White Paper

Component Software Integration

The Open Applications Group, Inc.
[image: image1.png]

White Paper - Open Applications Group, Inc.

February, 1999

Introduction

T

he Open Applications Group, Inc. (OAGI), is a non-profit industry consortium comprised of many of the most prominent stakeholders in the business software component interoperability arena in the world. It was formed in response to the rapidly expanding problem of tying disparate software applications together. The requirement to bolt business software together quickly and cheaply is accelerating and customers are spending more time and money on this problem than ever before.

This white paper will explain the vision of the Open Applications Group to dramatically improve software integration thereby reducing costs and increasing the agility of the IT organization to react to changing business needs. It will also describe the architectural approach used by the members and the compelling business value of working together to achieve “Plug and Play” integration of business software components.
[image: image2.png]

The Problem

"Imagine if you didn't have common electric outlets and plugs in your house, and every time you bought a new appliance, you had to wire up the appliance to the wires in your wall. And everybody's wires in everybody's walls were different. And everybody's appliance wiring was different. That's really the way it works today with trying to integrate business software applications". - Paul Margolis, past chairman of the Open Applications Group, Inc.

Environment

Many businesses have tried to address the integration problem by standardizing on a single provider. The results they have experienced have been less than their expectations. Their business units are constantly changing to keep up with today's business environment. The forming of new business units and the removal of business units cause IT to re-work existing integration or to build new integration. Moreover, many organizations are acquiring new business units or selling other business units. These add-on business units can not be expected to have the same IT infrastructure as the home enterprise.

[image: image3.png]

This modern business climate combines with the requirements of IT organizations to build and maintain the integration for their existing portfolio of legacy and purchased applications.

To make matters worse for the IT infrastructure, best practices are moving the enterprise to get closer to their suppliers and vendors and this requires the IT infrastructure to enable connections to many disparate IT environments.

In this complex and dynamic environment, it is easy to see that single sourceing one's own software will not fix this problem. The notion of a homogeneous environment is no longer practical. Some of the most progressive IT organizations are changing their strategy to build a integration backbone capability that proactively supports these business conditions, thus providing the ability to react to the business.

Unfortunately, without a common approach, and without the cooperation of the technology vendors, this approach falls short of its promise.

[image: image4.png]Enterprise

3 Business °°* Business
Business Unit 2 Unit n
Unit 1

Supplier

Integration Back Bone

Costs

The costs of integration are not well documented. Many IT organizations do not keep specific records of the cost of integration. Much more information on the true costs of integration will be appearing shortly. The existing information on this problem says that over US $40 billion was spent on this problem in 1997. Several studies indicate that at least forty percent of an enterprise’s IT budget is used up on integration and the cost is growing.

The cost is not limited to installing new applications, customers explain. The larger expense in time and money comes from the overwhelming task of maintaining the API’s to existing in-house applications. Many customers tell us they believe that savings in maintenance alone is the biggest opportunity for saving time and money for an enterprise.

One insightful analyst has called this issue, "The dirty little secret of applications software". It is clear that this problem is costing organizations great sums of money as well as lost opportunities because of the inability to support the business needs quickly enough.

Mission

The mission of the Open Applications Group is to promote the easy and cost-effective integration of business application software components for the enterprise.

The Group does this by advancing industry awareness of issues and solutions regarding interoperability of software business components and working to evolve those solutions into a best practices model while providing an impartial forum for all of the stakeholders in the industry to further improve the model and learn.

Vision

Our vision at the Open Applications Group is to drive for a solution that enables an organization to assemble their application portfolio, as they need to support the business, with a minimum of time and cost. When customers talk to us about tying together application software, most of the time they do not care about the technical wonders associated with integrating software. They require the ability to support their organizational needs to be fast, agile, and economical.

Our vision to make plug and play business software a reality may best be described by discussing the way a laptop computer will accept a new PC Card with comparatively little effort.

Most cards that plug into laptop computers are not manufactured by the laptop manufacturer, yet it is a relatively painless task to integrate the two! Why is this? Lets look at the analogy and the roles each of the three items in this scenario:

A. The laptop computer:

1) Has been designed for components.

2) Has exposed a common API and documented it.

[image: image5.png]

B. The PC Card

1) The card manufacturer has built the card to hook up to the common API that the laptop computer has exposed.

2) The card manufacturer has built a software driver to enable the PC Card to integrate with the laptop computer.

C. The Operating System

1) The operating system has a built in mechanism for looking at the PC Card port and identifying when something gets plugged in. At this point, even though the operating system may not have the specific driver required, all the user has to do is to put in a CDROM or a floppy disk to load the specific driver.

Now the end user has one more step. To configure the software driver for any unique behavior they require.

Imagine if you could buy two software applications, plug in a driver, and then do the final configuration for your unique requirements! We believe this kind of solution is possible.

But we also believe, like in the analogy above, that this is not possible without all of the stakeholders working together. The Open Applications Group is working as the impartial mediator and driver to get all of the stakeholders to work together to accomplish this vision for business software component integration.

Value Statements:

The value proposition for joining the Customer Interoperability Council in the Open Applications Group is very strong. Some of the advantages for customers include:

· Customers will implement more quickly and at a reduced cost over custom projects.

· Customers will dramatically reduce the cost of maintenance by lowering the costs spent on maintaining interfaces.

· Customers can maximize their IT investments because this enables them to select individual business applications that best suit their needs without incurring the costs and delays that accompany most integration projects today.

· Customers can save time and costs by using the Open Applications Group specifications as a ready made design model to integrate their custom and legacy business applications.

A Recipe for Integration

[image: image6.png]—_—

Public Interface

: Request
I
4—'7

Request } Response
- Object Name :
- Method :
-Arguments |

I

I

I

I

Beginning in 1996 with its first release of specifications, and throughout 1997, the Open Applications Group has delivered and enhanced their model for business software component interoperability. This model is an application specification for interoperability called OAGIS (Open Application Group Integration Specification). This model contains:

· An application architecture

· Business software component definitions

· Component integration scenario diagrams

· Detail definitions of the APIs necessary to integrate business software components

This is a very rich specification describing many of the integration points necessary for enabling this vision. The members of the Open Applications Group have developed a recipe, or process, for building this specification. This repeatable process enables the team members to consistently design integration for business software components. This recipe includes:

1. The identification of the integration scenario required.

2. The definition of the business software components necessary to complete the integration scenario.

3. The definition of granularity of the business software components involved in the integration scenario.

4. The development of a detailed integration scenario diagram.

5. The definition of the business process, mapping of those processes, and the reconciliation necessary to define the relationships between components.

6. The definition of the detailed data mapping required for communication between business software components and the reconciliation needed to map data elements between components.

7. Development of a common data dictionary to create a common ground for business software components to communicate.

8. The use of a set of guidelines for defining the flows between business software components. These guidelines walk the team through the issues in defining the interoperability between business software components and includes:

· Data synchronization

· Validation

· Transaction processing flows

· Inquiry

· Reporting

· Security and authentication

The defined scenarios and the supporting specifications are associated with planning, managing, and executing the business functions of an enterprise, not the databases or spreadsheets that support these functions. It is this focus on content, not on technology, that is the key to understanding the Open Applications Group's efforts.

Some examples of the business areas in the scope of this work include General Ledger, Payroll, Inventory, Purchasing, Customer Order Management, and Production.

The OAGI is specifying these business application interfaces so that customers and suppliers can build to these interfaces and thus reap the benefits of mixing and matching applications from different sources, including purchased products and customer built applications.

The scope of this work includes:

· Integration from enterprise business software applications to extra-enterprise systems,

· Integration between enterprise business software applications,

· Integration from enterprise business software applications to enterprise execution systems.

A Virtual Object Model

[image: image7.png]BOD \

Business Object
Document

L

<BOD>

</BOD>

Consider the generally accepted approach to accessing an object. One invokes an object by sending it a message with an object name, a method, and a set of arguments. The object processes the request and responds to the originator of the message.

This model encapsulates the private implementation details of the object and enables communication through a public interface. This is the conceptual approach to interoperability the OAGI is taking.

The OAGI is building a content based virtual business object model that enables an enterprise business application to build a virtual object wrapper around itself through the use of OAGI compliant API's. This interoperability is achieved with object oriented advantages without the requirement to implement a software application in a specific object oriented technology.

To communicate with a business software component, in this model, one passes a request in the form of an OAGI compliant Business Object Document (BOD) to a virtual object interface.

The BOD itself is not an object. It is an application architecture that is used to convey the request and the necessary data to fulfill the request.

[image: image8.png]Integration Server

Request - Reply
Publish - Subscribe

Virtual Object vmm Object Directory Services Vrtual Object
Interface Interface Interface

Routing
Queuing
Logging

g:“ Integration Backbone
—

Integration Server
+ Request - Reply
Publish - Subscribe
Directory Services

TXN Mamt
+ Routing Virtual Object
« Queting arfacs Virtual Object Virtual Object

Interface

Logging

Because it is part of a larger, implied, virtual object model the is fully described in the Open Applications Group Integration Specification (OAGIS), the Business Object Document is understood by the receiving application and can be processed accordingly. The receiving mechanism and the underlying specifics of how the request is processed are irrelevant to the requesting application. The Business Object document is described in more detail below.

The Business Object Document Architecture

When the Open Applications Group members designed the mechanism to define the APIs necessary to build their model, they had the foresight to determine that a fixed length mechanism was not flexible enough to accommodate the various needs of communicating between business software components.

[image: image9.png]

As a result of this thought process, the members built a self-describing mechanism that uses a concept called meta data. Meta data is actually data that describes data and enables a flexible mechanism that will describe itself to another component and will ensure that only the information necessary for accomplishing the task is sent.

This architecture provides a model that is faster to develop, easier to support, and ensures higher performance for the end user. The mechanism the Open Applications Group membership built is called the Business Object Document. The Business Object Document is not a protocol, and it is not a transport, but it is an application architecture used to execute the virtual object interface. The Business Object Document contains the framework necessary to convey its' two primary components, the Business Service Request and the Business Data Area.

Each Business Service Request (BSR) contains a unique verb/noun combination such as POST JOURNAL or SYNC ITEM that drives the contents of the Business Data Area (BDA). This BSR and BDA combination correspond to the Object Name, Method, and Arguments model that is described in the figure above.

This common semantic model of communication is similar to the process of providing translators for all the participants in a United Nations debate. There, everyone speaks in their own language, but everyone also hears in their own language because of the translation that is built into the process.

The Business Object Document and its contents, the Business Service Request and Business Data Area, do essentially the same thing, except they go one step further. They also normalize the semantics, or the meaning of the dialog, not just the words, so there is no misunderstanding in the communication process.

Extensible Markup Language (XML)

Extensible Markup Language (XML) is an exciting, evolutionary, meta data language, approved as a standard by the World Wide Web Consortium in February 1998. XML evolved from the Standard Generalized Markup Language (SGML) as a compromise between the complex SGML and the simple, but non-extensible HTML. It has been described as providing 80% of the benefit of SGML with 20% of the effort and it is being embraced by a broad cross-section of the industry as the right language for defining the APIs necessary to make business software components talk to each other.

XML is actually a language for creating markup languages that describe data and rules about the data. It requires applications to be defined to it before it can become truly useful. The process of defining applications is done through the use of the Document Type Definition, which defines the tags and rules within XML for a well-formed XML document. The Open Applications Group, Inc. has defined the tags and rules for business software component interoperability in this application.

Since XML is data base-neutral, operating system-neutral, and device-neutral, it is an effective tool for defining heterogeneous interoperability. This is also in complete alignment with the Open Applications Group stated technology strategy, which is to be technology aware, but not technology specific.

Using XML as the method to express the Business Object Document enables the Open Applications Group to clearly and concisely define the OAGI model in a machine readable format to enable software developers to quickly adopt and implement this model.

It is an exciting capability that the IT industry is quickly adopting and now tools vendors are building generally available tools that enable this approach to be based on standard tools and technologies and prevents the need for building custom or proprietary tools to adopt this approach.

Summary

The benefactors of the results of Open Applications Integration span the entire industry and include all of the stakeholders in this industry. The customers are in a position to save large sums of money and time. The vendors who provide solutions that meet or exceed expectations will become very successful. This is an exciting time in the industry with an inexorable move toward practical software components.

The key is to work as a group to solve the problem and make this a reality.

For More Information

If you would like more information about the Open Applications group and the exciting work the members are accomplishing, please visit our web site at http://www.openapplications.org or contact OAGI Headquarters, 401 North Michigan Avenue, Chicago, Illinois 60611, USA; telephone +1 404 627 4454; Fax: +1 404 627 7771; or e-mail: info@openapplications.org.

� EMBED MS_ClipArt_Gallery ���

1
2

_981447106

