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Abstract

We propose a peer�based architecture that al�
lows for the integration of distributed data
and web services� It relies on a language� Ac�
tive XML� where ��� documents embed calls
to web services that are used to enrich them�
and ��� new web services may be de�ned by
XQuery queries on such active documents�

Embedding calls to functions or even to web
services inside data is not a new idea� Our
contribution� however� is turning them into a
powerful tool for data and services integration�
In particular� the language includes linguistic
features to control the timing of service call
activations� Various scenarios are captured�
such as mediation� data warehousing� and dis�
tributed computation� A �rst prototype is de�
scribed�

� Introduction

One of the most essential issues in computer science is
the management of data� Since the �	
s� the database
community has developed the necessary science and
technology to manage data in central repositories�
From the early days� many e�orts have been devoted
to extending these techniques to the management
of distributed data as well� and in particular to its
integration� e�g�� ��
� �
� 
��� But the web is dra�
matically changing the context for data integration�
mainly because of �i� the high heterogeneity and
interoperability problems between sources and �ii� the
independence of sources and the very large scale of
the web� We propose in this paper a new framework
for data and service integration� that addresses these
two concerns�

Heterogeneity and interoperability issues
XML� as a self�describing semi�structured data model�
raised large interest among the data integration com�
munity� e�g� in ���� ��� 

� for the �exibility and ex�
pressiveness it brings for solving semantic heterogene�
ity issues� However� a signi�cant interoperability prob�

lem comes from the fact that data is often dynamically
constructed by programs� e�g�� upon the submission of
a form by a human user� This �deep web� is made ac�
cessible by Web services which encapsulate programs
with XML arguments and results� The SOAP �
�� and
WSDL ���� languages enable calling and describing
these remote programs seamlessly� In our framework�
web services are e�ectively leveraged for data integra�
tion tasks�

Independence and scalability issues Central�
ized architectures for data integration somehow con�
tradict the essence of the web� promoting distribution
and independence� Furthermore� they have di�culties
scaling up to its large size� Peer�based architectures� in
which resources are shared by direct exchange between
systems� propose a credible alternative and are already
spreading� mainly in a �le�sharing context �
�� ��� �	��
In our framework� peer�based architectures form the
basis for scalable data integration�

We propose Active XML �AXML in short�� a lan�
guage that leverages web services for data integra�
tion and is put to work in a peer�to�peer architecture�
The language enables embedding service calls inside an
XML document� that is enriched by their results when
they are �red� The language also allows for declarative
speci�cation of new web services based on such active
documents and a query language� Data with embed�
ded calls to operations is an old idea that has already
been considered in the context of XML and web ser�
vices� For instance� in Microsoft O�ce XP� Smart Tags
within XML documents can be linked to Microsoft
s
�NET platform for web services �
��� However� to our
knowledge� the present paper is the �rst proposal that
actually turns calls to web services embedded in XML
documents into a powerful tool for data integration�
By providing means to declaratively specify when the
service calls should be activated �e�g� when needed�
every hour� etc��� and for how long the results should
be considered valid� our approach allows to capture
and combine di�erent styles of data integration� such
as warehousing� mediation and �exible combinations
of both� Moreover� AXML allows to use and specify
novel kinds of web services�
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Figure �� Outline of the AXML data and service inte�
gration architecture�

Continuous services Most existing services are
in the style of remote procedure calls �RPC�� they are
called with some parameters and �eventually� return
an answer� By contrast� continuous services return a
�possibly in�nite� stream of answers for a single call�
As an example� consider subscription systems where
new data of interest are pushed to users �see� e�g�� �
����
Similarly� a data warehouse receives streams of up�
dates from data sources� for maintenance purposes�
Streams of results are also generated� for instance� by
sensors �e�g�� thermometers� video surveillance cam�
eras�� The AXML framework allows to support the
management �production and integration� of data for
such continuous services�

Services with intensional input�output Stan�
dard web services typically exchange plain XML data�
We allow web services to exchange AXML data that
may contain calls to other services� In the spirit of �����
the answer to an AXML service call may include both
extensional and intensional information� Furthermore�
the arguments of a call may also contain service calls
�intensional information�� This allows� for instance� to
delegate portions of a computation to other sites� i�e��
to distribute computations�

As mentioned above� AXML allows not only to use
existing web services but also to de�ne new ones on
top of AXML documents� The service speci�cations
are based on XQuery ����� the future standard query
language for XML� extended to updates� and allow in
particular the de�nition of continuous services and of
services with intensional input�output�

AXML is put to work in a peer�based architecture�
illustrated by Figure �� Each peer contains a reposi�
tory of AXML documents as well as some AXML web
services de�nitions� At the heart of the system is an
AXML processor and� in particular� an Evaluator mod�
ule which is in charge of the following two main tasks�

Client Choosing which of the service calls embed�
ded in the AXML documents need to be �red at each
point in time� �ring the calls� and integrating the re�
turned answers into the documents� It is important to
stress that any web service can be used� be it provided
by an AXML peer or not� as long as it has a SOAP

interface��
Server Accepting requests for the AXML services

supported by the peer� executing the services �i�e� eval�
uating the corresponding XQuery� and returning the
result�

Observe that since AXML services query AXML
documents and can accept �resp� return� AXML doc�
uments as parameters �resp� result�� a service execu�
tion may require the activation of other services calls�
Thus� these two tasks are closely inter�connected�

The paper is organized as follows� After an overview
of related work� the AXML language is presented in
Section 
� mainly through an extended example� A
formal semantics for AXML documents and services
is presented in Section �� while security and peer ca�
pabilities are considered in Section �� An evaluation
strategy and an implementation are discussed in Sec�
tion �� The last section is a conclusion�

� Related work

The starting point of the present work is the semistruc�
tured data model and its current standard incarna�
tion� namely XML ����� We rely primarily on an XML
query language and on protocols for enabling the re�
mote procedure calls on the web� Disparate e�orts to
de�ne a query language for XML are now unifying in
the XQuery proposal ����� The core of our de�nition
of web services will consist of parameterized queries in
XQuery� The various industrial proposals for web ser�
vices architectures� e�g� �NET by Microsoft� e�speak by
HP� SunOne by Sun Microsystems� are also converging
towards using a small set of speci�cations to achieve in�
teroperability� Among those� we are directly concerned
by the Simple Object Access Protocol �SOAP� �
�� and
the Web Services Description Language �WSDL� �����
that are used in our implementation� More indirectly�
UDDI registries �
��� can be leveraged by our system�
e�g�� to publish or discover web services of interest�

As already mentioned� the idea of embedding func�
tion calls in data is not a new idea� Embedded func�
tions are already present in relational systems ��	��
e�g�� as stored procedures� Method calls form a key
component of object databases ����� The introduction
of service calls in XML documents is thus very nat�
ural� Indeed� external functions were present in Lore
���� and an extension of object databases to handle
semistructured data is proposed in �

�� thereby allow�
ing to introduce external calls in XML data� Our work
is tailored to XML and web services� In that sense� it
is more directly related to Microsoft Smart Tags �
���
Our goal is to provide means of controlling and en�
riching the use of web service calls� and to equip them
with a formal semantics�

The activation of service calls is closely related to
the use of triggers ��	� in relational databases� or rules

�Bridges to alternative protocols for web services� such as
XML�RPC� may clearly be used�



in active databases ����� Active rules were recently
adapted to an XML and XQuery context ���� A recent
work considered �ring web service calls ���� We harness
these concepts to obtain a powerful data integration
framework based on web services� In some sense� the
present work is a continuation of previous works on
ActiveViews ���� There� declarative speci�cations al�
lowed for automatic generation of applications where
users could cooperate via data sharing and change con�
trol� The main di�erences with ActiveViews are that
�i� AXML promotes peer�to�peer relationships vs� in�
teractions via a central repository� and �ii� the corner�
stones of the AXML language are XPath� XQuery and
web services vs� object databases �����

Integration and composition of web services have
been active �elds of research recently ����� However�
most of the works have focused on process�oriented
techniques� and on the de�nition of work�ows among
services ��
�� In Multilisp ����� intensional data was
used under the form of �futures�� i�e�� handles to re�
sults of not�yet��nished computations� to allow for par�
allelism� Ambients ��	� ���� as bounded spaces where
computation happens� also provide a powerful abstrac�
tion for processes and devices mobility on the web�
The present work is concerned with the complemen�
tary data�centric aspects of web service integration�

Our formal foundation is based on non�
deterministic �xpoint semantics �
�� that was
primarily developed for Datalog extensions� In that
direction� the paper has also been in�uenced by recent
works on distributed Datalog evaluation �����

� AXML by example

In this section� we introduce Active XML via an ex�
ample� In Section 
��� we present a simple syntax for
including service calls within AXML documents� and
outline its core features� Section 
�� deals with inten�
sional parameters and results of service calls� We then
consider� in turn� the lifespan of data� the activation
of calls and the de�nition of AXML services�

��� Data and simple service integration

At the syntactic level� an AXML document is an XML
document� At the semantic level� we view an AXML
document as an unordered data tree i�e�� the relative
order of the children of a node is immaterial� While
order is important in document�oriented application�
in a database context like ours it is less signi�cant and
we assume that� if needed� it may be encoded in the
data� Also� we attach a special interpretation to par�
ticular elements in the AXML document that carry
the special tag �sc�� for service call � these elements
represent service calls that are embedded in the doc�
ument�� In general� a peer may provide several web

�For readability� we use a simple syntax for �sc� elements�
A more complete version is provided in appendix�

services� Each service may support an array of func�
tions� We use here the terminology service call for a
call to one of the functions of a service�

As an illustration� consider the AXML document
corresponding to my personal page for auctions that I
manage on my peer� say mypeer�com� This simple page
contains information about categories of auctions I am
currently interested in� and the current outstanding
auction o�ers for these categories� The page may be
written as follows�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�Toys����sc�

��category�
�category name��Glassware��
�sc�eBay�com�getAuctions
�Glassware����sc�

��category�
��axml�

While the category names are explicitly written in
the document� the o�ers are speci�ed only intension�
ally� i�e�� using service calls instead of actual data�
Here� the list of toy auctions is provided by auction�com�
On that server� the function getO	ers� when given as
input the category name Toys� returns the relevant list
of o�ers� as an XML document� The latter is merged
in the document� which may now look as follows�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�Toys����sc�
�auction aID��
��

�description�Stu	ed bear toy��description�
��auction�
�auction aID��������

��category����
��axml�

Observe that the new data is inserted as sibling el�
ements of �sc�� and that the latter is not erased from
the document� since we may want to re�activate this
call later to obtain new auction o�ers� Finally� note
that in the case of a continuous service� several result
messages may be sent by the service for one call activa�
tion� In this case� all the results accumulate as siblings
of the �sc� element�
Merging service results More re�ned data inte�

gration may be achieved using ID�based data fusion� in
the style of e�g�� �
�� �� ���� In XML� a DTD or XML
Schema may specify that certain attributes uniquely
identify their elements� When a service result con�
tains elements with such identi�ers� they are merged
with the document elements that have the same iden�
ti�ers� if such exist� To illustrate this� assume that
auction�com supports a getBargains function that returns
the list of the current ten most attractive o�ers� each
with its special bargain price� Suppose also that aID is
a key for auction elements� If an auction element with
aID ��� is returned by a call to getBargains� the element
will be �merged� with the auction with aID ��� that we
already have�



XPath service parameters The parameters of
a service call may be de�ned extensionally �as in the
previous examples� or may use XPath queries� For in�
stance� the getO	ers service used above gets as input
a category name� Rather than giving the name ex�
plicitly� we can specify it intensionally using a relative
XPath expression �����
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�����name�text
�����sc�
�����category����

��axml�

The XPath expression ����name�text
� navigates
from the �sc� node to the parent �category� element�
and then to its name attribute� In this example there is
only one possible instantiation for the XPath expres�
sion� In general� several document subtrees may match
a given XPath expression� When this is the case� the
call is activated once for each possible instantiation �if
a call has several XPath parameters� we have one acti�
vation for every tuple in the cross�product of the paths
instantiations��

Besides the parameters� the name of the called peer
as well as the name of the service itself may be speci�
�ed using relative XPath expressions� The same cross�
product semantics applies�

��� Intensional parameters and results

The parameters of the services calls that we have seen
so far were �instantiated as� simple strings� In gen�
eral� the parameters of a service call may be arbitrary
AXML data� speci�ed either explicitly� or by an XPath
expression� In particular� AXML parameters may con�
tain calls to other services� leading thus to intensional
service parameters� For example� to get a more ade�
quate set of auctions� we may use a service that� in
addition to the category name� needs the current user
budget� which is itself obtained by a call to the bank
services�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers



�����name�text
���
�sc�bank�com�getBudget
�user������sc��

��sc���category�
��axml�

Up to now� we have not discussed where and when
a service call is activated� In the above example� we
already face a choice concerning the activation of get�

Budget� We may call it �rst� and then call getO	ers

providing it with the result� Another option is to call
directly getO	ers with the intensional parameter� and
let it handle the activation of the call to getBudget� We
will further discuss this issue in Section ��

Services may not only get intensional data �i�e�
AXML documents with embedded service calls� as in�
put� but also return such data as a result� As an exam�
ple� each auction in the result of getO	ers may contain

a call to a getDetails service that provides more infor�
mation about that particular auction�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc�auction�com�getO	ers
�����name�text
�����sc�
�auction aID��
�
�description�Stu	ed bear toy��description�
�sc�auction�com�getDetails
�����aID����sc�

��auction������category����
��axml�

Observe that intensional results already appear in
practice in many popular applications� For example�
the Google search engine returns� for a given keyword�
some document URLs plus �possibly� a handle for ob�
taining more answers� With this handle� one can ob�
tain a new list and perhaps another handle�

��� Controlling the lifespan of data

So far� all the service call results were accumulated in
the calling document� In practice� we need more �exi�
bility in managing these results� so that we may replace
old results with new ones� discard data that has grown
too old or has become inconsistent� etc� Many models
and techniques have been proposed for managing data
lifespan� particularly in the �elds of version manage�
ment� temporal databases� and active databases� For
our purposes� we choose a suitable� simple model� that
may be extended with more complex features�

To manage data lifespan� we conceptually attach
a special attribute expiresOn to any data node in an
AXML document�� Some nodes may have explicit ex�
piration time� whereas others will inherit it from their
parent� Expired nodes should simply be viewed as
erased from the document�

The value of the expiresOn attribute is an event� that
may depend on time� and�or on the document content�
For example� if a user wants to specify that her interest
in a product category lasts only until February ��th�
�		�� then the element will have the following form�
�category name��Toys� expiresOn��Feb� 
�th� ���������

Data returned by a service may come with a expi�
ration time speci�cation� This is a very useful feature
that allows a service provider to state how long the
particular result is meaningful� For example� getO	ers

may inform the user of an auction
s closing time� by
setting expiresOn for the returned data� The lifespan of
a service call result may be explicitly overwritten by
the caller� This is done using a valid attribute� in the
sc element� valid can be a function of the time when
the call was �last� answered� denoted rt� For example�
consider the following two calls�
�sc valid��rt � 
 year��

auction�com�contGetO	ers
�A����sc�
�sc valid��last ���

auction�com�contGetO	ers
�B����sc�

�Strictly speaking� it is not possible in XML to attach an
attribute to a �PCData node� It is possible to do so in AXML�



The �rst one states that auctions in Category A are
archived for one year� whereas the second one requires
to keep only the last � of Category B�

��� Controlling the activation of calls

To control when a service call is activated� we use two
attributes of �sc� elements� namely mode and fre�
quency� The value of the frequency attribute is similar
to the one of valid� except that it is a function of ct�
the time when the service was last called� Thus� we
can easily specify a given instant� a time interval� the
occurrence of an event� etc� By default� a service is
called only once� when the document is registered� We
say that a call has expired when� according to its fre�
quency attribute� it should be activated�

The mode of a call is either lazy or immediate� In
immediate mode� the call is activated when it expires�
if the call is in lazy mode� the fact that it has expired
only means that next time the data produced by this
call is needed �e�g�� by a query over the AXML docu�
ment�� the service has to be called�

The data validity and the calls activation mode and
frequency� together� provide a �exible and powerful
tool for capturing various integration scenarios� This
is illustrated next� In the following integration styles�
the �rst three assume regular �non continuous� services
whereas the last one relies on continuous services�

� mediator style� set valid to 	 �note that an imme�
diate mode would not have any meaning in this
case��

� mediator style with caching� choose a non�zero
value for valid� and lazy mode�

� warehousing mode with pulling information�
choose valid larger than frequency� and immediate
mode�

� warehousing mode with pushing� choose a non�
zero value for valid� and immediate mode�

Note that the activation of a call is dissociated from
the lifespan of its results� For example� if we wish to
call getO	ers every day� and keep the results for a week
after their acquisition� we would write�
�sc valid��rt � 
 week� frequency��ct � 
 day��

auction�com�getO	ers
�Toys����sc�

Also� some form of semantic consistency may be
enforced by linking call activation to change events�
A user may want the set of auctions on her page to
follow changes in her interests� In other words� when
the name of the category of interest is updated� the
o�ers returned by the previous call become irrelevant
and the getO	ers service needs to be re�activated with
the new category name to obtain the relevant o�ers�
This can be written as follows�
�axml id��user���� Welcome to mypeer�com �
�category name��Toys��
�sc valid��until param changes��

frequency��when param changes��
auction�com�getO	ers
�����name�text
���

��sc���category�
��axml�

The keyword param links the data validity�call acti�
vation to changes in the value of the call parameters�
In general one can use there an arbitrary XPath ex�
pression to link the validity�activation to changes in
other elements of the document�

Remark ��� �timeout� In the case of a non�
continuous service� it may happen that the answer re�
turns very late� or never returns at all� In practice� it
is useful to have timeouts for calls� When the timeout
is reached� the system abandons hope of getting the
result� A real system should also provide an exception
handling mechanism to manage such events� �

��� AXML service de�nition

The AXML framework allows to call arbitrary web ser�
vices� It may also be used to de�ne new web services�
as illustrated in this section� In short� an AXML ser�
vice is de�ned by a parameterized XQuery queries over
the peer
s AXML documents� As an example�getO	ers�
that returns all currently open auctions for a given cat�
egory� may be de�ned at auction�com as follows�
let sc auction�com�getO	ers
�c� be
for �cat in document
�auction�com�a�xml����category

�a in �cat�auction�
�aID in �a��aID�text
��
�des in �a�description�text
�

where �cat��name�text
���c
return �auction aID���aID��

�description���des����description�
�sc�auction�com�getDetails
�����aID����sc�

��auction�

In the above example� the category parameter �c

is of type �PCDATA �text�� The query consults an
AXML document �a�axml� which may contain service
calls� and constructs an AXML document with some
calls �e�g� to the getDetails function of auction�com��
Here again we face a choice concerning the activation
of getDetails� we may call it �rst� and only then return
the answer of getO	ers� Another option is to return the
document immediately and let the caller of getO	ers

handle the activation of the calls to getDetails� The
particular type of the service result may be described
by an XML Schema ����� as described by the WSDL
speci�cation �����

To de�ne continuous AXML services� we simply
pre�x the de�nition with the keyword continuous�
Thus� a continuous variant of a getO	ers� returning the
set of interesting auctions whenever it changes� is de�
�ned as follows�
let continuous sc auction�com�contGetO	ers
�c� be���

To de�ne AXML services with side e�ects� in the
absence of a standardized language for XML updates�
we use the extension to XQuery proposed in �
��� For
example� the �a�xml� database that getO	ers consults
may be enriched by the addAuction service�



let update sc auction�com�addAuction
�c� �id� �d� �p� be
for �cat in document
�auctions�com�a�xml����category
where �cat��name�text
���c
update �cat � insert �auction aID���id��

�description���d���description�
�startPrice���p���startPrice�

��auction� �

��� Discussion

We conclude this section with two remarks regarding
consistency and termination�
Consistency We assume that the document we

start with is well�formed and obeys its DTD �or XML
Schema� if one is speci�ed for it� An inconsistency may
arise if one call leads to constructing a document that
no longer obeys the schema� While some of this may
be prevented by consulting the declared signature of
the used services ���� ��� static type checking becomes
more complicated due to the use of ID�based element
fusion and of XPath expressions in call parameters�
Termination We have seen above that a service

calls may return intensional answers� Note that this
may lead to a non terminating computation� the result
of a service call may contain new service calls that need
to be activated� Those in turn may return new calls to
be activated� and so on� Another possible reason for
non termination is mutual recursion between service
calls� Some simple su�cient conditions for termination
are mentioned in the Appendix�

� Data and computation model

In this section� we brie�y de�ne the AXML data model
and the semantics of AXML documents and services�
For lack of space� the presentation is informal� The
formal de�nitions as well as the proofs of the results
can be found in ����

Intuitively� an AXML instance consists of a number
of peers� each one containing some AXML documents
that are being run� AXML documents are XML un�
ordered trees� The evaluation of these documents gen�
erates calls between these peers and possibly results in
new documents being evaluated at each peer� As we
shall see� the evaluation is non�deterministic� which
captures the asynchronous evolution of the global in�
stance� which may eventually reach a �xpoint or not�
More precisely� we present next the data model� then
the computation�

��� Data model

An �AXML� instance consists of a number of peers�
Each peer contains AXML documents� some service
de�nitions� and a working area� We next de�ne in�
stances� then proceed to the de�nition of documents
and services�
Instances An instance I consists of a number of

peers p�� � � � � pn� The content of a peer pi � I is de�ned
by a triple �Di�Fi�Wi� where Di� the peer documents�

is a set of AXML documents� Fi� the peer services� is
a set of AXML service de�nitions� and Wi� the peer
working area� is a set of AXML documents� All the
sets are assumed to be �nite�

The documents in Di form the persistent repository
of the peer� Each document d in the working area of
a peer pi represents the computation of some service
call in pi� i�e�� some current work that pi is perform�
ing� Any such document d also contains a destination
attribute specifying where the result of this computa�
tion should be sent� including the identity of the calling
peer and the parent of the service call element�
Documents As for standard XML documents� an

AXML document is modeled by a labeled tree with
nodes representing the document elements�attributes
and with edges capturing the component�of relation�
ship among document items� The three main di�er�
ences with the standard XML data model ���� are that
��� we ignore here the order of elements� hence our
trees are unordered�� so we only consider the order�
free fragments of XPath �for parameters� and XQuery
�for service de�nitions�� ��� a validity predicate is at�
tached to some elements to specify when some par�
ticular data become stale� �
� some of the tree leaves
are special service call nodes� called in the sequel sc�
nodes� An sc�node is labeled by a tuple of the form
hs� f� p�� � � � � pni where�

� f and s are respectively a service and peer names�
or are XPath expressions� In the �rst case� the
service f must be de�ned in peer s with arity n�

� p�� � � � � pn� the call parameters� are AXML docu�
ments or XPath expressions�

An sc�node where none of s� f� p�� � � � � pn are XPath
expressions� is called a concrete call�
Reduced documents Continuous services send a

sequence of answers to the caller� Smart �or optimized�
such services may only send the delta since the last an�
swer� In other cases� the caller may be responsible for
detecting and ignoring redundant data� To abstract
this �without having to get into implementation details
such as who performs the optimization and when�� we
use in the formal model the notion of reduced version
of a document� where multiple occurrences of the same
data are omitted�

To de�ne reduced documents� we use the auxiliary
concept of inclusion relationship among trees� A re�
duced document is such that no subtree is included in
one of its siblings� One can show that the reduced ver�
sion of a document is unique� It can be� for instance�
computed by iteratively removing redundant subtrees�
The details are omitted� We will assume in the sequel
that all our AXML documents are reduced�

�We may take into account the ordering in some speci�c
cases� e�g�� for the extensional portions of documents�



Service de�nitions To conclude this section� let
us consider the de�nition of Fi� i�e�� the de�nition of
services� The semantics of XQuery queries is standard�
with one notable exception� when evaluating path ex�
pressions� service calls act like document boundaries
which the evaluation cannot cross� In other words�
they are terminal nodes which do not match any path
expression�

The de�nition of an AXML service consists of the
service name� the service type �e�g� continuous or not��
the service parameter names v�� � � � � vn� and a param�
eterized query Q�v�� � � � � vn�� namely a query that may
refer to the �parameters� documents v�� � � � � vn�

��� Computation

We are now ready to de�ne the semantics of AXML
documents� Each peer includes a collection of AXML
trees� in Di and Wi� These documents may contain
service calls that may be activated to derive more in�
formation about the documents� A service call activa�
tion spans a computation on one of the peers� More
precisely� the activation in Peer s of a particular ser�
vice call to Peer r involves ��� �possibly� instantiating
in s the XPath expressions of attributes of the call� ���
for each instantiation� sending concrete calls from Peer
s to Peer r� �
� computing in Peer r the correspond�
ing answers and ��� returning the answers to Peer s�
where they are received and merged at the appropriate
place in the tree� If� for some reason� the resulting tree
is no longer a legal AXML document� it becomes the
inconsistent document�

Recall that the decision whether service calls can�
and need to� be instantiated �resp� sent� computed�
returned� at a given time depends on the speci�c call
attributes� We will simply refer to such calls as eligible
for instantiation �resp� sending� computation� return�
ing�� �We will see in the next section how this can be
implemented��

An initial instance is such that all peers have an
empty working area� Given an initial instance I� each
peer s � hD�F �Wi evolves in a similar way� Starting
from I� repeatedly �and non�deterministically�� one of
the following steps is executed�
Step �	 Instantiate the XPath parameters	 For
some �non concrete� sc�node v in D or W that is eli�
gible for instantiation� the XPaths are evaluated� and
for each instantiation� a new document is added to
s
s Working Area� The roots of these documents have
the corresponding concrete service call as an sc�node
child� and have v as the destination for the result of
the computation�
Step �	 Send�Receive an external call	 For some
concrete sc�node n in D or W that is labeled with a
call c to some remote peer r and is eligible for sending�
the call is activated� Formally� this consists in adding�
to the Working Area of the receiving peer r� a new
document whose root has an sc�node child labeled with

c and having n as the destination for the result�

Step �	 Compute a local call	 For some concrete
sc�node n in D or W that is labeled with a call c to
a local service of s and is eligible for computation�
evaluate the service query using the given parameters�
The result� a forest� is merged under the parent node
of n�

Step �	 Return�Receive result of a call	 For
some document d in W � eligible for being returned as
an answer� the children of root�d�� �not including d
s
destination attribute� are sent to the destination peer
and merged under the parent of the destination node�

Observe that� in the above computation� we
grouped sending �resp� returning� a call and receiv�
ing it in one operation� Intuitively� our send�receive
�resp� return�receive� operation captures the moment
when the receiver receives the message� Finally� to
guarantee a correct semantics� we need some fairness
condition�

�y� Any operation that may happen� eventu�
ally happens�

Non
determinism and con�uence In general� an
initial instance I may be transformed in many di�er�
ent ways� depending on the choice of the operations to
perform� This non�determinism is built in the seman�
tics� So� even if an instance converges to a �xpoint� the
�xpoint does not have to be unique� Furthermore� as
mentioned in Section 
��� the computation may con�
tinue forever� building more and more data� i�e�� there
is no guarantee of termination�

Although this may seem to be a negative feature
of the model� observe that this naturally models the
real world we are trying to capture� The state of a
peer may continuously evolve because� for instance�
of interactions with human users updating data� Also�
continuous external services such as subscriptions may
keep sending new data to the peer� So� the system
should not be expected to terminate� Also� data may
expire or get deleted and the order in which the vari�
ous operations�queries are executed may have impacts
on the state� Thus� because of asynchronicity and peer
independence� determinism is an elusive goal in such
an environment� However� termination and con�uence
can be enforced under very strict restrictions� as out�
lined next�

Remark ��� �Monotone computation� Suppose the
computation is monotone� i�e�� no fact is ever deleted
or updated� and information keeps being added in a
cumulative manner� Under this restrictions� the order
in which the steps are executed is not signi�cant any�
more� One can then guarantee that all computations
lead to a �possibly in�nite� unique state� This is in the
spirit of results on in�ationary �xpoint semantics� see
�
�� Details are deferred to the appendix� �



� Limiting the �ring of calls

So far� we have described the AXML paradigm at a
rather abstract level� Before we consider its actual im�
plementation� we highlight some important issues that
are critical for a real life implementation� Before acti�
vating a service call� two points need to be checked� �i�
that the receiving peer is willing to accept the call� i�e��
that the caller has the proper priviledges to issue the
call� and �ii� that the peer has the capability to process
the call� i�e�� that the parameters of the call can be un�
derstood by the receiver� In practice� access to services
from other peers will be severely controled for security
reasons� Also� peers will have limited capabilities� e�g��
most of them will only accept calls with �plain� XML
arguments� This is the topic of this section�

��� Site capabilities and security

First� consider peer capabilities� We illustrated in Sec�
tion 
�� the use of intensional parameters in a service
call� Observe that they may� in principle� be evaluated
before or after the call is sent to the receiving peer�
In practice� not all choices are always feasible� For
instance� consider again the example in Section 
���
If auction�com is not capable of calling getBudget on
bank�com �e�g�� because it is not an AXML peer�� then
�user���
s AXML peer must �rst call getBudget� and
only then call getO	ers with the result�

Now� consider the security concerns that must guide
call activations� Access control is a needed features for
many applications� First� a service provider may wish
to reserve the access to a service to those who paid for
it� For example� acm�org currently allows users from
the inria�fr domain to use the search services of the
ACM digital library� but not any web user can do so�
Furthermore� security is necessary to protect sites from
a malicious usage� Not surprisingly� the exchange of
data that includes service calls is a major security hole�
For instance� suppose that we want to break into a peer
s� say the site qod�com� providing quotes of the day�
There are two main ways to do this�
In a call parameter Intensional service parame�

ters open backdoors to AXML servers� For instance�
a malicious client may use the following call to qod�
�sc�qod�com�QuoteOfDay


�sc�buy�com�BuyCar
�BMW Z�����sc����sc�

This malicious user does not wish to buy the car by
himself� but tries to make qod�com buy it�
In a call result �Trojan Horse
 Suppose now

that qod�com is malicious in the quotes it provides�
e�g�� by returning the following quote as a call result�
�quote� Love means never having to say you�re sorry�
�sc�buy�com�BuyCar
�BMW Z�����sc���quote�

Thus� by sending an intensional result� the qod peer
may force its clients to invoke dangerous services�

Finally� perhaps the most natural violation of secu�
rity is to bring an AXML peer to transmit private data
to a malicious distant site� This may be achieved for

instance by including the following call �as a parameter
of a call or in a result��
�sc�i�am�bad�SneakAbout
������������sc���axml�

Instantiating this XPath argument amounts to
sending i�am�bad �possibly private� parts of the docu�
ment that included this call� which is clearly an issue�

The above examples show that the AXML frame�
work makes unauthorized attempts to access data
quite likely� as well as malicious usage of web services�
Hence� access control is essential� We next see how
this can be incorporated in the framework�

��� Our solution

We illustrate how the above issues may be addressed
with two very simple policies� These policies have to
be combined with some access control mechanism on
the documents� Access models for XML have been
proposed in� e�g�� ����� This aspect will not be detailed
here�

In the �rst policy� called binding� a peer publishes
the kind of arguments each of its services accepts �e�g��
arbitrary AXML� XPath expressions� strict XML��
Only calls with the proper arguments may then be
activated� Note that this policy can be enforced using
the WSDL language which enables publication of XML
Schema types for services input�output parameters�

The second policy� called trust� re�ects some form of
agreement between the caller and the receiver� More
precisely� the reasoning that allows to decide whether
a service sv �where sv includes the name of the service
and the site that provides it� can be called by a site S
is encapsulated in a boolean function canCall�sv� S��
The canCall�sv� S� function returns true if S is willing
to call sv and the provider of sv is willing to accept
this call from S� Note that� like in Java
s sandbox
security model ����� the decision depends on the origin
of the call� This function will be used to determine
which calls are eligible for activation at each point in
time� We will see exactly how this is done in the next
section�

To implement canCall� we can assume� for instance�
that each peer has an agreed service list� containing the
services that it trusts� and is willing to call� Similarly�
we assume for every service� an agreed site list� i�e� the
sites �trusted and accepted by the service provider�
from which the service may be called� These two lists
are typically exposed as web services� More precisely�
each AXML peer S provides �i� a service that allows
to check whether it is willing to let another peer S� call
one of its services and �ii� a service to check whether
it is willing to call some particular service� For non�
AXML peers� we make conservative assumptions�

As mentioned above� these two models� binding and
trust� may be combined� They may also be extended
in a number of ways� First� one may want to include
some access control list �ACL� mechanism� to grant
di�erent rights to various users of a peer� One might



want to control the right to �re a particular service
call or the right to access data with an arbitrary gran�
ularity �e�g�� at the element level�� Also� the canCall
function may vary in time� For instance� depending
on the load of the service provider� one may want to
restrict usage of the service to certain clients only� Fi�
nally� one may want to include arbitrarily complex so�
lutions for trust management that have been proposed
such as REFEREE ����� No matter how complex the
used policy is� the evaluator essentially needs to know�
given a concrete call and a site� whether this site is
entitled to activate this particular call�

� Evaluation and Implementation

In this section� we describe the architectural compo�
nents� and the algorithms used by an AXML peer in or�
der to evaluate and maintain AXML documents� First�
we explain how time�related events are detected in the
system� Then� we see how the evaluation of documents
is a�ected by these events�
The Event Detector To capture time�related

events� we use an Event Detector module �ED�� For
simplicity� we omitted this module from the architec�
ture sketch �Figure �� at the beginning of this paper�
The ED of an AXML peer S monitors all AXML doc�
uments on S� including data validity parameters� and
the activation mode and frequency of all service calls
present in these documents� The ED sends messages
to other components of the AXML peer�

� to the Evaluator� when a service call has expired�
or has reached timeout�

� to the AXML storage� when a data node has be�
come invalid�

Before presenting our evaluation algorithm� recall
from Section 
�� that service calls can be de�ned to
be immediate or lazy� Immediate service calls have to
be activated as soon as they expire� while the activa�
tion of expired lazy calls may be postponed until their
results are actually needed� To simplify the presenta�
tion� we �rst assume below that all the service calls in
the documents are de�ned with an immediate execution
mode� and explain the evaluation algorithm for this re�
stricted case� Next we explain how the above needs to
be extended in order to support lazy calls� Finally we
describe our implementation�

Recall from Section � that a concrete service call is
one whose parameters do not include XPath expres�
sions�

��� Calls with immediate mode

We start by explaining how the Evaluator decides
when a call is eligible for instantiation� resp� activa�
tion� computation and return� �in the terms of Section
��� based on the messages received from the ED� Web
then outline the algorithms for processing service call
activations�

Deciding on call eligibility Let us consider the
meaning of a �sc has expired� message�

� If sc is non�concrete� the message informs the
Evaluator that sc is eligible for instantiation�

� If sc is concrete and aimed at some service out�
side S� we �rst choose some of the service calls
included in the parameters �according to the se�
curity� capability� and optimization reasoning out�
lined in Section ��� and process them� Only then�
sc becomes eligible for sending�

� If sc is concrete and aimed at a local AXML ser�
vice de�ned on S by a query Q� then sc becomes
eligible for computation�

So far we considered eligibility for instantiation� send�
ing and computing� For becoming eligible for return�
ing� the service result may need to be post�processed
�again� by calling some of the service calls in the result�
based on security� capability etc��
Processing service call activations Recall from

Section � that for every service call activation on an
AXML peer� a temporary document� that we call a
task� is created in the working area W � This docu�
ment contains an sc�node corresponding to the �sc�

element for which the task was created� and has a des�
tination� that may well be a node in another task� thus�
tasks are inter�connected by dependencies� We allow
within the evaluation some non�deterministic� paral�
lel behavior� at a given point in time� a task is either
ready� or suspended� waiting for some event� perhaps
the end of other task� and any of the ready tasks may
be processed at that point� Thus� tasks inW are orga�
nized as a set of trees� the leaf tasks are all ready� and
any of them may be chosen� while the non�leaf tasks
are suspended� In the following� a concrete task is one
that was created for a concrete call�

Tasks are created in three possible ways� First�
the Evaluator creates a new task �concrete or non�
concrete� for the activation of every expired� immedi�
ate service call� Second� upon receiving from outside a
call to a service local to S� the SOAP wrapper creates a
task for this call in W � Note that this task is concrete�
since only concrete tasks can be sent �see Section ���
Third� the processing of a task may create other tasks�
as we will see�

As a notation� let t�d� Sf � f� p�� p�� � � � � pn� be a task
with destination d� corresponding to the activation of
a call to the service f � provided by the peer Sf � with
parameters p�� p�� � � � � pn� let d�doc and d�peer be the
document� respectively the peer of the task destina�
tion�

Figure � outlines the simple algorithm for evaluat�
ing non�concrete tasks� First� the XPath parameters
of the task have to be evaluated� by issuing calls to the
query processor� When the evaluation is done� each pi
has the value of an AXML forest fi� As explained in
Section 
��� the non�concrete call is unrolled into as



peer S� non�concrete task t�Sf � f� p�� p�� � � � � pn� d�

 evaluate the XPath parameters in p�� p�� � � � � pn
� foreach i � �� �� � � � � n
� let fi be the value of pi 
an AXML forest�
� foreach x � �x�� x�� � � � � xn� � f� � f� � � � �� fn
� create tx�Sf � f� x�� x�� � � � � xn� t�root�
� insert tx in W
 suspend until all tx !nish
" exit

Figure �� Processing a non�concrete task�

many concrete calls as there are elements in the carte�
sian product of the forests fi� The processing of t is
over when all these concrete tasks have �nished�

In Figure 
� we describe the processing of a con�
crete task� Assume that a parameter pi� which is an
AXML tree� contains some expired call to sc� Then�
S has to decide whether it needs to activate this call
or send it as an intensional parameter� The decision is
done based on the binding and trust policies described
in Section �� If both options are valid� the decision
is made based on considerations like the systems load�
Note that the decision is made locally� using the poli�
cies of S� Sf � sc without requiring a �global� view of the
security and capability requirements of other peers�

At line �� if f is a service local to S� then we call the
XQuery processor with the proper arguments� other�
wise� a call is sent to Sf via the SOAP wrapper� In
both cases� t is suspended waiting for the result� and
if f is continuous� the activation also contains a �sub�
scribe� request� and t only waits for the �rst result to
come� Once S receives the result� if it needs to forward
it to the distinct peer d�peer� we may have to decide
when and where to execute the calls it contains� The
reasoning is very similar to the one above� dividing
the work among d�peer and S� Subsequently� the re�
sult is sent to d� �If d is local� by accessing the local
AXML repository� otherwise� by sending a result mes�
sage through the SOAP wrapper�� Finally� the con�
crete tasks exits if f is a non�continuous service� for
continuous services� the task is kept� as it is the re�
ceiver of all the updates from f � Upon receiving the
update� t forwards it to be inserted under d� discards
the data� and waits for the next update�
Unsubscribe and timeout For readability� we

have omitted some issues from the algorithms depicted
in Figures � and 
� First� if an unsubscribe message
for a continuous service is sent by the ED� the Evalu�
ator identi�es the associated concrete tasks� sends an
�unsubscribe� message to the service provider for each
task� and destroys the task� Similarly� when a non�
continuous call times out� the Evaluator destroys its
task�

��� Calls with lazy mode

Let us now consider the more complex case of the lazy

mode�

peer S� concrete task t�Sf � f� p�� p�� � � � � pn� d�

 foreach sci in p�� � � � � pn
� if S decides to activate sci
� then create ti� new task for sci# insert ti in W
� suspend until all ti !nish
� if S � Sf 
i�e� f is de!ned in S by some query Q�
� then call Q�p�� p�� � � � � pn�# suspend until result ready
 else 
i�e� f is a distant service�
" call Sf�f�p�� p�� � � � � pn�# suspend until result ready
� if S �� d�peer

� then foreach scj in result


 if S decides to activate scj

� then create tj � new task for scj # insert tj in W

� suspend until all tj !nish

� send result to be inserted under d

� if f non continuous

� then exit

Figure 
� Processing a concrete task�
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Figure �� Dependencies among service calls�

Service call dependencies The presence of lazy
calls may cause dependencies among call activations�
For example� assume that we need to activate a non�
concrete service call� Before instantiating its XPath
parameters� we may need to activate some lazy service
calls� that may a�ect the result of the instantiation�
This situation is illustrated in the AXML document
shown in Figure ��a�� The �in�uence zone� of sc�� i�e��
the set of nodes that may be modi�ed by the results of
sc�� intersects the zone in which the XPath parameters
of sc� are evaluated�

If sc� is in lazy mode� and has expired� then it is
preferable to call it again before we instantiate the
XPath arguments of sc�� In turn� sc� may have XPath
parameters that evaluate in the in�uence zones of lazy�
expired service calls� leading to a graph of dependen�
cies like the one in Figure ��b��

Similarly� assume that a request for an AXML ser�
vice is received and the service query Q needs to be
evaluated� Before calling the XQuery processor� we
have to check if the data read by Q intersects the in�
�uence zone of some lazy expired service call� This
again leads to a dependency graph of the above form�

A reasonable compromise between precision and
complexity has to be found for tracking dependencies�
It is not possible to compute dependency graphs stat�
ically� For instance� as a document evolves� calls are
added� or removed� by service call activations� Com�



puting the exact dependency graph of a service call
leads to computationally complex problems such as
XPath containment �����

We therefore adopt the following pragmatic solu�
tion� We consider the in�uence zone of a service call
to be all the subtrees rooted at its parent� We con�
sider the scope of an XPath expression to be the set
of subtrees rooted in the highest nodes attained by
its evaluation� as described by the XPath speci�ca�
tion ����� Finally� we assume the data read by an
XQuery query to be described by the XPath expres�
sions in its for clause�� In general� path expressions
may appear also in other parts of the query� e�g� the
where clause� W�l�o�g we assume here that the query is
�rst normalized ����� We have thus brought the depen�
dency decision problem to deciding whether two trees
intersect� which can be done in constant time� provided
a convenient encoding for element IDs �e�g�� ������

A call dependency graph may contain cycles re�
�ecting mutual call dependencies� They are broken
by arbitrarily choosing some dependencies to be ig�
nored� Breaking the cycles amounts to introducing
non�determinism and possibly �missing� some data� In
a web context� this is acceptable�
Eligibility with lazy mode In the presence of

lazy calls� a given call sc may be declared eligible for
instantiation �resp� execution� only after all the lazy
calls in its data dependency graph have been issued�
Call activation with lazy mode Task process�

ing in the presence of lazy calls is more complex due
to the fact that we have to track data dependencies�
First� before instantiating an XPath argument of a
non�concrete call� we have to make sure that the data
it bears on is available� To that purpose� before line
� in Figure �� we need to construct the dependency
graph G for the XPath parameters of the task� on a
snapshot of the destination document� If G has cy�
cles� they are broken� then� we create tasks for all the
leaf nodes from G� and process them in parallel� When
these tasks are over� to take into account their e�ect on
the destination document� we re�compute G� as long
as G is not empty� we repeatedly create and process
tasks� corresponding to lazy� expired calls� that t de�
pends on� The processing of t is suspended until G is
empty�

The very same steps have to be applied when pro�
cessing a concrete task� before actually calling the
XQuery processor �line � in Figure 
�� except that G
is computed for the XPath expression that Q depends
on� We omit the details�

��� Implementation

A �rst prototype of AXML peer software has been im�
plemented in Java� It relies on the XOQL query pro�

�In some sense� this simple approach is pessimistic� since we
do not use the where clause to �lter the data actually consulted
by Q�

cessor ��� which implements an algebra similar to the
one of XQuery �� The SOAP wrapper� which is needed
both to invoke and answer service calls is implemented
using the Axis engine from the Apache software group
���� which although in early development stage� pro�
vides good performance and great �exibility through
its architecture based on chainable handlers�

We implemented the evaluation strategy of Section
���� which only deals with immediate activation of ser�
vice calls� The latters are scheduled by one or sev�
eral timer threads� In this restricted case� dependency
among service calls does not have to be tracked� The
next version will support lazy calls as well�

To conclude this section� note that SOAP supports
only RPC calls and one�way messages� For continuous
services� we built a layer on top of SOAP ����� where
the caller of a continuous service provides a listening
service used by the callee to return a stream of answers�

� Conclusion

The AXML paradigm allows to turn service calls em�
bedded in XML documents into a powerful tool for
data integration� This includes in particular support
for various integration scenarios like mediation and
data warehousing and distributing computations over
the net via the exchange of AXML documents�

We implemented a �rst prototype but further work
is needed to develop appropriate optimization tech�
niques� Because of the richness of the model� this is
a complex task that should borrow from many tech�
niques that have been previously used� notably in the
contexts of warehouses and mediators� We also need
to build an environment for designing AXML docu�
ments and in particular� a graphical editor�browser
for AXML documents�

The proposed AXML paradigm should be further
experimented and evaluated� Towards this goal� we
are intending to use AXML as an applications devel�
opment platform in the context of a european project�
namely DBGlobe� The project deals with data man�
agement problems in global distributed computing en�
vironments� with en emphasis on mobility� We be�
lieve it provides an adequate testbed for the proposed
framework�
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APPENDIX �� Deterministic computa	
tion and termination

We consider here monotone services� de�ned essen�
tially with conjunctive fragments of XQuery�XPath�
and assume that any piece of information has an in��
nite validity� We next brie�y revisit the various steps
of the computation and analyze what might be the
sources on non�determinism in each step and what is
required in order to avoid it�
XPath expressions The instantiations of an

XPath expression may change in time because some
nodes on the way have acquired more data because
of the activation of some service calls� Thus the par�
ticular point in time in which the XPaths are evalu�
ated may a�ect the result� To avid this problem� we
must require that a call be re�instantiated whenever
some new XPath instantiation occurs �i�e� using fre�
quency��when param changes���
XQueries Similarly� the evaluation of a service

query also change in time� �To be more precise� since
we are in a monotone context� it may grow larger as
time passes�� For continuous services� this is not a
problem � the query is repeatedly evaluated and all
new results are eventually sent� In contrast� non�
continuous services are executed just once� Thus� we
must require that the query be computed only after
the data it bears on has be acquired� �We omit the
formal de�nition of this notion here��
Exchanging data Sites exchange data via call

parameters and call result� The exchanged subtrees
are extracted from a tree on one site and merged into
a tree on the other side� Non determinism arises when
the extracted subtrees contain path expressions that
attempt to go above the root of the subtree� these
paths have di�erent instantiations if evaluated before
or after the transfer� To avoid this� the exchange of
such data is not allowed�

The above conditions guarantee that any data that
can be derived in one particular execution sequence
will also be eventually derived in any other sequence�
Based on this� we have�

Theorem �� For AXML documents and services sat�
isfying the above conditions all computations lead to a
unique state�

However� this state may be �nite for some AXML
documents and in�nite for others� Using a reduction
of the halting problem for Turing machines� one can
show that�

Theorem �� Given an initial instance� one cannot
decide whether it has a �nite semantics�

To conclude this section� we mention a particularly
simple case where �nite semantics is guaranteed�
Layered services A lot of the complexity comes

from recursion and from the use of XPath expressions�

In practice� services are often de�ned using layers� with
services calling only services in lower layers� and re�
turning data containing calls to services in such lower
layers� We will call AXML documents without XPath
expressions XPath�free documents� and AXML ser�
vices that use only such document XPath�free services�
One can show� that for XPath�free layered documents
and services the semantics is �nite� In this context�
it is simple to design evaluation strategies that detect
termination�

APPENDIX �� Extended XML syntax
for service call elements

The following is a sample de�nition of an sc element�

�axml�sc
endpointURL��http���xyz�com��	�soap�rpcrouter�
nameSpaceURI��urn�xmethods�email�
methodName��GetEmail� 

�axml�params


�axml�param name��PersonName�

�axml�xpath
 ���pname ��axml�xpath


��axml�param

�axml�param name��CompanyName�

�axml�xpath
 ������name��axml�xpath


��axml�param

��axml�params


��axml�sc


As standard with XML� this de�nition is rather ver�
bose� But typically� AXML developers will use GUIs
and users will not have to deal directly with this syn�
tax� �We do not have such an interface yet but are
planing to develop one��

To di�erentiate service calls from the rest of the
standard XML data� and avoid naming con�icts� we
use a speci�c XML namespace �
	� for them �repre�
sented by the axml pre�x in the example��

The attributes of the sc element provide the nec�
essary information to issue the call� using the SOAP
protocol�


