
AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 1 of 18

 1

Application Vulnerability Description 2

Language 3

Committee Draft Version 1.0, 15 March 2004 4

Document identifier: 5
AVDL Specification - 01 6

Location: 7
http://TBD 8

Editor: 9
Jan Bialkowski, NetContinuum, jan@netcontinuum.com 10
Kevin Heineman, SPI Dynamics, kheineman@spidynamics.com 11

Contributors: 12
Carl Banzhof, Citadel 13
John Diaz, Lawrence Livermore National Laboratory 14
Johan Strandberg, NetContinuum 15
Srinivas Mantripragada, NetContinuum 16
Caleb Sima, SPI Dynamics 17

Participants: 18
Jeremy Poteet, Individual 19
Lauren Davis, Johns Hopkins University Applied Physics Laboratory 20
Andrew Buttner, Mitre Corporation 21
Gerhard Eschelbeck, Qualys 22
Jared Karro, Bank of America 23
Montgomery-Recht Evan, Booz Allen Hamilton 24
Ajay Gummadi, Individual 25
Yen-Ming Chen, Individual 26
Brian Cohen, SPI Dynamics, Inc. 27
John Milciunas, SPI Dynamics, Inc. 28
Matthew Snyder, Bank of America 29
Chung-Ming Ou, Chunghwa Telecom Laboratories 30
Anton Chuvakin, Individual 31
Nasseam Elkarra, Individual 32
Roger Alexander, Individual 33
J. Wittbold, Mitre Corporation 34
Lluis Mora, Sentryware 35

Abstract: 36
This specification describes a standard XML format that allows entities (such as 37
applications, organizations, or institutes) to communicate information regarding web 38

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 2 of 18

application vulnerabilities. . Simply said, Application Vulnerability Description Language 39
(AVDL) is a security interoperability standard for creating a uniform method of describing 40
application security vulnerabilities using XML. 41
 42
With the growing adoption of web-based technologies, applications have become far 43
more dynamic, with changes taking place daily or even hourly. Consequently, enterprises 44
must deal with a constant flood of new security patches from their application and 45
infrastructure vendors. . To make matters worse, network-level security products do little 46
to protect against vulnerabilities at the application level. To address this problem, 47
enterprises today have deployed a host of best-of-breed security products to discover 48
application vulnerabilities, block application-layer attacks, repair vulnerable web sites, 49
distribute patches, and manage security events. Enterprises have come to view 50
application security as a continuous lifecycle. Unfortunately, there is currently no 51
standard way for the products these enterprises have implemented to communicate with 52
each other, making the overall security management process far too manual, time-53
consuming, and error prone. 54

 55
Enterprise customers are asking companies to provide products that interoperate. A consistent 56
definition of application security vulnerabilities is a significant step towards that goal. AVDL fulfills 57
this goal by providing an XML-based vulnerability assessment output that will be used to improve 58
the effectiveness of attack prevention, event correlation, and remediation technologies. 59

 60

Status: 61
This document is the AVDL Technical Committee Draft. Please send comments to the 62
editors. 63

 64
Committee members should send comments on this specification to avdl@lists.oasis-65
open.org. Others should subscribe to and send comments to avdl-comment@lists.oasis-66
open.org. To subscribe, send an email message to avdl-comment-request@lists.oasis-67
open.org with the word "subscribe" as the body of the message. 68
 69
For information on whether any patents have been disclosed that may be essential to 70
implementing this specification, and any offers of patent licensing terms, please refer to 71
the Intellectual Property Rights section of the AVDL Technical Committee (AVDL TC) 72
web page (http://www.oasis-open.org/committees/avdl/ipr.php). 73

 74

Eratta: 75
The errata page for this specification is at: http://www.oasis-76
open.org/committees/tc_home.php?wg_abbrev=avdl. 77

78

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 3 of 18

Table of Contents 78

Introduction .. 4 79
1.1 Notations and Terminology ... 5 80

1.1.1 Notations.. 5 81
1.1.2 Terminology ... 5 82

1.2 Requirements .. 6 83
1.3 Out of Scope ... 6 84

2 AVDL Output... 8 85
2.1 AVDL File Root.. 8 86
2.2 Traversal ... 8 87

2.2.1 Traversal Container ... 9 88
2.3 Vulnerability Probe .. 10 89

2.3.1 Vulnerability Probe Container .. 11 90
2.3.2 Vulnerability Properties.. 13 91
2.3.3 Vulnerability Specific.. 14 92

Appendix A. Acknowledgments ... 16 93
Appendix B. Revision History .. 17 94
Appendix C. Notices .. 18 95

 96

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 4 of 18

Introduction 97

The goal of AVDL is to create a uniform format for describing application security vulnerabilities. 98
The OASIS AVDL Technical Committee was formed to create an XML definition for exchanging 99
information about the security vulnerabilities of applications exposed to networks. For example, 100
the owners of an application use an assessment tool to determine if their application is vulnerable 101
to various types of malicious attacks. The assessment tool records and catalogues detected 102
vulnerabilities in an XML file in AVDL format. An application security gateway then uses the AVDL 103
information to recommend the optimal attack prevention policy for the protected application. In 104
addition, a remediation product uses the same AVDL file to suggest the best course of action for 105
correcting the security issues. Finally a reporting tool uses the AVDL file to correlate event logs 106
with areas of known vulnerability. 107
 108
In order to define the initial standard, the AVDL Technical Committee focused on creating a 109
standard schema specification that enables easy communication concerning security 110
vulnerabilities between any of the various security entities that address Hypertext Transfer 111
Protocol (HTTP 1.0 and HTTP 1.1) application-level protocol security. Future versions of the 112
standard will continue to add functionality until the full vision of AVDL is achieved. AVDL will 113
describe attacks and vulnerabilities that use HTTP as a generic protocol for communication 114
between clients and proxies/gateways to other Internet systems and hosts. Security entities that 115
might use AVDL include (but are not limited to) vulnerability assessment tools, application 116
security gateways, reporting tools, correlation systems, and remediation tools. AVDL is not 117
intended to communicate network-layer vulnerability information such as network topology, TCP 118
related attacks, or other network-layer issues. Nor is AVDL intended to carry any information 119
about authentication or access control; these issues are covered by SAML and XACML. 120
 121
Applications that use HTTP and HTML as their foundation access and communication scheme 122
are vulnerable to various types of malicious attacks. The goal of the AVDL is to define a language 123
for conveying information that can be used to protect such an application. This information may 124
include (but is not limited to) vulnerability information as well as known legitimate usage 125
information. 126

 127
Vulnerability information may include: 128

• Discrete, previously known vulnerabilities against the application's software stack or any 129
of its components such as operating system type/version, application server type, web 130
server type, database type, etc. 131

• Information on an application's known legitimate usage schemes such as directory 132
structures, HTML structures, legal entry points, legal interaction parameters, etc. 133

 134
AVDL is capable of describing either type of information. 135
 136

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 5 of 18

1.1 Notations and Terminology 137

1.1.1 Notations 138

The Keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 139
“SHOULD NOT,” “RECOMMENDED,” “MAY,” “MAY NOT,” and “OPTIONAL” in this document are 140
to be interpreted as described in RFC 2119. 141
 142

1.1.2 Terminology 143

• AVDL – This is an acronym for Application Vulnerability Definition Language. This is the 144
abbreviated name for the standard XML format to be used by entities (e.g., applications, 145
organizations, or institutes) to communicate information regarding web application 146
vulnerabilities. Simply said, AVDL is a security interoperability standard, the goal of which is 147
to create a uniform way of describing application security vulnerabilities using XML. 148

• AVDL Version – This field identifies the version number of the schema that is being used. As 149
the AVDL standard evolves, each release of the standard will contain a unique version 150
number. 151

• Classification – This identifier is contained within the vulnerability description. It identifies 152
metadata regarding the vulnerability. Data such as the classification name and the severity 153
value are part of the classification. 154

• Description – This descriptor contains a detailed description of the vulnerability. It will be 155
used in report output to the user. 156

• Expect Status Code – This is the expected result from the server that was attacked. If the 157
server response is different from the expected response, a vulnerability is identified. 158

• HTTP Transaction – Contains the request and response that the Test Script made. 159
• Recommendation – This descriptor contains information related to actions that could be 160

taken to remediate the vulnerability. This may include patch information or other information 161
related to the recommendation. 162

• Remedy Description – This is a container of the patch description. It may also include 163
specific instructions to load the patch. 164

• Remedy vulnID – This identifier describes the specific remedy that will be required to resolve 165
the vulnerability. 166

• Session ID – This is the identifier of the specific attack session. A session will contain one to 167
many Traversal Steps (see Traversal Step ID). Each Session will be identified with a unique 168
identifier. The session will contain a target and a date-time stamp for when the session 169
begins. 170

• Summary – This descriptor defines a short summary of the vulnerability within the Test 171
Probe. 172

• Test Description – This descriptor contains the attack that was used to identify the 173
vulnerability. 174

• Test Probe – This is a container of the session that identified the vulnerability. The Probe 175
contains both the raw request and raw response as well as parsed request and parsed 176
response. 177

• Test Script ID – This descriptor identifies the test that was conducted as part of the Test 178
Probe to identify the vulnerability. A Test Probe may contain one to many Test Scripts. 179

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 6 of 18

• Traversal Ste – A traversal is the sum of a request to a web server and a response from the 180
web server. Each Traversal Step is identified with a unique identifier. The Traversal Step 181
contains both the raw and parsed content of the request and response. 182

• Vulnerability Description Title – This descriptor defines the vulnerability within the Test 183
Probe. 184

• Vulnerability Probe – This is a container for the Test Probes and may contain one to many 185
Test Probes. The term “Probe” is used since the application originating the data is generic 186
(e.g., assessment, protection, remediation, event correlation). 187

 188

1.2 Requirements 189

The Application Vulnerability Description Language uses XML to support communication between 190
applications that exchange information about web application vulnerabilities. Specifically the 191
specification includes two major sections: Traversal and Vulnerability Probe. 192
 193
The Traversal is a mapping of the structure of the site. Its purpose is to fully enumerate the web 194
application. The Traversal is populated by assessment products to map the application and 195
create a baseline of the site. It describes the requests and responses that were made to the 196
server and the pages that were displayed as a result of the requests. 197
 198
The Vulnerability Probe is a description of a vulnerability. It includes information about the 199
vulnerability as well as how the vulnerability was found and, when possible, how it can be fixed. 200
 201

1.3 Out of Scope 202

AVDL has been developed to describe web application vulnerabilities. It is not intended to be 203
used to describe other types of vulnerabilities. This includes (but is not limited to) server, 204
operating system, TCP related attacks, or other network layer issues. While vulnerabilities of 205
these types may also fit within the AVDL model, the standard was not specifically developed for 206
these types of vulnerabilities. 207
 208
AVDL is not intended to carry any information about authentication or access control. These 209
issues are covered by SAML and XACML. 210
 211
Version 1.0 of the standard is specific to English language output. Future versions of the standard 212
are anticipated to address or accommodate other languages. 213
 214
Encapsulating well-defined behavior of the target application within the standard is not within the 215
scope of AVDL version 1.0. Well-defined behavior is specific information relating to how the web 216
application works. For example, valid values for a page as well as the behavior of the application 217
with regards to invalid values. Discrepancies to this normal behavior would be identified as 218
vulnerabilities. Future versions of the standard may address this issue. 219
 220

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 7 of 18

A complete catalog of the potential vulnerabilities is not included in the specification. The 221
standard will not contain any descriptors that contain any vulnerability storage containers. This 222
includes either content or a list of identifiers (such as CVE). 223
 224
This version of the AVDL standard addresses only web application vulnerabilities. Future versions 225
of the standard may incorporate the output from other vulnerability scanners that are not web-226
based such as ISS and other probes. 227

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 8 of 18

2 AVDL Output 228

The purpose of this section is to articulate the output that AVDL generates using an example. 229
This particular example is a “Translate: f” vulnerability. This vulnerability is a common web 230
application vulnerability in IIS that allows remote attackers to view source of offered server-side 231
scripts supported by IIS by using a malformed “Translate: f” header. 232
Throughout this section, the example XML is a sample of the Translate: f vulnerability output 233
produced by AVDL. The complete example is contained in an appendix. In addition, where the 234
Translate: f example does not apply, generic information was included in the example. 235
 236

2.1 AVDL File Root 237

The beginning of the AVDL output contains a file root that includes information within the AVDL 238
output. It is a metadata container to provide context for the rest of the file. The information 239
contained in the file root includes the version of AVDL that is being used, the provider or vendor 240
name that generated the output as well as URIs pointing to the OASIS standards body. 241
 242

<avdl version="0.1-2003-09-27" provider=”SPI” 243
xmlns="urn:oasis:names:tc:avdl:0.0:mailto:avdl@oasis-open.org?:avdl:2003-09-27:a" 244
xmlns:xhtml="http://www.w3.org/1999/xhtml" 245
xmlns:avdln="urn:oasis:names:tc:avdl:0.0:names:mailto:avdl@oasis-open.org?:2003-09-27" 246
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 247

 248
AVDL can be thought of in hierarchal terms. The highest level (or root) contains all the activity 249
articulated through AVDL. The root container may contain multiple sessions. A session should be 250
thought of as an action a user takes. For example, crawling a web site or scanning a web 251
application for vulnerabilities are examples of sessions. Each session can contain one to many 252
traversals. A traversal is a single request and response to and from a web server. Each traversal 253
can be broken down into its raw and parsed form. 254
 255
To keep this example simple, it contains only one session with one traversal and one 256
vulnerability. The details of this example are explained in this section. Please refer to the AVDL 257
schema for a complete description of the standard. 258
 259

2.2 Traversal 260

The AVDL output is divided into two major sections. The first is the Traversal. This output reflects 261
the basic structure of the site. It describes the requests and responses that were made to the 262
server and the pages that were displayed as a result of the requests. A Traversal is a single 263
transaction containing one or more request/response exchanges, each exchange is enclosed in a 264
separate Traversal Container. These Traversal Containers provide a complete hierarchal 265
description for a Traversal within a session. 266
 267
The following is an example of a traversal session header. It contains the ID of the session with 268
which it is associated, the target URI that was crawled, when the activity was started, and the 269

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 9 of 18

sequence number (a number designating this session in the ordered sequence of nodes visited 270
during the crawl).). It also contains the raw request and response and the parsed request and 271
response. 272
 273

<session id="traversal-session" target="http://172.16.50.31" session-start="2004-02-274
10T16:57:25"> 275
 <traversal-step time-stamp="2004-02-10T16:57:25" sequence-number="1" 276
 uri="http://172.16.50.31:80/"> 277

 278
It is important to note that the parsed header information contains query rules and content rules. 279
Query rules define how the query is created. Content rules define what content will be filtered in 280
the traversal. Since this example does not contain any content rules, all content will be displayed. 281
 282

2.2.1 Traversal Container 283

The Traversal Container represents the request and the response for the round-trip HTTP 284
traversal to the server. Each HTTP traversal is a request/response pair. While each Traversal 285
Container contains only one request and response, a Session may contain many Traversal 286
Containers. In general, to complete a single round trip, a traversal may encompass multiple 287
protocols, each of which will contain its own request/response pair. 288
 289
Within the standard, each request/response pair is represented in both raw and parsed form. 290
Traversal Containers are listed in chronological order. In addition, each container can have its 291
own specific rules. These rules are also captured within the Traversal Container. 292
 293
The example shows the request and response completely in both the raw and parsed format. 294
Content in this example contains h-refs, one of the children of the content container. 295
 296
The request method includes the type of request, how the connection was made, what host was 297
targeted, what URI was requested, and what protocol version was made. Following this 298
information, the raw request is listed and then the parsed request. The request and response is 299
parsed into header name and value pairs. In addition, the Query portion of the parsed information 300
provides validation of the query. This validation could be applied for both the header and content. 301
Like the parsed information, query information is also parsed into name and value pairs. 302
 303
Same philosophy that was described above in request method can be applied to post data as 304
well. Post data is parsed into name and value pairs and will be validated through a query string. 305
 306
It is important to note that both the raw request and response are required because there are 307
instances where the vulnerability and its probe contain a malformed header structure that cannot 308
be parsed. Therefore, both the raw and parsed information will be provided in all parts of the 309
specification. 310
 311

<http-traversal> 312
 <request method="GET" connection="" host="172.16.50.31:80" request-uri="/" 313
 version="HTTP/1.0"> 314

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 10 of 18

 <raw>GET / HTTP/1.0 Connection: Close Host: 172.16.50.31 315
 User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0) Pragma: no- 316
 cache</raw> 317
 <parsed> 318
 <header name="Connection" value="Close"/> 319
 <header name="Host" value="172.16.50.31"/> 320
 <header name="User-Agent" value="Mozilla/4.0 (compatible; MSIE 5.01; Windows 321
 NT 5.0)"/> 322
 <header name="Pragma" value="no-cache"/> 323
 <query value=""/> 324
 <content value=""/> 325
 </parsed> 326
 </request> 327
 <response> 328
 <raw>HTTP/1.1 302 Object moved Server: Microsoft-IIS/5.0 Date: Tue, 10 Feb 329
 2004 13:29:39 GMT Location: banklogin.asp?serviceName= 330
 FreebankCaastAccess&templateName=prod_sel.forte&source= 331
 Freebank&AD_REFERRING_URL= http://www.Freebank.com Connection: 332
 Keep-Alive Content-Length: 251 Content-Type: text/html Cache-control: private 333
 Set-Cookie: ASPSESSIONIDGGQQQUIU= GJABGOGAEBIONOCNAGGKNLNF; 334
 path=/<head><title>Object moved</title></head>< 335
 body><h1>Object Moved</h1>This object may be found <a 336
 HREF="banklogin.asp?serviceName=FreebankCaastAccess& 337
 templateName=prod_sel.forte&source=Freebank& 338
 AD_REFERRING_URL= http://www.Freebank.com">here< 339
 /a>.</body></raw> 340
 <parsed> 341
 <statusline value="HTTP/1.1 302 Object moved"/> 342
 <header name="Server" value="Microsoft-IIS/5.0"/> 343
 <header name="Date" value="Tue, 10 Feb 2004 13:29:39 GMT"/> 344
 <header name="Location" value="banklogin.asp?serviceName= 345
 FreebankCaastAccess&templateName=prod_sel.forte&source= 346
 Freebank&AD_REFERRING_URL=http://www.Freebank.com"/> 347
 <header name="Connection" value="Keep-Alive"/> 348
 <header name="Content-Length" value="251"/> 349
 <header name="Content-Type" value="text/html"/> 350
 <header name="Cache-control" value="private"/> 351
 <content> 352
 <href uri="banklogin.asp?serviceName=FreebankCaastAccess& 353
 templateName=prod_sel.forte&source= 354
 Freebank&AD_REFERRING_URL=http://www.Freebank.com" 355
 type="static" persistence="export"/> 356
 <href uri="banklogin.asp?serviceName=FreebankCaastAccess& 357
 templateName=prod_sel.forte&source= 358
 Freebank&AD_REFERRING_URL=http://www.Freebank.com" 359
 type="static" persistence="export"/> 360
 <href uri="banklogin.asp" type="static" persistence="export"/> 361
 </content> 362
 </parsed> 363
 </response> 364
</http-traversal> 365

 366

2.3 Vulnerability Probe 367

The Vulnerability Probe is the second major section in the AVDL output. While the Traversal 368
section maps the Web application and describes the requests and responses for each page of a 369
Web application, the Vulnerability Probe section describes the vulnerabilities contained within the 370
Web application. 371

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 11 of 18

 372
The Vulnerability Probe is structured much like the Traversal. It is associated with a session and 373
can contain many Containers each of which describes a single vulnerability of the Web 374
application. In addition, a Vulnerability Probe can contain multiple Test Probes. For example, first 375
test for general SQL injection then specific injection. Each Test Probe is contained within the 376
Vulnerability Probe. 377
 378
Continuing the example set forth previously, the Vulnerability Probe contains a header with the ID 379
of the session that it is associated with, the target URL that contains the vulnerability, when the 380
activity was started, and the vulnerability probe ID that is an identifier that is associated with the 381
sequential order that this vulnerability was identified on the site. 382
 383

<session id="vulnerability-session" target="http://172.16.50.31" session-start="2004-02-384
10T16:57:25"> 385
 <vulnerability-probe time-stamp="2004-02-10T16:57:25"> 386

 387

2.3.1 Vulnerability Probe Container 388

Following this metadata information, the Vulnerability Probe contains both the raw request and 389
response and the parsed request and response of the probe. Each Vulnerability Container 390
contains one and only one vulnerability probe that includes one round-trip HTTP request to and 391
response from the server. Like the Traversal Container, each Vulnerability Probe Container 392
contains only one request/response pair. While each Vulnerability Probe Container contains only 393
one request and response, a Session may contain many Vulnerability Probe Containers. In 394
general, to complete a single round trip, a probe may encompass multiple protocols, each of 395
which will contain its own request/response pair. 396
 397
The probe contains a unique identifier within a single AVDL file and a time stamp to indicate when 398
the vulnerability was found. It also contains a Test Probe that includes information that indicates 399
how the vulnerability was found so that the test can be reproduced as necessary. It contains an 400
identifier and a Test Script Reference. The Test Script Reference is a reference to the 401
vulnerability test. This is the reference to reproduce the vulnerability. The Test Probe contains an 402
HTTP Probe that includes the request method, the connection, host, request URI, and version of 403
the protocol that was used. This is followed by the raw request and then the parsed request that 404
was submitted by the Test Probe to identify the vulnerability. The request and response is parsed 405
into header name and value pairs. 406
 407
Within the standard, each request/response pair is represented in both raw and parsed form. 408
Vulnerability Probe Containers are listed in chronological order. In addition, each container can 409
have its own specific rules. These rules are also captured within the Vulnerability Probe 410
Container. 411
 412
It is important to note that both the raw request and response are required because there are 413
instances where the vulnerability and its probe contain a malformed header structure that cannot 414
be parsed. Therefore, both the raw and parsed information will be provided in all parts of the 415
specification. 416
 417

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 12 of 18

<test-probe> 418
 <http-probe> 419
 <request method="GET" connection="" host="172.16.50.31:80" request-uri= 420
 "/banklogin.asp\" version="HTTP/1.0"> 421
 <raw>GET /banklogin.asp\ HTTP/1.0 Referer: http://172.16.50.31:80/ 422
 Connection: Close Host: 172.16.50.31 User-Agent: Mozilla/4.0 (compatible; MSIE 423
 5.01; Windows NT 5.0) Pragma: no-cache Translate: f Cookie: 424
 ASPSESSIONIDGGQQQUIU=GJABGOGAEBIONOCNAGGKNLNF; 425
 CustomCookie=WebInspect</raw> 426
 <parsed> 427
 <header name="Referer" value="http://172.16.50.31:80/"/> 428
 <header name="Connection" value="Close"/> 429
 <header name="Host" value="172.16.50.31"/> 430
 <header name="User-Agent" value="Mozilla/4.0 (compatible; MSIE 5.01; 431
 Windows NT 5.0)"/> 432
 <header name="Translate" value="f"/> 433
 <query value=""/> 434
 <content value=""/> 435
 </parsed> 436
 </request> 437
 <response> 438
 <raw>HTTP/1.1 200 OK 439
 Server: Microsoft-IIS/5.0 440
 Date: Tue, 10 Feb 2004 13:32:06 GMT 441
 Content-Type: application/octet-stream 442
 Content-Length: 5353 443
 <% 444
 response.cookies("userid") = "" %< 445
. 446
. 447
. 448
 </raw> 449
 <parsed> 450
 <statusline value="HTTP/1.1 200 OK"/> 451
 <header name="Server" value="Microsoft-IIS/5.0"/> 452
 <header name="Date" value="Tue, 10 Feb 2004 13:32:06 GMT"/> 453
 <header name="Content-Type" value="application/octet-stream"/> 454
 <header name="Content-Length" value="5353"/> 455
 <content> 456
 <href uri="images/freebank-logo2.gif" type="static" 457
 persistence="export"/> 458
 <href uri="images/lock.gif" type="static" persistence="export"/> 459
 <href uri="images/customer-login.gif" type="static" 460
 persistence="export"/> 461
 <href uri="images/financial-planning.gif" type="static" 462
 persistence="export"/> 463
 <href uri="images/services.gif" type="static" persistence="export"/> 464
 <href uri="images/your-accounts.gif" type="static" 465
 persistence="export"/> 466
 <href uri="redirect1/redirect1.asp" type="static" persistence="export"/> 467
 <href uri="pindex.asp" type="static" persistence="export"/> 468
 <href uri="bookstore/java/default.htm" type="static" 469
 persistence="export"/> 470
 <href uri="login1.asp" type="static" persistence="export"/> 471
 <href uri="rootlogin.asp" type="static" persistence="export"/> 472
 </content> 473
 </parsed> 474
 </response> 475
 </http-probe> 476
</test-probe> 477

 478

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 13 of 18

2.3.2 Vulnerability Properties 479

The Vulnerability Properties describe the vulnerability and are intended for use in the “human” 480
interface display. For this version of the standard, English will be used to complete the properties. 481
However, it is envisioned that other languages will be supported in future versions. The 482
Properties of the vulnerability contain 483

• Summary - a brief description of the vulnerability 484
• Description - a detailed description of the vulnerability 485
• Classification - a unique identifier for the vulnerability 486
• Datum - metadata about the vulnerability 487
• History - the version of the vulnerability that was used 488

 489

<vulnerability-description title="IIS Translate:f Source Code Disclosure"> 490

 491
Subsequent sections will provide more detail to the Vulnerability properties. 492

2.3.2.1 Summary 493

The Summary provides a brief description of the vulnerability. It should contain one or two 494
sentences describing the vulnerability and its purpose. The Summary is not intended to provide 495
detailed information, but is intended to be brief. It is recommended that this information provide 496
overall context for the vulnerability. 497
 498
The following is an example of the Summary for the Translate f vulnerability: 499
 500

<summary>A vulnerability in IIS allows remote attackers to view the source of offered server 501
side scripts supported by IIS (such as ASP, ASA, HTR, etc.) by using malformed "Translate: f" 502
header.</summary> 503

 504

2.3.2.2 Description 505

The Description is a detailed explanation of the vulnerability. It should describe what the 506
vulnerability is, what systems are susceptible to it, the history of the vulnerability, and any other 507
relevant information regarding the vulnerability. The description is displayed in paragraph form as 508
shown in the following example: 509
 510

<description>A vulnerability in IIS allows remote attackers to view the source of offered server 511
side scripts supported by IIS (such as ASP, ASA, HTR, etc.). This vulnerability is very dangerous 512
since a lot of sensitive information is kept in these files, as programmers often rely on the fact 513
that the source code is hidden from the user. The vulnerability involves sending a special header 514
with 'Translate: f' at the end of it, and then a trailing slash '/' appended to the end of the URL. It 515
cannot be exploited by the standard browsers, but an exploit code below enables to test for this 516
problem.</description> 517

 518

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 14 of 18

2.3.2.3 Classification 519

The Classification of the vulnerability is its unique global name. This name is expected to be 520
developed by other standards bodies. The classification also includes a severity rating that 521
indicates, on a scale from 1to100, how important the vulnerability is. Vulnerabilities with a score 522
of 100 are the most critical while those of a score of 1 are more informational. 523

2.3.3 Vulnerability Specific 524

Information contained within this section of the output includes the specific information about how 525
the vulnerability was discovered. This includes information regarding the target application, the 526
test attack, and a description of the attack. The following subsections describe each portion of the 527
vulnerability target. 528
 529

2.3.3.1 Test 530

The Test is an important aspect of the output because it describes the specific test script that was 531
used to identify the vulnerability on the web server. It is the test that was used to scan the target 532
web application. The Test includes an identifier and a reference to the target application that was 533
attacked. The following example displays these values: 534
 535

<test-script id="test-script-1"> 536

 537

2.3.3.2 Test description 538

The Test Description contains information about the specific vulnerability, such as when and how 539
it was detected. It also includes the request and response (in raw form) that was used to detect 540
this vulnerability. This will allow recipients of the output to reproduce the vulnerability. 541
 542
The raw request is broken down in this portion of the standard to provide more details of the 543
attack. In this example request, the two attack components are Translate: f and GET ending in 544
backslash. All the details are listed here. The response includes the expected result from the 545
server. If the response returns the expected result, then the vulnerability has been confirmed. The 546
following example depicts a specific attack test: 547
 548

<declare name="path" type="string"/> 549
<declare name="protocol" type="string" default="HTTP/1.1"/> 550
<declare name="host" type="host"/> 551
<declare name="port" type="integer" default="80"/> 552
<sequence> 553
 <http-transaction> 554
 <request>GET <var name="path"/> <var name="protocol"/> Referer: 555
 http://<var name="host"/>:<var name="port"/>/ 556
 Connection: Close 557
 Host: <var name="host"/> 558
 User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0) 559
 Pragma: no-cache 560
 Translate: f 561
 Cookie: ASPSESSIONIDGGQQQUIU=GJABGOGAEBIONOCNAGGKNLNF; 562
 CustomCookie=WebInspect</request> 563
 <response> 564

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 15 of 18

 <expect status-code="200" reason-phrase="OK"/> 565
 </response> 566
 </http-transaction> 567
</sequence> 568

 569

2.3.3.3 Remediation 570

Remediation is the recommended action to close the vulnerability. It includes an identifier for the 571
remedy, a description, and the vendor responsible for creating the remedy. The action code is 572
vendor specific to the vendor specified by the Vendor field. In addition, it includes an open block 573
that allows for machine-readable code. This may include code for the remediation software to 574
download the patch to fix the vulnerability. 575
 576

<recommendation> 577
 <patch name="Microsoft patch Q256888_W2K_SP1_x86_en" lang="english" test- 578
 ref="test-1"> 579
 <description>Microsoft has released a patch which eliminates this vulnerability. 580
 </description> 581
 <vendor name="Microsoft" /> 582
 <patch-source href="http://download.microsoft.com/download/win2000platform/Patch 583
 /Q256888/NT5/EN-US/Q256888_W2K_SP1_x86_en.EXE" patch-ref="Q256888_W2K_ 584
 SP1_ x86_en" /> 585
 <remediation vulnID="02134" language="VBScript" modDate= 586
 "030911131212" vendor="Citadel" actionhref= 587
 "http://vendor.remediation.com/library/q25688.vb" actionCode="REM 588
 Copyright 2003, Citadel Security Software, Inc. All Rights Reserved. All product names 589
 are trademarks or registered trademarks of their respective owners. Specifications 590
 subject to change without notice. REM Script Generated Automatically by skey at 591
 9/10/2003 2:04:30 PM Option Explicit HercClient.SetScriptReturnCode(5) REM Failure 592
 Dim sVersion, sFull, sSP, bPassed bPassed = true If bPassed = true Then If 593
 HercClient.IsWindowsXP() = True then If HercClient.WindowsCSDVersion > Service 594
 Pack 1 Then bPassed = True Else bPassed = False End If End If End If" /> 595
 </patch name> 596
</recommendation> 597

 598
 599

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 16 of 18

Appendix A. Acknowledgments 600

The AVDL Technical Committee would like to acknowledge earlier efforts in promotion of 601
application vulnerabilities and standardization of their representation and interchange. Their work 602
inspired many ideas incorporated into the AVDL standard. 603
Open Vulnerability Assessment Language developed at the Mitre Corporation “is the common 604
language for security experts to discuss and agree upon technical details about how to check for 605
the presence of a vulnerability on a computer system”. Using SQL, OVAL queries are based on 606
broadly recognized Common Vulnerabilities and Exposures (CVE) database and by “specifying 607
logical conditions on the values of system characteristics and configuration attributes, OVAL 608
queries characterize exactly which systems are susceptible to a given vulnerability.” 609
VulnXML developed by a OWASP team led by Mark Curphey “could be used by automated 610
assessment tools to test for known security issues”. Closely related and also developed at 611
OWASP was Application Security Attack Components or ASAC which “is a basic classification 612
scheme of web application security issues. The aim of this project was to create a common 613
language and a consensus understanding among the industry to describe the same issue in the 614
same way.” Their work continues at OASIS Web Application Security TC. 615
 616

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 17 of 18

Appendix B. Revision History 617

Rev Date By Whom What

wd-01 2004-01-08 Kevin Heineman Version 1.0

wd-02 2004-01-18 Carl Banzhof Added provider attribute to root block

Wd-03 2004-03-08 Kevin Heineman Modifications made from Working Draft
comments.

Wd-04 2004-03-11 Kevin Heineman Simplified the example,

 618

AVDL Committee Draft 15 March 2004
Copyright © OASIS Open 2004. All Rights Reserved. Page 18 of 18

Appendix C. Notices 619

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 620
that might be claimed to pertain to the implementation or use of the technology described in this 621
document or the extent to which any license under such rights might or might not be available; 622
neither does it represent that it has made any effort to identify any such rights. Information on 623
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 624
website. Copies of claims of rights made available for publication and any assurances of licenses 625
to be made available, or the result of an attempt made to obtain a general license or permission 626
for the use of such proprietary rights by implementers or users of this specification, can be 627
obtained from the OASIS Executive Director. 628
 629
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 630
applications, or other proprietary rights that may cover technology that may be required to 631
implement this specification. Please address the information to the OASIS Executive Director. 632
 633
Copyright © OASIS Open 2004. All Rights Reserved. 634
 635
This document and translations of it may be copied and furnished to others, and derivative works 636
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 637
published and distributed, in whole or in part, without restriction of any kind, provided that the 638
above copyright notice and this paragraph are included on all such copies and derivative works. 639
However, this document itself does not be modified in any way, such as by removing the 640
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 641
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 642
Property Rights document must be followed, or as required to translate it into languages other 643
than English. 644
 645
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 646
successors or assigns. 647
 648
This document and the information contained herein is provided on an “AS IS” basis and OASIS 649
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 650
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 651
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 652
PARTICULAR PURPOSE. 653

