
Active XML� a data�centric perspective on web services

Serge Abiteboul

INRIA

and Xyleme

Omar Benjelloun

INRIA

Ioana Manolescu

INRIA

Tova Milo

INRIA

and Tel Aviv U�

Roger Weber

ETH Zurich

Abstract

We propose a peer�based architecture that al�
lows for the integration of distributed data
and web services� It relies on a language� Ac�
tive XML� where ��� documents embed calls
to web services that are used to enrich them�
and ��� new web services may be de�ned by
XQuery queries on such active documents�

Embedding calls to functions or even to web
services inside data is not a new idea� Our
contribution� however� is turning them into a
powerful tool for data and services integration�
In particular� the language includes linguistic
features to control the timing of service call
activations� Various scenarios are captured�
such as mediation� data warehousing� and dis�
tributed computation� A �rst prototype is de�
scribed�

� Introduction

One of the most essential issues in computer science is
the management of data� Since the �	
s� the database
community has developed the necessary science and
technology to manage data in central repositories�
From the early days� many e�orts have been devoted
to extending these techniques to the management
of distributed data as well� and in particular to its
integration� e�g�� ��
� �
� 
��� But the web is dra�
matically changing the context for data integration�
mainly because of �i� the high heterogeneity and
interoperability problems between sources and �ii� the
independence of sources and the very large scale of
the web� We propose in this paper a new framework
for data and service integration� that addresses these
two concerns�

Heterogeneity and interoperability issues
XML� as a self�describing semi�structured data model�
raised large interest among the data integration com�
munity� e�g� in ���� ��� 

� for the �exibility and ex�
pressiveness it brings for solving semantic heterogene�
ity issues� However� a signi�cant interoperability prob�

lem comes from the fact that data is often dynamically
constructed by programs� e�g�� upon the submission of
a form by a human user� This �deep web� is made ac�
cessible by Web services which encapsulate programs
with XML arguments and results� The SOAP �
�� and
WSDL ���� languages enable calling and describing
these remote programs seamlessly� In our framework�
web services are e�ectively leveraged for data integra�
tion tasks�

Independence and scalability issues Central�
ized architectures for data integration somehow con�
tradict the essence of the web� promoting distribution
and independence� Furthermore� they have di�culties
scaling up to its large size� Peer�based architectures� in
which resources are shared by direct exchange between
systems� propose a credible alternative and are already
spreading� mainly in a �le�sharing context �
�� ��� �	��
In our framework� peer�based architectures form the
basis for scalable data integration�

We propose Active XML �AXML in short�� a lan�
guage that leverages web services for data integra�
tion and is put to work in a peer�to�peer architecture�
The language enables embedding service calls inside an
XML document� that is enriched by their results when
they are �red� The language also allows for declarative
speci�cation of new web services based on such active
documents and a query language� Data with embed�
ded calls to operations is an old idea that has already
been considered in the context of XML and web ser�
vices� For instance� in Microsoft O�ce XP� Smart Tags
within XML documents can be linked to Microsoft
s
�NET platform for web services �
��� However� to our
knowledge� the present paper is the �rst proposal that
actually turns calls to web services embedded in XML
documents into a powerful tool for data integration�
By providing means to declaratively specify when the
service calls should be activated �e�g� when needed�
every hour� etc��� and for how long the results should
be considered valid� our approach allows to capture
and combine di�erent styles of data integration� such
as warehousing� mediation and �exible combinations
of both� Moreover� AXML allows to use and specify
novel kinds of web services�



SOAP

AXML peer S2

SOAP

AXML peer S3

SOAP client

SOAP
service

AXML storage

EvaluatorXQuery
processor

query
results

definitions
AXML service

update
readupdate

read

AXML peer S1

wrapper
SOAP

service call service result

query

consults

Figure �� Outline of the AXML data and service inte�
gration architecture�

Continuous services Most existing services are
in the style of remote procedure calls �RPC�� they are
called with some parameters and �eventually� return
an answer� By contrast� continuous services return a
�possibly in�nite� stream of answers for a single call�
As an example� consider subscription systems where
new data of interest are pushed to users �see� e�g�� �
����
Similarly� a data warehouse receives streams of up�
dates from data sources� for maintenance purposes�
Streams of results are also generated� for instance� by
sensors �e�g�� thermometers� video surveillance cam�
eras�� The AXML framework allows to support the
management �production and integration� of data for
such continuous services�

Services with intensional input�output Stan�
dard web services typically exchange plain XML data�
We allow web services to exchange AXML data that
may contain calls to other services� In the spirit of �����
the answer to an AXML service call may include both
extensional and intensional information� Furthermore�
the arguments of a call may also contain service calls
�intensional information�� This allows� for instance� to
delegate portions of a computation to other sites� i�e��
to distribute computations�

As mentioned above� AXML allows not only to use
existing web services but also to de�ne new ones on
top of AXML documents� The service speci�cations
are based on XQuery ����� the future standard query
language for XML� extended to updates� and allow in
particular the de�nition of continuous services and of
services with intensional input�output�

AXML is put to work in a peer�based architecture�
illustrated by Figure �� Each peer contains a reposi�
tory of AXML documents as well as some AXML web
services de�nitions� At the heart of the system is an
AXML processor and� in particular� an Evaluator mod�
ule which is in charge of the following two main tasks�

Client Choosing which of the service calls embed�
ded in the AXML documents need to be �red at each
point in time� �ring the calls� and integrating the re�
turned answers into the documents� It is important to
stress that any web service can be used� be it provided
by an AXML peer or not� as long as it has a SOAP

interface��
Server Accepting requests for the AXML services

supported by the peer� executing the services �i�e� eval�
uating the corresponding XQuery� and returning the
result�

Observe that since AXML services query AXML
documents and can accept �resp� return� AXML doc�
uments as parameters �resp� result�� a service execu�
tion may require the activation of other services calls�
Thus� these two tasks are closely inter�connected�

The paper is organized as follows� After an overview
of related work� the AXML language is presented in
Section 
� mainly through an extended example� A
formal semantics for AXML documents and services
is presented in Section �� while security and peer ca�
pabilities are considered in Section �� An evaluation
strategy and an implementation are discussed in Sec�
tion �� The last section is a conclusion�

� Related work

The starting point of the present work is the semistruc�
tured data model and its current standard incarna�
tion� namely XML ����� We rely primarily on an XML
query language and on protocols for enabling the re�
mote procedure calls on the web� Disparate e�orts to
de�ne a query language for XML are now unifying in
the XQuery proposal ����� The core of our de�nition
of web services will consist of parameterized queries in
XQuery� The various industrial proposals for web ser�
vices architectures� e�g� �NET by Microsoft� e�speak by
HP� SunOne by Sun Microsystems� are also converging
towards using a small set of speci�cations to achieve in�
teroperability� Among those� we are directly concerned
by the Simple Object Access Protocol �SOAP� �
�� and
the Web Services Description Language �WSDL� �����
that are used in our implementation� More indirectly�
UDDI registries �
��� can be leveraged by our system�
e�g�� to publish or discover web services of interest�

As already mentioned� the idea of embedding func�
tion calls in data is not a new idea� Embedded func�
tions are already present in relational systems ��	��
e�g�� as stored procedures� Method calls form a key
component of object databases ����� The introduction
of service calls in XML documents is thus very nat�
ural� Indeed� external functions were present in Lore
���� and an extension of object databases to handle
semistructured data is proposed in �

�� thereby allow�
ing to introduce external calls in XML data� Our work
is tailored to XML and web services� In that sense� it
is more directly related to Microsoft Smart Tags �
���
Our goal is to provide means of controlling and en�
riching the use of web service calls� and to equip them
with a formal semantics�

The activation of service calls is closely related to
the use of triggers ��	� in relational databases� or rules

�Bridges to alternative protocols for web services� such as
XML�RPC� may clearly be used�



in active databases ����� Active rules were recently
adapted to an XML and XQuery context ���� A recent
work considered �ring web service calls ���� We harness
these concepts to obtain a powerful data integration
framework based on web services� In some sense� the
present work is a continuation of previous works on
ActiveViews ���� There� declarative speci�cations al�
lowed for automatic generation of applications where
users could cooperate via data sharing and change con�
trol� The main di�erences with ActiveViews are that
�i� AXML promotes peer�to�peer relationships vs� in�
teractions via a central repository� and �ii� the corner�
stones of the AXML language are XPath� XQuery and
web services vs� object databases �����

Integration and composition of web services have
been active �elds of research recently ����� However�
most of the works have focused on process�oriented
techniques� and on the de�nition of work�ows among
services ��
�� In Multilisp ����� intensional data was
used under the form of �futures�� i�e�� handles to re�
sults of not�yet��nished computations� to allow for par�
allelism� Ambients ��	� ���� as bounded spaces where
computation happens� also provide a powerful abstrac�
tion for processes and devices mobility on the web�
The present work is concerned with the complemen�
tary data�centric aspects of web service integration�

Our formal foundation is based on non�
deterministic �xpoint semantics �
�� that was
primarily developed for Datalog extensions� In that
direction� the paper has also been in�uenced by recent
works on distributed Datalog evaluation �����

� AXML by example

In this section� we introduce Active XML via an ex�
ample� In Section 
��� we present a simple syntax for
including service calls within AXML documents� and
outline its core features� Section 
�� deals with inten�
sional parameters and results of service calls� We then
consider� in turn� the lifespan of data� the activation
of calls and the de�nition of AXML services�

��� Data and simple service integration

At the syntactic level� an AXML document is an XML
document� At the semantic level� we view an AXML
document as an unordered data tree i�e�� the relative
order of the children of a node is immaterial� While
order is important in document�oriented application�
in a database context like ours it is less signi�cant and
we assume that� if needed� it may be encoded in the
data� Also� we attach a special interpretation to par�
ticular elements in the AXML document that carry
the special tag �sc�� for service call � these elements
represent service calls that are embedded in the doc�
ument�� In general� a peer may provide several web

�For readability� we use a simple syntax for �sc� elements�
A more complete version is provided in appendix�

services� Each service may support an array of func�
tions� We use here the terminology service call for a
call to one of the functions of a service�

As an illustration� consider the AXML document
corresponding to my personal page for auctions that I
manage on my peer� say mypeer�com� This simple page
contains information about categories of auctions I am
currently interested in� and the current outstanding
auction o�ers for these categories� The page may be
written as follows�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�Toys����sc�

��category�
�category name��Glassware��
�sc�eBay�com�getAuctions
�Glassware����sc�

��category�
��axml�

While the category names are explicitly written in
the document� the o�ers are speci�ed only intension�
ally� i�e�� using service calls instead of actual data�
Here� the list of toy auctions is provided by auction�com�
On that server� the function getO	ers� when given as
input the category name Toys� returns the relevant list
of o�ers� as an XML document� The latter is merged
in the document� which may now look as follows�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�Toys����sc�
�auction aID��
��

�description�Stu	ed bear toy��description�
��auction�
�auction aID��������

��category����
��axml�

Observe that the new data is inserted as sibling el�
ements of �sc�� and that the latter is not erased from
the document� since we may want to re�activate this
call later to obtain new auction o�ers� Finally� note
that in the case of a continuous service� several result
messages may be sent by the service for one call activa�
tion� In this case� all the results accumulate as siblings
of the �sc� element�
Merging service results More re�ned data inte�

gration may be achieved using ID�based data fusion� in
the style of e�g�� �
�� �� ���� In XML� a DTD or XML
Schema may specify that certain attributes uniquely
identify their elements� When a service result con�
tains elements with such identi�ers� they are merged
with the document elements that have the same iden�
ti�ers� if such exist� To illustrate this� assume that
auction�com supports a getBargains function that returns
the list of the current ten most attractive o�ers� each
with its special bargain price� Suppose also that aID is
a key for auction elements� If an auction element with
aID ��� is returned by a call to getBargains� the element
will be �merged� with the auction with aID ��� that we
already have�



XPath service parameters The parameters of
a service call may be de�ned extensionally �as in the
previous examples� or may use XPath queries� For in�
stance� the getO	ers service used above gets as input
a category name� Rather than giving the name ex�
plicitly� we can specify it intensionally using a relative
XPath expression �����
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�����name�text
�����sc�
�����category����

��axml�

The XPath expression ����name�text
� navigates
from the �sc� node to the parent �category� element�
and then to its name attribute� In this example there is
only one possible instantiation for the XPath expres�
sion� In general� several document subtrees may match
a given XPath expression� When this is the case� the
call is activated once for each possible instantiation �if
a call has several XPath parameters� we have one acti�
vation for every tuple in the cross�product of the paths
instantiations��

Besides the parameters� the name of the called peer
as well as the name of the service itself may be speci�
�ed using relative XPath expressions� The same cross�
product semantics applies�

��� Intensional parameters and results

The parameters of the services calls that we have seen
so far were �instantiated as� simple strings� In gen�
eral� the parameters of a service call may be arbitrary
AXML data� speci�ed either explicitly� or by an XPath
expression� In particular� AXML parameters may con�
tain calls to other services� leading thus to intensional
service parameters� For example� to get a more ade�
quate set of auctions� we may use a service that� in
addition to the category name� needs the current user
budget� which is itself obtained by a call to the bank
services�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers



�����name�text
���
�sc�bank�com�getBudget
�user������sc��

��sc���category�
��axml�

Up to now� we have not discussed where and when
a service call is activated� In the above example� we
already face a choice concerning the activation of get�

Budget� We may call it �rst� and then call getO	ers

providing it with the result� Another option is to call
directly getO	ers with the intensional parameter� and
let it handle the activation of the call to getBudget� We
will further discuss this issue in Section ��

Services may not only get intensional data �i�e�
AXML documents with embedded service calls� as in�
put� but also return such data as a result� As an exam�
ple� each auction in the result of getO	ers may contain

a call to a getDetails service that provides more infor�
mation about that particular auction�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�����name�text
�����sc�
�auction aID��
�
�description�Stu	ed bear toy��description�
�sc�auction�com�getDetails
�����aID����sc�

��auction������category����
��axml�

Observe that intensional results already appear in
practice in many popular applications� For example�
the Google search engine returns� for a given keyword�
some document URLs plus �possibly� a handle for ob�
taining more answers� With this handle� one can ob�
tain a new list and perhaps another handle�

��� Controlling the lifespan of data

So far� all the service call results were accumulated in
the calling document� In practice� we need more �exi�
bility in managing these results� so that we may replace
old results with new ones� discard data that has grown
too old or has become inconsistent� etc� Many models
and techniques have been proposed for managing data
lifespan� particularly in the �elds of version manage�
ment� temporal databases� and active databases� For
our purposes� we choose a suitable� simple model� that
may be extended with more complex features�

To manage data lifespan� we conceptually attach
a special attribute expiresOn to any data node in an
AXML document�� Some nodes may have explicit ex�
piration time� whereas others will inherit it from their
parent� Expired nodes should simply be viewed as
erased from the document�

The value of the expiresOn attribute is an event� that
may depend on time� and�or on the document content�
For example� if a user wants to specify that her interest
in a product category lasts only until February ��th�
�		�� then the element will have the following form�
�category name��Toys� expiresOn��Feb� 
�th� ���������

Data returned by a service may come with a expi�
ration time speci�cation� This is a very useful feature
that allows a service provider to state how long the
particular result is meaningful� For example� getO	ers

may inform the user of an auction
s closing time� by
setting expiresOn for the returned data� The lifespan of
a service call result may be explicitly overwritten by
the caller� This is done using a valid attribute� in the
sc element� valid can be a function of the time when
the call was �last� answered� denoted rt� For example�
consider the following two calls�
�sc valid��rt � 
 year��

auction�com�contGetO	ers
�A����sc�
�sc valid��last ���

auction�com�contGetO	ers
�B����sc�

�Strictly speaking� it is not possible in XML to attach an
attribute to a �PCData node� It is possible to do so in AXML�



The �rst one states that auctions in Category A are
archived for one year� whereas the second one requires
to keep only the last � of Category B�

��� Controlling the activation of calls

To control when a service call is activated� we use two
attributes of �sc� elements� namely mode and fre�
quency� The value of the frequency attribute is similar
to the one of valid� except that it is a function of ct�
the time when the service was last called� Thus� we
can easily specify a given instant� a time interval� the
occurrence of an event� etc� By default� a service is
called only once� when the document is registered� We
say that a call has expired when� according to its fre�
quency attribute� it should be activated�

The mode of a call is either lazy or immediate� In
immediate mode� the call is activated when it expires�
if the call is in lazy mode� the fact that it has expired
only means that next time the data produced by this
call is needed �e�g�� by a query over the AXML docu�
ment�� the service has to be called�

The data validity and the calls activation mode and
frequency� together� provide a �exible and powerful
tool for capturing various integration scenarios� This
is illustrated next� In the following integration styles�
the �rst three assume regular �non continuous� services
whereas the last one relies on continuous services�

� mediator style� set valid to 	 �note that an imme�
diate mode would not have any meaning in this
case��

� mediator style with caching� choose a non�zero
value for valid� and lazy mode�

� warehousing mode with pulling information�
choose valid larger than frequency� and immediate
mode�

� warehousing mode with pushing� choose a non�
zero value for valid� and immediate mode�

Note that the activation of a call is dissociated from
the lifespan of its results� For example� if we wish to
call getO	ers every day� and keep the results for a week
after their acquisition� we would write�
�sc valid��rt � 
 week� frequency��ct � 
 day��

auction�com�getO	ers
�Toys����sc�

Also� some form of semantic consistency may be
enforced by linking call activation to change events�
A user may want the set of auctions on her page to
follow changes in her interests� In other words� when
the name of the category of interest is updated� the
o�ers returned by the previous call become irrelevant
and the getO	ers service needs to be re�activated with
the new category name to obtain the relevant o�ers�
This can be written as follows�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc valid��until param changes��

frequency��when param changes��
auction�com�getO	ers
�����name�text
���

��sc���category�
��axml�

The keyword param links the data validity�call acti�
vation to changes in the value of the call parameters�
In general one can use there an arbitrary XPath ex�
pression to link the validity�activation to changes in
other elements of the document�

Remark ��� �timeout� In the case of a non�
continuous service� it may happen that the answer re�
turns very late� or never returns at all� In practice� it
is useful to have timeouts for calls� When the timeout
is reached� the system abandons hope of getting the
result� A real system should also provide an exception
handling mechanism to manage such events� �

��� AXML service de�nition

The AXML framework allows to call arbitrary web ser�
vices� It may also be used to de�ne new web services�
as illustrated in this section� In short� an AXML ser�
vice is de�ned by a parameterized XQuery queries over
the peer
s AXML documents� As an example�getO	ers�
that returns all currently open auctions for a given cat�
egory� may be de�ned at auction�com as follows�
let sc auction�com�getO	ers
�c� be
for �cat in document
�auction�com�a�xml����category

�a in �cat�auction�
�aID in �a��aID�text
��
�des in �a�description�text
�

where �cat��name�text
���c
return �auction aID���aID��

�description���des����description�
�sc�auction�com�getDetails
�����aID����sc�

��auction�

In the above example� the category parameter �c

is of type �PCDATA �text�� The query consults an
AXML document �a�axml� which may contain service
calls� and constructs an AXML document with some
calls �e�g� to the getDetails function of auction�com��
Here again we face a choice concerning the activation
of getDetails� we may call it �rst� and only then return
the answer of getO	ers� Another option is to return the
document immediately and let the caller of getO	ers

handle the activation of the calls to getDetails� The
particular type of the service result may be described
by an XML Schema ����� as described by the WSDL
speci�cation �����

To de�ne continuous AXML services� we simply
pre�x the de�nition with the keyword continuous�
Thus� a continuous variant of a getO	ers� returning the
set of interesting auctions whenever it changes� is de�
�ned as follows�
let continuous sc auction�com�contGetO	ers
�c� be���

To de�ne AXML services with side e�ects� in the
absence of a standardized language for XML updates�
we use the extension to XQuery proposed in �
��� For
example� the �a�xml� database that getO	ers consults
may be enriched by the addAuction service�



let update sc auction�com�addAuction
�c� �id� �d� �p� be
for �cat in document
�auctions�com�a�xml����category
where �cat��name�text
���c
update �cat � insert �auction aID���id��

�description���d���description�
�startPrice���p���startPrice�

��auction� �

��� Discussion

We conclude this section with two remarks regarding
consistency and termination�
Consistency We assume that the document we

start with is well�formed and obeys its DTD �or XML
Schema� if one is speci�ed for it� An inconsistency may
arise if one call leads to constructing a document that
no longer obeys the schema� While some of this may
be prevented by consulting the declared signature of
the used services ���� ��� static type checking becomes
more complicated due to the use of ID�based element
fusion and of XPath expressions in call parameters�
Termination We have seen above that a service

calls may return intensional answers� Note that this
may lead to a non terminating computation� the result
of a service call may contain new service calls that need
to be activated� Those in turn may return new calls to
be activated� and so on� Another possible reason for
non termination is mutual recursion between service
calls� Some simple su�cient conditions for termination
are mentioned in the Appendix�

� Data and computation model

In this section� we brie�y de�ne the AXML data model
and the semantics of AXML documents and services�
For lack of space� the presentation is informal� The
formal de�nitions as well as the proofs of the results
can be found in ����

Intuitively� an AXML instance consists of a number
of peers� each one containing some AXML documents
that are being run� AXML documents are XML un�
ordered trees� The evaluation of these documents gen�
erates calls between these peers and possibly results in
new documents being evaluated at each peer� As we
shall see� the evaluation is non�deterministic� which
captures the asynchronous evolution of the global in�
stance� which may eventually reach a �xpoint or not�
More precisely� we present next the data model� then
the computation�

��� Data model

An �AXML� instance consists of a number of peers�
Each peer contains AXML documents� some service
de�nitions� and a working area� We next de�ne in�
stances� then proceed to the de�nition of documents
and services�
Instances An instance I consists of a number of

peers p�� � � � � pn� The content of a peer pi � I is de�ned
by a triple �Di�Fi�Wi� where Di� the peer documents�

is a set of AXML documents� Fi� the peer services� is
a set of AXML service de�nitions� and Wi� the peer
working area� is a set of AXML documents� All the
sets are assumed to be �nite�

The documents in Di form the persistent repository
of the peer� Each document d in the working area of
a peer pi represents the computation of some service
call in pi� i�e�� some current work that pi is perform�
ing� Any such document d also contains a destination
attribute specifying where the result of this computa�
tion should be sent� including the identity of the calling
peer and the parent of the service call element�
Documents As for standard XML documents� an

AXML document is modeled by a labeled tree with
nodes representing the document elements�attributes
and with edges capturing the component�of relation�
ship among document items� The three main di�er�
ences with the standard XML data model ���� are that
��� we ignore here the order of elements� hence our
trees are unordered�� so we only consider the order�
free fragments of XPath �for parameters� and XQuery
�for service de�nitions�� ��� a validity predicate is at�
tached to some elements to specify when some par�
ticular data become stale� �
� some of the tree leaves
are special service call nodes� called in the sequel sc�
nodes� An sc�node is labeled by a tuple of the form
hs� f� p�� � � � � pni where�

� f and s are respectively a service and peer names�
or are XPath expressions� In the �rst case� the
service f must be de�ned in peer s with arity n�

� p�� � � � � pn� the call parameters� are AXML docu�
ments or XPath expressions�

An sc�node where none of s� f� p�� � � � � pn are XPath
expressions� is called a concrete call�
Reduced documents Continuous services send a

sequence of answers to the caller� Smart �or optimized�
such services may only send the delta since the last an�
swer� In other cases� the caller may be responsible for
detecting and ignoring redundant data� To abstract
this �without having to get into implementation details
such as who performs the optimization and when�� we
use in the formal model the notion of reduced version
of a document� where multiple occurrences of the same
data are omitted�

To de�ne reduced documents� we use the auxiliary
concept of inclusion relationship among trees� A re�
duced document is such that no subtree is included in
one of its siblings� One can show that the reduced ver�
sion of a document is unique� It can be� for instance�
computed by iteratively removing redundant subtrees�
The details are omitted� We will assume in the sequel
that all our AXML documents are reduced�

�We may take into account the ordering in some speci�c
cases� e�g�� for the extensional portions of documents�



Service de�nitions To conclude this section� let
us consider the de�nition of Fi� i�e�� the de�nition of
services� The semantics of XQuery queries is standard�
with one notable exception� when evaluating path ex�
pressions� service calls act like document boundaries
which the evaluation cannot cross� In other words�
they are terminal nodes which do not match any path
expression�

The de�nition of an AXML service consists of the
service name� the service type �e�g� continuous or not��
the service parameter names v�� � � � � vn� and a param�
eterized query Q�v�� � � � � vn�� namely a query that may
refer to the �parameters� documents v�� � � � � vn�

��� Computation

We are now ready to de�ne the semantics of AXML
documents� Each peer includes a collection of AXML
trees� in Di and Wi� These documents may contain
service calls that may be activated to derive more in�
formation about the documents� A service call activa�
tion spans a computation on one of the peers� More
precisely� the activation in Peer s of a particular ser�
vice call to Peer r involves ��� �possibly� instantiating
in s the XPath expressions of attributes of the call� ���
for each instantiation� sending concrete calls from Peer
s to Peer r� �
� computing in Peer r the correspond�
ing answers and ��� returning the answers to Peer s�
where they are received and merged at the appropriate
place in the tree� If� for some reason� the resulting tree
is no longer a legal AXML document� it becomes the
inconsistent document�

Recall that the decision whether service calls can�
and need to� be instantiated �resp� sent� computed�
returned� at a given time depends on the speci�c call
attributes� We will simply refer to such calls as eligible
for instantiation �resp� sending� computation� return�
ing�� �We will see in the next section how this can be
implemented��

An initial instance is such that all peers have an
empty working area� Given an initial instance I� each
peer s � hD�F �Wi evolves in a similar way� Starting
from I� repeatedly �and non�deterministically�� one of
the following steps is executed�
Step �	 Instantiate the XPath parameters	 For
some �non concrete� sc�node v in D or W that is eli�
gible for instantiation� the XPaths are evaluated� and
for each instantiation� a new document is added to
s
s Working Area� The roots of these documents have
the corresponding concrete service call as an sc�node
child� and have v as the destination for the result of
the computation�
Step �	 Send�Receive an external call	 For some
concrete sc�node n in D or W that is labeled with a
call c to some remote peer r and is eligible for sending�
the call is activated� Formally� this consists in adding�
to the Working Area of the receiving peer r� a new
document whose root has an sc�node child labeled with

c and having n as the destination for the result�

Step �	 Compute a local call	 For some concrete
sc�node n in D or W that is labeled with a call c to
a local service of s and is eligible for computation�
evaluate the service query using the given parameters�
The result� a forest� is merged under the parent node
of n�

Step �	 Return�Receive result of a call	 For
some document d in W � eligible for being returned as
an answer� the children of root�d�� �not including d
s
destination attribute� are sent to the destination peer
and merged under the parent of the destination node�

Observe that� in the above computation� we
grouped sending �resp� returning� a call and receiv�
ing it in one operation� Intuitively� our send�receive
�resp� return�receive� operation captures the moment
when the receiver receives the message� Finally� to
guarantee a correct semantics� we need some fairness
condition�

�y� Any operation that may happen� eventu�
ally happens�

Non
determinism and con�uence In general� an
initial instance I may be transformed in many di�er�
ent ways� depending on the choice of the operations to
perform� This non�determinism is built in the seman�
tics� So� even if an instance converges to a �xpoint� the
�xpoint does not have to be unique� Furthermore� as
mentioned in Section 
��� the computation may con�
tinue forever� building more and more data� i�e�� there
is no guarantee of termination�

Although this may seem to be a negative feature
of the model� observe that this naturally models the
real world we are trying to capture� The state of a
peer may continuously evolve because� for instance�
of interactions with human users updating data� Also�
continuous external services such as subscriptions may
keep sending new data to the peer� So� the system
should not be expected to terminate� Also� data may
expire or get deleted and the order in which the vari�
ous operations�queries are executed may have impacts
on the state� Thus� because of asynchronicity and peer
independence� determinism is an elusive goal in such
an environment� However� termination and con�uence
can be enforced under very strict restrictions� as out�
lined next�

Remark ��� �Monotone computation� Suppose the
computation is monotone� i�e�� no fact is ever deleted
or updated� and information keeps being added in a
cumulative manner� Under this restrictions� the order
in which the steps are executed is not signi�cant any�
more� One can then guarantee that all computations
lead to a �possibly in�nite� unique state� This is in the
spirit of results on in�ationary �xpoint semantics� see
�
�� Details are deferred to the appendix� �



� Limiting the �ring of calls

So far� we have described the AXML paradigm at a
rather abstract level� Before we consider its actual im�
plementation� we highlight some important issues that
are critical for a real life implementation� Before acti�
vating a service call� two points need to be checked� �i�
that the receiving peer is willing to accept the call� i�e��
that the caller has the proper priviledges to issue the
call� and �ii� that the peer has the capability to process
the call� i�e�� that the parameters of the call can be un�
derstood by the receiver� In practice� access to services
from other peers will be severely controled for security
reasons� Also� peers will have limited capabilities� e�g��
most of them will only accept calls with �plain� XML
arguments� This is the topic of this section�

��� Site capabilities and security

First� consider peer capabilities� We illustrated in Sec�
tion 
�� the use of intensional parameters in a service
call� Observe that they may� in principle� be evaluated
before or after the call is sent to the receiving peer�
In practice� not all choices are always feasible� For
instance� consider again the example in Section 
���
If auction�com is not capable of calling getBudget on
bank�com �e�g�� because it is not an AXML peer�� then
�user���
s AXML peer must �rst call getBudget� and
only then call getO	ers with the result�

Now� consider the security concerns that must guide
call activations� Access control is a needed features for
many applications� First� a service provider may wish
to reserve the access to a service to those who paid for
it� For example� acm�org currently allows users from
the inria�fr domain to use the search services of the
ACM digital library� but not any web user can do so�
Furthermore� security is necessary to protect sites from
a malicious usage� Not surprisingly� the exchange of
data that includes service calls is a major security hole�
For instance� suppose that we want to break into a peer
s� say the site qod�com� providing quotes of the day�
There are two main ways to do this�
In a call parameter Intensional service parame�

ters open backdoors to AXML servers� For instance�
a malicious client may use the following call to qod�
�sc�qod�com�QuoteOfDay


�sc�buy�com�BuyCar
�BMW Z�����sc����sc�

This malicious user does not wish to buy the car by
himself� but tries to make qod�com buy it�
In a call result �Trojan Horse
 Suppose now

that qod�com is malicious in the quotes it provides�
e�g�� by returning the following quote as a call result�
�quote� Love means never having to say you�re sorry�
�sc�buy�com�BuyCar
�BMW Z�����sc���quote�

Thus� by sending an intensional result� the qod peer
may force its clients to invoke dangerous services�

Finally� perhaps the most natural violation of secu�
rity is to bring an AXML peer to transmit private data
to a malicious distant site� This may be achieved for

instance by including the following call �as a parameter
of a call or in a result��
�sc�i�am�bad�SneakAbout
������������sc���axml�

Instantiating this XPath argument amounts to
sending i�am�bad �possibly private� parts of the docu�
ment that included this call� which is clearly an issue�

The above examples show that the AXML frame�
work makes unauthorized attempts to access data
quite likely� as well as malicious usage of web services�
Hence� access control is essential� We next see how
this can be incorporated in the framework�

��� Our solution

We illustrate how the above issues may be addressed
with two very simple policies� These policies have to
be combined with some access control mechanism on
the documents� Access models for XML have been
proposed in� e�g�� ����� This aspect will not be detailed
here�

In the �rst policy� called binding� a peer publishes
the kind of arguments each of its services accepts �e�g��
arbitrary AXML� XPath expressions� strict XML��
Only calls with the proper arguments may then be
activated� Note that this policy can be enforced using
the WSDL language which enables publication of XML
Schema types for services input�output parameters�

The second policy� called trust� re�ects some form of
agreement between the caller and the receiver� More
precisely� the reasoning that allows to decide whether
a service sv �where sv includes the name of the service
and the site that provides it� can be called by a site S
is encapsulated in a boolean function canCall�sv� S��
The canCall�sv� S� function returns true if S is willing
to call sv and the provider of sv is willing to accept
this call from S� Note that� like in Java
s sandbox
security model ����� the decision depends on the origin
of the call� This function will be used to determine
which calls are eligible for activation at each point in
time� We will see exactly how this is done in the next
section�

To implement canCall� we can assume� for instance�
that each peer has an agreed service list� containing the
services that it trusts� and is willing to call� Similarly�
we assume for every service� an agreed site list� i�e� the
sites �trusted and accepted by the service provider�
from which the service may be called� These two lists
are typically exposed as web services� More precisely�
each AXML peer S provides �i� a service that allows
to check whether it is willing to let another peer S� call
one of its services and �ii� a service to check whether
it is willing to call some particular service� For non�
AXML peers� we make conservative assumptions�

As mentioned above� these two models� binding and
trust� may be combined� They may also be extended
in a number of ways� First� one may want to include
some access control list �ACL� mechanism� to grant
di�erent rights to various users of a peer� One might



want to control the right to �re a particular service
call or the right to access data with an arbitrary gran�
ularity �e�g�� at the element level�� Also� the canCall
function may vary in time� For instance� depending
on the load of the service provider� one may want to
restrict usage of the service to certain clients only� Fi�
nally� one may want to include arbitrarily complex so�
lutions for trust management that have been proposed
such as REFEREE ����� No matter how complex the
used policy is� the evaluator essentially needs to know�
given a concrete call and a site� whether this site is
entitled to activate this particular call�

� Evaluation and Implementation

In this section� we describe the architectural compo�
nents� and the algorithms used by an AXML peer in or�
der to evaluate and maintain AXML documents� First�
we explain how time�related events are detected in the
system� Then� we see how the evaluation of documents
is a�ected by these events�
The Event Detector To capture time�related

events� we use an Event Detector module �ED�� For
simplicity� we omitted this module from the architec�
ture sketch �Figure �� at the beginning of this paper�
The ED of an AXML peer S monitors all AXML doc�
uments on S� including data validity parameters� and
the activation mode and frequency of all service calls
present in these documents� The ED sends messages
to other components of the AXML peer�

� to the Evaluator� when a service call has expired�
or has reached timeout�

� to the AXML storage� when a data node has be�
come invalid�

Before presenting our evaluation algorithm� recall
from Section 
�� that service calls can be de�ned to
be immediate or lazy� Immediate service calls have to
be activated as soon as they expire� while the activa�
tion of expired lazy calls may be postponed until their
results are actually needed� To simplify the presenta�
tion� we �rst assume below that all the service calls in
the documents are de�ned with an immediate execution
mode� and explain the evaluation algorithm for this re�
stricted case� Next we explain how the above needs to
be extended in order to support lazy calls� Finally we
describe our implementation�

Recall from Section � that a concrete service call is
one whose parameters do not include XPath expres�
sions�

��� Calls with immediate mode

We start by explaining how the Evaluator decides
when a call is eligible for instantiation� resp� activa�
tion� computation and return� �in the terms of Section
��� based on the messages received from the ED� Web
then outline the algorithms for processing service call
activations�

Deciding on call eligibility Let us consider the
meaning of a �sc has expired� message�

� If sc is non�concrete� the message informs the
Evaluator that sc is eligible for instantiation�

� If sc is concrete and aimed at some service out�
side S� we �rst choose some of the service calls
included in the parameters �according to the se�
curity� capability� and optimization reasoning out�
lined in Section ��� and process them� Only then�
sc becomes eligible for sending�

� If sc is concrete and aimed at a local AXML ser�
vice de�ned on S by a query Q� then sc becomes
eligible for computation�

So far we considered eligibility for instantiation� send�
ing and computing� For becoming eligible for return�
ing� the service result may need to be post�processed
�again� by calling some of the service calls in the result�
based on security� capability etc��
Processing service call activations Recall from

Section � that for every service call activation on an
AXML peer� a temporary document� that we call a
task� is created in the working area W � This docu�
ment contains an sc�node corresponding to the �sc�

element for which the task was created� and has a des�
tination� that may well be a node in another task� thus�
tasks are inter�connected by dependencies� We allow
within the evaluation some non�deterministic� paral�
lel behavior� at a given point in time� a task is either
ready� or suspended� waiting for some event� perhaps
the end of other task� and any of the ready tasks may
be processed at that point� Thus� tasks inW are orga�
nized as a set of trees� the leaf tasks are all ready� and
any of them may be chosen� while the non�leaf tasks
are suspended� In the following� a concrete task is one
that was created for a concrete call�

Tasks are created in three possible ways� First�
the Evaluator creates a new task �concrete or non�
concrete� for the activation of every expired� immedi�
ate service call� Second� upon receiving from outside a
call to a service local to S� the SOAP wrapper creates a
task for this call in W � Note that this task is concrete�
since only concrete tasks can be sent �see Section ���
Third� the processing of a task may create other tasks�
as we will see�

As a notation� let t�d� Sf � f� p�� p�� � � � � pn� be a task
with destination d� corresponding to the activation of
a call to the service f � provided by the peer Sf � with
parameters p�� p�� � � � � pn� let d�doc and d�peer be the
document� respectively the peer of the task destina�
tion�

Figure � outlines the simple algorithm for evaluat�
ing non�concrete tasks� First� the XPath parameters
of the task have to be evaluated� by issuing calls to the
query processor� When the evaluation is done� each pi
has the value of an AXML forest fi� As explained in
Section 
��� the non�concrete call is unrolled into as



peer S� non�concrete task t�Sf � f� p�� p�� � � � � pn� d�

 evaluate the XPath parameters in p�� p�� � � � � pn
� foreach i � �� �� � � � � n
� let fi be the value of pi 
an AXML forest�
� foreach x � �x�� x�� � � � � xn� � f� � f� � � � �� fn
� create tx�Sf � f� x�� x�� � � � � xn� t�root�
� insert tx in W
 suspend until all tx !nish
" exit

Figure �� Processing a non�concrete task�

many concrete calls as there are elements in the carte�
sian product of the forests fi� The processing of t is
over when all these concrete tasks have �nished�

In Figure 
� we describe the processing of a con�
crete task� Assume that a parameter pi� which is an
AXML tree� contains some expired call to sc� Then�
S has to decide whether it needs to activate this call
or send it as an intensional parameter� The decision is
done based on the binding and trust policies described
in Section �� If both options are valid� the decision
is made based on considerations like the systems load�
Note that the decision is made locally� using the poli�
cies of S� Sf � sc without requiring a �global� view of the
security and capability requirements of other peers�

At line �� if f is a service local to S� then we call the
XQuery processor with the proper arguments� other�
wise� a call is sent to Sf via the SOAP wrapper� In
both cases� t is suspended waiting for the result� and
if f is continuous� the activation also contains a �sub�
scribe� request� and t only waits for the �rst result to
come� Once S receives the result� if it needs to forward
it to the distinct peer d�peer� we may have to decide
when and where to execute the calls it contains� The
reasoning is very similar to the one above� dividing
the work among d�peer and S� Subsequently� the re�
sult is sent to d� �If d is local� by accessing the local
AXML repository� otherwise� by sending a result mes�
sage through the SOAP wrapper�� Finally� the con�
crete tasks exits if f is a non�continuous service� for
continuous services� the task is kept� as it is the re�
ceiver of all the updates from f � Upon receiving the
update� t forwards it to be inserted under d� discards
the data� and waits for the next update�
Unsubscribe and timeout For readability� we

have omitted some issues from the algorithms depicted
in Figures � and 
� First� if an unsubscribe message
for a continuous service is sent by the ED� the Evalu�
ator identi�es the associated concrete tasks� sends an
�unsubscribe� message to the service provider for each
task� and destroys the task� Similarly� when a non�
continuous call times out� the Evaluator destroys its
task�

��� Calls with lazy mode

Let us now consider the more complex case of the lazy

mode�

peer S� concrete task t�Sf � f� p�� p�� � � � � pn� d�

 foreach sci in p�� � � � � pn
� if S decides to activate sci
� then create ti� new task for sci# insert ti in W
� suspend until all ti !nish
� if S � Sf 
i�e� f is de!ned in S by some query Q�
� then call Q�p�� p�� � � � � pn�# suspend until result ready
 else 
i�e� f is a distant service�
" call Sf�f�p�� p�� � � � � pn�# suspend until result ready
� if S �� d�peer

� then foreach scj in result


 if S decides to activate scj

� then create tj � new task for scj # insert tj in W

� suspend until all tj !nish

� send result to be inserted under d

� if f non continuous

� then exit

Figure 
� Processing a concrete task�

sc4sc2

sc1

sc3

sc6 sc7sc5

sc1

sc2

consulted by
XPath parameters

modified
by activation

(a) (b)

of sc2

of sc1

Figure �� Dependencies among service calls�

Service call dependencies The presence of lazy
calls may cause dependencies among call activations�
For example� assume that we need to activate a non�
concrete service call� Before instantiating its XPath
parameters� we may need to activate some lazy service
calls� that may a�ect the result of the instantiation�
This situation is illustrated in the AXML document
shown in Figure ��a�� The �in�uence zone� of sc�� i�e��
the set of nodes that may be modi�ed by the results of
sc�� intersects the zone in which the XPath parameters
of sc� are evaluated�

If sc� is in lazy mode� and has expired� then it is
preferable to call it again before we instantiate the
XPath arguments of sc�� In turn� sc� may have XPath
parameters that evaluate in the in�uence zones of lazy�
expired service calls� leading to a graph of dependen�
cies like the one in Figure ��b��

Similarly� assume that a request for an AXML ser�
vice is received and the service query Q needs to be
evaluated� Before calling the XQuery processor� we
have to check if the data read by Q intersects the in�
�uence zone of some lazy expired service call� This
again leads to a dependency graph of the above form�

A reasonable compromise between precision and
complexity has to be found for tracking dependencies�
It is not possible to compute dependency graphs stat�
ically� For instance� as a document evolves� calls are
added� or removed� by service call activations� Com�



puting the exact dependency graph of a service call
leads to computationally complex problems such as
XPath containment �����

We therefore adopt the following pragmatic solu�
tion� We consider the in�uence zone of a service call
to be all the subtrees rooted at its parent� We con�
sider the scope of an XPath expression to be the set
of subtrees rooted in the highest nodes attained by
its evaluation� as described by the XPath speci�ca�
tion ����� Finally� we assume the data read by an
XQuery query to be described by the XPath expres�
sions in its for clause�� In general� path expressions
may appear also in other parts of the query� e�g� the
where clause� W�l�o�g we assume here that the query is
�rst normalized ����� We have thus brought the depen�
dency decision problem to deciding whether two trees
intersect� which can be done in constant time� provided
a convenient encoding for element IDs �e�g�� ������

A call dependency graph may contain cycles re�
�ecting mutual call dependencies� They are broken
by arbitrarily choosing some dependencies to be ig�
nored� Breaking the cycles amounts to introducing
non�determinism and possibly �missing� some data� In
a web context� this is acceptable�
Eligibility with lazy mode In the presence of

lazy calls� a given call sc may be declared eligible for
instantiation �resp� execution� only after all the lazy
calls in its data dependency graph have been issued�
Call activation with lazy mode Task process�

ing in the presence of lazy calls is more complex due
to the fact that we have to track data dependencies�
First� before instantiating an XPath argument of a
non�concrete call� we have to make sure that the data
it bears on is available� To that purpose� before line
� in Figure �� we need to construct the dependency
graph G for the XPath parameters of the task� on a
snapshot of the destination document� If G has cy�
cles� they are broken� then� we create tasks for all the
leaf nodes from G� and process them in parallel� When
these tasks are over� to take into account their e�ect on
the destination document� we re�compute G� as long
as G is not empty� we repeatedly create and process
tasks� corresponding to lazy� expired calls� that t de�
pends on� The processing of t is suspended until G is
empty�

The very same steps have to be applied when pro�
cessing a concrete task� before actually calling the
XQuery processor �line � in Figure 
�� except that G
is computed for the XPath expression that Q depends
on� We omit the details�

��� Implementation

A �rst prototype of AXML peer software has been im�
plemented in Java� It relies on the XOQL query pro�

�In some sense� this simple approach is pessimistic� since we
do not use the where clause to �lter the data actually consulted
by Q�

cessor ��� which implements an algebra similar to the
one of XQuery �� The SOAP wrapper� which is needed
both to invoke and answer service calls is implemented
using the Axis engine from the Apache software group
���� which although in early development stage� pro�
vides good performance and great �exibility through
its architecture based on chainable handlers�

We implemented the evaluation strategy of Section
���� which only deals with immediate activation of ser�
vice calls� The latters are scheduled by one or sev�
eral timer threads� In this restricted case� dependency
among service calls does not have to be tracked� The
next version will support lazy calls as well�

To conclude this section� note that SOAP supports
only RPC calls and one�way messages� For continuous
services� we built a layer on top of SOAP ����� where
the caller of a continuous service provides a listening
service used by the callee to return a stream of answers�

� Conclusion

The AXML paradigm allows to turn service calls em�
bedded in XML documents into a powerful tool for
data integration� This includes in particular support
for various integration scenarios like mediation and
data warehousing and distributing computations over
the net via the exchange of AXML documents�

We implemented a �rst prototype but further work
is needed to develop appropriate optimization tech�
niques� Because of the richness of the model� this is
a complex task that should borrow from many tech�
niques that have been previously used� notably in the
contexts of warehouses and mediators� We also need
to build an environment for designing AXML docu�
ments and in particular� a graphical editor�browser
for AXML documents�

The proposed AXML paradigm should be further
experimented and evaluated� Towards this goal� we
are intending to use AXML as an applications devel�
opment platform in the context of a european project�
namely DBGlobe� The project deals with data man�
agement problems in global distributed computing en�
vironments� with en emphasis on mobility� We be�
lieve it provides an adequate testbed for the proposed
framework�

References

��� S� Abiteboul� B� Amann� S� Cluet� A� Eyal� L� Mignet�
and T� Milo� Active Views for Electronic Commerce�
In Proc� of VLDB� �����

��� S� Abiteboul� O� Benjelloun� and T� Milo� A Data�
Centric Perspective on Web Services �Preliminary Re�
port	� Technical Report ���� INRIA� November �

��

��� S� Abiteboul� R� Hull� and V� Vianu� Foundations
of Databases� Addison�Wesley Publishing Company�
Reading� Massachusetts� �����

�We chose XOQL because at the time we started this imple�
mentation� no XQuery processor was available to us� Although
there are di�erences with XQuery� these are mostly syntactic�



�
� S� Abiteboul� D� Quass� J� McHugh� J� Widom� and
J� Wiener� The Lorel Query Language for Semistruc�
tured Data� Int� Journal on Digital Libraries� ���	����
��� April �����

��� V� Aguilera� The X�OQL homepage�
http���www�rocq�inria�fr� aguilera�xoql�

��� N� Alon� T� Milo� F� Neven� D� Suciu� and V� Vianu�
XML with Data Values� Typechecking Revisited� In
Proc� of ACM PODS� �

��

��� The Apache Software Foundation�
http���www�apache�org�

��� A� Bonifati� D� Braga� A� Campi� and S� Ceri� Active
XQuery� In Proc� of ICDE� �

��

��� A� Bonifati� S� Ceri� and S� Paraboschi� Pushing Reac�
tive Services to XML Repositories using Active Rules�
In Proc� of the Int� WWW Conf�� Hong Kong� China�
May �

��

��
� L� Cardelli� Abstractions for Mobile Computation� In
Secure Internet Programming� pages ����
� �����

���� L� Cardelli and A� D� Gordon� Mobile Ambients� In
M� Nivat� editor� Proc� of FoSSaCS� volume �����
pages �

����� Springer�Verlag� Berlin� Germany�
�����

���� R� G� G� Cattell� editor� The Object Database Stan�
dard� ODMG���� Morgan Kaufmann� San Mateo�
California� ���
�

���� V� Christophides� R� Hull� A� Kumar� and J� Sim�on�
Work�ow Mediation using VorteXML� IEEE Data
Engineering Bulletin� �
��	�

�
�� March �

��

��
� Y� Chu� J� Feigenbaum� B� LaMacchia� P� Resnick�
and M� Strauss� REFEREE� Trust Management for
Web Applications� In Proc� of the Int� WWW Conf��
volume �������	� pages ������
� �����

���� F� Cremenescu� Supporting Subscription Services us�
ing SOAP� �

�� Stage de �n d��tude� Ecole Polytech�
nique�

���� E� Damiani� S� De Capitani di Vimercati� S� Para�
boschi� and P� Samarati� Securing XML Documents�
In Proc� of EDBT� �

��

���� A� Deutsch� M�F� Fernandez� D� Florescu� A�Y� Levy�
and D� Suciu� A Query Language for XML� In Proc�
of the Int� WWW Conf�� volume ��������	� �����

���� A� Deutsch and V� Tannen� Containment of Regu�
lar Path Expressions under Integrity Constraints� In
Proc� of the KRDB Workshop� Rome� �

��

���� D� Draper� A� Y� Halevy� and D� S� Weld� The Nimble
XML Data Integration System� In Proc� of ICDE�
pages ������
� �

��

��
� The Freenet Project� http���freenetproject�org�

���� The Gnutella homepage� http���www�gnutella�com�

���� L� Gong� M� Mueller� H� Prafullchandra� and
R� Schemers� Going Beyond the Sandbox� An
Overview of the New Security Architecture in the Java
Development Kit ���� Proc� of the Usenix Symp� on
Internet Technologies and Systems� �����

���� A� Gupta� Integration of Information Systems� Bridg�
ing Heterogeneous Databases� IEEE Press� �����

��
� R� Halstead� Multilisp� A Language for Concurrent
Symbolic Computation� ACM Trans� on Programming
Languages and Systems� ��
	���
����� �����

���� H� Hosoya and B� C� Pierce� XDuce� A typed XML
Processing Language �Preliminary Report	� In Proc�
of WebDB� May �


�

���� J� Mc Hugh� S� Abiteboul� R� Goldman� D� Quass� and
J� Widom� Lore� A Database Management System
for Semistructured Data� Technical report� Stanford
University Database Group� Feb �����

���� T� Jim and D� Suciu� Dynamically Distributed Query
Evaluation� In Proc� of ACM PODS� pages 
���
�
�
�

��

���� Q� Li and B� Moon� Indexing and Querying XML
Data for Regular Path Expressions� In Proc� of VLDB�
�

��

���� I� Manolescu� D� Florescu� and D� Kossmann� Answer�
ing XML queries over heterogeneous data sources� In
Proc� of VLDB� �

��

��
� Namespaces in XML�
available at http���www�w��org�TR�REC�xml�names�

���� The Napster homepage� http���www�napster�com�

���� B� Nguyen� S� Abiteboul� G� Cobena� and M� Preda�
Monitoring XML data on the web� In Proc� of ACM
SIGMOD� �

��

���� Ozone� Integrating Structured and Semistructured
Data� T� Lahiri and S� Abiteboul and J� Widom� In
Proc� Int� Workshop on Database Programming Lan�
guages� �����

��
� Y� Papakonstantinou� S� Abiteboul� and H� Garcia�
Molina� Object Fusion in Mediator Systems� In Proc�
of VLDB� pages 
���
�
� �����

���� J� Powell and T� Maxwell� Integrating O�ce XP
Smart Tags with the Microsoft �NET Platform�
http���msdn�microsoft�com�

���� Simple Object Access Protocol �SOAP	 ����
available at http���www�w��org�TR�SOAP�

���� T� Ozsu and P� Valduriez� Principles of Distributed
Database Systems� �nd Edition� Prentice�Hall� �����

���� I� Tatarinov� Z� Ives� A� Levy� and D� Weld� Updating
XML� In Proc� of ACM SIGMOD� �

��

���� Universal Description� Discovery� and Integration of
Business for the Web �UDDI	�
http���www�uddi�org�

�

� J�D� Ullman� Principles of Database and Knowledge
Base Systems� Computer Science Press� �����

�
�� G� Weikum� editor� Infrastructure for Advanced E�
Services� volume �
� no� �� Bulletin of the Technical
Committee on Data Engineering� IEEE Computer So�
ciety edition� Mar �

��

�
�� J� Widom and S� Ceri� Active Database Systems�
Triggers and Rules for Advanced Database Processing�
Morgan Kaufmann Publishers� �����

�
�� G� Wiederhold� Intelligent Integration of Information�
In Proc� of ACM SIGMOD� pages 
�
�
��� Washing�
ton� DC� May �����

�

� Web Services De�nition Language �WSDL	�
available at http���www�w��org�TR�wsdl�

�
�� Extensible Markup Language �XML	 ��
 ��nd Edi�
tion	� available at http���www�w��org�TR�REC�xml�

�
�� XML Schema�
available at http���www�w��org�TR�XML�Schema�

�
�� XML Path Language �XPath	 Version ��
�
available at http���www�w��org�TR�xpath�

�
�� XQuery ��
� An XML Query Language�
available at http���www�w��org�TR�xquery�



APPENDIX �� Deterministic computa	
tion and termination

We consider here monotone services� de�ned essen�
tially with conjunctive fragments of XQuery�XPath�
and assume that any piece of information has an in��
nite validity� We next brie�y revisit the various steps
of the computation and analyze what might be the
sources on non�determinism in each step and what is
required in order to avoid it�
XPath expressions The instantiations of an

XPath expression may change in time because some
nodes on the way have acquired more data because
of the activation of some service calls� Thus the par�
ticular point in time in which the XPaths are evalu�
ated may a�ect the result� To avid this problem� we
must require that a call be re�instantiated whenever
some new XPath instantiation occurs �i�e� using fre�
quency��when param changes���
XQueries Similarly� the evaluation of a service

query also change in time� �To be more precise� since
we are in a monotone context� it may grow larger as
time passes�� For continuous services� this is not a
problem � the query is repeatedly evaluated and all
new results are eventually sent� In contrast� non�
continuous services are executed just once� Thus� we
must require that the query be computed only after
the data it bears on has be acquired� �We omit the
formal de�nition of this notion here��
Exchanging data Sites exchange data via call

parameters and call result� The exchanged subtrees
are extracted from a tree on one site and merged into
a tree on the other side� Non determinism arises when
the extracted subtrees contain path expressions that
attempt to go above the root of the subtree� these
paths have di�erent instantiations if evaluated before
or after the transfer� To avoid this� the exchange of
such data is not allowed�

The above conditions guarantee that any data that
can be derived in one particular execution sequence
will also be eventually derived in any other sequence�
Based on this� we have�

Theorem �� For AXML documents and services sat�
isfying the above conditions all computations lead to a
unique state�

However� this state may be �nite for some AXML
documents and in�nite for others� Using a reduction
of the halting problem for Turing machines� one can
show that�

Theorem �� Given an initial instance� one cannot
decide whether it has a �nite semantics�

To conclude this section� we mention a particularly
simple case where �nite semantics is guaranteed�
Layered services A lot of the complexity comes

from recursion and from the use of XPath expressions�

In practice� services are often de�ned using layers� with
services calling only services in lower layers� and re�
turning data containing calls to services in such lower
layers� We will call AXML documents without XPath
expressions XPath�free documents� and AXML ser�
vices that use only such document XPath�free services�
One can show� that for XPath�free layered documents
and services the semantics is �nite� In this context�
it is simple to design evaluation strategies that detect
termination�

APPENDIX �� Extended XML syntax
for service call elements

The following is a sample de�nition of an sc element�

�axml�sc
endpointURL��http���xyz�com��	�soap�rpcrouter�
nameSpaceURI��urn�xmethods�email�
methodName��GetEmail� 

�axml�params


�axml�param name��PersonName�

�axml�xpath
 ���pname ��axml�xpath


��axml�param

�axml�param name��CompanyName�

�axml�xpath
 ������name��axml�xpath


��axml�param

��axml�params


��axml�sc


As standard with XML� this de�nition is rather ver�
bose� But typically� AXML developers will use GUIs
and users will not have to deal directly with this syn�
tax� �We do not have such an interface yet but are
planing to develop one��

To di�erentiate service calls from the rest of the
standard XML data� and avoid naming con�icts� we
use a speci�c XML namespace �
	� for them �repre�
sented by the axml pre�x in the example��

The attributes of the sc element provide the nec�
essary information to issue the call� using the SOAP
protocol�


