timestam
p/wsu:Created/text()” DataType=”&xsd;dateTime”/>
 </Apply>
 <AttributeValue
DataType=”&xqo;dayTimeDuration”>3600S</AttributeValue>
 </Apply>
 <xacml:EnvironmentAttributeDesignator
AttributeId=”urn:oasis:names:tc:xacml:1.0:environment:current-time”
DataType=”&xsd;dateTime”/>
</Apply>

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 20 of 25

777
778
779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794
795
796
797
798
799
800
801
802
803
804
805
806
807

7 Lessons learned and future work
This exercise in translating the Assertions defined in WS-SecurityPolicy for use with WS-Security has
yielded some new perspectives on the problem of expressing policies, and has also reinforced some
others.

7.1 XPath intersections
Most importantly, we need a subset of XPath to use in referring to nodes in instances of a schema, such
as the schema for WS-Security, such that it is possible to detect when two different policies refer to the
same node. Use of XPath expressions that do not use functions and or special node selectors such as
“<path>[2]” seems to be adequate for the requirements of expressing WS-SecurityPolicy constraints,
but more verification is needed.

7.2 New functions
The following new functions were found to be needed and have been added to Draft 5 of the WS-
PolicyConstraints specification.

1) &wspc;function:string-to-uri: converts a value of type string (that can be interpreted as
a valid URI) to a value of type anyURI. XACML has a url-string-concatenate function, but
this is not capable of composing a URI from fragments that are themselves not valid URIs (#body).
More flexible composition of URIs may be needed for matching references in the body of the SOAP
message to the corresponding elements in the SOAP header. This draft managed to express all
requirements from WS-PolicyConstraints without this function, but it may be needed for more specific
correlation requirements.

2) “&wspc;hexBinary-getCertExtensionValue”. It takes as input a string value interpreted as the
OID of the desired extension, a string value indicating required criticality (with acceptable values of
“Critical”, “NotCritical”, and “CriticalOrNot”), and a reference to an ASN-encoded X.509
certificate, encoded as &xsd;hexBinary. A corresponding function that takes a certificate encoded
in &xsd;base64Binary may also be needed. Functions that return the extension value as
&xsd;string or &xsd;integer may also be useful.

3) “&wspc;string-getKrb5SName”. It takes as input a reference to a Kerberos ticket in a
<wsse:BinarySecurityToken> that is encoded in &xsd;base64Binary. It returns the service's
sname as a string. Two versions of this function may actually be needed, one for the case where the
ticket is encoded in &xsd;base64Binary and the other where the ticket is encoded in
&xsd;hexBinary.

Note that all functions other than the first are for dealing with non-XML data embedded in the WS-
Security instance. Implementations of WS-SecurityPolicy must supply similar functions internally in order
to deal with these types of Assertions.

If the solution to the problem of matching a URI reference and target is to create a &wspc;string-
url-concatenate function, then WS-PolicyConstraints must support embedding this function in a
constraint.

7.3 Constraints on the message processor
Using only direct references to instances of WS-Security, it is not possible to create constraints that
impose requirements on the creation or processing of security aspects of a SOAP message. An
example is a requirement that <Security> elements in a header must be prepended, such that the
order in which they occur in the document is the reverse of the order in which the corresponding
operations were performed. This is an example of where some new policy element, such as the one
defined in WS-SecurityPolicy must be defined. In this draft of this profile, we have used the elements
defined in WS-SecurityPolicy, but new XACML Attributes or new simple XML elements could be used

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 21 of 25

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

instead. Since much of the WS-SecurityPolicy schema is vocabulary items that can actually be
referenced directly in the SOAP message, the WS-SecurityPolicy schema could be considerably
simplified and reduced if WS-PolicyConstraints were used. Also, if WS-PolicyConstraints is used, no
special processor will be needed for the WS-SecurityPolicy (or XACML) vocabulary items because they
are used simply as vocabulary item identifiers, and have no special semantics that the policy processor
must understand.

Since there is no way to verify this requirement in general, and since the typical use of the requirement is
to ensure correct processing of messages, it seems more reasonable to require use of a WS-Security
profile (or future revision of WS-Security itself) that always requires that <Security> elements in the
header be prepended.

This is a constraint on the message processor, and could also be handled by the creation of a schema
for describing characteristics of the message processor, with an instance of this schema included in the
SOAP <S11:Header>. Then WS-PolicyConstraints could be used to specify constraints directly on
such instances.

7.4 Overly constrained policies
In several cases, WS-PolicyConstraints requires that a WS-Security instance be constructed in a
particular way, when alternative expressions would be possible and equally valid. Multiple WS-
PolicyConstraints constraints could be OR'ed together to capture all such allowable alternatives, but it
might be simpler to define a profile of WS-Security that specifies one way of expressing a requirement
where multiple alternatives exist. Such a profile could be defined for use with WS-Security instances that
are to be used with WS-Policy. An example is various ways in which signature or encryption information
in the <wsse:Security> header might be referenced from the body of the SOAP message.

7.5 Cost and value of abstraction
WS-SecurityPolicy defines abstract ways to specify constraints. These abstract specifications are in
many cases easier to compare than the more specific constraints expressed in WS-PolicyConstraints.
Two considerations place this difference in a different perspective, however.

The first is that each abstraction in WS-SecurityPolicy must be resolved into specific forms in order to
enforce a given policy. In order to determine that a given instance of WS-Security conforms to a WS-
SecurityPolicy policy, the engine that implements WS-SecurityPolicy must be able to recognize all the
specific ways of expressing WS-Security and all the variations that are equally valid. A WS-
PolicyConstraints policy, however, can be used not only to match policies, but can also be used directly
to enforce the policy against a particular instance. It would probably be a good idea for the tools used to
create policies to support more abstract terms. The tool should then translate these terms into the
specific WS-PolicyConstraints predicates actually required to negotiate and verify policy.

The second is that, while it may be simpler to express an abstract constraint using WS-SecurityPolicy,
the processing of these abstract constraints is still complex: in fact, new processor code must be created
to handle every possible abstract constraint as applied to every possible concrete message format. With
a standard predicate language such as WS-PolicyConstraints, every possible constraint can be handled
by one standard processor. The simplicity should be provided at the policy authoring level, and not at
the concrete policy instance level.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 22 of 25

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

8 References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF

RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.
[SOAP] M. Gudgin, et al., eds., SOAP Version 1.2 Part 1: Messaging Framework, W3C

Recommendation, 24 June 2003, http://www.w3.org/TR/2003/REC-soap12-
part1-20030624/.

[WSP] S. Bajaj, et al., Web Services Policy Framework (WS-Policy), September
2004,http://www.ibm.com/developerworks/library/specification/ws-polfram/

[WSPA] T. Nadalin, ed., WS-PolicyAssertions, 28 May 2003,
http://www.ibm.com/developerworks/library/ws-polas

[WSPC] A. Anderson, XACML-Based Web Service Policy Constraint Language (WS-
PolicyConstraints), Working Draft 05, 27 June 2005,
http://research.sun.com/projects/xacml/ws-policy-constraints-wd-05.pdf.

[WSPL] T. Moses, ed., XACML profile for Web-services, OASIS Access Control
(XACML) TC, Working Draft 04, 29 September 2004, http://www.oasis-
open.org/committees/download.php/3661/draft-xacml-wspl-04.pdf.

[WSR] K. Iwasa, et al., eds., WS-Reliability v1.1, OASIS Web Service Reliable
Messaging TC, OASIS Standard, 15 November 2004, http://www.oasis-
open.org/committees/download.php/9330/WS-Reliability-CD1.086.zip.

[WSRP] Stefan Batres, ed., Web Services Reliable Messaging Policy Assertion (WS-RM
Policy), February 2005, http://specs.xmlsoap.org/ws/2005/02/rm/WS-
RMPolicy.pdf

[WSS] T. Nadalin, et al., eds., Web Services Security: SOAP Message Security 1.0
(WS-Security 2004), OASIS Web Services Security TC, OASIS Standard
200401, March 2004, http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0.pdf.

[WSS-Sch] T. Nadalin, et al. eds., WS-Security schema, OASIS Web Services Security TC,
OASIS Standard, March 2004, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss.

[WSSP] T. Nadalin, ed., Web Services Security Policy Language (WS-SecurityPolicy),
Version 1.0, 18 December 2002, http://www.verisign.com/wss/WS-
SecurityPolicy.pdf

[XACML] T. Moses, ed., eXtensible Access Control Markup Language (XACML) Version
2.0, OASIS Access Control (XACML) TC, OASIS Standard, 1 February 2005,
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-
os.pdf.

[XDS] Mark Bartel, et al., eds., XML-Signature Syntax and Processing, W3C
Recommendation, 12 February 2002, http://www.w3.org/TR/2002/REC-xmldsig-
core-20020212/

[XENC] Donald Eastlake, et al., eds., XML Encryption Syntax and Processing, W3C
Recommendation, 10 December 2002, http://www.w3.org/TR/xmlenc-core/.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 23 of 25

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/9330/WS-Reliability-CD1.086.zip
http://www.oasis-open.org/committees/download.php/9330/WS-Reliability-CD1.086.zip
http://www.oasis-open.org/committees/download.php/3661/draft-xacml-wspl-04.pdf
http://www.oasis-open.org/committees/download.php/3661/draft-xacml-wspl-04.pdf
http://www.ibm.com/developerworks/library/specification/ws-polfram/
http://www.ietf.org/rfc/rfc2119.txt

A. Revision History

Rev Date By Whom What

01 4 April 2005 Anne Anderson Initial version: Replacing WS-SecurityPolicy with WS-
PolicyConstraints. File name: Example-WS-
SecurityPolicy

02 30 May 2005 Anne Anderson Added much more introductory material.

03 28 June 2005 Anne Anderson Changed title: WS-Security profile of WS-
PolicyConstraints. Made examples consistent with
“lessons learned” from previous versions. File name:
ws-security-profile-of-ws-policy-constraints

04 1 December
2005

Anne Anderson Clarified relationship with WS-SecurityPolicy: not a
replacement, but a “proof-of-concept”.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 24 of 25

935

936

B. Notices

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.

Sun, Sun Microsystems, the Sun logo and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

THIS DOCUMENT IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

ws-security-profile-of-ws-policy-constraints 1 December 2005
Copyright © Sun Microsystems, Inc. 2005. All Rights Reserved. Page 25 of 25

937

938

939

940

941

942

943

944

945

946

	1 Introduction (non-normative)
	1.1 Notation

	2 WS-Security
	3 Policies about WS-Security
	4 WS-SecurityPolicy
	5 Using WS-PolicyConstraints for WS-Security Policies
	5.1 Multiple constraints on a single nodeset
	5.2 Limited XPath expressions

	6 Actual WS-Security policy predicates
	6.1 Specification version
	6.2 Security tokens
	6.3 Integrity Assertion
	6.4 Confidentiality Assertion
	6.5 Visibility Assertion
	6.6 Security Header Assertion
	6.7 MessageAge Assertion

	7 Lessons learned and future work
	7.1 XPath intersections
	7.2 New functions
	7.3 Constraints on the message processor
	7.4 Overly constrained policies
	7.5 Cost and value of abstraction

	8 References

