
AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 1 of 1

 1

Technical Overview of the Application 2

Vulnerability Description Language 3

(AVDL) V1.0 4

Version 1.0, 22 March 2004 5

Document identifier: 6
AVDL Technical Overview - 01 7

Location: 8
http://TBD 9

Editor: 10
Jan Bialkowski, NetContinuum, jan@netcontinuum.com 11
Kevin Heineman, SPI Dynamics, kheineman@spidynamics.com 12
Srinivas Mantripragada, NetContinuum, srinivas@netcontinuum.com 13

Abstract: 14
This specification describes a standard XML format that allows entities (such as 15
applications, organizations, or institutes) to communicate information regarding web 16
application vulnerabilities. . Simply said, Application Vulnerability Description Language 17
(AVDL) is a security interoperability standard for creating a uniform method of describing 18
application security vulnerabilities using XML. 19

Status: 20
This is a non-normative document. This document provides a technical description of 21
AVDL 1.0. It has been produced by the AVDL technical committee. This working draft 22
may be updated, replaced, or obsoleted at any time. Please send comments to the 23
editors. 24

 25
Committee members should send comments on this specification to avdl@lists.oasis-26
open.org. Others should subscribe to and send comments to avdl-comment@lists.oasis-27
open.org. To subscribe, send an email message to avdl-comment-request@lists.oasis-28
open.org with the word "subscribe" as the body of the message. 29
 30
For information on whether any patents have been disclosed that may be essential to 31
implementing this specification, and any offers of patent licensing terms, please refer to 32

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 2 of 2

the Intellectual Property Rights section of the AVDL Technical Committee (AVDL TC) 33
web page (http://www.oasis-open.org/committees/avdl/ipr.php). 34

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 3 of 3

Table of Contents 35

1 Introduction... 4 36
2 AVDL Overview .. 5 37
3 AVDL Architecture .. 6 38

3.1 AVDL Concepts... 6 39
3.2 AVDL Schema Insights ... 14 40
3.2 AVDL Structure and Examples ... 6 41

4 Enabling Security using AVDL.. 14 42
4.1 Application positive behavioral model ... 16 43
4.2 Application vulnerability... 16 44
4.3 Remediation .. 17 45

5 AVDL Life Cycle Example .. 19 46
Revision History... 21 47
Appendix A. Notices .. 22 48

 49

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 4 of 4

1 Introduction 50

The goal of AVDL is to create a uniform format for describing application security vulnerabilities. 51
The OASIS AVDL Technical Committee was formed to create an XML definition for exchanging 52
information about the security vulnerabilities of applications exposed to networks. For example, 53
the owners of an application use an assessment tool to determine if their application is vulnerable 54
to various types of malicious attacks. The assessment tool records and catalogues detected 55
vulnerabilities in an XML file in AVDL format. An application security gateway then uses the AVDL 56
information to recommend the optimal attack prevention policy for the protected application. In 57
addition, a remediation product uses the same AVDL file to suggest the best course of action for 58
correcting the security issues. Finally a reporting tool uses the AVDL file to correlate event logs 59
with areas of known vulnerability. 60
 61
A detailed description of the specification draft submitted to OASIS is available at: 62
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=avdl. 63
 64

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 5 of 5

2 AVDL Overview 65

Security managers have grown accustomed to relying on traditional tools, such as network 66
firewalls, IDS, and VPNs to protect corporate networks. The exploding number of application-level 67
security incidents, however certifies that these tools provide few tangible benefits in the area of 68
application security. While next generation application security products now solve many of these 69
problems, these best-of-breed stand-alone systems still require individual and separate user 70
interactions, leaving the overall security management process too manual, time-consuming, and 71
error prone. 72
 73
Proposed by leading application security vendors and users, the AVDL specification creates a 74
rich and effective set of consistent XML schema definitions to describe application security 75
properties and vulnerabilities. Using AVDL, security tools and products from different vendors will 76
be able to precisely and unambiguously communicate with each other to coordinate their security 77
operations and automate security management. 78
 79
AVDL integration creates a seamless ecosystem that secures the web application environment in 80
which mundane security operations such as patching and reconfigurations that implement 81
evolving application requirements and security policies become automated freeing security 82
administrators to focus on higher-level security policy analysis. Because all new vulnerability 83
alters can be described consistently in AVDL, automation of security management also vastly 84
reduces the incident response time thus closing critical vulnerability windows and enhancing 85
security posture. AVDL-based security altered bulletins will give users highly efficient access to 86
the collective security expertise of all participants in this dynamic field where even the largest 87
organizations are challenged to keep up with rapid industry revolution. 88
 89

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 6 of 6

3 AVDL Architecture 90

The AVDL technology is rooted in XML. The information passed around between the producers 91
and consumers is mostly in the form of XML, and the format of these XML messages is defined in 92
the AVDL schema. 93

3.1 AVDL Concepts 94

AVDL has the following key concepts: 95
• Probe: The basic concept embodied in the AVDL schema is an application-level transaction, 96
called a “probe”, which describes HTTP exchanges between browsers and web application 97
servers. The probe defines the basic unit of request-response exchange and its relation to the 98
expected result. 99
• Transaction: AVDL defines markups which allow specifications of the transaction between 100
the browser and server as a series of probes. Such probes may specify valid and expected 101
request-response exchanges between browsers and servers, or may specify application 102
vulnerability exploits. AVDL 1.0 allows specification of the HTTP transaction in full detail at 103
various levels of abstraction (raw byte stream, or parsed to HTTP header constructs). 104
• Traversal: The “traversal” step is a derived extension of a “probe” where the request-105
response exchange between browser and server is expected (and valid). The traversal step 106
probes supply host of information including target URLs, links, cookies and other headers as well 107
as query for form parameters, their attributes, ranges of legitimate values etc. The traversal 108
probes can be used to automate enforcement of safe usage policies. 109
• Vulnerability-probe: The “vulnerability-probe” is a derived extension of a “probe” where the 110
request-response exchange between browser and server is of illegitimate kind. The probe 111
contains undesirable (or malicious) elements with a primary intent to cause damage to the 112
application. 113
• Vulnerability-description: The “vulnerability-description” highlights specific questionable 114
constructs and supply detailed specifications of vulnerabilities, including human readable 115
description and machine-readable assessment information such as vulnerability severity, 116
applicability, and its historical records. The vulnerability-description supplies enough information 117
necessary to configure protective “deny” rules as well as information about possible hot fixes if 118
any is available, workarounds etc. that can be used to automate management of remediation 119
process. 120

3.2 AVDL Structure and Examples 121

The AVDL output is divided into two major sections. The first is the Traversal. This output reflects 122
the basic structure of the web site. It describes the requests and responses that were made to the 123
server and the pages that were displayed as a result of the requests. A Traversal is a single 124
transaction containing one or more request/response exchanges, each exchange is enclosed in a 125
separate Traversal Container. The Traversal Container provides a complete topological ordering 126
of the URLs visited in a web site. 127
 128

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 7 of 7

AVDL

Session

Request

Response

Traversal

AVDL

Session

AVDL

Session

Request

Response

Traversal

 129
Figure 1: AVDL Traversal Structure 130

 131
Figure 1 shows the layout of the Traversal structure. The root node <avdl> contains a session 132
header. The session header embodies a user-level transaction activity, e.g. scan for 133
vulnerabilities, a web site crawl etc. The session header contains the ID of the session, the target 134
URI that was crawled and when the activity was started. The session contains a series of 135
traversal headers. The traversal header corresponds to one probe activity describing the request 136
and response details. The traversal header contains a sequence number (a number designating 137
this traversal in the ordered sequence of traversals visited during the crawl). The request and 138
response headers contain detailed information on the HTTP byte stream (both in raw and parsed 139
form) containing detailed information about headers, cookies, URLs, query inputs, POST data, 140
HREF links etc. 141
 142

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 8 of 8

AVDL

Session

Request

Vulnerability probe

Response

Vulnerability
Description

Summary
Classification
Target
Test Script
Remediation

AVDL

Session

Request

Vulnerability probe

Response

Vulnerability
Description

Summary
Classification
Target
Test Script
Remediation

 143
Figure 2: AVDL Vulnerability Probe Structure 144

 145
Figure 2 shows the layout of the Vulnerability Probe structure. The root node <avdl> contains a 146
session header. The session header contains a vulnerability probe header. While the traversal 147
header maps the web application and describes the requests and responses for each page of a 148
Web application, the Vulnerability Probe header describes the vulnerabilities contained within the 149
Web application. The session structure can contain many vulnerability probes each describing a 150
single vulnerability of the Web application. It is important to note that not all vulnerability probes 151
lead to identifying application vulnerability. Each vulnerability probe header contains the 152
request/response details and a description of the vulnerability if found. The vulnerability 153
description header contains the following 5 items. 154
 155
• Summary -- Provides a brief description of the vulnerability 156
• Classification -- Provides a logical grouping of the vulnerability, e.g. SQL Injection, Cross-157

Site Scripting 158
• Target -- Provides details on the target, e.g. Host, OS, Architecture, Protocol, Web Server 159
• Test Script -- Provides details on how to reproduce the application vulnerability 160
• Remediation – Provides specific recommended actions to close the vulnerability 161
 162

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 9 of 9

A detailed description of the above items is discussed in the AVDL draft standard. 163

3.3 AVDL Design Philosophy 164

The AVDL schema design is heavily derived from object-oriented (OO) programming concepts. 165
An attempt is made to devise base containers which abstract common properties. The child 166
nodes are derived from the parent base containers to provide effective sharing of common 167
properties. At the root <avdl> node two types of blocks are created, <root-block> and <session-168
block>. 169
 170
The <root-block> provides a base to abstract common base properties. The properties include: 171
• Summary – Provides a brief description of the vulnerability 172
• Description – Provides a detailed explanation of the vulnerability 173
• Classification – Provides a logical grouping of the vulnerability, e.g. SQL Injection, Cross-174

Site Scripting 175
• Datum – A generic tuple entity <name, type, value> of type <xs:QName, validated data type, 176

xs:token> 177
• History – Provides a reference to earlier version(s) of this block, or documents it is based on 178
 179
The above fields are conditional elements and don’t need to be always present. The child nodes 180
of the <root-block> include <session>, <solution> and <vulnerability-description>. 181
 182

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 10 of 10

 183
Figure 3: AVDL Top Level Structure 184

The <session-block> in addition to containing the above <root-block> properties also contains 185
information about: 186
 187
• Target -- Provides details on the target, e.g. Host, OS, Architecture, Protocol, Web Server 188
• Test Script -- Provides details on how to reproduce the application vulnerability 189
• Solution -- Provides specific recommended actions to close the vulnerability 190
 191
The child nodes of the <session-block> include <test-probe>, <traversal-step> and <vulnerability-192
probe>. 193
 194

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 11 of 11

 195
Figure 4: AVDL Traversal Step structure 196

Figure 4 provides the diagram of the traversal-step structure. The traversal-step is the base-197
class for all stepwise traversals (such as an enumeration of accessible URL's at a given site). The 198
traversal-step results from a probe activity. For example, each URL in a web-spiders crawl would 199
show up as one traversal-step. A single traversal-step can sometimes constitute of multiple 200
internal steps often spanning multiple applications using multiple protocols. The essence of the 201
field item traversal-protocol is essentially to capture this effect. It contains a single field item 202
http-traversal since the AVDL 1.0 draft addresses only HTTP protocol but allows for extensions 203
in the future.The http-traversal structure details the basic HTTP message type in detail. 204
 205

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 12 of 12

 206
Figure 5: AVDL Vulnerability Probe Structure 207

 208
Figure 5 explains the Vulnerability-Probe structure. Its children nodes include: 209
• Session-block : Definition provided in earlier section. See also Figure 4 210
• Vulnerability-description : Provides a detailed explanation of the vulnerability 211
• Test-probe : Provides a base class for all Test related stuff 212

• Test-block : Provides base block for all Test configurations 213
• Http-probe : A child item of Test-block. Describes how a HTTP probe was performed 214

and the result. Provides detailed script information to automate the detection of the 215
vulnerability, e.g. attack strings, expected return codes. 216

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 13 of 13

 217
Figure 6: AVDL Vulnerability Description Structure 218

 219
Figure 6 explains the AVDL Vulnerability Description structure. Its children nodes include: 220

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 14 of 14

• Block-type – Definition provided in earlier section 221
• Target -- Provides details on the target, e.g. Host, OS, Architecture, Protocol, Web Server 222
• Test-Script – Provides details on the test script to reproduce the vulnerability 223
• Solution -- Provides specific recommended actions to close the vulnerability 224

3.2 AVDL Schema Insights 225

This section provides detailed insights on key structures used in the AVDL schema: 226
 227
• Validated data types – The language provides a rich set of primitive and extended data type 228
definitions to allow tagging of properties to specific datum values. For example, tag a specific 229
parameter in a URL to type int. The validated data types are extensions of XML Schema 230
supported base type, “xs:NMTOKEN”. 231

• unsigned -- An unsigned integer 232
• int – A integer quanitity 233
• number – Any number representation not including NaNs or infinites, e.g. integer, float 234
• date – A date quantity 235
• time – A time quantity 236
• date-time – A date-time quantity 237
• string – Any possible string quantity 238
• zero-to-unbounded-type – A non-negative integer or the string “unbounded”. Used for 239

max-length 240
• time-stamp-type -- Timestamps are either absolute (xs:dateTime) or relative 241

(xs:decimal as seconds since the sessions session-start) 242
• http-method-type – Supported HTTP method types as per RFC 2616 section 5.1.1 243

• OPTIONS 244
• GET 245
• HEAD 246
• POST 247
• PUT 248
• DELETE 249
• TRACE 250
• CONNECT 251

 252
• Allowed operators – The language provides a rich set of operators to test tagged data types 253
with the expected result values. For example, check to see if the return response code of a 254
specific probe matches “200 OK” or specify that the first parameter in a specific URL is always 255
required. The set of operators include: 256

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 15 of 15

• equals – Equality operator 257
• not-equals – Exact inverse of equals 258
• contains – Matches substring operator 259
• not-contains – Does not contain (exact inverse of Contains) 260
• less-than – Less than operator 261
• greater-than – Greater than operator 262
• less-or-equals – Less than or equal (exact inverse of greater-than) 263
• greater-or-equals – Greater than or equal (exact inverse of less-than) 264
• max-length – Maximum length of data 265
• min-length – Minimum length of data 266
• type – Of type validated-type 267
• required – Specifies if the parameter is required or not 268
• regex – Compare using regular expression 269
• not-regex – Does not match using regular expression (exact inverse of regex) 270
• matches – Match using pattern where ‘*’ matches anything 271
• not-matches – Does not match using pattern where ‘*’ matches anything (exact inverse 272

of match). 273
 274

• Basic raw elements – The language provides extensive support to describe basic raw 275
elements. This has been very useful in implementing precise test configurations to 276
automatically detect vulnerabilities and to support various encoding formats. The set of raw 277
elements include: 278
• eol : Indicates a protocol appropriate end-of-line 279
• tab: Indicates a protocol appropriate end-of-tab 280
• space: Indicates a protocol appropriate space. This is useful to represent sequences of 281

more than one space, since the white space in the raw block is normalized 282
• char: Indicates one character in the encoding specified by the protocol 283
• code: A character-type string containing any inline code 284
• base64: A chunk of base64 data in the encoding specified by the protocol (see 285

RFC2045) 286
• hex: A chunk of hex data in the encoding specified by the protocol 287

 288
• Extended raw elements – Enumerates extensions to basic raw elements 289

• var : Substitutes the value of a variable a protocol appropriate end-of-line 290
• name: Indicates a protocol appropriate end-of-tab 291
• attack: Marks an attack component. This is useful in configuring specific deny policies 292

e.g. deny a specific header or a URL 293

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 16 of 16

4 Enabling Security using AVDL 294

AVDL enhances the security of web applications by using a multi-tiered approach. The key 295
concepts include: 296
 297
• Ability to allow good guys using application positive behavior 298
• Ability to deny bad guys using deep knowledge on specific application vulnerabilities 299
• Ability to facilitate remediation engines to download patches without human intervention 300
 301
The examples below show how AVDL can be used to facilitate the above goals. 302

 303

4.1 Application positive behavioral model 304

In this specific example, the user has deep knowledge on the application ‘plink.asp’ hosted on 305
domain ‘www.example.com:80’ input query requirements. The user then uses the AVDL 306
descriptions to facilitate the goal. 307
 308
<request method=”GET” host=”www.example.com:80” request-uri=”/plink.asp?a=3&c=xyz” 309
version=”HTTP/1.0”> 310
 … 311

<query value=”a=3&c=xyz” > 312
 <parameter name=”a” value=”3” /> 313
 <test type=”int” /> 314
 <test greater-or-equals=”0” /> 315
 <test less-or-equals=”123456” /> 316
 </parameter> 317
 <parameter name=”c” value=”xyz” /> 318

 <test max-length=”3” /> 319
 </parameter> 320

</query> 321
… 322

</request> 323
 324
The query portion takes two input arguments. The specifications describe that the first argument, 325
‘a’ is of type integer and expects input values ranging from 0..123456. The second specification 326
indicates that the second argument, ‘c’ expects an input not greater than 3 characters. The two 327
conditions can then get translated to highly tuned URL allow policy by application firewall 328
vendors. 329

4.2 Application vulnerability 330

The example below shows a Cross-site scripting vulnerability. The vulnerability occurs when a 331
web application uses client-supplied data in an HTTP response without first filtering out potentially 332

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 17 of 17

malicious characters. This is one of the most common types of cross-site scripting attacks. The 333
attack strings are embedded within the <attack> … </attack> tokens. This gives specific handles 334
on how the vulnerability was exploited and enough information to application firewall vendors to 335
configure a highly tuned deny policy. As evident, a malicious script has been injected to the 336
parameter email that the application expects. 337
 338
<http-transaction> 339
<request> 340

GET/join.asp?name=&email=<attack>>"><script>alert("XSS")</script></attack>&341
surname=&house=&street=&address2=&town=&postcode=&country=&homephone=342
&mobilephone=&msg=Please%2Bfill%2Bin%2Byour%2Bname <var 343
name="protocol"/> Referer: http://<var name="host"/>:<var 344
name="port"/>/join1.asp Connection: Close Host: <var name="host"/> User-Agent: 345
Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0) Pragma: no-cache Cookie: 346
ASPSESSIONIDCQADCBSB=NKAAPGKBBAJPBGDPFGEDPANA; 347
Keyed=Var2=Second+Value&Var1=First+Value; Second=Oatmal+Chocolate; 348
FirstCookie=Chocolate+Chip; 349

</request> 350
<response> 351
 <expect status-code=”200” reason-phrase=”OK” /> 352
</response> 353
</http-transaction> 354
 355

4.3 Remediation 356

Remediation is the recommended action to close the vulnerability. It includes an identifier for the 357
remedy, a description, and the vendor responsible for creating the remedy. The action code is 358
vendor specific to the vendor specified by the Vendor field. In addition, it includes an open block 359
that allows for machine-readable code. This may include code for the remediation software to 360
download the patch to fix the vulnerability. 361
 362
- <recommendation> 363
- <patch name="Microsoft patch Q256888_W2K_SP1_x86_en" lang="english" test-ref="test-364
1"> 365
 <description>Microsoft has released a patch which eliminates this 366
vulnerability.</description> 367
 <vendor name="Microsoft" /> 368
 <patch-source 369
href="http://download.microsoft.com/download/win2000platform/Patch/Q256888/NT5/EN-370
US/Q256888_W2K_SP1_x86_en.EXE" patch-ref="Q256888_W2K_SP1_x86_en" /> 371
 <remediation vulnID="02134" language="VBScript" modDate="030911131212" vendor="Citadel" 372
actionhref="http://vendor.remediation.com/library/q25688.vb" actionCode="REM Copyright 2003, 373
Citadel Security Software, Inc. All Rights Reserved. All product names are trademarks or registered 374
trademarks of their respective owners. Specifications subject to change without notice. REM Script 375
Generated Automatically by skey at 9/10/2003 2:04:30 PM Option Explicit 376
HercClient.SetScriptReturnCode(5) REM Failure Dim sVersion, sFull, sSP, bPassed bPassed = true If 377
bPassed = true Then If HercClient.IsWindowsXP() = True then If HercClient.WindowsCSDVersion > 378
Service Pack 1 Then bPassed = True Else bPassed = False End If End If End If" /> 379
 </patch> 380
 </recommendation> 381
 </vulnerability-description> 382
 </vulnerability-probe> 383

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 18 of 18

 </session> 384
 </avdl> 385

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 19 of 19

5 AVDL Life Cycle Example 386

1

2

5

4

3

6

Assessment
Scanner

App
Servers

Remediation
System

Reporting
And

Management

Security
Gateway

 387
The illustration shows an example of how AVDL enabled world would look like. The example 388
shows how AVDL automation creates an integrated security environment for a typical web 389
application deployment. 390
 391
1. First, a scan maps the application structure and detects any security holes recording AVDL 392

probes. 393
2. The AVDL probes can be placed in a file for user-initiated off-line batch processing (or not 394

shown) can be used for real-time communications. 395
3. A remediation system reads this AVDL file and uses information from its “vulnerability probes” 396

to automate the application of appropriate patches and hot fixes. 397
4. An application security gateway uses this vulnerability probes to configure secure perimeter 398

that protects from attacks and uses traversal probes to automate the enforcement of site’s 399
legitimate access policies. 400

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 20 of 20

5. AVDL data is presented to the user in the form of security audit reports and through other 401
management tools. 402

6. AVDL data can also be supplied from other sources (not pictured) such as security policy 403
managers, security alerts and bulletins, application development platforms or host-based 404
security analyzers. 405

 406

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 21 of 21

Revision History 407

Rev Date By Whom What

wd-01 2004-03-22 Srinivas
Mantripragada

Version 1.0

wd-02 2004-03-22 Srinivas
Mantripragada

Review comments added

 408

AVDL Working Draft Standard 1 January 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 22 of 22

Appendix A. Notices 409

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 410
that might be claimed to pertain to the implementation or use of the technology described in this 411
document or the extent to which any license under such rights might or might not be available; 412
neither does it represent that it has made any effort to identify any such rights. Information on 413
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 414
website. Copies of claims of rights made available for publication and any assurances of licenses 415
to be made available, or the result of an attempt made to obtain a general license or permission 416
for the use of such proprietary rights by implementers or users of this specification, can be 417
obtained from the OASIS Executive Director. 418
 419
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 420
applications, or other proprietary rights that may cover technology that may be required to 421
implement this specification. Please address the information to the OASIS Executive Director. 422
 423
Copyright © OASIS Open 2002. All Rights Reserved. 424
 425
This document and translations of it may be copied and furnished to others, and derivative works 426
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 427
published and distributed, in whole or in part, without restriction of any kind, provided that the 428
above copyright notice and this paragraph are included on all such copies and derivative works. 429
However, this document itself does not be modified in any way, such as by removing the 430
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 431
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 432
Property Rights document must be followed, or as required to translate it into languages other 433
than English. 434
 435
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 436
successors or assigns. 437
 438
This document and the information contained herein is provided on an “AS IS” basis and OASIS 439
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 440
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 441
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 442
PARTICULAR PURPOSE. 443

