
Draft ASC X12 Reference Model for XML Design Rules

Version 0.4 02/25/2002

* * * D R A F T * * *

ASC X12 Reference Model
for XML Design Rules

Version 0.4

Draft ASC X12 Reference Model for XML Design Rules

Version 0.4 02/25/2002

TABLE OF CONTENTS

FOREWORD ...1
1.0 INTRODUCTION ..2

1.1 Target Audience ..2
1.2 High Level Design Principles ..3
1.3 Background...3

2.0 SCOPE ...4
2.1 Introduction...4
2.2 Support for Proprietary Efforts ..4

3.0 RESOURCES...6
4.0 HIGH LEVEL DESIGN ARCHITECTURE..7

4.1 The Vision -- An Analogy ...7
4.2 Context Inspired Component Architecture -- modularly flexible Smart Messages............8
4.3 Relationship between Vision and the CICA Architecture...9
4.4 Templates..11
4.5 Modules ..13
4.6 Assemblies ..15
4.7 Blocks ...16
4.8 Components ..17

5.0 STRUCTURING ..18
5.1 Structure Rules Overview..18
5.2 Detailed Structure Rules ...19
5.3 Preliminary Block Structures...21
5.4 Party Blocks ..21
5.5 Resource ...22
5.6 Events ...23
5.7 Location ..24

6.0 OTHER DESIGN ISSUES...25
6.1 What Constitutes a "Bullet" Document? ..25
6.2 Default Override..25
6.3 Two Roles for Same Instance Information: Explicit vs Referential Content27

7.0 METADATA AND ORGANIZATION ...30
7.1 Storage of Templates...30
7.2 Storage of Modules ...30

8.0 XML SYNTAX DESIGN..32
8.1 General..32
8.2 Messages...32
8.3 Schema..35

9.0 SUMMARY OF PROPOSED DESIGN RULES..57
10.0 PROCESS AND MANAGEMENT CONSIDERATIONS ..58

10.1 Management of Templates...58
10.2 Management of Modules ...58

Annex A: Definitions ...59
Annex B: Notional X12/XML Message...63
Annex C: Notional X12/XML Schema..64
Annex D: A model of the message design process...65

Draft ASC X12 Reference Model for XML Design Rules

Version 0.4 02/25/2002

Annex E: A model of the schema design process ..66
Annex F: Use of modeling with XML development ..67
Annex G: Background ..68

1.0 Background...68
2.0 Overview of ebXML Business Process and Core Components.......................................69
3.0 Relationship to other XML Efforts ..71

Draft ASC X12 Reference Model for XML Design Rules

Page 1 of 74

FOREWORD
This paper was motivated by the action item that X12's Communications and Controls subcommittee
(X12C) took at the August 2001 XML Summit to develop "draft design rules for ASC X12 XML
Business Document development". Acting on that action item, X12C's EDI Architecture Task Group
(X12C/TG3) determined that XML design rules could not be developed in a vacuum, without a basis for
determining which XML features to use and how to use them. Thus the group also set about developing a
philosophical foundation and putting forth some general design principals. This Reference Model covers
those topics in addition to a preliminary set of design rules.

The approach discussed herein is intended to be the foundation for X12's future XML development. It is
consistent with the decisions of X12's Steering Committee to develop its XML work within the ebXML
framework. We expect it to undergo further refinement as the work progresses from its current status as a
Task Group Reference Model to a full X12 standard.

Contributors to this project included:

• List of names to be completed.

Draft ASC X12 Reference Model for XML Design Rules

Page 2 of 74

1.0 INTRODUCTION

The Extensible Markup Language (XML), developed by the World Wide Web Consortium (W3C), is a
specification designed for Web documents that enables the definition, transmission, validation, and
interpretation of data between applications and between organizations. It is a freely available and widely
transportable approach to well-controlled data interchange that is open and accessible to the business
community. The technology itself allows the design of languages that suit particular needs and
harmonious integration into a general infrastructure that is extensible enough to meet requirements and
adaptable enough to incorporate emerging new technologies.

The extensibility of XML is the main advantage of this technology as well as its main disadvantage. The
ability to create custom-tailored markup languages can lead to a proliferation of languages within
business entities. This may not be critical in simple browser-to-web-server solutions, but in business-to-
business exchanges, it is very undesirable and costly. The development of document definition
methodologies and XML design rules is of paramount importance to stem the flow of divergent XML
solutions and ensure smart and efficient use of technology resources.

Much work has been done in the document definition and core components arena by ebXML, ANSI ASC
X12, and UN/CEFACT Work Groups. Every effort has been made to build on that foundation. The
XML design rules presented in this Reference Model are based on design decisions reached through a
process of issue identification, presentation of examples, and evaluation of the pros and cons of each
available action according to W3C approved specifications. They provide a set of best practices that
define the creation of XML representations of standard business messages.

1.1 Target Audience
The X12 XML initiative is targeted at every sector of the business community, from international
conglomerate to small and medium sized enterprises (SME) engaged in business-to-business (B2B),
business-to-consumer (B2C) and application-to-application (A2A) trade. With that audience in mind, the
X12 XML initiative is committed to developing and delivering products that will be used by all trading
partners interested in maximizing XML interoperability within and across trading partner communities.

The motivation to develop common standards for document interchange is to enable independent business
entities to communicate with minimal additional cost and effort across a wide range of business
opportunities. One way organizations can gain advantages of interoperability is by establishing a
common set of “good” XML and XML Schema guidelines. The current W3C XML specifications were
created to satisfy a very wide range of diverse applications and this is why there may be no single set of
“good” guidelines on how best to apply XML technology.

Although this document is created by X12 for its own use, it seeks a wider audience. While standards
developers comprise most of the people who attend X12 standards development meetings, the majority of
implementers may never participate in development of standards. SME are virtually not represented at
standards development meetings but their needs can be served by products resulting from those efforts.
Industries or associations who chose not to participate within the X12 environment can nevertheless
follow these guidelines and position themselves to meet interoperability demands of the next generation
of e-business standards.

Design rule decisions presented here are intended to balance the needs of all users of the standards. What
seems like an advantageous decision from one viewpoint can be disadvantageous from another, but the
intent was to produce guidelines to serve the common good.

Draft ASC X12 Reference Model for XML Design Rules

Page 3 of 74

1.2 High Level Design Principles
The following overall principles govern this design.

• Alignment with other standards efforts - We shall align with other standards efforts where possible
and appropriate. Such efforts include but are not limited to UN/CEFACT and OASIS ongoing
ebXML work, World Wide Web Consortium, and OASIS UBL.

• Simplicity - We shall keep components, interactions, use of features, choices, etc. to a reasonable
minimum.

• Prescriptiveness - This means that, for example, schemas shall be as specific as possible for their
particular intended usage, and not generalized. When applied to schemas, this leads to more schemas,
each with fewer optional elements and with fairly tight validations. This means that schemas actually
used by anyone (rather than template schemas for starting points) would tend to be analogous to an
Implementation Guide of a transaction set rather than the full standard definition of the transaction
set.

• Randomness - When applied to processing an electronic business document, this means that when the
document is being processed there are a limited number of variations that may occur in the data. It is
related to optionality and prescriptiveness. We shall keep randomness to a practical minimum.
NOTE: This provides a good philosophical basis for disallowing things like substitution groups and
the "ANY" content model when designing document schemas.

1.3 Background
The Extensible Markup Language (XML) history and ebXML Business Process and Core Components
have been part of the development that has brought us to where we are today. Appendix G contains a
more detailed review of each of these.

Draft ASC X12 Reference Model for XML Design Rules

Page 4 of 74

2.0 SCOPE

2.1 Introduction
This Reference Model addresses the semantic and syntactic representation of data assembled into
business messages. The semantic representation defines an overall architectural model and refines the
model to an abstract level of detail sufficient to guide the message development process. The syntactic
representation utilizes features of the target syntax, while imposing semantic-to-syntax mapping rules and
syntax constraints intended to simplify the task of interfacing business messages to business information
systems and processes.

The large-scale structure of this architecture has five discrete levels of granularity. Each level builds on
the levels below it in manners particular to their differing natures. The five levels are:

Template
Module

Assembly
Block

Component

The first two levels, Template and Module, provide features that promote interoperability between
national cross-industry standards and proprietary user communities. The remaining three levels,
Assembly, Block, and Component have characteristics expressly designed around a rational semantic
model for granularity. Specifications of optionality and repetition are supported for all levels with the
exception of the Template level. Special attention has been paid to the differing needs of senders and
receivers in expressing the use of optionality and repetition required by their particular business practices.

The five-level structure of this architecture is designed to provide useful granularity, while at the same
time preserving a useful semantic clarity.

Design rules come in two basic forms:

• Syntactic, and
• Semantic

An example of a syntactic design rule in X12 would be the basic data types, i.e. alphanumeric, date, etc.
An example of a semantic design rule in X12 would be the general prohibition against duplication. These
two aspects of design cannot stand alone. The existing X12 design rules are a direct outgrowth of the
particular X12 syntax and the history that created it.

For the ASC X12 XML Reference Model, a semantic design approach has been selected, breaking the
EDI lexicon into units for re-use. This approach has some pitfalls that result from a decomposition of
EDI issues using only syntax as a guide.

2.2 Support for Proprietary Efforts
A primary requirement for this effort has been to meet a need first expressed at the first XML Summit in
August 2001. This was a desire for non-X12 participants to contribute and make use of X12 work but in
a manner that didn’t require an all-or-nothing commitment to either the X12 process or X12 conclusions
in every detail. The top two layers, Template and Modules, directly support this need. An external entity,
corporation, organization, or individual can contribute fully-constructed Modules that fit into a Template.

Draft ASC X12 Reference Model for XML Design Rules

Page 5 of 74

The presumption is that differences in detail within a module might reflect unique business needs of the
contributor.

The level of conformance applied to these contributions would be two-fold. First, does it meet the
function and purpose expressed for a particular Slot in a Template? Second, does it conform to the purely
syntactic design rules established? A “cross-industry usefulness” test would not be applied. A
“duplication of existing item” test would not be applied. Adherence to the X12 philosophical structuring
of the bottom three layers (Assembly, Block, Component) would not be required.

Draft ASC X12 Reference Model for XML Design Rules

Page 6 of 74

3.0 RESOURCES
The following documents provided resources for this document.
• http://www.xfront.com/ - XML Schema Best Practices as maintained by Roger L. Costello
• http://www.ibiblio.org/xml/ - Café Con Leche
• http://www.w3.org/XML – XML Schema Specifications
• http://xml.coverpages.org/sgmlnew.html – Archive of Robin Cover’s XML Cover Pages at OASIS
• http://www.ietf.org/rfc/rfc2119.txt?number=2119 – Internet Engineering Task Force Request for

Comments 2119
• http://www.tibco.com/products/extensibility/resources/index_best.htm – Tibco’s XML Resources

Center Best Practices
• http://www.ebxml.org – ebXML Project
• http://www.ebtwg.org – UN/CEFACT electronic business temporary work group
• Ducket, Jon, Oliver Grffin, Stephen Mohr, Francis Norton, Ian Stokes-Rees, Kevin Williams, Kurt

Cagle, Nikola Ozu, and Jeni Tennison; Professional XML Schemas; Wrox Press, Birmingham UK,
2001

• Dodds, Leigh, “Designing Schemas for Business to Business E-Commerce”,
http://www.xml.com/lpt/a/2000/06/xmleurope/ecommerce.html

• Gregory, Arofan T. “XML schema design for business-to-business e-commerce”, XML Europe
Conference, 2000

• http://www.ebxml.org, Core Components Overview Vestion 1.05, May 10, 2001.
• http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf/057A71D114B95B0D85256AF5006CA

D86/1921E59CBABDEE2D85256AFB00605CB3, Initial DON XML Developer’s Guide, October
29, 2001

Draft ASC X12 Reference Model for XML Design Rules

Page 7 of 74

4.0 HIGH LEVEL DESIGN ARCHITECTURE

4.1 The Vision -- An Analogy
Imagine a horizontal bar containing a set of seven (7) wheels, each having eight (8) surfaces. As the
wheels are rotated on the bar, different surfaces are revealed [as illustrated in Figure 1], and on each of
the eight surfaces is a different word.

Each wheel rotates independently, thus the number of potential combinations grows exponentially with
each additional wheel. With each possible combination of block surfaces, a complete and meaningful
sentence is constructed.

This works because of grammar, the very thing that sentence structure is about. The logical placement of
the blocks [noun phrase + verb phrase], with each block representing a part of speech [article, adjective,
noun, verb, etc.], enables each combination to yield a meaningful sentence – some rather silly, but still
valid.

The electronic messaging problem is analogous to that of natural language. We have a basic business
need that is common, Invoicing, but some of the details are different due to product differences, which in
turn results in packaging differences, which ultimately results in shipping differences, etc.

This analogy illustrates some concepts which, when employed within electronic business message design,
provides a powerful solution to coping with differences, while at the same time retaining the conciseness
needed to direct implementation. Further, this approach also provides solutions for coping with external
organizations requiring a transition between proprietary approaches to that of a fully compliant standards
solution.

Business documents are much more constrained than natural language communications and must only
contain enough information to communicate who, what, when, where and why.

• Who answers which parties participate in the business transaction and the actors involved in the exchange.
• What answers the primary subject or purpose of the message.
• When answers timing details.
• Where answers location details.
• Why is typically answered by the message type itself, along with accompanying reference information.

 A big rat ate its dry
food.

Some tall boy bought his big shoes.

The little girl wore her pretty dress.

Ever
y

 little dog loves their squeaky toy.

Figure 1

Draft ASC X12 Reference Model for XML Design Rules

Page 8 of 74

Template

Module

Assembly

Block

Component

4.2 Context Inspired Component Architecture -- modularly flexible Smart Messages
Overview

The Context Inspired Component Architecture, “CICA”, is based on the results on many years of critical
analysis within the EDI/E-Business standardization efforts. This architecture leverages the best ideas to
date in E-Business development, and applies a few semantic rules and adds some levels of abstraction.

The architecture of CICA includes five (5) layers, as illustrated in Figure 2.

The Template is conceptually the highest layer to the
architecture, providing a “how used” description of the
contents of a complete business document.

The Module is physically separate from the Template,
but associated with the template on a Context case basis.
In other words, the Module is loosely associated with the
Template, and only bound with the Template when a
predetermined condition is met, Context. Modules
answer, at the document level, Who, What, When, Where
or Why. Modules are made up of one or more Assemblies
and/or Blocks.

Assemblies are reusable aggregations of Blocks.

Blocks are reusable, semantically limited units of infor-
mation. Blocks specify a Party, Resource, Event,
Location or Condition.

The Component is the fifth and final layer.
Data elements are defined within Components, and Components are placed within Blocks. Components
specify either identity information or characteristics for the given Block.

The terminology in Figure 2 can be related to the analogy in Section 4.1. The set of seven wheels in
Figure 1 corresponds to a template, each wheel corresponds to a module slot, and each surface of the
wheel corresponds to a module.

The highest level of the CICA architecture is the Business Document Template, “Template”. The
Template is divided into a header, detail and summary, and within each section are one or more Module
Slots, “Slots”. The Slots are a description of the abstract purpose of the slot, and act as placeholders for
details, which are specified in Modules. For each Slot, there are one or more Modules, the use of which is
determined by a specific pre-established context. For example, consider Figure 3, which depicts a
Template with three (3) slots in the header, and two (2) slots in the detail. If the cube shaped Slot in the
detail section of the Template represents Line Item, there are three (3) sector specific Modules which fit

Figure 2

Draft ASC X12 Reference Model for XML Design Rules

Page 9 of 74

Figure 3

into the Slot, each of which is used according to the context which specifies its use. For each Slot, one or
more Modules are created in order to fulfill the purpose specified by the Slot. Each Module is either
associated with the Slot as either the default Module, or with a specific usage Context. In order to
generate a Business Document, Context is specified and the requisite links are drawn upon to compile the
Context Specific Business Document.

4.3 Relationship between Vision and the CICA Architecture.

The vision, presented in Section 4.1 and Figure 1, is recast to present the key CICA constructs.

Each wheel diagram represents a single Template, Figure 4.

Figure 4

Shipper Commodity
Description

 Delivery
Address

Receiver Transport Inv DocHdr

Buyer
Utility Product

Desc
 Billing
AddressSeller

Account Invoice
DocHdr

OEM Parts
Place

of
service

SupplierMatlMgt Invoice
DocHdr

Payer Product
Description

Facility
Location

PayeeEvent Invoice
DocHdr

Template

header

detail

summary

Sector 1

Sector 2

Sector 3

MMoodduulleess

BBlloocckkss

Draft ASC X12 Reference Model for XML Design Rules

Page 10 of 74

A Template is determined based on business process circumstance triggering a unique situation. For
example, in Invoicing, there are two distinct trigger events that result in entirely different arrangements
and organizations of information – event based and account based. Event based Invoices are sent in
response to a trigger event [Order, Shipment, etc.] Account based Invoices are sent at regular time
intervals, with no specific precursor event. Therefore, a separate Template is used for each.

Each Wheel in the diagram is a template slot, which is an abstract specification for the Slot purpose. For
example, one Slot might be for the “Buyer”, even though various industries might have different terms
used in place of “Buyer”. Thus, each wheel surface represents a Module, which is where each industry
specification for the Slot is specified with a Module. The Module contains all of the details required for
that Context specific use of the Slot.

The power of this architecture is two fold. First, the modular flexibility provides structured flexibility,
maintaining stability at the context specific level. The second is the underlying layers of semantics,
which provide for levels of agreement. For example, it may not be possible to agree to the details of how
to specify product, but it is possible to agree that this is the place where product must be specified. The
layers provide a means to achieve agreement and harmonization that are practical.

Draft ASC X12 Reference Model for XML Design Rules

Page 11 of 74

4.4 Templates
Overview
Templates are the highest level construct in the architecture, and play a critical role in accomplishing
modularly flexible messages. Modularly flexible messages are an important innovation in that the
resulting Business Document is semantically concise, yet the Template provides a mechanism through
Module substitution for flexibility. The result is to accomplish both of which would otherwise be
considered opposing objectives – flexibility and semantically concise.

Templates are established for each business process specific use of a message. As in example, there are
two fundamental procurement models, event and time based. Event based procurement involves a buyer
and seller, where the buyer places a specific Order with the seller, the seller delivers in accordance with
the Order, and the buyer is Invoiced in accordance with an event. Examples of this include catalog
orders, trips to the store, traditional healthcare plans, etc. In contrast, time based procurement involves an
arrangement whereby the buyer and seller have a pre-existing relationship, the goods/services are
continuously available and used as desired, and invoicing occurs according to a time schedule. This
procurement style includes any statement/time based invoicing methods, specifically: utilities, credit card,
hotel stay, etc.

Contents

Shown in Figure 5 is a Template. A Template is divided into three logical areas, “Area”: header, detail
and summary. These subdivisions have semantic significance in that header information applies to the
entire Business Document and specifies the business context and parties to the business exchange, the

Invoice Doc Template

header

detail

summary

Figure 5

Draft ASC X12 Reference Model for XML Design Rules

Page 12 of 74

detail contains the subject of the message, and the summary contains summarized information about the
detail [use of this section is generally discouraged].

Within each Area are zero or more Slots. Slots, depicted in Figure 6 by various 3D wire frame shapes,
identify in abstract terms the logical composition of the message at the business purpose level. Slots are
absolutely specific in term of the logical business purpose that they identify. The Slots are abstract in that
they use a generic term, such as Seller, although various industries/sectors might use Supplier or Provider.
The abstraction is in harmonized terms, generally recognized terms independent of industry or sector
specific terminology. This aids in the reuse of the Templates, which are developed around Business
Process requirements.

Slots do not contain contents or data elements. They serve as a logical break between the purpose of
information and the detailed context specific contents.

Slots, like Modules, are designed around the Business Document need to express the Who, What, When
and Where, [as shown in Figure 6], which when combined detail a Business Document. Each Slot
specifies only one of the Who, What, When or Where, of the Business Process.

Slot
Types

Who
(Person

/Organization?)

What
(Subject: person,

place, thing or
event?)

When
(past, present or future)

Where
(Place, physical or

logical)

Figure 6

Draft ASC X12 Reference Model for XML Design Rules

Page 13 of 74

4.5 Modules
Overview
Modules specify details in accordance with the abstract business purpose identified by the Slots in the
Templates. A Module is required for each Slot identified in the Template, although it is possible that a
single Module can fill more than one Slot in a Template. It is expected that some of the Slots will have
only one or a small number possible Modules, such as Buyer or Seller. In other cases, there could
potentially be many different modules, based on perhaps business sectors.

Figure 3, shown earlier, illustrates a situation where multiple Modules are associated with a single Slot.
On the left are a set of Modules which can be plugged into the module slot. Each module in the example
has some commonality – shown by the shared red filled box. This commonality in some compositions is
not a requirement of peer modules, but what is certain is that there is different composition. Therefore,
amongst various industry sectors there are differences in information requirements for modules, e.g. line
item. The links, shown with arrows, are established for a context. What is meant by context is a specific
business circumstance that unambiguously links the specific Module to the Module Slot in the Template.

At the Template level, for each of the Slots, context specific links are made between Slots and Modules.
Modules can be reused many times across Templates, whether they are:

• Peer Templates: Templates which serve the same general business function, such as Invoice.

• Same Business Process: Templates used within the same business process. It is expected that a
single Module could appear in multiple or all Templates used in the business process.

• Same Sector: Modules which are sector specific, such as ones specifying the sector's product/service,
could be used in a variety of business processes in which sector members participate.

Types

Modules, like Slots, are formed
around semantically motivated
boundaries. Grammatically speak-
ing, like Slots, Modules specify
either a Who, What, When, Where
or Why, as illustrated in Figure 7.
The Slot identifies the need for a
module in terms of the Purpose, or
business usage, which is identified
in abstract terms. The Module
supplies a set of details respond-
ing to the prescribed purpose, the
Slot.

Business documents also need to
explicitly specify the relationships
among their components, to re-
flect the appropriate structure of

Module
Types

Who
(Person

/Organization?)

What
(The

Subject,
which can be

a person,
place, thing

or event)

When
(past, present or

future)

Where
(Place,

physical or
logical)

Figure 7

Draft ASC X12 Reference Model for XML Design Rules

Page 14 of 74

those components during assembly. Knowing how the pieces fit together in the overall structure
encourages reuse of the components in other documents or processes. In some cases the structure will be
simple, but where documents represent a large volume of different items, or multiple references (e.g. a
ship notice containing items requested in separate purchase orders), the structure can easily become more
complex.

Contents
Modules are made up of reusable constructs, which are either Assemblies or Blocks. A Module can be
constructed from a single Block, or a set of Blocks and Assemblies.

Placing a Block or Assembly into a Module gives it a semantic purpose. Modules can be complex
enough to require the use of multiple Blocks and Assemblies, although the primary purpose is singular.
For example, within Vital Records exists the need to specify a party who has died, a decedent. The
decedent is the Module, as shown in Figure 8, but peripheral to the decedent are the birth/parents, last
address, spouse/marriage, and adoption/parents, etc. These are descriptive details about the decedent
involving parties, locations, events, etc.

Figure 8

Identity

Party
Decedent

Characteristics

Location

Resource
Event

Party

Draft ASC X12 Reference Model for XML Design Rules

Page 15 of 74

4.6 Assemblies
Overview
Assemblies are a construct used to create reusable groupings of Blocks. Like Blocks, they are
independent of usage and fit between Modules and Blocks. Blocks, which are detailed in the following
section, are semantically limited to specify a single Party, Location/Place, Resource, Event or Purpose.
Various groupings of these constructs can be very convenient to construct for purposes of reuse and
applying structure. For example, party + location are commonly used constructs and an Assembly is a
convenient means for managing this reuse.

Assemblies also play a role in providing structure.

Types
Assemblies will typically have a primary type. In the example above using party + location, the purpose
of the assembly is to specify a Party of a type that has a location. While location information is supplied,
the primary purpose is to specify the Party.

Contents
Blocks are the only contents available to place within assemblies.

Draft ASC X12 Reference Model for XML Design Rules

Page 16 of 74

Blocks

Party

Resource

Event

Location

Purpose

Identity

Characteristics

Characteristics

Characteristics

Characteristics

Characteristics

Identity

Identity

Identity

Identity

4.7 Blocks
Overview
Blocks are constructs, created to specify a single Party, Resource, Event, Location or Purpose. Blocks are
concise units, in that they specify in detail and with all that applies to the Identification and
Characteristics of the object being specified.

Types
Blocks specify a single noun, either a Party, Location,
Resource, Event or Purpose [as shown in Figure 9].
Blocks have Identity information about the noun they
are specifying and may include Characteristics.
Anything less is not a Block; anything more must be
an Assembly or Module.

The single noun is a critical element of this
architecture's granularity. All Blocks are comprised
of a single noun, therefore,
semantically Blocks carry
noun information and are
predictable in terms of
completeness. This granularity assures
that peer Blocks are semantic equivalents. This is a
foundation required to achieve modular flexibility.

Contents
Each Block contains Identity information that varies
depending on the type of Block

Figure 9

Draft ASC X12 Reference Model for XML Design Rules

Page 17 of 74

4.8 Components
Overview
Components are the lowest level contained within this architecture. Components, like Blocks, are formed
based on the need for a physical arrangement of information. For example, given two types of Parties, an
individual and an organization, the identity information required for the two types of Parties is
significantly different, therefore the components used to specify identity are different. The need for
different components results in the need for separate Blocks.

Types
Components are used to specify one of two types of information, Identity or Characteristics. Identity
information is going to vary based on the Block type. The details required to identify a person are
dramatically different from those details used to identify an event. Characteristics provide descriptive
information, such as physical or demographic details. Typically, characteristics are a unit of measure or
are one of a finite list. Some examples of characteristics are height, weight, hair color, class of service,
property feature or quality, etc.,

Contents

BlocksModules

Figure 10

Draft ASC X12 Reference Model for XML Design Rules

Page 18 of 74

5.0 STRUCTURING
Given the number of industries, organizations and business processes that are involved in making
eBusiness standards – there is no shortage to the complexity. In this environment, even making
the determination that two things are the same is not as straightforward as it sounds. And when
they are not the same, how many ways can they be related? And what conclusions and
knowledge can be drawn from structural relationships?

This effort relies heavily on a strong semantic foundation for all decisions. Integral with the
strong semantic foundation is the need for quantifiable indicators for making decisions, including
the ability to quantify precisely the ways in which two things might be considered related and at
what point they are to be considered the same.

From these tests, rules can be formulated to reinforce these conclusions.

5.1 Structure Rules Overview
There are three tests that can be applied when comparing two candidate information constructs to
determine the level to which they are related. These are Form, Fit and Function, and they are
taken from the Parts world where they are used to determine when a new part number needs to be
assigned. These tests, while the same for each CICA construct, have slightly different
implications depending on the semantic abstraction of the construct. Modules, the most
semantically specific construct, are more sensitive to purpose and usage and a little less impacted
by structure. In contrast, Blocks contain abstract semantics and are affected more by structure.
These details effect how to apply these tests and the resulting rules. The general concepts are
presented below.

For eBusiness considerations, Form, Fit and Function are defined as follows:

FORM: Physical – the structure, contents and components of the information structures being
specified. For example, parts have names and so do people. People have first, middle and last
names, whereas a part has a single name, part name. The difference in Form makes these two
types of names different. In contrast, you might have a Student First Name and Student Last
Name, compared with a Patient First Name and Patient Last Name.

FIT: Identity-Meaning-Specificity – Two organizations or industries that share the common
element named Part Number have reason to believe that there is some commonality. Sometimes
two uses of an identically named item do not provide the same level of specificity, and therefore
these items are not the same thing. For example, a case requiring a single number, Part Number,
to communicate the desired item, is not equal to another case that requires the Part Number,
Catalog Number, and Page Number to convey the desired item. The use of Part Number in the
two cases provides different levels of qualification to the recipient. It cannot be true that Part
Number = Part Number + Catalog Number + Page Number. These are two different levels of
specificity of information, even though their users are accustomed to calling them both Part
Number.

FUNCTION: Purpose or how used. When comparing two information structures, occasionally it
will be observed that there is a common purpose – which causes some to expect to treat them as
the same. In the Form example above, Part Name and Person Name are compared. They are
common in that both are designed to specify the Name; they have a shared purpose. Many
examples of this exist in eBusiness; Product being one of the more obvious examples. In this

Draft ASC X12 Reference Model for XML Design Rules

Page 19 of 74

case, many business documents need to specify a product, and with the multitude of industries
involved the details required to specify that product [goods or service] vary dramatically. For
example, Part ID/Number is used to specify THE item being referenced. But in some industries
other item identification schemes are used, such as catalog number, part name, UPC, etc. These
are all used in the same purpose or function.

5.2 Detailed Structure Rules
The levels of equality that are true determines how related two information constructs are.
Consider the following:

5.2.1 Condition 1:

FORM = YES
FIT = YES
FUNCTION = YES

When all three test are true, then with 100% certainty we can determine that the two are the same
thing, the constructs are semantically equal. Examples of this situation are Shipper, Seller, or
Supplier. These are different industry-specific terms for a semantically equivalent party playing a
role. Frequently the descriptive details are exactly the same; and when that case is true, they are
semantic equals in every sense.

5.2.2 Condition 2:

FORM = NO
FIT = NO
FUNCTION = YES

When equality is based on function alone, the two information constructs appear below a
common parent structure. For example, in the travel industry you have rooms in hotels and
passenger seats on flights. Although they are specified with different data elements and are called
different things, they are used in the same manner in a business process/message. Thus, the two
appear beneath a common parent [at some level], possibly human service products.

5.2.3 Condition 3:

FORM = YES
FIT = NO
FUNCTION = NO

This case is very common in EDI today and is basically the case in question. The X12 N1 loop
specifies the name, id and address of any party, person or organization. The fundamental
difference is that in the CICA architecture, Blocks are specified for the various data arrangements
[different where a party is an individual versus an organization]. Further, this is independent of
whether the construct can represent many purposes, which is the expected case. Therefore, in
terms of Blocks, it is expected to have a single block [Party with First, Middle and Last Name]
used for many specific parties: Passenger, Patient, or Student.

Draft ASC X12 Reference Model for XML Design Rules

Page 20 of 74

5.2.4 Condition 4:

FORM = NO
FIT = YES
FUNCTION = NO

This is the case where an information construct serves the same semantics in two different
settings/business conditions, but it is used differently and has different components.

5.2.5 Condition 5:

FORM = YES
FIT = NO
FUNCTION = YES

In the automotive industry, Part Number is used to specify the desired product.

Ford has a significant digit part number which is really a composite of several identifiers: base +
change number + color number + location on vehicle + etc.

GM and others have a part number too, but it refers only to the base. Separate additional values
are required which include: change number, color number, location on vehicle, etc.

Both of these are related ... they are used to specify THE part, but they are NOT semantically
equal ... they do not provide the same level of specificity. Therefore, although they are used for
the same base purpose, they cannot be used interchangeably.

5.2.6 Condition 6:

FORM = YES
FIT = YES
FUNCTION = NO

This case happens primarily when multiple business processes are involved. Consider a scenario
where a Doctor is treating Patients versus a scenario of a business process where a Clinic is
communicating its Assets – its staff. In both cases the form and fit are the same, but the function
is different. It is unclear what structural implications this case has.

5.2.7 Condition 7:

FORM = NO
FIT = YES
FUNCTION = YES

In this case there is a difference in form, as is the case with Person Name versus Organization
Name. Both cases are serving the function to specify the Party. Last Name does not equal
Organization Name, because they don’t deliver the same level of precision. In order to achieve
the same level of “Fit”, it is Organization Name = Last Name + Middle Name + First Name. Fit
ensures semantic equality.

Draft ASC X12 Reference Model for XML Design Rules

Page 21 of 74

5.3 Preliminary Block Structures
Applying these rules and the desire to illustrate the concepts presented in Section 4 has lead to an
initial set of Block constructs that are at a level where we are accustomed to operating in the EDI
world. The usage-independent nature of Blocks makes them inherently cross industry.

Blocks contain two types of information,
Identity and Characteristics. Identity
information is used to specify the unique,
instance identity of the Block. The content is
dependent on the type of Block. This will be
examined in more detail in a subsequent
section. Characteristic information is
descriptive information, which is typically in
one of two forms, pick-list or value plus unit of
measure. Examples include: length, width,
height, weight, eye color, temperature, etc.

5.4 Party Blocks
The party answers a single who question. Parties in a process and message can be individuals or
organizations, or combinations of the two. In some cases the parties are also actors. For
example, many purchasing applications need only buyer and seller organizations as actors,
optionally identifying contact persons. With other processes, the party becomes the subject of the
message, e.g. health care, education, or law enforcement. In these latter cases, the data
represented in the process and subsequent messages become more detailed. The detail manifests
itself in one of two ways, first with characteristic details [height, weight, eye color, etc.] conveyed
at the Block level and secondly, details that need to be associated with the party but are not
intrinsic to the party. For example, other parties, events, locations, etc. might need to be
associated with a base party block in order to construct a complex structure. This is done in an
abstract manner with Assemblies and a context specific manner with Modules. The key point is
that these complex needs, beyond those of Characteristics, are accomplished with other blocks.

This approach allows Blocks to focus on what is directly attributable to a Block, usage
independence.

The fundamental difference between Role Player and Subject parties is that Role Players tend to
have Identification information, but not to have Characteristics. Therefore, any Party can be a
Role Player.

Based on the set of structure rules detailed in Section 5.2, the top level breakdown for Party is
depicted in Figure 12. Differences in the Identity and Characteristics ranges specifically
prescribe this breakdown. Identity information for an Organization includes a Name and an
Organization ID number. However, there is a fundamental difference between Corporations/
Businesses and Regulatory Organizations, leading to a further breakdown subordinate to that of
Organization. The Name probably doesn’t vary, but the organization might have a number of ID
numbers depending on context. However, they are all ID numbers that are suitable and
appropriate for the identification of an organization.

Block

Identity

Characteristics

Figure 11

Draft ASC X12 Reference Model for XML Design Rules

Page 22 of 74

Figure 12

Individuals, having First, Middle, Last Names as part of their Identity, clearly are different from
Organizations. Further, as Individuals we are managed and served within our environments. Between
9:00 a.m. and 5:00 p.m., Parties take on an alter ego by assuming roles, such as Employees or Students.
This calls for additional identity information: titles, status, etc. If this is the case, there are a couple of
individual Blocks, that of Person and Person Working.

5.5 Resource
Economic resources answer the what questions in a business document. As Figure 13 shows, resources
break down into products and financial instruments. Products are the goods and services of value

Figure 13

• Identity
• Characteristics

Party

Individual

Organization

Person

Person
Working

Corporation or
Business

Regulatory
Organization

,

Economic
resource

Product

Financial
instrument

Goods

Services

Cash

Credit

Draft ASC X12 Reference Model for XML Design Rules

Page 23 of 74

generated by companies for their customers, while the financial instruments – various forms of cash or
credit – are the means by which the customers pay for those goods and services.

5.6 Events
Events answer the when question in business documents and are easily spotted with the telltale date and
time details. As shown in Figure 14, preliminary thoughts are that there are two primary types of Events,
basic events and experiences. Basic events include the Event Identity [which of course includes a
Date/Time]. Basic Event examples include Birth, Incorporation, Shipment, events which are immutable –
they happened. Experiences cover the type of specialized Event which are mutable and tend to have
durations (certificates, level of attainment, status), and time periods such as in licensing. Further
definition is still needed for capturing histories, such as audit trails or shipping/receiving histories.

Event

• Identity
• Date
• Time

Basic event

• Identity
• Date/time period

• Characteristics
• Attainment/
 Certificates
• Status

Experience

Figure 14

Draft ASC X12 Reference Model for XML Design Rules

Page 24 of 74

5.7 Location
The location represents the answer to the where question in a business process (Figure 15). Locations are
either physical or electronic, but each provides as part of its identity a precise and unique address.
Physical locations can be represented either in geography by latitude and longitude readings, or by postal
and delivery addresses. Electronic addresses in order to be unique often need to follow standard schemes,
such as Uniform Resource Indicators or ITU international telephone number conventions.

Figure 15

Location

Physical
Location

Electronic
Location

Identity:
• Street address
• Building name
• Internal Routing
• Suite
• City
• State/Region
• Postal Code
• Country

Postal location

Geographic
 Location

Identity
• Latitude
• Longitude
• Location Name
• Property Location Text

Identity:
• Postal location
 +
• Sub-location

Delivery location

Identity:
• Type
• Contact Number

Telecom Location

Identity:
• Address

Email Location

Draft ASC X12 Reference Model for XML Design Rules

Page 25 of 74

6.0 OTHER DESIGN ISSUES

6.1 What Constitutes a "Bullet" Document?
Concept Defined
A document sent from one person or organization to one or more persons or organizations
containing a single instance of a primary subject including supporting details or data.

Example

Discussion

A "single primary subject" does not imply there can only be one line item in a single business
document.

The current X12 TS 837 for health care claims allows information for more than one patient to be
submitted in a single transmission or a single instance of a transaction set. Applying our
definition of a document would require six documents for six patients, a document for each, that
could contain multiple supporting details for that patient.

6.2 Default Override
Concept Defined
In order to specifiy a delivery of a line item, you must say what it is and to where it will be
delivered. If XML maps those two things at each line item, it is simply syntax conversion. Using
"default" requires (1) sorting capability, and (2) knowledge of doing comparisions to determine if
the detail matches the default. If XML were to require that advanced processing capability and
knowledge, simple off-the-shelf tools will not handle it, resulting in a situation that precludes
bringing on board the SMEs.

Depending on your specific concerns this might be thought of as "duplication of data problem”,
"default and overriding data", or perhaps "table 1 & table 2 semantics".

Example
X12 Practice:
1) The X12 "Semantics in EDI" paper states the premise like this (paraphrasing here in a semi-code-like
fashion)
1-A) If some data XXX appears in both table-1 and table-2, The data XXX is considered default values for
all iterations table-2.

1-B) if the data YYY appears in an iteration of table-2, The data YYY overrides the earlier data XXX.

2) Many X12 docs have multiple sections that carry "structurally-like" but "semantically-different" data.
What makes this worse is that in situations where the two "hunks" of data might be the same, a need
(perceived or otherwise) for data compression leads to gyrations in either the message construction (read:
weird loop or HL) or usage (read: gotta explain it in the IG). All so you don't have to send/specify the
values twice.

Draft ASC X12 Reference Model for XML Design Rules

Page 26 of 74

Discussion

o Problems:
This is understood well by the X12 community, perhaps too well. This "fact" of the overriding defaults is
not consistently pointed out in our semantic notes for particular Transaction Sets, and thus often must
appear in implementation guides. And if the references to it are not called out well, a recipient can
misinterpret the intent of the sender.

A related issue revolves around duplication of structure (and data values) in messages (and their instances).
We have discussed this as a "multiple" roles issue. For instance, in a health care claim there is always a
subscriber and a patient. Groups of segments are provided in the 837 for both, and the HIPAA guides (and
other IG's) describe what values to send when both are the same person.

Straw Man Proposal:
Suppose we introduce specific "semantic attributes" to positively indicate in the instance data stream the
situations/conditions described above. Not wanting to color things too much, I'll give the attributes silly
names. I think good final names for these attributes are terrifically important.

My thinking is that these attributes might only appear on what we have been calling "modules"/"blocks", I
fear using them in a finer-grain manner may introduce as many problems as we solve.

Examples:

1) A typical "table1 is default"-"table-2 overrides" example

1-A) To indicate that something is a "default” we have an attribute for modules as in:
 <ShipTo gork="default"> --ship data-- </ShipTo>

1-B) Later in a "table 2 iteration" (not limited to this, but to keep discussion simple) we have additional
overriding shipping info:
 <LineItem>
 <ShipTo gork="override"> --ship data-- </ShipTo>
 --line item data--
 </LineItem>

2) A simple "Same As" or "Also Is" example,

2-A) A module of "subscriber" info stating it is also the "patient"
<Subscriber woof="Patient"> --party info-- </Subscriber>
-or-

2-B) A module of "subscriber" followed by a module of "patient"
<Subscriber> --party info-- </Subscriber>
<Patient woof="subscriber"> --info?-- </Patient>

3) Complex or "deep hierarchy" document twist on things. We might need an attribute to make sure we
link the right "pairs" default/override or same-as/also-is modules. I propose here a "serialization"
mechanism, knowing full well this kind of think might make some folks freak.

3-A) Variation of 1-A/1-B
 <ShipTo gork="default" blat="001"> --ship data-- </ShipTo>
 ...
 <LineItem>
 <ShipTo gork="override" blat="001"> --ship data-- </ShipTo>
 --line item data--
 </LineItem>

Draft ASC X12 Reference Model for XML Design Rules

Page 27 of 74

3-B Variation of 2-B
 <Subscriber blat="001"> --party info-- </Subscriber>
 <Patient woof="subscriber" blat="001"> --info?-- </Patient>

Conclusions:
By Expressly stating the individual semantics being expressed in the instance document, we are able to
avoid "implicit" relationships that now appear irregularly in semantic notes and IG's.
I also think use of attributes here is perfect, as we are conveying "semantic relationships" in a way that is
outside of the "data content". I am unsure this morning if the two concepts (Default/Override in example 1
and SameAs/AlsoIs in example 2) should use the same attribute ("gork" & "woof" in the examples) in
practice.

o DEFAULTs
OK, this was a little difficult to read, so let me start with stating what I understand. You propose that we
use attributes to explicitly specify that something is a "default". And, that this occurs at the 'block' level,
only.
You are proposing that we specify attributes, at the block level, which explicitly declare its contents to
include "defaults" [or do you mean then entire block is a default]. Does each piece of info, which is a
default, have a default attribute designation?
How will this effect mandatory versus optional? Semantically speaking, the information is mandatory.
But, if a default block is used, then the info in the subsequent blocks is optional. So, the default block must
be mandatory! Is this what you had in mind?
I think this default concept works.
On the other one, the sameAs/alsoIs, I'm not sure about this one. This one is more difficult because of the
mandatory/optional stuff. If the Subscriber = Patient, then you shouldn't have to supply some patient
details, but otherwise these are mandatory. How do we handle this? Could we have mutually exclusive
sections, one for when the subscriber is the patient, and one for when the subscriber is not?
This is a pervasive problem that can have far reaching consequences. It is important that we give some
serious thought to how to go about solving this.

Decision

Rules

6.3 Two Roles for Same Instance Information: Explicit vs Referential
Content

Concept Defined
Many business documents have data structures that repeat. Sometimes the identical data
structures can contain identical content as well. Examples include ship to/bill to,
subscriber/patient, manufacturer/vendor, etc. For these cases it’s quite reasonable to consider
whether specifying a way to eliminate repeating data (referential content, implied content, or
inferred content) is better than just repeating the data (explicit content) where applicable. The
following example illustrates an instance of this situation.

Example

Draft ASC X12 Reference Model for XML Design Rules

Page 28 of 74

Explicit Content
<HealthCareClaim>
 <Subscriber>
 <IdentificationCode>1</IdentificationCode>
 <Name>Santa Clause</Name>
 <Address>North Pole</Address>
 <WorkPhone>555-555-9627</WorkPhone>
 </Subscriber>
 <Patient>
 <IdentificationCode>1</IdentificationCode>
 <Name>Santa Clause</Name>
 <Address>North Pole</Address>
 <WorkPhone>555-555-9627</WorkPhone>
 <EmergencyContact>Mrs. Clause</EmergencyContact>
 <EmergencyPhone>555-555-9628</EmergencyPhone>
 </Patient>
 <ReasonForVisit>Chimney Smoke Inhalation</ReasonForVisit>
 <Total>73.48</Total>
</HealthCareClaim>

Referenced Content
<HealthCareClaim>
 <Subscriber>
 <IdentificationCode>1</IdentificationCode>
 <Name>Santa Clause</Name>
 <Address>North Pole</Address>
 <WorkPhone>555-555-9627</WorkPhone>
 </Subscriber>
 <Patient>
 <PatientSameAsSubscriber>true</PatientSameAsSubscriber>
 <EmergencyContact>Mrs. Clause</EmergencyContact>
 <EmergencyPhone>555-555-9628</EmergencyPhone>
 </Patient>
 <ReasonForVisit>Chimney Smoke Inhalation</ReasonForVisit>
 <Total>73.48</Total>
</HealthCareClaim>

Discussion

Arguments for the Referential Approach
1. Smaller XML instance documents

a. Requires less bandwidth
b. Requires less storage space

2. Consistent with a referential approach to data structures that some developers are comfortable
with.

Arguments for the Explicit Approach
1. Easier to express as an XML schema design rule.
2. Easier to to apply as an XML schema design rule. Schema standard working groups will set

standards faster and be more confident in their decisions.
3. The data structure requirements of a business document can be expressed exclusively in the

associated XML schema. Additional documentation is required for the referential approach.
4. Instance documents are clearer (arguably).
5. Easier for companies to implement.

Draft ASC X12 Reference Model for XML Design Rules

Page 29 of 74

a. Slightly lower learning curve.
b. Lower development, integration, and testing costs.

6. Lower costs to bring new trading partners on-line.

Notes
1. Some have suggested that their on-line purchase experiences validate the referential

approach. Many B2C e-commerce sites (like Amazon.com) require bill-to and ship-to
information. These sites often require that the user enter bill-to information and allow the user
to simply click on a “Same as Bill-To” check box rather than enter duplicate information in
the Bill-To fields (if applicable). This case really doesn’t apply to the rule under discussion
since the driving factor for the user interface design (web page) is user convenience which
does not necessarily suggest a corresponding data structure on the web server.

2. If one takes the referential approach, would the reference be required if the data matches? In
terms of our example, if the subscriber data and reference data match, must the patient be
referenced? Is it acceptable for the patient data to be explicity expressed (i.e. duplicated)?

3. Are there cases where one would need to know that the patient is the subscriber?
4. This rule is related to but independent of the use of identification codes. For example, the

XML schema may require subscriber and patient identification codes and not require any of
the demographic information. Considerations about this type of data structure are not affected
by the rule under discussion.

5. People’s time is money.
6. Delayed ROI is money.

Decision

Rules

Draft ASC X12 Reference Model for XML Design Rules

Page 30 of 74

7.0 METADATA AND ORGANIZATION

7.1 Storage of Templates
In general, the storage of Templates must accommodate a few types of classifications and a
logical structure ranging from general to specific which differentiates amongst like documents.
For example, consider the following discussion of procurement/invoicing.

Consider the event based procurement scenario. Principally, there are two possible events that
trigger the invoice, Shipment or Order Complete.

In the Shipment triggered invoice, there is a common ship method [carrier and details], and
common point of shipment origin [tax authority], therefore part of the document level context
information should include the Carrier and Tax details.

Order triggered invoice covers potentially multiple shipments, multiple ship from/ship to
destinations, etc. Therefore, tax and carrier/delivery information must be determined at the line
item level. These differences are reflected with the use of different Templates.

Further, for data compression reasons, historically EDI message design would want a third invoice
style, which is really a combination of the two previous invoices. In this scenario, “default”
information would be specified in the header, and then the same details could appear at each line
item. When the details appear at the line item level, for that line item the default information is
overridden by the line item level detail. This style requires significant processing knowledge,
based on contents, and a latter section will comment on continued support.

This example details the requirement for three different Templates, all Invoices, all used in Event
based Procurement, and all with subtle differences. Clearly, there are a number of classifications
that users might be interested in using on this set of documents: procurement process general,
event based procurement, finance related, etc. All of these classifications are flat; you are a
member or you are not a member.

In addition to these flat classifications is the need to logically organize the various like Templates,
such as the family of Invoices, in accordance with their similarities and differences. This
requirement is to facilitate reuse and to assist implementers in making proper Template selection.

7.2 Storage of Modules
Modules, like Templates, have two fundamental storage/retrieval requirements. Basic
classification is analogous to set theory; you are a member or you are not a member. Storage for
this is flat.

Draft ASC X12 Reference Model for XML Design Rules

Page 31 of 74

Figure 15

In addition to this flat classification is the need to logically organize the various like Modules,
such that the family of like Modules are organized in accordance with their similarities and
differences. This requirement is to facilitate reuse and to assist implementers in making proper
Template selection.

Identity

Party
Decedent

Characteristics

Location

Resource
Event

Party

Draft ASC X12 Reference Model for XML Design Rules

Page 32 of 74

8.0 XML SYNTAX DESIGN

8.1 General
8.1.1 Scope and purpose

This section addresses XML syntax design issues that are common to both the
design of XML messages (instance documents) and schemas describing those
messages.

8.1.2 Rules
8.1.3 General Rules
8.1.4 Versioning
8.1.5 Internationalization Features
8.1.6 Industry Domain Context
8.1.7 Software processing considerations

8.2 Messages

8.2.1 Scope of purpose
This section addresses XML syntax design issues relevant to the design of XML
messages (instance documents).

8.2.2 Naming Conventions
8.2.3 Standardization Conventions
8.2.4 Instance Document Conventions

8.2.5 Absence of Data and Related Considerations
Absence of data - If an element or attribute does not occur in an instance
document, no semantics shall be interpreted from it, i.e. no default values shall be
assumed. Nothing can be inferred other than that the creator of the document did
not include the element or attribute in the document.

Spaces - Spaces sent as values for string type elements or attributes shall be
interpreted as spaces. Leading and trailing spaces should be removed, but are
assumed to be significant if they appear.
NOTE: We have yet to achieve consensus on this recommendation. We may revise it
pending discussion of the schema whiteSpace facet (preserve, replace, or collapse).

Zeroes - A zero appearing in a numeric type element or attribute shall be
interpreted as a zero value.

Nullability - In certain cases, it may be desirable to convey that an element has
no value (a null value) rather than indicating that it has a value of spaces or that it
is not present in a document. In these cases, the originator of the instance
document should convey explicitly that an element is null using the null type
(e.g. xsi:null="true"), rather than using zero, spaces, or an empty element.

NOTE: We have yet to achieve consensus on this recommendation.

Draft ASC X12 Reference Model for XML Design Rules

Page 33 of 74

8.2.6 Comments

8.2.7 Elements vs. Attributes
Description: Often it is possible to model a data item as a child element or an
attribute.

Benefits of Using Elements
• They are more extensible because attributes can later be added to them

without affecting a processing application.
• They can contain other elements. For example, if you want to express a

textual description using XHTML tags, this is not possible if description is an
attribute.

• They can be repeated. An element may only appear once now, but later you
may wish to extend it to appear multiple times.

• You have more control over the rules of their appearance. For example, you
can say that a product can either have a number or a productCode child. This
is not possible for attributes.

• They can be used in substitution groups (if substitution groups are used).
• They can use type substitution to substitute derived types in the instance (if

type substitution is used).
• Their order is significant, while the order of attributes is not. Obviously, this

is only an advantage if you care about the order.
• When the values are lengthy, elements tend to be more readable than

attributes.

Disadvantages of Using Elements
• Elements require start and end tags, so are therefore more verbose.
• No type checking is possible when using elements with DTDs (if DTDs are

supported).
• Default values are not possible with DTDs (if DTDs are supported).

Benefits of Using Attributes
• They are less verbose.
• If you plan to validate using DTDs as well as schemas, you can perform

some minimal type checking on attribute values. For example, color can be
constrained to a certain set of values. Element character data content cannot
be validated using DTDs.

• Attributes can be added to the instance by specifying default values.
Elements cannot (they must appear to receive a default value)

Disadvantages of Using Attributes
• Attributes may not be extended by adding children, whereas a complex

element may be extended by adding additional child elements or attributes.
• If attributes are to be used in addition to elements for conveying business

data, rules are required for specifying when a specific data item shall be an
element or an attribute.

Recommendation: Use elements for data that will be produced or consumed by
a business application, and attributes for metadata.

Draft ASC X12 Reference Model for XML Design Rules

Page 34 of 74

NOTE: There is at least one significant, continuing dissenting opinion to
this consensus. An alternate position paper is being prepared by Bob Miller.

8.2.8 Namespaces
XML schemas allow for instance documents that have zero, one or many
namespaces. The namespace of an instance document is specified as a "target
namespace" of the schema document.

Benefits of Using No Namespace
• It is simpler: there are fewer design decisions to be made, and instance

documents are more readable.
• DTDs do not mix well with namespaces, so if DTD validation is planned, use

of namespaces will complicate it.
• Allows for use of "chameleon" design. In other words, when a schema that

has no targetNamespace is included in another schema, the components
within the included schema taken on the same namespace as the including
schema - therefore, they are "chameleons".

Disadvantages of Using No Namespace
• Most XML processors cache schema components for validation by

namespaces. If no namespace is used, there will be no caching. Processing
is therefore much less efficient without namespaces.

• Most current XML schema designers are using namespaces, so not using
them will go against convention.

• More work is required to avoid result name collision, i.e. if there is an
element in the included schema that has the same name as an element in the
including schema, an error will result.

Benefits of Using One Namespace
• The vocabulary of an instance document is immediately recognizable.
• One namespace declaration does not significantly complicate an instance

document.

Disadvantages Using One Namespace
• The size of a single namespace for the whole of X12/XML may be rather

large, even when a particular instance document uses a limited number of
components from the namespace. Processing efficiency is reduced if a
single, large namespace is used.

Benefits of Using Multiple Namespaces
• Namespaces can be used to categorize components.
• Helps to avoid name collision.
• It is easy to distinguish "core components" from extensions.

Disadvantages of Using Multiple Namespaces
• Multiple namespaces lead to a more complex design.

Draft ASC X12 Reference Model for XML Design Rules

Page 35 of 74

Recommendation
Use a tiered, hierarchical approach to namespaces. One core namespace shall
include components to all functional X12 subcommittees. Each functional
subcommittee (or other logical grouping) shall have a unique namespace that
imports the common namespace. All instance document schemas related to the
subcommittee (or other logical grouping) shall use that subcommittee namespace.

8.2.9 Communication Intregrity - envelope, security, Header information --
To Be Completed

8.2.10 Processing Instructions
Description: Processing instructions can be used to pass information to the
processing application.
Benefits:
Risks: Processing instructions usually contain information that should normally
be included in the document as XML.
Recommendation: Do not use processing instructions in either the schema
document or the instance.

8.3 Schema
The purpose of an XML schema is to define the allowable content and structure of an
XML instance document. Based on the message design philosophy from Section 4.0 of
this document, a notional X12/XML message or instance document was created and is
located in Annex B of this document. An accompanying XML schema for the notional
X12/XML message needs to define the allowable content and structure in terms of
templates, slots, modules, assemblies, blocks, and components as defined in Section 4.0.
Annex C contains a notional X12/XML schema for the notional X12/XML message
located in Annex B.

8.3.1 Scope and purpose
This section addresses XML syntax design issues that are relevant to the design
of schemas describing XML messages (instance documents, or business
documents).

8.3.2 Schema Considerations for Namespaces, Nullability and Related
Issues
String type - An empty string type element or attribute satisfies mandatory
constraints in XML schema (elements with minOccurs of 1 or mandatory
attributes). Therefore, elements or attributes with a type of string that are defined
as mandatory shall be defined with a minimum length requirement of 1. To be
considered: Require a pattern of at least one non-space character for such
required elements or attributes. To satisfy the requirement for a string element or
attribute, XML schema considers any Unicode character to be valid. One space
in a string element or attribute is considered valid.

Nullability - An element shall not be marked as nullable if it is mandatory, i.e.
minOccurs is one. Conversely any element defined with minOccurs of zero shall
be nullable.

Draft ASC X12 Reference Model for XML Design Rules

Page 36 of 74

NOTE: We have yet to achieve consensus on this recommendation. We may revise it
pending discussion of the schema whiteSpace facet (preserve, replace, or collapse).

8.3.3 Content Models
• Use of Mixed Content

Description: Elements with mixed content are allowed to have both child
elements and textual content.
Benefits: Mixed content is useful for textual descriptions, which may or
may not contain markup to indicate emphasis, formatting, etc.
Risks: The textual content of mixed elements cannot be validated or
constrained to any particular data type.
Recommendation: Do not allow mixed types since they are inappropriate
for usage in documents designed solely for data exchange.

• Wildcards
Description: XML Schema allows wildcards to be specified in content
models (using <any>) and attribute declarations (using <anyAttribute>).
Benefits: Wildcards allow a content model (or attribute list) to be highly
flexible, making them more extensible.
Risks: Wildcards can sometimes allow invalid data (e.g. a product with two
sizes when only one is allowed), so they should generally be used only for
elements in other namespaces.
Recommendation: Disallow use of wildcards.

• Abstract Types
Description: Abstract types allow use of complex types in such a way that a
single element name can be used to represent various types in an XML
document instance. Abstract types are complex types that act as “templates”
that cannot be directly used in an XML document instance. In order to use
an abstract type, a derived type must be used to represent the abstract type in
an XML document instance.

For example, consider the following abstract type:

<xsd:complexType name=”AddressType” abstract=”true”>
 <xsd:sequence>
 <xsd:element name="StreetName1" type="xsd:string" />
 <xsd:element name="StreetName2" type="xsd:string" minOccurs=”0” />
 <xsd:element name="City" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

For example purposes, the above complex type contains all of the basic
minimal information that is contained in an address. Additional information
will be necessary beyond this information, exactly what information is
needed depends on the country that the address represents. For instance, in a
United States address, the additional information would be State and Zip
Code. However, in a Canadian address, the additional information would be
Province and Postal Code. Each of these would constitute a new complex
type that is derived from the Address complex type shown above. A
declaration for a United States address may look as follows:

Draft ASC X12 Reference Model for XML Design Rules

Page 37 of 74

<xsd:complexType name=”UnitedStatesAddressType”>
 <xsd:complexContent>
 <xsd:extension base="AddressType">
 <xsd:sequence>
 <xsd:element name="State" type="StateCodeType" />
 <xsd:element name="ZipCode" type="ZipCodeType" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

NOTE: The declarations of types StateCodeType and ZipCodeType are not
 shown in this example.

In the above example, the AddressType complex type has been extended with
the two additional elements that comprise a United States address. Along
similar lines, a declaration for a Canadian address may look as follows:

<xsd:complexType name=”CanadaAddressType”>
 <xsd:complexContent>
 <xsd:extension base="AddressType">
 <xsd:sequence>
 <xsd:element name="Province" type="ProvinceCodeType" />
 <xsd:element name="PostalCode" type="PostalCodeType" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

If a complex type is declared to be abstract, an element can be declared to be
of that complex type; however, in an XML instance document that
declaration is overridden. Therefore, we can define an element type be of
type AddressType, as shown below:

<xsd:element name="EmployeeInformation" maxOccurs=”unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="EmployeeName" type="xsd:string" />
 <xsd:element name="EmployeeAddress" type="AddressType" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

However, in an XML document instance the EmployeeAddress element is not
actually of type AddressType; rather, it is either of type
UnitedStatesAddressType or CanadaAddressType. Therefore, the abstract
type acts as a sort of “template” upon which other types are based.

The following is an example of the above content model in an XML instance
document - note the use of the xsi:type attribute:

<EmployeeInformation>
 <EmployeeName>John Smith</EmployeeName>
 <EmployeeAddress xsi:type="UnitedStatesAddressType">

Draft ASC X12 Reference Model for XML Design Rules

Page 38 of 74

 <StreetName1>2 Main St.</StreetName1>
 <StreetName2>Apt. 12</StreetName2>
 <City>Anytown</City>

 <State>MS</State>
 <ZipCode>55145</ZipCode>

 </EmployeeAddress>
</EmployeeInformation>
<EmployeeInformation>
 <EmployeeName>Mary Francis</EmployeeName>
 <EmployeeAddress xsi:type="CanadaAddressType">
 <StreetName1>10 White Way</StreetName1>
 <City>Thunder Bay</City>

 <Province>Ontario</Province >
 <PostalCode>M1A 3X9</PostalCode>

 </EmployeeAddress>
</EmployeeInformation>

In the first EmployeeInformation content model above, the employee is a
United States employee. Therefore, the xsi:type value indicates that the
address is of type UnitedStatesAddressType. In the second
EmployeeInformation content model above, the employee is a Canada
employee. Therefore, the xsi:type value indicates that the address is of type
CanadaAddressType. Yet, the same element named EmployeeAddress was
used in both cases, i.e. we did not have to define an element named
UnitedStatesEmployeeAddress and one named CanadaEmployeeAddress.

Benefits: Extensibility - other schemas can use the abstract type as the basis
for derived types. Consider the following schema excerpt that assumes that
the AddressType declaration is in a schema file called Employees.xsd:

<xsd:include schemaLocation=”Employees.xsd”>
<xsd:complexType name=”UKAddressType”>
 <xsd:complexContent>

 <xsd:extension base="AddressType">
 <xsd:sequence>

 <xsd:element name="PostCode"
 type="PostCodeType" />

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

The following is an example of the above content model in an XML instance
document:

<EmployeeInformation>
 <EmployeeName>Mary Poppins</EmployeeName>
 <EmployeeAddress xsi:type="UKAddressType">

 <StreetName1>Arden House</StreetName1>
 <StreetName2>1102 Warwick Road</StreetName2>
 <City>Birmingham</City>

<PostCode>B27 6BH</PostCode>
 </EmployeeAddress>
</EmployeeInformation>

Draft ASC X12 Reference Model for XML Design Rules

Page 39 of 74

As shown above, the base complex type AddressType has been extended in a
schema other than the one in which it is declared, to create yet another address
type.

• Using a base and derived types allows certain updates to take place in only one
location. For instance, if in the previous examples it were determined that all
City elements should be a maximum of 30 characters, that update would need to
be made only in the AddressType definition, and would then propagate to all
complex types that were derived from AddressType.

• This technique allows a single element name to be associated with more than
one type in an XML instance document. This allows derived types to be added
to a schema as needed, while element names remain the same. Therefore, in the
above example, a processing application can simply recognize an element
named “EmployeeAddress”, rather than elements named
“UnitedStatesEmployeeAddress” or “CanadaEmployeeAddress”. If more
address types were added in the future, it would require less update to a
processing application because it would need to be updated only to recognize a
new type, not a new element and a new type.

• This technique allows specification of the minimum amount of information
required for a content model. For instance, the above example ensured that, at
a minimum, the following elements would be included in any address:

• StreetName1
• StreetName2
• City

Risks: It is possible that a processing application (such as a data translation
product) may not be able to easily handle this technique. That is, a
processing application may be need to be configured to recognize an element
named EmployeeAddress as always having a single, static type (such as
UnitedStatesAddressType) rather than a type that can vary depending on the
XML document instance. A processing application may not be able to be
configured to recognize and refer to the xsi:type value for the type of the
element that it is currently processing.

Recommendation: Abstract types MUST NOT be used because they
contribute to a degree of uncertainty about what an XML document instance
will look like, i.e. they contribute to randomness.

• Use of Groups
Description: XML Schema allows fragments of content models to be named
and referenced from multiple complex types. It is also possible to create
attribute groups that can be reused in multiple complex types.
Benefits: Use of groups promotes reuse.
Risks: Occasionally, too much reuse can complicate maintenance.
Recommendation: Use both named model groups and attribute groups for
anything that is likely to be reused in disparate data types. For similar data
types, type derivation may be a better way to use content model fragments
and attributes.

Draft ASC X12 Reference Model for XML Design Rules

Page 40 of 74

• Substitution Groups
Description: XML Schema allows for elements to substitute for other
elements by defining substitution groups. An element can be declared to be
a substitute for another element, the "head" element, allowing the new
element to appear anywhere the head element may appear.
Benefits
• Substitution groups result in flexible, extensible types.
• They can simplify content models, by specifying only the "head" element

in the content model and using substitution to allow all the possibilities.
Risks: Excessive flexibility. Another schema author can significantly alter a
type by declaring substitution elements.
Recommendation: Avoid substitution groups.

• Group Redefinition
Description: XML Schema allows a schema author to redefine the types or
groups of another schema document.
Benefits: Redefinition is useful for making small changes to an existing
schema document.
Risks
• Because the redefined components replace the original components, they

can have adverse effects on other components defined in the original
schema document.

• Redefinition is underspecified in the XML Schema recommendation, and
it is likely that different processors treat redefinitions slightly differently.

Recommendation: Do not use redefinition.

8.3.4 Types
• Anonymous vs. Named Types

Description: XML Schema allows for types (simple and complex) to be
named (and defined globally) or anonymous (and defined locally).
Benefits of Named Types
• Named types may be defined once and used many times. This

encourages reuse and consistency, simplifies maintenance, and reduces
the size of schemas.

• Named types can also make the schema document more readable, when
the type definitions are complex.

• Named types can be redefined and have other types derived from them.
This increases their flexibility and extensibility.

Benefits of Anonymous Types
• They are slightly less verbose.
• They can be more readable when they are relatively simple. It is

sometimes desirable to have the definition of the type right there with the
element or attribute declaration.

Recommendation: Always use named types.

• Built-In Simple Types
Description: XML Schema has 44 built-in data types, covering numbers,
strings, dates and times, XML 1.0 types such as NMTOKENS and ID,
boolean, anyURI, and other common types. These types have specific
lexical formats, e.g. a date must be CCYY-MM-DD.

Draft ASC X12 Reference Model for XML Design Rules

Page 41 of 74

Benefits
• Using the built-in types increases interoperability with other XML

applications.
• Values of built-in types are automatically validated by the processor, e.g.

a date cannot be April 31.
Risks: The built-in types may not have the lexical formats that you have
traditionally used.
Recommendation: Use only XML Schema built-in data types. Further, we
shall use a subset of the full types, with that subset to be defined.

• Type Redefinition
Description: XML Schema allows a schema author to redefine the types or
groups of another schema document.
Benefits: Redefinition is useful for making small changes to an existing
schema document.
Risks
• Because the redefined components replace the original components, they

can have adverse effects on other components defined in the original
schema document.

• Redefinition is underspecified in the XML Schema recommendation, and
it is likely that different processors treat redefinitions slightly differently.

Recommendation: Do not use redefinition.

• Type Derivation
Description: XML Schema allows a type to be derived from another type
(its base type), either by extension or restriction. Extension adds attributes,
and adds elements to the end of the content model of the base type.
Restriction limits a base type to a more restrictive set of valid values.
Benefits
• Restriction allows more refined data types to be created which allows

stricter validation in specific cases.
• Extension allows the base type to be used with additional extensions,

which encourages reuse.
Risks: Derived types can be used for type substitution (see "Type
Substitution"). If type substitution is not to be allowed, the base complex
type should have the block attribute specified.
Recommendation: Allow type derivation.

• Type Substitution
Description: Type substitution allows for the use of derived types in an
instance document. If an element is declared to be of a base type, the
element may appear in the instance having any type that is derived from the
base type. To do this, it must use the xsi:type attribute to identify the
derived type to which it conforms.
Benefits: Type substitution allows an element to have one of several types
in an instance document. For example, a generic address type can be
created, with extensions for specific countries, e.g. UKAddressType,
USAddressType, etc. The address element can then appear in the instance
using whichever of these types is appropriate.
Risks

Draft ASC X12 Reference Model for XML Design Rules

Page 42 of 74

• Can lead to problems in processing by applications when a type specified
in an instance document overrides the type specified in a schema.

• If you do not intend to allow flexibility of the type of an element, you
should not allow type substitution.

Recommendation: Disallow type substitution.

8.3.5 Local vs. Global Declarations
Description: Elements and attributes can be either declared globally or locally.
Globally declared elements and attributes appear at the top level of the schema
(with xsd:schema as their parent). Locally declared elements and attributes are
declared entirely within a complex type.
Benefits of Global Declarations
• They can be reused in many complex types.
• A globally declared element can be the root element of the instance

document for validation purposes (a locally declared element cannot.)
• Global element declarations can participate in substitution groups; local

element declarations cannot.
Benefits of Local Declarations
There can be many locally declared elements with the same name but different
types and/or different default or fixed values. For example, it is possible to have
a "title" element that is a child of "person", which has the valid values "Mr.",
"Mrs." and "Ms.". Another element named "title" that is a child of "book" can
have free-form text. Because global element declarations are unique by name,
there can only be one globally declared element named "title".
Recommendation: Declare elements and attributes locally, except for the root
element.

8.3.6 Use of Default/Fixed Values
Description: XML Schema allows fixed or default values to be specified for
elements and attributes.
Benefits: Additional information can be added to the instance without requiring
the instance author to specify it.
Risks: When a schema is not present, the default or fixed value cannot be filled
in.
Recommendation: Disallow use of default and fixed values.

8.3.7 Keys and Uniqueness
Description: Sometimes it is desirable to associate information within an XML
document with other information in the document. For instance, consider a case
where invoices need to be associated with customers. In a relational database,
there would normally be a table that stored customer information, and another
table that stored invoices. A relationship between the two tables (i.e. the invoices
and the customers to which they are associated) would be represented through the
use of keys that are used to “join” the two tables during processing. The keys
may represent a customer ID that is unique to each customer, and the key in the
invoice table can be referred to as a foreign key that is associated with a primary
key in the customer table. This approach is desirable because it avoids
duplication of customer information (which is relatively static) for each invoice
(whose information in general is relatively dynamic, i.e. multiple invoices can be
generated for a given customer in a short period of time). In the examples that

Draft ASC X12 Reference Model for XML Design Rules

Page 43 of 74

follow, the customer information will be referred to as “static”, while the invoice
information will be referred to as “dynamic”.

It is often necessary to represent such relationships in an XML document, and
there are several different ways to do this. One way is to mix the dynamic
information in with the static information, as follows:

<CustomerInvoice>
 <Customer CustomerID=”A157”>
 <CustomerInfo>

 <Name>Bob Smith</Name>
 <Address>2 Main St.</Address>
 <City>Anytown</City>
 <State>MS</State>
 <ZipCode>55145</ZipCode>

 …more details…
 </CustomerInfo>

 <InvoiceInfo>
 <InvoiceNumber>14587</InvoiceNumber>
 <OrderDate>2001-11-01</OrderDate>
 <ShipDate>2001-11-02</ShipDate>

 …more details…
 </InvoiceInfo>

 <InvoiceInfo>
 <InvoiceNumber>15879</InvoiceNumber>
 <OrderDate>2001-12-01</OrderDate>
 <ShipDate>2001-12-02</ShipDate>

 …more details…
 </InvoiceInfo>

 </Customer>
</CustomerInvoice>

Although the above approach is possible, it is not advisable for several reasons:

• It is unconventional in that it mixes together information, i.e. customers and
invoices are really two separate entities, and it is more convention from a
relational standpoint to represent them separately

• It is an inefficient structure for an XML processor: it will cause an XML
processor to work much harder then necessary, thereby increasing processing
time

Regarding the second point above: consider a situation in which you would like
to report on all invoices for a given order date. In order to access a set of
invoices for a customer, an XML processor would have to first access the
<CustomerInvoice> element, a <Customer> element, then an <InvoiceInfo>
element just to arrive at the invoice information. Then, it would have to move
back up several levels to be able to access the next <Customer> element, etc.
This will cause the XML processor to work much harder then necessary, thereby
increasing processing time. Also, what if a customer had no invoices, either for
the given order date or not at all? The XML processor would still have to access
all the necessary levels, which would be a waste of processing time.

Draft ASC X12 Reference Model for XML Design Rules

Page 44 of 74

A better approach is to separate the static information from the dynamic
information, and associate (i.e. link) the dynamic information with its
corresponding static information through the use of one of several possible
mechanisms. Consider the following new structure:

<Customers>
 <Customer CustomerID=”A157”>
 <Name>Bob Smith</Name>

<Address>2 Main St.</Address>
<City>Anytown</City>
<State>MS</State>
<ZipCode>55145</ZipCode>
…more details…

 </Customer>
 …more customers…
</Customers>
<Invoices>
 <Invoice InvoiceID=”R245” InvoiceCustomerID=”A157”>
 <InvoiceNumber>14587</InvoiceNumber>

<OrderDate>2001-11-01</OrderDate>
<ShipDate>2001-11-02</ShipDate>
…more details…

 </Invoice>
 <Invoice InvoiceID=”R459” InvoiceCustomerID=”A157”>

<InvoiceNumber>15879</InvoiceNumber>
<OrderDate>2001-12-01</OrderDate>
<ShipDate>2001-12-02</ShipDate>
…more details…

 </Invoice>
 …more invoices…
</Invoices>

With this approach, ID values are used to link invoices with their corresponding
customers. Therefore, it is clear that the two invoices shown above are both
associated with the customer whose ID is A157. This approach nicely separates
the customer and invoice entities, allowing for more efficient processing. For
instance, in order to report on all invoices for a given order date with the above
approach, an XML processor would simply have to access the <Invoices>
element, then each <Invoice> element. If a customer had no invoices at all, or
none for the given order date, the XML processor can determine this much more
efficiently than in the first approach shown above.

The next issue is: how should the linking be performed? There are several
possible techniques:

ID/IDREF technique
KEY/KEYREF technique
XLink/XPointer technique

Each of these techniques is discussed further below. The concept of enforcement
of uniqueness among information is then discussed as a separate but related
topic.

Draft ASC X12 Reference Model for XML Design Rules

Page 45 of 74

ID/IDREF
This concept originated with DTD’s, and is also used in XML Schema. In this
technique, an ID value is used (as shown in the second approach above) by an
XML processor to associate information within an XML document. This allows
information to be separated within an XML document (as with the customer and
invoice information above), yet still be associated during processing. The
following is an example of a DTD declaration excerpt for the customer and
invoice information in the second approach shown above:

<!ELEMENT Customers (Customer)*

<!ELEMENT Customer (Name, Address, City, State, ZipCode)>

<!ELEMENT Name (#PCDATA)>

…declarations for Address, City, State, ZipCode…
<!ATTLIST Customer CustomerID ID #REQUIRED>

<!ELEMENT Invoices (Invoice)*

<!ELEMENT Invoice (InvoiceNumber, OrderDate, ShipDate,…)>

<!ELEMENT InvoiceNumber (#PCDATA)>

…declarations for OrderDate, ShipDate…

<!ATTLIST Invoice InvoiceID ID #REQUIRED>

<!ATTLIST Invoice InvoiceCustomerID IDREF #REQUIRED>

The above declaration means that an XML processor must validate an IDREF
value in an XML document to ensure that there is a corresponding ID value. In
other words, the following XML document excerpt must yield an error from an
XML processor:

<Customers>
 <Customer CustomerID=”A157”>
 <Name>Bob Smith</Name>

<Address>2 Main St.</Address>
<City>Anytown</City>
<State>MS</State>
<ZipCode>55145</ZipCode>

…more details…
 </Customer>
</Customers>
<Invoices>
 <Invoice InvoiceID=”R245” InvoiceCustomerID=”A157”>
 <InvoiceNumber>14587</InvoiceNumber>

<OrderDate>2001-11-01</OrderDate>
<ShipDate>2001-11-02</ShipDate>

…more details…
 </Invoice>
 <Invoice InvoiceID=”R653” InvoiceCustomerID=”A159”>

<InvoiceNumber>15879</InvoiceNumber>

Draft ASC X12 Reference Model for XML Design Rules

Page 46 of 74

<OrderDate>2001-12-01</OrderDate>
<ShipDate>2001-12-02</ShipDate>

…more details…
 </Invoice>
</Invoices>

In the above example, there is no customer whose ID is A159. Thus, this
example would yield an error from an XML processor. It should be noted that
with this technique, an XML processor cannot link together associated items.
Rather, it can only verify that there is a corresponding ID value in an XML
document instance for a given IDREF value. For example, considering the DTD
and example shown above: if there were an additional ID attribute declared in the
DTD (perhaps completely unrelated to customer information), and that ID
attribute coincidentally happened to contain a value of A159, the XML processor
would not yield an error because the requirement of a matching ID value is
fulfilled. However, a processing application could enforce links between
associated IDREF and ID values during its processing of the XML document
instance, i.e. the onus would be on the processing application rather than the
XML processor.

Benefits of ID/IDREF Technique:
• It allows information in an XML document instance to be linked during

processing by a processing application
• It ensures validation of the associations by an XML processor — i.e. that

there is a corresponding ID value for an IDREF value — without defining
extra processing (i.e. it is “built in” to an XML processor).

Risks:
• It does not allow links between entities in an XML document instance to be

recognized by an XML processor
• An ID value must be unique within an XML document. This means that in

the above example, there could never be the same ID value for a customer
and an invoice. This requirement is not realistic, as the ID values for two
different entities may not only be of the same structure but may also have the
same values in certain cases.

• An ID value must begin with a letter and cannot contain whitespace or non-
alphanumeric characters (except for underscore). This means that the ID
values shown above could not be 157 or 159. Also note that fact that each
invoice has both an invoice number (which is numeric) and an invoice ID.
This requirement is not realistic, as there may be many cases in which ID
values begin with numbers, for instance, social security numbers. This
would prohibit such values from being used as ID values.

KEY/KEYREF
This concept originated with XML Schema. Unlike the ID/IDREF technique,
this technique allows links between entities in an XML document instance to be
recognized by an XML processor. It also allows ID values to be repeated within
XML documents without yielding an error from an XML processor (as with the
uniqueness technique, discussed below). Additionally, it adds the requirement
that the element or attribute specified in the field element of a constraint
declaration must always appear in an XML document instance.

Draft ASC X12 Reference Model for XML Design Rules

Page 47 of 74

Using the XML instance document example shown previously, the following
declarations stipulate that there must be a corresponding CustomerID value for
each InvoiceCustomerID value:

<xs:key name=“CustomerKey”>
 <xs:selector xpath=“Customers/Customer”/>
 <xs:field xpath=“@CustomerID”/>
</xs:key>

<xs:keyref name=“InvoiceCustomerID” refer=“CustomerKey” >
 <xs:selector xpath=“Invoices/Invoice”/>
 <xs:field xpath=“@InvoiceID”/>
</xs:key>

The selector elements in the above declaration specify the range of elements to
which the key and key references apply—in this case, all Customer and Invoice
elements respectively. The field element specifies the element or attribute within
those ranges that must have a unique value—in this case, the CustomerID and
InvoiceID attributes. The name and refer attributes in the key reference
declaration relate the foreign key (InvoiceCustomerID) to the primary key
(CustomerID) through a reference to the CustomerKey key declaration.

It should be noted that the key declaration above could be used without a
corresponding keyref declaration to enforce uniqueness among all CustomerID
values for the specified range. As noted above, all CustomerID attributes must
be present and contain a value. This is not a requirement in the uniqueness
technique, which is discussed below.

Benefits of KEY/KEYREF Technique:
• It allows links between entities in an XML document instance to be

recognized by a schema processor
• It allows ID values to be repeated within XML documents without yielding

an error from a schema processor
• ID values do not have the format constraints that were imposed in the

ID/IDREF technique; that is, an ID value may be of any datatype
Risks of KEY/KEYREF Technique:
• Constraint declaration names must be unique within an XML document

instance, regardless of namespace - this applies for externally referenced
schemas as well. This means that if an externally referenced schema
contained a constraint declaration named “CustomerKey”, even if the target
namespace of the schema were different than target namespace for the
Customer element in the XML document instance, an XML processor will
yield an error.

• A schema processor may not detect an incorrect XPath expression in either
the selector or field element of the constraint declaration. This can cause the
constraint to not be enforced, resulting in potential violations of the key
constraint.

XLink/XPointer
This technique utilizes two relatively new XML concepts to link entities within
XML document instances. It allows links to be specified either within an XML
the same document instance as the entities being linked (through use of a

Draft ASC X12 Reference Model for XML Design Rules

Page 48 of 74

“simple” link or “extended” link), or outside of it in a different XML document
instance (through use of an “extended” link). Extended links can be very useful
in cases where an XML document instance cannot be updated; they also allow
linking information to be centralized in one place if required.

Simple Links
Simple links are unidirectional links, much like the HTML “A” element.
Consider the following XML instance document example (same as an earlier
example):

<Customers>
 <Customer CustomerID=”A157”>
 <Name>Bob Smith</Name>

<Address>2 Main St.</Address>
<City>Anytown</City>
<State>MS</State>
<ZipCode>55145</ZipCode>
…more details…

 </Customer>
</Customers>
<Invoices>
 <Invoice InvoiceID=”R245” InvoiceCustomerID=”A157”>
 <InvoiceNumber>14587</InvoiceNumber>

<OrderDate>2001-11-01</OrderDate>
<ShipDate>2001-11-02</ShipDate>
…more details…

 </Invoice>
 <Invoice InvoiceID=”R653” InvoiceCustomerID=”A157”>

<InvoiceNumber>15879</InvoiceNumber>
<OrderDate>2001-12-01</OrderDate>
<ShipDate>2001-12-02</ShipDate>
…more details…

 </Invoice>
</Invoices>

Instead of the above format for Invoices, the links between invoices and
customers can be defined in XLink syntax using simple links along with
XPointer constructs within each Invoice element as follows:

<Invoices>
 <Invoice InvoiceID=”R245” >
 <InvoiceNumber>14587</InvoiceNumber>

<OrderDate>2001-11-01</OrderDate>
<ShipDate>2001-11-02</ShipDate>
…more details…
<InvoiceCustomer xlink:type=”simple” xlink:href=”#A157” />

 </Invoice>
 <Invoice InvoiceID=”R653”>

<InvoiceNumber>15879</InvoiceNumber>
<OrderDate>2001-12-01</OrderDate>
<ShipDate>2001-12-02</ShipDate>
…more details…

 <InvoiceCustomer xlink:type=”simple” xlink:href=”#A157” />
 </Invoice>
</Invoices>

Draft ASC X12 Reference Model for XML Design Rules

Page 49 of 74

The notation for the xlink:href attributes above is called an XPointer Bare Names
notation. It simply means that a link is defined between the invoice in which the
InvoiceCustomer element appears and the ID in the XML document instance
whose value matches the value after the “#” sign in the xlink:href attribute (since
nothing precedes the “#” sign, it means the current XML document instance).
This means that an XLink-aware processor can associate both invoices above
with the element in the XML document instance whose ID attribute value is
A157, i.e. the customer whose ID is A157. It should be noted that with this
technique, the ID values must be of type ID. This means they have the format
constraints that were imposed in the ID/IDREF technique.

Extended Links
Extended links are more flexible than simple links in that they may be multi-
directional and may also link external entities. This means that an extended link
may exist in an XML document instance that is external to one or more (or all) of
the entities it links. For example, the following content model, when added to
the XML document instance shown previously, allows all link declarations to be
centralized:

<xlink:extended role=”Link Invoices to Customers”
 title=”Links”>
 <xlink:locator href=”#A157”
 role=”Customer”
 label=”Customer A157”>
 <xlink:locator href=”#R245”
 role=”Invoice”
 label=”Invoice R245”>
 <xlink:locator href=”#R653”
 role=”Invoice”
 label=”Invoice R653”>
 <xlink:arc from=”Invoice R245”
 to=”Customer A157”

 arcrole=”Invoice Belongs To”>
 <xlink:arc from=”Invoice R653”
 to=”Customer A157”

 arcrole=”Invoice Belongs To”>
</xlink:extended>

This content model is known as an extended link container. The
InvoiceCustomerID attributes would also be removed from the XML instance
document, as they would no longer be necessary. The xlink:locator elements in
the above example specify the “locations” (in this case elements) that participate
in the extended link. There is one locator element for each customer and invoice.
The role attribute is mostly for semantic purposes, to describe the function of the
location. The xlink:arc elements specify the actual links; that is, they define
associations between two locations participating in an extended link. Each
xlink:arc element specifies one association. In the example above, this would be
an association between an invoice and a customer. It is important to note that the
label attribute for each locator element is used as the identifier in the extended
link, rather than the href attribute (as with simple links). The reason for this will
become clear below.

Draft ASC X12 Reference Model for XML Design Rules

Page 50 of 74

It is also possible to specify extended links in an XML document instance that is
external to one or more (or all) of the entities it links. Suppose the above XML
document instance containing customer and invoice information were in a file
called Invoices.XML. It would be possible to have the extended link declarations
in a separate instance document; this is known as a linkbase. The above
extended link container declaration would change in that the href attributes
would need to begin with the name of the XML document instance file, followed
by the ID value that is already listed. This would look as follows:

<xlink:extended role=”Link Invoices to Customers”
 title=”Links”>
 <xlink:locator href=”Invoices.xml#A157”
 role=”Customer”
 label=”Customer A157”>
 <xlink:locator href=”Invoices.xml#R245”
 role=”Invoice”
 label=”Invoice R245”>
 <xlink:locator href=”Invoices.xml#R653”
 role=”Invoice”
 label=”Invoice R653”>
 <xlink:arc from=”Invoice R245”
 to=”Customer A157”

 arcrole=”Invoice Belongs To”>
 <xlink:arc from=”Invoice R653”
 to=”Customer A157”

 arcrole=”Invoice Belongs To”>
</xlink:extended>

This again uses the XPointer Bare Names notation to reference an ID value
contained in the file called Invoices.XML. It should now be clear why the label
attribute for each locator element is used as the identifier in the extended link,
rather than the href attribute. If the file name for the XML instance document
listed above were to change, not only would the href attributes require update,
but all xlink:arc elements would as well. With this approach, the xlink:arc
elements can remain static as the href attribute values change.

Benefits of XLink/XPointer Technique:

• It allows links between entities in an XML document instance to be
recognized by a schema processor (although the schema processor must be
XLink- and XPointer-aware)

• The use of XLink constructs allow the links to be given special handling in
an XLink-aware processor. For instance, additional XLink constructs may
be used to allow links to be highlighted for selection

• Extended links can be specified either in the same XML document instance
as the entities that they link or outside of it in a different XML document
instance

Draft ASC X12 Reference Model for XML Design Rules

Page 51 of 74

Risks of XLink/XPointer Technique:

This technique has several disadvantages:

• An ID value must be unique within an XML document. For more
information, see ID/IDREF section above.

• An ID value must begin with a letter and cannot contain whitespace or non-
alphanumeric characters (except for underscore). For more information, see
ID/IDREF section above.

• Since the XLink and XPointer standards are both very new (XLink became a
W3C Recommendation in June 2001 and XPointer is currently a Candidate
Recommendation), there is currently very little XML processor support for
them

• Use of extended links requires a fair amount of additional information to be
specified for each entity that is being linked; e.g. xlink:locator elements, role
attributes, xlink:arc elements, etc.

Recommendation

NOTE: The following recommendations are strictly preliminary. For more information,
see “Special Notes” section below.

The KEY/KEYREF technique SHOULD be used to enforce links between
entities in an XML document instance.

The uniqueness technique SHOULD be used to enforce uniqueness when the
element or attribute specified in the field element is not mandatory. The KEY
technique (without KEYREF) SHOULD be used to enforce uniqueness when the
element or attribute specified in the field element is mandatory.

Extreme caution should be applied in each of the above techniques to ensure that
the XPath expression that is specified is correct, so that the uniqueness constraint
can be properly enforced.

It is also recommended that the following situation never be allowed:

• Uniqueness must be enforced AND

• Links are required AND

• The element or attribute specified in the field element is not mandatory

There is no technique that is available to handle the above situation, because in
the KEY/KEYREF technique the element or attribute specified in the field
element must appear in the XML instance document. For this reason, it is
recommended that in all cases where links are required, the element or attribute
specified in the field element be declared as mandatory.

Draft ASC X12 Reference Model for XML Design Rules

Page 52 of 74

Special attention should also be given to the fact that constraint declaration
names must be unique within an XML document instance (see earlier for more
information on this).

Once the XPointer and XLink standards become more mature, schemas MAY
use the XLink/XPointer technique. However, special attention should be given
to the restrictions placed upon ID values that are discussed in the XLink/XPointer
section. If the XLink/XPointer technique used, it is recommended that the simple
link technique be used first as XML processors may support this technique more
readily than the extended link technique.

Special Notes

There have been several other recommendations made regarding Keys and
Uniqueness which still must be considered. In summary, these are:

• There may not be a requirement for these techniques, because X12 does not
currently have any syntax-level constraints for them. At the present time,
most of the functionality for this is handled at the application level rather
than the EDI interchange level.

• Establish a “key” datatype whose elements include an attribute that specifies
a key name. Using the examples above, this would look as follows for
linking invoices to customers:

 ... <Customer>
 <Key Name='Customer'>A157</Key>
 ... </Customer>
 ... <Invoice>
 <Key Name='InvoiceNumber'>14587</Key>
 <Key Name='Customer'>A157</Key>
 ... </Invoice>

8.3.8 Annotations and Notations
• Annotations

Description: XML Schema allows schema components to be annotated
using the <annotation> element. The annotation element can contain one or
more <documentation> or <appinfo> elements that can themselves have any
attributes and contain any text or child elements.
Benefits
• An annotation adds descriptive information that makes a schema

component easier to understand.
• Structured annotations are machine- as well as human-readable, allowing

them to be used by applications or to generate specification guides.
Risks: Excessively large or repetitive annotations actually decrease the
readability of the schema document, and slow down validation.
Recommendation: Use annotations for all type definitions. Structure the
annotations according to a predefined standard [DEFINE STANDARD
HERE; for example, a <documentation> can contain one <description>, etc.].
Do not use XML comments in schemas.

Draft ASC X12 Reference Model for XML Design Rules

Page 53 of 74

• Notations
Description: Notations can be used to specify the type of a file (for
example, a graphics image) that is related to an XML document via an
external entity.
Benefits: Notations can be useful for identifying the type of a file.
Risks
• There is no standardized way to process notations.
• Generally, notations are unnecessary because the processing application

already understands the type of a related file.
Recommendation: Do not use notations.

• Documentation
Description: Documentation is an important part of system maintenance, as
it allows those that maintain programs in a system to understand how various
parts of the programs function. Documentation also allows a record of
changes to a program to be kept inside the program itself. Documentation is
also an important part of XML Schema.

In DTDs, comments were marked as follows:

<!-- this is a comment --!>

While this is sufficient to allow the reader of a DTD to gain an understanding
of its contents, it does not allow for machine processing of such comments.
For instance, it would be advantageous if comments in an XML Schema
could be processed by a stylesheet, perhaps to create a user manual.

W3C Schema introduces a standard <documentation> element that can be
used to enclose comments. This looks as follows:

<documentation>this is a comment</documentation>

The DTD-style comment technique is also supported in W3C Schema. The
<documentation> element is a subelement of an element called <annotation>.
The <annotation> element contains, in addition to the <documentation>
element, an <appinfo> element that is discussed in Section 8.3.9. Processing
Instructions from Schema level <APPINFO>. The <documentation>
element can have two attributes:
• A “source” attribute that contains a URL to a file containing

supplemental information
• An xml:lang attribute that specifies the language that the documentation

is written in

The idea of using the xml:lang attribute is that you can have several sets of
documentation for the same section of a schema, each in a separate language.
A stylesheet may be written to extract only the comments written in a given
language, and it can use the xml:lang attribute to select the text it needs.

Draft ASC X12 Reference Model for XML Design Rules

Page 54 of 74

The <annotation> elements (and its subelements) may be placed at the
beginning of a schema as well as within schema constructs. For instance, the
following <documentation> element provides general notes for an element:

<xsd:element name="Book">
 <xsd:annotation>
 <xsd:documentation>

The Book element contains basic information about books in the
library, such as title, author, etc.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Author" type="xsd:string"/>
 <xsd:element name="Date" type="xsd:string"/>
 <xsd:element name="ISBN" type="xsd:string"/>
 <xsd:element name="Publisher" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

An XSLT stylesheet may contain a template rule to access all
<documentation> elements in a schema as follows:

<xsl:template match="xsd:schema/xsd:annotation">
 <xsl:apply-templates select=”xsd:documentation”>
</xsl:template>

Formatting rules can also be applied to the <documentation> elements to
create (for example) a user manual

Benefits of Using <documentation> Element: Use of the <documentation>
element to add comments to a schema rather than the DTD-based approach is
advantageous because it allows the comments to be processed by a
processing application or program such as a stylesheet. Once this is done,
there is no limit to what can be done with the extracted comments.
Risks of Using <documentation> Element:
There are no risks to using this technique.
Recommendation: The <documentation> element SHOULD be used for
comments. The DTD-based comment technique SHOULD NOT be used.

8.3.9 Processing instructions from Schema level <APPINFO>
Description: This section discusses the inclusion of supplemental instructions in
an XML schema for the purposes of passing them onto a processing application.
Once a processing application receives such instructions, it is anticipated that the
application would execute them for some intended purpose, most likely related to
an XML document. This section begins with a discussion of Processing
Instructions, which originated in XML DTDs, then covers the equivalent for
XML Schema, which is the <appinfo> element. The discussion of Processing
Instructions is intended to provide a basis and history for the concept of
supplemental instructions.

Draft ASC X12 Reference Model for XML Design Rules

Page 55 of 74

Processing Instructions: Processing instructions are an XML DTD feature that
allow an XML parser to pass information to a processing application. The
information that is passed is of no particular interest to the parser; however, it is
most often a command or set of commands for a processing application.
Processing instructions are indicated in DTDs by special tags of <? and ?>, and
are of the following format:

<?target …instruction…?>

The instruction portion is merely a string literal that may include any valid
character string except the “?>” string literal. The target portion is an indicator
that identifies the application to which the instruction is directed. An example is
as follows:

<?realaudio version="5.0" frequency=”5.5kHz” bitrate=”16kbps” ?>

A XML parser may pass the above information to a processing application. It is
then up to that processing application to locate an application called realaudio (or
at least one identified by that string) and pass it the parameters shown above
(alternatively, it may identify a realaudio application version 5.0 from among
several possible versions that are available). The most important point is that an
XML parser, if designed to do so, simply passes the processing instruction on to
an application. What is done with the processing instruction from that point on is
completely out of scope of the XML parser.

It should be noted that the XML prolog (the line that appears at the top of every
XML document) is also itself a processing instruction:

<?xml version="1.0"?>

APPINFO Element
The <appinfo> element is the XML Schema equivalent of the processing
instruction. The <appinfo> element is one of two types of annotation elements
that can occur in a schema, the other being the <documentation> element. Both
elements occur under the <annotation> element, which is discussed in Section
8.3.8. Like processing instructions, the <appinfo> element offers a place in
which to provide additional information that can be passed to a processing
application by an XML parser. An example is as follows:

 <xsd:group name="VehicleYearGroup">
 <xsd:annotation>

 <xsd:appinfo>
 if (currentNode.firstChild != "2001 Vehicles")

 docParser.load(Vehicles2001List);
 else

document.write("There are no vehicles yet available for this
year.");

 </xsd:appinfo>
 </xsd:annotation>
 <xsd:choice>
 </xsd:element name="2001 Vehicles" type="xsd:string" />
 </xsd:element name="2002 Vehicles" type="xsd:string" />

Draft ASC X12 Reference Model for XML Design Rules

Page 56 of 74

 </xsd:element name="2003 Vehicles" type="xsd:string" />
 </xsd:choice>
 </xs:group>

The above example is associated with an application that presents to a user a list
of vehicle years from which to choose, presumably to search for one or more
vehicles from that year. It assumes that of the three choices of years (2001, 2002,
and 2003), only 2001 vehicles are available for search. The script inside of the
<xsd:appinfo> tags checks which of the three available “choice” values was
selected by a user; if the first was selected (“2001 Vehicles”), a program is
invoked to display a list of 2001 vehicles to the user. Otherwise, a message is
displayed stating that “There are no vehicles yet available for this year.”. It
should be noted that although there are more efficient ways of accomplishing this
in an application (perhaps by querying a database rather than hardcoding the
choice in the script), it is for illustration purposes only. It should also be noted
that although the processing instructions shown above are very “Java-like”, they
could be equally have been a URL reference to be passed to a processing
application, a set of XSLT commands for manipulating an XML document, or
any other type of information that a processing application might utilize.

Benefits of <appinfo> Element
The <appinfo> element can be very useful for passing processing commands or
other types of supplemental information to a processing application.
Risks of Using <appinfo> Element
The use of the <appinfo> element is considered highly risky at this time, due to
the immaturity of XML schema processors available. There is no guarantee that
a given XML schema processor will properly pass the processing instructions to
an application, or, if it does, that an application will be able to accept them or
handle them properly.
Recommendation
The <appinfo> element MUST NOT be used.

Draft ASC X12 Reference Model for XML Design Rules

Page 57 of 74

9.0 SUMMARY OF PROPOSED DESIGN RULES

To Be Completed.

Draft ASC X12 Reference Model for XML Design Rules

Page 58 of 74

10.0 PROCESS AND MANAGEMENT CONSIDERATIONS

10.1 Management of Templates

The creation of new and reuse of existing Templates is a critical consideration to the community.
A high-level guiding principal of this work is to base all work on semantics. Semantically
duplicate or uses not being semantically equal would undermine this goal and introduce a level of
chaos to this picture. Therefore, Templates are heavily managed and scrutinized.

Templates will be governed by specific subcommittees, who will have the primary responsibility
to manage the set of peer Templates. The subcommittee, in accordance with documented business
process driven requirements, manages the decision to create new peer Templates or to alter use of
existing Templates. Technical assistance and scrutiny are provided by X12J, Technical Assess-
ment, with assistance as required by X12C, Communication & Controls. Approval is required by
Technical Assessment in addition to the entire X12 community.

10.2 Management of Modules

Modules are constructed out of a set of reusable Blocks and/or Assemblies, such that the Modules
respond to the Purpose specified by the Slot. The Assemblies and Blocks are a pre-existing tool
kit for building Modules. Therefore, autonomy for the construction of these Modules is
reasonable. Any recognized group, which conforms to the Semantic requirements for fulfilling
the Slot purpose, and which builds using the existing Blocks, can construct Modules which
should be considered compliant. Therefore, Modules are built by subcommittees and are
approved by subcommittees and Technical Assessment.

Draft ASC X12 Reference Model for XML Design Rules

Page 59 of 74

Annex A: Definitions
To be completed, and subject to review and revision.

Abstract elements and types
Aggregate Information Entity Defines a functional unit representation form that

contains embedded information entities. An Aggregate
Information Entity contains two or more Basic
Information Entities or Aggregate Information Entities
that together form a single business concept (e.g. postal
address). Each Aggregate Information Entity has its
own business semantic definition

Annotation An annotation is information for human and/or
mechanical consumers. The interpretation of such
information is not defined in the XML Schema
specifications

AnyAttribute
AnyElement
Assembly Information Entity
Attribute
Attribute Declaration An attribute declaration is an association between a

name and a simple type definition, together with
occurrence information and (optionally) a default value.
The association is either global, or local to its
containing complex type definition. Attribute
declarations contribute to validation as part of complex
type definition validation, when their occurrence,
defaults and type components are checked against an
attribute information item with a matching name and
namespace

Attribute Group
Attribute Group Definition An attribute group definition is an association between

a name and a set of attribute declarations, enabling re-
use of the same set in several complex type definitions

Basic Information Entity Defines a component which contains data but which
does not have embedded information entities. A Basic
Information Entity is a singular concept that has a
unique business semantic definition. A Basic
Information Entity adds semantic meaning to a single
datatype or a Core Component Type (CCT).

Block Information Entity
Built-in Datatypes Built-in datatypes are those which are defined in this

specification, and can be either primitive or derived
Business Process Models UML models that describe interoperable business

processes that allow business partners to collaborate
Character set
Complex Type Complex types which allow elements in their content

and may carry attributes
Complex type abstractness

Draft ASC X12 Reference Model for XML Design Rules

Page 60 of 74

Complex Type Definition A complex type definition is a set of attribute
declarations and a content type, applicable to the
attributes and children of an element information item
respectively. The content type may require the children
to contain neither element nor character information
items (that is, to be empty), to be a string which
belongs to a particular simple type or to contain a
sequence of element information items which conforms
to a particular model group, with or without character
information items as well.

Complex type extension
Complex type restriction
ComponentInformationEntity
Core Component Generic term that covers Core Component Type,

Aggregate Information Entity and Basic Information
Entity

Core Component Type Core Components that have no business meaning on
their own. When they are reused in a business context,
they become Basic Information Entities. For example,
quantity on its own has no business meaning, whereas
the quantity shipped does have business meaning. Core
Component Types consist of one component that
carries the actual value (value component) plus others
that give extra definition to the value (supplementary
component(s)). For example, the value component 12
has no meaning on its own, but 12 kilometres or 12
Euros do have meaning

Datatype A datatype is a 3-tuple, consisting of a) a set of distinct
values, called its value space, b) a set of lexical
representations, called its lexical space, and c) a set of
facets that characterize properties of the value space,
individual values or lexical items.

Default attribute values
Derived Data Types Derived datatypes are those that are defined in terms of

other datatypes. A datatype is said to be derived by
restriction from another datatype when values for zero
or more constraining facets are specified that serve to
constrain its value space and/or its lexical space to a
subset of those of its base type. Every datatype that is
derived by restriction is defined in terms of an existing
datatype, referred to as its base type. base types can be
either primitive or derived

Document Entity The root element for an X12/XML message consisting
of one or more Aggregate Information Entities

Element
Element Declaration An element declaration is an association of a name with

a type definition, either simple or complex, an
(optional) default value and a (possibly empty) set of
identity-constraint definitions.

Empty content

Draft ASC X12 Reference Model for XML Design Rules

Page 61 of 74

Empty element
Enumeration The practice of limiting the value space of an element

or an attribute to a specific set of values
Facet A facet is a single defining aspect of a value space.

Generally speaking, each facet characterizes a value
space along independent axes or dimensions

Fixed attribute values
Globally defined attributes
Globally defined elements
Groups
Lexical Space A lexical space is the set of valid literals for a datatype
List types
Locally defined attributes
Locally defined elements
Mixed Content A combination of child elements and character data

nested within an element
Model Group A model group is a constraint in the form of a grammar

fragment that applies to lists of element information
items. It consists of a list of particles, i.e. element
declarations, wildcards and model groups. There are
three varieties of model group:

• Sequence (the element information items match
the particles in sequential order);

• Conjunction (the element information items
match the particles, in any order);

• Disjunction (the element information items
match one of the particles).

Model Group Definition A model group definition is an association between a
name and a model group, enabling re-use of the same
model group in several complex type definitions

Module Information Entity
Multipart keys
Named Types
Namesapces An XML namespace is a collection of names identified

by a URI reference which are used in XML documents
as element types and attribute names

Notations
Notation Declaration A notation declaration is an association between a

name and an identifier for a notation. For an attribute
information item to be valid with respect to a
NOTATION simple type definition, its value must have
been declared with a notation declaration

Occurrence constraints
Primitive Data Types Primitive datatypes are those that are not defined in

terms of other datatypes; they exist ab initio
Processing instructions
Scoped keys
Simple Type Simple types cannot have element content and cannot

carry attributes

Draft ASC X12 Reference Model for XML Design Rules

Page 62 of 74

Simple Type Definition A simple type definition is a set of constraints on
strings and information about the values they encode,
applicable to the ·normalized value· of an attribute
information item or of an element information item
with no element children. Informally, it applies to the
values of attributes and the text-only content of
elements

SlotInformationEntity
Substitution groups
Target namespace
TemplateEntity
Type Derivation
Type Redefinition
Type Substitution Allows a base type to be substituted by any derived

type
Union types
Uniqueness constraint
User-derived Datatypes User-derived datatypes are those derived datatypes

that are defined by individual schema designers
Value Space A value space is the set of values for a given datatype.

Each value in the value space of a datatype is denoted
by one or more literals in its lexical space.

Wildcard A wildcard is a special kind of particle which matches
element and attribute information items dependent on
their namespace name, independently of their local
names

XML Schema An XML document that defines the allowable content
of a class of XML documents. A class of documents
refers to all possible permutations of structure in
documents that will still confirm to the rules of the
schema

Draft ASC X12 Reference Model for XML Design Rules

Page 63 of 74

Annex B: Notional X12/XML Message
To Be Provided

Draft ASC X12 Reference Model for XML Design Rules

Page 64 of 74

Annex C: Notional X12/XML Schema

To Be Provided

Draft ASC X12 Reference Model for XML Design Rules

Page 65 of 74

Annex D: A model of the message design process

To Be Provided

Draft ASC X12 Reference Model for XML Design Rules

Page 66 of 74

Annex E: A model of the schema design process

To Be Provided

Draft ASC X12 Reference Model for XML Design Rules

Page 67 of 74

Annex F: Use of modeling with XML development

To Be Provided

Draft ASC X12 Reference Model for XML Design Rules

Page 68 of 74

Annex G: Background

1.0 Background
The Extensible Markup Language (XML) was developed by the World Wide Web Consortium
(W3C), the de facto standards body for the Internet and the World Wide Web. The first working
draft paper on the concept of XML was published 14 November 1996. The original goal was,
"…to enable SGML to be served, received, and processed on the Web in the way that is now
possible with HTML." A primary design consideration was to design XML, "…for ease of
implementation, and for interoperability with both SGML and HTML." Much of the original
concept was applied to using XML as a means for graphical communication. The idea of its use
for conducting EDI was applied later when the first studies were done on this subject in late 1997.
Early work on XML/EDI was conducted both jointly and independently by ANSI ASC X12,
UN/CEFACT, CommerceNet, and the XML/EDI Group as well as other organizations. The goals
of XML/EDI as defined by the XML/EDI Group are:

• To deliver unambiguous and durable business transactions via electronic means
• Utilize existing systems and processes
• Protect the investment in traditional EC/EDI
• Provide a migration path to next generation XML/EDI systems
• Use existing business processes as implemented
• Facilitate direct interoperation in an open environment

In November 1999, work began on the ebXML project, a joint UN/CEFACT and OASIS
initiative, whose mission was to provide an open XML-based infrastructure enabling the global
use of electronic business information in an interoperable, secure, and consistent manner by all
parties. The project concluded in May 2001 and delivered a modular suite of specifications that
enable enterprises to conduct business over the Internet. The specifications address the following
areas:

• Messaging Services
• Registries and Repositories
• Collaborative Protocol Profile
• Implementation, Interoperability, and Conformance
• Core Components and Business Process Models

The ebXML specifications are currently being transitioned to UN/CEFACT and OASIS for the
purpose of developing global electronic business standards.

X12 began work on XML/EDI in 1998 with the creation of an ad-hoc XML work group that
transitioned to X12C/TG3. X12C/TG3 in conjunction with CommerceNet produced a paper
entitled “Preliminary Findings and Recommendations on the representation of X12 Data
Elements and Structures in XML”. In addition to this collaborative effort, X12C/TG3 produced a
technical white paper providing additional information on using XML to represent business
exchanges. In February 2000, the X12 Steering Committee chartered the X12 XML Task Group
to develop recommendations for the Steering Committee in conjunction with the X12
subcommittees on XML. The resolutions approved by the Steering Committee in June/October
2000 were:

Draft ASC X12 Reference Model for XML Design Rules

Page 69 of 74

• The ANSI ASC X12 Steering Committee fully supports the continuation of the mission,
goals, and efforts of ebXML. ASC X12 will pursue its XML development efforts within the
framework defined by ebXML.

• X12 will develop accredited, cross-industry, XML business standards. All XML business
standards and associated schema development work will be done in collaboration with
UN/CEFACT Work Groups and shall be based on the UN/CEFACT business process/core
component work.

• The X12 Steering Committee will petition ANSI for official recognition as an ANSI
accredited XML business standards body

• X12C will function as the X12 XML technical experts with respect to all internal and
external XML technical specifications including the development of XML design rules in
conjunction with X12J

• The X12 Steering Committee shall task DISA to begin working with X12X TG4 WG2 to
market X12’s role in developing ANSI accredited XML business standards.

• The X12 Steering Committee shall task the Process Improvement Group (PIG) to include the
need to recognize the requirement for an accelerated process for XML standards
development as part of their work plan

• The X12 Steering Committee shall task the Process Improvement Group (PIG) to work with
the Policies and Procedures Task Group (P&P) to provide expertise and assist the EWG/X12
on the Joint Development Task Group in the development of an aligned approval process
that meets the needs of both organizations related to the development and maintenance of
XML core components.

Every effort has been made to build on the experience and work done previously by ebXML, the
UN/CEFACT Work Groups, CommerceNet, and ANSI ASC X12 in document definition
methodologies and core components. The X12/XML design rules presented in this document are
based on design decisions reached through a process of issue identification, presentation of
examples, and evaluation of the pros and cons of each available action. They provide a set of
syntax production rules that define the conversion of standardized, cross-industry business
messages into XML documents.

2.0 Overview of ebXML Business Process and Core Components
The business process determines characteristics of the business document payload. For example,
if the business process is Ordering then the order information must specify details about the order
itself (payment, delivery, references to external business agreements, etc.). There are certain
characteristics of the Order Document, which typically do not vary across industries, while other
details (such as those required because of product type) will vary dramatically.

Business documents, by their very nature, communicate a semantically complete business
thought: who, what, when, where and why. The what in electronic business terms is typically the
product. It is widely recognized that products are goods or services. Goods are manufactured,
shipped, stored, purchased, inspected, etc., by parties. Services are performed by parties, and
may involve goods and/or parties. Parties can be either organizations or individuals, and can be
associated with other parties and products. And these products have events associated with them,
inspections, transportation, building, sale, etc.

This problem is addressed by a combination of structured information and the use of context.
This structure uses a series of layers, designed to take into account commonality across industry
business process. Further the structure is designed to support specialization based on the specific
use of contexts. Context is the description of the environment within which use will occur. For

Draft ASC X12 Reference Model for XML Design Rules

Page 70 of 74

example, if one was to say that “someone was pounding on my car with a hammer”, the response
is very different depending whether it is a repair shop or a neighbourhood youth. Context is what
is used to direct interpretation.

A component is a ‘building block’ that contains pieces of business information, which go together
because they are about a single concept. An example would be bank account identification, which
consists of account number and account name.

Core components are components that appear in many different circumstances of business
information and in many different areas of business. A core component is a common or “general”
building block that basically can be used across several business sectors. It is therefore context
free.

Re-use is the term given to the use of common core components when they are used for a specific
business purpose. The purpose is defined by the combination of contexts in which that business
purpose exists. Each context specific re-use of a common component is catalogued under a new
business information name ‘that uses core component X’.

A domain component is specific to an individual industry area and is only used within that
domain. It may be re-used by another domain if it is found to be appropriate and adequate for
their use, and it then becomes a core or common component.

Components can be built together into aggregates.

As described above for components, aggregated components can be common components. These
are generic and can be used across several business sectors. They can be re-used for a specific
business purpose, defined by a combination of contexts. Each context specific re-use of a
common aggregate component is catalogued under a new business information name ‘that uses
core component X’.

There are also domain specific aggregated components.

Aggregates and components can be gathered into "document parts". These are useful assemblies
which can individually satisfy a business process’s requirement for information, or which may be
"sewn together" in a structured way to achieve the same. For example, the structured combination
may be to satisfy a business process’s need for information presented in a particular way for
efficiency of processing.

An individual document part and the "sewn together" parts, come at increasingly domain-specific
and context-specific levels. They form documents or partial documents that satisfy a business
process or a part of a business process.

Figure 16 illustrates how core components can be built into business documents by explicitly
linking components with the ebXML Business Process Worksheets, and the underlying modelling
approach. The top right-hand corner of the Figure comes from Figure 8.4-1 in the ebXML
Business Process Overview document.

Draft ASC X12 Reference Model for XML Design Rules

Page 71 of 74

Statement OfStatement Of
IntentIntent

DocumentDocument
Schema, XMLSchema, XML
SamplesSamples

RequirementsRequirements
DocumentsDocuments

AnalyzeAnalyze
BusinessBusiness

Process andProcess and
BusinessBusiness

InformationInformation

Business ProcessBusiness Process
Definition,Definition,
Document Definit ionDocument Definit ion

ImplementImplement
Service/Service/

ApplicationApplication
Business ProcessBusiness Process

DefinitionDefinition

GatherGather
Require-Require-

mentsments

DevelopDevelop
SchemasSchemas

Business document
in a particular
context

Document
part in a
particular
context

Context

Component 2

Component 1

Aggregate

…informs context...

…describes content...

…
po

pu
lat

es
 co

nte
nt.

..

Note that in this instance document parts are pieces of business information required to satisfy a
particular business process, from a specific contextual viewpoint.

3.0 Relationship to other XML Efforts
Since most other XML efforts lack an overriding semantic organization, many efforts have been
directed to production of “bullet” messages. This effort is directly applicable by narrow
definition of the business purpose underlying each Template. In particular, ebXML efforts have
componentry definitions with instances that span several levels. The architecture proposed here
provides a structured mechanism to impose a semantic discipline in this arena.

Several XML efforts have modeling as a primary tenet. Modeling may prove to be the best way
to develop items at the top levels of this architecture (certainly Templates and Modules and
possibly Assemblies). X12 feels that this architecture allows modeling to be used at high levels,
where it is most effective.

Figure 16

