
Domain-Independent, Composable Web Services Policy Assertions

Anne H. Anderson
Sun Microsystems, Inc.

anne.anderson@sun.com

Abstract

The current model for the predicates, or

“Assertions”, used in a WS-Policy instance is for each
policy domain to design new schema elements for that
domain's Assertions. Their semantics are defined in an
associated specification and are domain-specific. This
model leads to interoperability and maintenance
problems and hinders dynamic service composition.

WS-PolicyConstraints is a domain-independent
language for writing Assertions that is based on the
Web Services Policy Language subset of XACML; it
differs in addressing only the Assertion layer. This
paper describes problems with domain-specific
Assertions, the WS-PolicyConstraints alternative, and
problems encountered in the development of this
language.

1. Introduction

Various standards groups have created
specifications for supporting Web Services
requirements in their domains of interest, such as
“secure messaging” and “reliable messaging”. To
address different environments, these specifications
allow various options. Specification of option
combinations acceptable to a Web Service is the
primary function of what has come to be referred to as
the service's “policy”, since this information is related
to deployment choices rather than to the interfaces and
business logic of the service, both of which are
addressed by other standards. In order to interact
successfully, a Web Services consumer and provider
need to select a combination of options that they both
support.

There are currently no standard languages for
expressing Web Services policies. While other
proposals have been made (WSDL 2.0 “compositors”
(Boolean operators) [1]; the Web Services Policy
Language (WSPL) [2]; Rei and KAoS, both based on
semantic web concepts [3]), it is the Web Services
Policy Framework (WS-Policy) [4] that has generated

the most industry interest. In WS-Policy, as in some of
the other proposals, a policy is a Boolean combination
of predicates, or “Assertions”, that evaluate to “true”
for a particular option selection or set of related option
selections. Several policy Assertion specifications,
such as WS-SecurityPolicy [5] and WS-
ReliableMessaging Policy [6], assume a “Boolean
combinations” policy model.

Using the Boolean combinations model, a Web
Services policy indicating that:

“the requester must be an authorized vendor and
must either present an X509Certificate or must be
inside our firewall and present a Kerberos token”

might be expressed in the following general form:
Policy {
 AND {
 “roles include 'authorized-vendor'”,
 XOR {
 “authn tokens include 'X509Certificate'”,
 AND {
 “authn tokens include 'KerberosToken'”,
 “network address is in
 '129.156.220.0/255.255.255.0'” }}}}

where the Boolean combinations layer specifies the
“Policy”, “AND”, and “XOR” parts of this policy
(shown in bold). WS-Policy leaves the design and
specification of the Assertions themselves, such as
“authn tokens include 'KerberosToken'”, to groups
concerned with particular domains of interest. These
groups so far have designed their Assertions as new
domain-specific XML elements whose semantics must
be derived from a reading of the corresponding
specification. As an example, WS-SecurityPolicy is a
specification for a set of Assertions designed to
describe options regarding the authentication tokens,
encryption algorithms for confidentiality, signature
algorithms for integrity, etc. that are specified in the
WS-Security standard [7].

2. Problems with domain-specific
Assertions

Without a common language for expressing Assertions,

the cost of developing and maintaining support for
each new Assertion is high. Each new Assertion's
semantics for verification and intersection must be
specified, implemented, adapted to each host platform,
tested, and maintained. Some Assertions might even
be proprietary, and not all policy processors would
have licenses to use them. If a Web Services
application depends on a particular Assertion, and one
of the service components that must process it does not
have the correct code module for that Assertion, the
application may not be able to run on that server. This
is a serious interoperability concern. These problems
are particularly significant with dynamic service
composition and large-scale service brokering, where a
domain's Assertions may be opaque to the compositor
or broker, which does not deal with the domain itself.

Another problem with domain-specific Assertions
is dealing with combinations of Assertions to specify a
single complex requirement. For example, an
Assertion about a signature algorithm type may be
applied to another Assertion about X509 authentication
tokens. The current solution to this problem in WS-
SecurityPolicy is to support policies nested inside of
Assertions. This makes it especially difficult to match
compatible Assertions between two policies, as the
functions of the policy framework and Assertion layers
are mixed.

Semantic web policies avoid some of these
problems by capturing the semantics of the Assertions
in a standard language. Other problems persist,
however. The policy components must have access to
the ontologies and taxonomies for the domain, so
domain-specific information is still required and may
not be available. While it is possible to query a
semantic web policy using a given set of policy
variable values, there is no general way to compute the
intersection between two semantic web policies.
Businesses may require legally enforceable agreements
on what Assertions mean, and so far semantic web
definitions have not proven they can meet that test.

3. An alternative: domain-independent
assertions

An alternative solution is to express Assertions by
using constraint functions over policy variables that
depend only on the generic data type of the variable's
values. The language for making Assertions needs to
know only the semantics of the data type and the
semantics of a small set of standard functions for
intersecting or comparing sets of values of those data
types. The semantics of the policy variables
themselves must be understood by the service

endpoints that must implement and enforce the policy,
as with any policy mechanism, but a generic policy
processor can evaluate any Assertion given a set of
variable values and can compute the intersection of any
two Assertions.

As an example, an Assertion saying
“authentication tokens must include an
X509Certificate” taken from WS-SecurityPolicy looks
as follows (showing only the required information):

<sp:X509Token/>
Using a functional constraints model, this

Assertion can be written as:
<Function Id="string-equal">
 <Variable Id="authn-token-type"/>
 <Value>X509Token</Value>
</Function>
Alternatively, the functional constraints model can

use XPath [8] expressions as policy variables in a way
that allows the presence of an X509 token in a Web
Services message to be verified directly by the policy
processor, still without having to understand what an
“X509Token” is:

<Function Id="must-be-present">
 <Value>

//S11:Envelope/S11:Header/wss:Security/ds:KeyInfo/ds
:X509Data

 </Value>
</Function>
At first glance, the functional constraints Assertion

looks more complex, but its implementation is much
simpler. With the domain-specific model, a special
code module must be supplied that understands how to
match an <sp:X509Token> element against other
Assertions, and how to verify variable values or
messages against it to see if they contain an X509
token. With the functional constraints model, any code
module that understands the generic functions “string-
equal” or “must-be-present” will be able to match or
verify these Assertions. Any Assertion, from any
domain, that uses string equality constraints or XPath
expression node counts can be handled using the same
code module. Assertions that require nested policies
are simpler in the functional constraints model because
all Assertions, “inner” or “outer”, can be handled by
the same generic code module. The greater complexity
of the XML itself is hidden from users, who use
Graphic User Interfaces or code developer tool
annotations rather than editing Assertions directly.

4. The WS-PolicyConstraints language

WS-PolicyConstraints [9] is a language for writing
domain-independent functional constraints over
domain-specific policy variables. WS-

PolicyConstraints is based on a subset of WSPL, with
the parts of WSPL that overlapped and conflicted with
WS-Policy removed. WSPL was selected as a base
because its functional constraints come from the
OASIS Standard eXtensible Access Control Markup
Language (XACML) [10], which has a number of
available implementations deployed by numerous
vendors. WSPL also specifies simple, efficient
operations for computing the intersection of any two of
its functional constraints, using type-based equality,
floor/ceiling, and set operations.

WS-PolicyConstraints extends WSPL to deal with
additional requirements. For example, because WS-
PolicyConstraints is designed to work with any
Boolean policy framework that may become standard,
it allows for differences in the way certain
functionality, such as specifying the semantics of a
variable for which no constraint is specified, is divided
between the framework layer and the Assertion layer.
It adds an XML attribute to range constraints to say
which end of the range is preferred It also defines
constraints for additional useful data types.

Separating the functions of Assertion intersection
and verification from the necessarily domain-specific
functions of policy variable implementation and
enforcement is consistent with models used in the
access control and network management worlds, where
a domain-specific Policy Enforcement Point is
architecturally separate from a domain-independent
Policy Decision Point [11].

5. Problems in designing a domain-
independent language

As a proof-of-concept, the Assertions defined in
WS-SecurityPolicy were expressed successfully using
WS-PolicyConstraints [12]. The intent was not to
define a replacement for WS-SecurityPolicy, but to use
a set of actual Assertions to test the expressiveness of
the language.

The original thought was that all Assertions could
be stated as functions using XPath expressions into the
Web Service messages as the policy variables. The
advantage of such Assertions is that the policy
processor can verify that a message satisfies a given
Assertion without any domain-specific code at all.
Some practical problems led to modifications to this
approach, however.

First, some Assertions constrain the way a
message is to be processed, where the processing is not
reflected in the syntax of the message itself. An
example is a requirement that intermediaries prepend
new metadata headers to existing headers. It became
apparent that some policy variables need to be defined

independently of the syntax of the message itself.
While these variables are domain-specific, the
Assertions over them can still be domain-independent.
The policy processor will be able to match two
instances of such an Assertion to see if they are
compatible, but will be unable to verify that the
message actually conforms to the Assertion without
domain-specific assistance. A similar example is a
requirement that referenced authentication tokens must
be external to the message. In order to verify this
Assertion, the policy processor needs help in
recognizing references that are not external, as
references use domain-specific forms.

The second problem arose with Assertions over
non-XML data embedded in a message, such as
Assertions over the content of fields in embedded
binary objects. New functions were defined for
extracting the values of fields from common types of
data, such as X509 Certificates. The expectation is that
future data will be expressed using XML, so the
number of such domain-specific functions needed
should be limited.

Third is the need to support complex policy
variables that include several inter-dependent
components. A new “limit-scope” function was
introduced to group multiple related constraints for
this.

A fourth problem arose from the need to match
XPath expressions that were being used as identifiers
for policy variables. Two different XPath expressions
may select the same nodes in an XML document, but it
is impossible to determine this in many cases based
only on the document's schema. For example, one
XPath expression may specify the second instance of a
given element, whereas another XPath expression may
specify an element having a particular XML attribute
value. The nodes selected may be identical for some
instances of the schema, but different for others. To
address this, XPath expressions were limited to forms
for which intersections are well-defined by prohibiting
relative expressions, XPath Query functions (such as
selecting an element with a particular XML attribute
value), and ordered node selectors (such as
//msg/element[3]). The new “limit-scope” function for
grouping constraints was sufficient to satisfy use cases
for the prohibited XPath Query functions. This limited
form of XPath is expected to be sufficient for almost
all policies, but more application experience is
required. Note that while [13] defines the intersection
of two general XPath expressions, but there is no
guarantee that any XML document instance can
actually satisfy the intersection so specified.

6. Co-existence

Certain domain-specific Assertion definitions,
such as WS-SecurityPolicy, are already in use. It is
neither reasonable nor necessary to expect that such
Assertions will be rewritten using WS-
PolicyConstraints. Since WS-Policy processors must
be designed to support the addition of new Assertion
modules, a module to support WS-PolicyConstraints
can be plugged in alongside modules for domain-
specific Assertions. Policy Assertions written using
domain-specific languages will be handled by their
respective modules, whereas Assertions written using
WS-PolicyConstraints will be handled by its module.
This also allows a new domain-specific Assertion to be
created if a case arises where WS-PolicyConstraints is
not powerful enough to express the necessary
semantics.

7. Conclusion

WS-PolicyConstraints promises to significantly
reduce the cost of supporting new Assertions. It can
improve interoperability and maintainability of Web
Services policy processors as well as allowing free
development of new application-specific Assertions
without requiring changes to deployed policy
processors. Since the semantics it must support are
limited to a fixed set of functions, it is easy to test an
implementation of WS-PolicyConstraints for
correctness.

WS-PolicyConstraints has not yet been
implemented, but most of its functions are taken from
XACML, which has been widely deployed and has an
unencumbered open source implementation available;
its function matching and intersection operations are
taken from WSPL, which has been implemented and
used successfully. WS-PolicyConstraints has been
successfully used to express a significant collection of
domain-specific Assertions, demonstrating its
flexibility and expressive power.

8. References

[1] U. Yalcinalp, “Proposal for adding Compositors to
WSDL 2.0”, 26 January 2004,
http://lists.w3.org/Archives/Public/www-ws-
desc/2004Jan/0153.html.

[2] A. Anderson, “An Introduction to the Web Services
Policy Language”, Fifth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY'04).
8 June 2004.

[3] G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri,
A. Uszok, “Semantic Web Languages for Policy
Representation and Reasoning: A Comparison of KAoS, Rei,
and Ponder”, ISWC 2003: Proceedings of the Second
International Semantic Web Conference, 2003.

[4] J. Schlimmer, ed., “Web Services Policy Framework
(WS-Policy)”, September 2004
http://schemas.xmlsoap.org/ws/2004/09/policy/.

[5] T. Nadalin, ed., “Web Services Security Policy Language
(WS-SecurityPolicy)”, Version 1.1, July 2005,
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
securitypolicy.pdf.

[6] S. Batres and C. Ferris, ed., “Web Services Reliable
Messaging Policy Assertion (WS-RM Policy)”, February
2005, OASIS WS-RX TC Committee Draft, October 2005,
http://www.oasis-
open.org/committees/download.php/15189/wsrmp-1.1-spec-
cd-01.pdf.

[7] A. Nadalin, et al., ed., “Web Services Security: SOAP
Message Security 1.1 (WS-Security 2004)”, OASIS WSS TC
Working Draft 7, November 2005.

[8] W3C, “XML Path Language (XPath) 2.0”, W3C
Candidate Recommendation, November 2005.

[9] A. Anderson, ed., “XACML-based Web Services Policy
Constraint Language (WS-PolicyConstraints)”, Working
Draft 6, 24 October 2005,
http://research.sun.com/projects/xacml/ws-policy-constraints-
current.pdf.

[10] T. Moses, ed., “eXtensible Access Control Markup
Language (XACML)”, Version 2.0. OASIS Standard. 1
February 2005, http://www.oasis-
open.org/committees/xacml.

[11] A. Westerinen, et al., “Terminology for Policy-Based
Management”, IETF RFC 3198, November 2001.

[12] A. Anderson, “WS-Security policy profile of WS-
PolicyConstraints,” Working Draft 3, 28 June 2005,
http://research.sun.com/projects/xacml/ws-security-
profile-of-ws-policy-constraints-wd-03.pdf.

[13] B. C. Hammerschmidt, M. Kempa, V. Linnemann, “On
the Intersection of XPath Expressions”, Proceedings of the
9th International Database Engineering & Application
Symposium (IDEAS 2005), 25.-27. July 2005, Montreal,
Canada

