
INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 10179:1996(E)

1

Information technology — Processing languages — Document Style
Semantics and Specification Language (DSSSL)

1 Scope

This International Standard is designed to specify the processing of valid SGML documents.

DSSSL defines the semantics, syntax, and processing model of two languages for the
specification of document processing:

a) The transformation language for transforming SGML documents marked up in accordance
with one or more DTDs into other SGML documents marked up in accordance with other
DTDs. The specification of this transformation process is fully defined by this International
Standard.

b) The style language, where the result is achieved by applying a set of formatting characteristics
to portions of the data, and the specification is, therefore, as precise as the application
requires, leaving some formatting decisions, such as line-end and column-end decisions, to
the composition and layout process.

The DSSSL style language is intended to be used in a wide variety of environments with
typographic requirements ranging from simple single-column layouts to complex multiple-
column layouts. This International Standard does not standardize a formatter nor does it
standardize composition or other processing algorithms. Rather, it provides the means whereby
an implementation may externalize ‘style characteristics’ and other techniques for associating
style information with an SGML document.

DSSSL provides a mechanism for specifying the use of ‘external processes’ to manipulate data.
The nature of these processes is outside the scope of DSSSL, but may include typical data
management functions, such as sorting and indexing; typical composition functions, such as
hyphenation algorithms; and graphics or multimedia processes for non-SGML data.

Documents that have already been formatted or do not contain any hierarchical structural
information or generic markup are not within the field of application of this International
Standard.

ISO/IEC 10179:1996 © ISO/IEC

2

DSSSL expresses specifications to be performed by some processor that accepts an input
document and produces an output document. DSSSL is independent of the type of formatter,
formatting system, or other transformation processor.

DSSSL includes

a) Constructs that provide access to, and control of, all possible marked-up information in an
SGML document, as well as mechanisms for string processing to allow for the manipulation
of non-marked up data. This is provided by the Standard Document Query Language (SDQL)
component of DSSSL.

NOTE 1 String processing is necessary so that no special ‘markers’ need be embedded in the source document to
indicate presentational changes. The display of a dropped or raised capital letter in a larger point size at the
beginning of a line or paragraph is an example of a case where string processing may be used to isolate the first
character or group of characters in order to achieve a desired presentational effect.

b) Provisions for specifying the relationship between one or more SGML documents as input to
a transformation process and zero or more resulting SGML documents as the output of the
process.

c) Provisions for specifying the relationships between the SGML document(s), as expressed in
the source Document Type Definition(s), and the result of the formatting process. The output
of the formatting process may be an ISO/IEC 10180 Standard Page Description Language
(SPDL) document or it may be a document in some other, possibly proprietary, form.

d) Provisions for describing the typographic style and layout of a document.

e) Definitions of a machine-processable syntax for the representation of a DSSSL specification
and its various components.

f) Provisions for creating new DSSSL characteristics and their associated values, as well as new
flow object classes. These are declared in the declarations for the style language portion of
the DSSSL specification.

This International Standard is intended for use in a wide variety of SGML application
environments, including both electronic publishing and conventional printing.

2 Conformance

DSSSL includes two independent languages, the transformation language and the style language,
which specify processing of an SGML document. A DSSSL specification contains a number of
process specifications, each of which uses either the style language or the transformation
language. A process specification that uses the style language is a style-specification. A process
specification that uses the transformation language is a transformation-specification.

© ISO/IEC ISO/IEC 10179:1996(E)

3

If a style-specification complies with all the provisions of this International Standard, it is a
conforming DSSSL style-specification. If a transformation-specification complies with all the
provisions of this International Standard, it is a conforming DSSSL transformation-specification.

In both the style language and transformation language, some facilities are optional. Each
optional facility is associated with a named feature. A process specification that makes use of an
optional facility shall enable the feature with which it is associated using the features element
type form.

A conforming DSSSL system shall support the style language, the transformation language, or
both the style language and the transformation language.

The documentation for a conforming DSSSL system shall state whether it supports the
transformation language or the style language or both and, for each language that the system
supports, shall state which features of the language it supports.

A conforming DSSSL system that supports the style language shall be able to process any
conforming SGML document using any conforming DSSSL style-specification that enables only
features of the style language that the DSSSL system is documented to support.

A conforming DSSSL system that supports the transformation language shall be able to process
any conforming SGML document using any conforming DSSSL transformation-specification
that enables only features of the transformation language that the DSSSL system is documented
to support.

3 Normative References

The following standards contain provisions which, through reference in this text, consititute
provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO 8879:1986, Information processing — Text and office systems — Standard Generalized
Markup Language (SGML).

ISO/IEC 9541-1:1992, Information technology — Font information interchange — Part 1:
Architecture.

ISO/IEC 9541-2:1992, Information technology — Font information interchange — Part 2:
Interchange Format.

ISO/IEC 10744:1992, Information technology — Hypermedia/Time-based Structuring Language
(HyTime).

ISO/IEC 10179:1996 © ISO/IEC

4

ISO/IEC 10180:1995, Information technology — Processing languages — Standard Page
Description Language (SPDL).

ISO/IEC 9070:1991, Information technology — SGML support facilities — Registration
procedures for public text owner identifiers.

ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character
Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO 639:1988 Codes for the representation of names of languages.

ISO/IEC 3166:1993, Codes for the representation of names of countries.

ISO/IEC 6429:1992, Information technology — Control functions for coded character sets.

ISO/IEC 8601:1988, Data elements and interchange formats — Information exchange —
Representation of dates and times.

ISO/IEC 9945-2:1993, Information technology — Portable Operating System Interface (POSIX)
— Part 2: Shell and utility.

4 Definitions

For the purpose of this International Standard, the definitions given in ISO 8879 and the
following definitions apply.

4.1 area
A rectangular box with a fixed width and height produced by the formatting of a flow object. An
area can be imaged on a presentation medium to produce a set of marks.

4.2 association
A triple consisting of a query-expression, a transform-expression, and a priority-expression. The
priority-expression defaults to 0. Associations are used to control the transformation process.

4.3 atomic flow object
A flow object that has no ports.

4.4 auxiliary grove
A grove created by parsing nodes in another grove.

4.5 characteristic
A named parameter of a flow object.

4.6 complete grove
The grove that would be built using a grove plan that selected all the classes and properties from
the property set.

© ISO/IEC ISO/IEC 10179:1996(E)

5

4.7 component name
A name defined in a property set with three variants: a reference concrete syntax name, an
application name, and a full name.

4.8 creation origin
The node relative to which the position of a node in a result grove is specified.

4.9 descendants
The union of the subtrees of the children of a node.

4.10 enumerator
A possible value of an enumeration data type.

4.11 flow object
A specification of a task to be performed by the formatter. A flow object has a class, which
specifies the kind of task, and characteristics which further parameterize the task.

4.12 formatting process
The process partially specified by the style language.

4.13 grove
A set of nodes connected into a graph by their nodal properties. A grove is built using a grove plan.

4.14 grove plan
A set of classes and properties selected from a property set.

4.15 grove root
The unique node in a grove that has no origin.

4.16 intrinsic property
A property that is automatically part of a property set, without being defined in the property set.

4.17 line-progression-direction
A direction associated with inline areas. The line-progression-direction is perpendicular to the
inline-progression-direction of the inlined area.

4.18 nodal property
A property whose value is a node or list of nodes. Nodal properties are categorized by their
property set as subnode, irefnode, or urefnode.

4.19 node
An ordered set of property assignments. A node is a member of a grove, and belongs to a class
defined in the grove plan used to build its grove.

4.20 origin
For a node x, the node that exhibits for a subnode property a value that includes x. Every node in
a grove other than the grove root has a unique origin.

ISO/IEC 10179:1996 © ISO/IEC

6

4.21 origin-to-subnode relationship
The subnode property of the origin of a node that includes the node in its value.

4.22 port
A point on a flow object in a flow object tree to which an ordered list of flow objects can be
attached. A port is either the principal port of the flow object or it is named.

4.23 primitive data type
A data type that has no super type. The primitive data type of a data type is the data type itself, if
the data type has no super type, and otherwise the primitive data type of the super type of the data
type.

4.24 property assignment
The assignment of a property value to a property name.

4.25 property set
A set of classes and properties with associated definitions.

4.26 process specification
The combination of the specification in a process specification element and the specifications in
any other process specification elements that the process specification element is declared to use.

4.27 process specification element
An instance of a transformation-specification or style-specification element type form.

4.28 process specification part
A section of the process specification coming from a single process specification element. Any
process specification elements referred to using the use attribute are separate parts. A part of a
process specification takes precedence over any later parts of the process specification.

4.29 siblings (of a node)
The other nodes in the grove that occur in the value of the origin-to-subnode relationship property
of the origin of the node.

4.30 sosofo
A specification of a sequence of flow objects.

4.31 source grove
The grove parsed to create an auxiliary grove.

4.32 spread
Consecutive back/front pair of pages in a page-sequence.

4.33 stream
An ordered list of flow objects attached to a port of a flow object.

4.34 subgrove
The union of a node and the values of the subnode properties of the node.

© ISO/IEC ISO/IEC 10179:1996(E)

7

4.35 subtree
A node together with the subtrees of its children.

4.36 synchronization set
A set of flow objects in different streams whose relative positioning is constrained.

4.37 transformation process
The process specified by the transformation language. It transforms one or more SGML
documents into zero or more other SGML documents.

4.38 tree
The subtree of a node that has no parent.

4.39 verification grove
The grove that would be built by parsing the SGML document or subdocument generated from
the result grove using a grove plan that included all classes and properties of the SGML property
set.

4.40 zone
One of four named subdivisions of a column. The four zones are: top-float, body-text, bottom-
float, and footnote. The positioning of an area to be placed in a column-set area container can be
controlled by labeling it with the name of a zone.

5 Notation and Conventions

5.1 Syntax Productions

In this International Standard, formal syntax is described in a manner similar to ISO 8879 with
the following exceptions.

A sequence of expressions indicates that the expressions shall occur in the order shown. The ,
operator is not used.

The occurrence indicators ?, +, and * have higher precedence than sequencing, which in turn has
higher precedence than the connectors | and &. For example,

a b | c d*

is equivalent to

(a b) | (c (d*))

A syntactic-literal is indicated by a monospaced typeface as shown.

syntactic-literal

ISO/IEC 10179:1996 © ISO/IEC

8

In a syntax production, double square brackets ([[]]) can be used to surround an or group. The
meaning of this is similar to an and group. However, if any of the members of the or group have
a * or + occurrence indicator, then they can occur the number of times indicated but intermixed
with other members of the group. For example,

[[a* | b+ | c | d?]]

means a sequence containing only a’s, b’s, c’s, and d’s in which any number of a’s occur, one or
more b’s, exactly one c, and at most one d.

5.2 Procedure Prototypes

Each procedure is defined by a procedure prototype:

(foo a b)

This indicates that the identifier foo is bound in the top-level environment to a procedure that
has two arguments.

If the name of an argument is also the name of a type, then that argument shall be of the named
type. The following naming conventions for arguments also imply type restrictions:

— obj: any object

— list: list

— q: quantity

— x: real number

— y: real number

— n: integer

— k: exact non-negative integer

If the procedure also accepts keyword arguments, the prototype is of the form:

(foo a b #!key key1: key2:)

This indicates that the procedure in addition accepts two keyword arguments. The names of the
keyword arguments indicate the keywords that are used to specify them and do not constrain the
type.

© ISO/IEC ISO/IEC 10179:1996(E)

9

6 DSSSL Overview

A key feature of generalized markup is that the formatting and other processing information
associated with the document is separate from the generic tags embedded in it.

In any generalized markup scheme, there is a method for associating processing specifications
with the SGML markup. This method of association allows the information to be attached to
specific instances of elements as well as to general classes of element types. The primary goal of
DSSSL is to provide a standardized framework and methods for associating processing
information with the markup of SGML documents or portions of documents.

DSSSL is intended for use with documents structured as a hierarchy of elements. For the
purpose of describing in detail the concepts of DSSSL in the subsequent clauses of this
International Standard, SGML terminology is used.

DSSSL enables formatting and other processing specifications to be associated with these
elements to produce a formatted document for presentation. For example, a designer may wish
to specify that all chapters begin on a new recto page and that all tables begin with a page-wide
rule to be positioned only at the top or bottom of the page. During the DSSSL transformation
process, formatting information may be added to the result of the transformation. This
information may be represented as SGML attributes. These, in turn, may be used by the style
language to create formatting characteristics with specific values.

6.1 Areas of Standardization

DSSSL provides four distinct areas of standardization:

a) A language and processing model for transforming one or more SGML documents into zero
or more other SGML documents.

This is called the transformation language. This transformation is controlled by the
transformation-specification. A transformation-specification contains a list of associations.
An association contains up to three parts: the query-expressions, the transform-expressions,
and the optional priority-expressions. Functionally, this specification allows the user to
specify the creation of new structures, the replication of existing structures, and the reordering
and regrouping of existing structures.

b) A language for specifying the application of formatting characteristics onto an SGML
document.

The process that applies formatting and other formatting-related processing characteristics to
an SGML document is called the formatting process. This process is controlled by the style-
specification. A style-specification contains a sequence of construction rules. There are
several kinds of construction rules. For more details, refer to 12.4.1.

NOTE 2 It is important to note that for the DSSSL style language and the associated formatting process, DSSSL
does not standardize the process itself, but merely standardizes the form and semantics of the style language

ISO/IEC 10179:1996 © ISO/IEC

10

controlling a portion of the process. The remaining formatting functions, such as line-breaking, column-breaking,
page-breaking, and other aspects of whitespace distribution, are not standardized and are under control of the
formatter.

c) A query language, Standard Document Query Language, used for identifying portions of an
SGML document.

SDQL is part of both the DSSSL transformation language and the DSSSL style language. It
is used for navigating through the hierarchical structure of the SGML document, identifying
the relevant pieces of the SGML markup and content on which processing is to be performed.
SDQL adds additional data types to the DSSSL expression language. In addition to the full
query language, this International Standard defines a subset called the core query language.
For more information on the core query language, see 10.2.4. For a complete discussion of the
full SDQL, see clause 10.

d) An expression language.

The DSSSL expression language is used in SDQL, the DSSSL transformation language, and
the DSSSL style language. It is used to create and manipulate objects. In addition to the full
expression language, this International Standard defines a subset called the core expression
language. See 8.6. The DSSSL expression language is based on the Scheme Programming
Language as defined in the IEEE Scheme standard, R4RS. DSSSL uses only the functional,
side-effect free subset of Scheme. See clause 8 for a complete discussion of the DSSSL
expression language.

6.2 Conceptual Model

The DSSSL conceptual model has two distinct processes: (1) a transformation process and (2) a
formatting process. The two processes may be used in conjunction with each other, or each may
be used alone.

An illustration of the DSSSL conceptual model is shown in Figure 1.

© ISO/IEC ISO/IEC 10179:1996(E)

11

1

Figure 1 – DSSSL Conceptual Model

The shaded areas indicate the parts of the processing model that are standardized by DSSSL.

6.3 DSSSL Languages

Each of the DSSSL processes is controlled by the appropriate DSSSL language. The
transformation language controls the transformation process. Likewise, the style language
controls aspects of the formatting process.

6.3.1 The Transformation Language

The transformation process transforms an SGML document into another SGML document under
the control of the transformation-specification. The SGML document that is the result of this
transformation process may then be used as input to the formatting process.

In the transformation process, a user identifies portions of the SGML document that are to be
mapped or transformed. For each node matching the specified portions of SGML content and
structure, the transformation is accomplished according to the specification describing the new
structures to be created.

All operations performed in this transformation process are independent of the later formatting
process. Operations during the transformation process may include the following:

— Combining structures

DSSSL Specification

Style
Specification

Transformation
Specification

SGML
Document

Transformer SGML
Document

Source
Document

Result
Document

Formatting
Process

DSSSL-driven
Formatter

Output of
Formatter

Transformation
Process

SPDL or
other
output
format

ISO/IEC 10179:1996 © ISO/IEC

12

SGML structures may be reordered and regrouped to create totally new structures. For
example, footnotes that are inline with footnote references according to the source DTD may
be collected to place the footnotes at the end of each chapter when the document is formatted.

— Creating new elements with user-specifiable relationships to other elements

New structures or attributes may be created. For example, special formatting descriptions
such as the need for a 3-point rule, expressed as an SGML attribute, may be associated with
every fifth row in a table to provide visual impact.

— Associating new descriptions with particular sequences of content

A sequence of elements in the source document may trigger the association of different
formatting characteristics. For example, a paragraph following a warning may be required to
be presented differently from all other paragraphs.

— Associating new descriptions with particular components of content

An association may be used to attach special formatting to particular strings of text that may
not be specially tagged in the source document, as, for example, in the replacement of the
character string ‘ISO’ with the ISO logo.

DSSSL allows formatting information to be associated with, and dependent on, any combination
of the above. Both the content and structure of the SGML document can be modified.

The transformation language can be used to facilitate the formatting process as indicated in the
examples above, or it can be used to enhance or modify documents created in accordance with a
DTD that has changed over time. It may also be used to transform documents using a public
DTD into a proprietary or ‘in-house’ DTD.

The importance and use of the transformation language will vary depending on the SGML
application, the DSSSL application, the capabilities of the formatter, and the implementation.
Many formatting applications may require no transformation process at all.

6.3.1.1 Components of the Transformation Process

The component processes are:

a) Grove Building Processor

An SGML document is input to this process. The SGML document or subdocument is parsed
and is represented by a collection of nodes called a grove. A grove is similar to an element
tree, but may include other subtrees, for example, a subtree of attribute values. Relationships
in a grove are expressed in terms of properties. For a complete description of the grove and
SGML property definitions, see clause 9.

b) Transformer

© ISO/IEC ISO/IEC 10179:1996(E)

13

The input to the transformation process includes the SGML document as created during the
grove building step and the transformation-specification.

The transformation-specification consists of a collection of associations. Each association
specifies the transformation of like objects in the source document into objects in the result
grove. Key to this transformation is that not only can each object be mapped to an explicit
location in the result grove, but it can also be mapped to a location using the result of
transforming some other source object as a reference point.

The output of the transformation process is the result grove. The transformation process may
operate on multiple SGML documents as input to the process, and likewise may transform
them into multiple SGML documents. For a complete description of the transformation
process, see clause 11.

c) SGML Generator

The transformation process produces a grove that must be converted to an SGML document
for interchange, validation, and input to the formatting process. The SGML generator is used
for this purpose. The output of the SGML generator shall be a valid SGML document. For a
complete description of the SGML generator, see 11.4.

The model of the transformation process is illustrated in the Figure 2. Note that the shaded areas
indicate the components of the DSSSL specification standardized by this International Standard.

2

Figure 2 – The Transformation Process

6.3.1.2 Model for Coded Characters, Characters, and Glyph Identifiers

There are three distinct components of this model:

Transformation
SpecificationDTD &

SGML
Decl

SGML
Docu-
ment

SGML
Docu-
ment

Source
Grove

Result
Groves

Transformer
SGML
Generator

Grove
Building
Process

ISO/IEC 10179:1996 © ISO/IEC

14

— the coded characters in the SGML source document,

— the characters in the grove,

— the glyph identifiers of the final result document.

The characters in the SGML source document are typically encoded in accordance with a
particular character encoding standard, such as ISO 8859-1 (‘Latin 1’). The SGML declaration
contains a specification of the character set either in the form of a description or in terms of
codepoints in one or more particular, normally standardized or at least registered, coded
character sets. It is, however, permitted to refer to a private coded character set as well as giving
just a description as a minimum literal of the coded character.

There are many character coding schemes. Some of these use non-spacing characters together
with a base character to represent a character with a diacritic. SGML also permits the use of
entity references to represent ‘non-keyable’ characters. For example, a lower case e with acute
accent may be represented, in the same document, as

— a single character,

— a non-spacing diacritic and e (2 characters),

— an e and combining diacritic (2 characters),

— the entity reference é.

This variation may cause problems in searching using regular expressions.

In DSSSL, the input characters are ‘normalized’ into a sequence of characters that each
represents a specific ‘meaning’ regardless of how it was originally encoded — as a single
character, as multiple characters in a particular character set, or as an entity reference. Each
DSSSL specification defines a single character repertoire. The character repertoire shall include
all characters used in the DSSSL specification, in the source groves, and in the flow object tree;
therefore, only these characters may be used. The declaration of each character also includes a set
of properties that may be significant in the formatting process, for example, that the character
represents a ‘word space’.

The DSSSL specification, which may have been encoded using a different coded character set
than the source document, is also translated into a sequence of characters belonging to the same
repertoire as the characters used in the DSSSL trees. All comparisons, such as matching an
element name, are performed by comparing these characters rather than using the coded
characters of the original SGML document.

A sequence of characters in the input grove may be manipulated by a transformation process into
another sequence under the control of a character-to-character map. This technique is typically
used when parts of the source document contain transliterated text.

© ISO/IEC ISO/IEC 10179:1996(E)

15

The characters in the input grove to the formatter are transformed into glyph identifiers during
the formatting process. The transformation is controlled by character-to-glyph and ligature-to-
glyph maps in which one or more characters are mapped into one or more glyph identifiers. The
map to be used is not fixed for a document, but is expressed as a formatting characteristic that
may be specified for an area or for a portion of the input grove. Ligatures are specified by
mapping more than one character to a single glyph.

Additional properties specify the font to be used. This information, together with the glyph
identifier, selects an actual shape to be used in rendering. Hyphenation points are determined
based on the characters, but width calculations are based on the metrics of the actual rendering
shapes (i.e., based on the glyphs).

6.3.2 The Style Language

The term ‘formatting’ when used in this International Standard means any combination of the
following:

— the process that applies presentation styles to source document content and determines its
position on the presentation medium,

— the selection and reordering of content in the result document with respect to its position in
the input document,

— the inclusion of material not explicitly present in the input document, such as the generation
of new material,

— the exclusion of material from the input document in the result document.

DSSSL defines the visual appearance of a formatted document in terms of formatting
characteristics attached to an intermediate tree called the flow object tree. DSSSL allows enough
flexibility in the specification so that it is not tied to a set of composition or formatting
algorithms, i.e., line-breaking, page-breaking, or whitespace distribution algorithms, used by any
particular formatting system. These aspects of the layout process are specific to individual
implementations. In this International Standard, line-breaking and page-breaking rules may be
expressed in terms of constraints and other formatting characteristics that govern the formatting
process. The output of the formatter, undefined in this International Standard, is a formatted
document suitable for printing or imaging.

The formatting process uses the style-specification, which may include construction rules, page-
model definitions, column-set-model definitions, and other general and application-defined
declarations and definitions.

6.3.2.1 Components of the Formatting Process

The conceptual processes that constitute the formatting process are as follows:

a) Build grove from SGML document.

ISO/IEC 10179:1996 © ISO/IEC

16

b) Apply construction rules to the objects in the source grove to create the flow object tree.

c) Define page and column geometry by characteristics on the page-sequence flow object and
column-set sequence flow objects referring to page-models and column-set-models,
respectively.

d) Compose and lay out the content based on the rules specified by the semantics of the flow
object classes and the values of the characteristics associated with those objects. Each flow
object (an instance of a flow object class) is formatted to produce a sequence of areas having
explicit dimensions and positioned by a parent in the flow object tree.

6.3.2.2 Grove Building

The formatting process uses the same grove building step as the transformation process to
convert the SGML document into a grove of hierarchically structured objects. For more
information, see clause 9.

6.3.2.3 Flow Object Tree

The grove is then further processed, using the construction rules, to create a flow object tree
consisting of flow objects with the appropriate formatting and page-layout characteristics. For
the formal definition of the construction rules, see 12.4.1. Each flow object (except an atomic
flow object) has one or more sequences of flow object children. Each sequence of flow object
children is attached to a point of a flow object called a port. The port is either the principal port of
the flow object, or it may be named.

A flow object class defines a set of formatting characteristics that apply to some category of flow
objects. Each flow object class also defines a set of port names. The class of a child flow object
shall be compatible with the class and port name of the port to which it is attached. The flow
objects attached to any particular port are ordered, but there is no order defined between flow
objects attached to different ports of the same flow object.

The process of creating the flow object tree includes the following steps:

a) Formatting characteristics are associated with each flow object.

b) Nodes representing data characters from the grove are converted to character flow objects.
Each character flow object has characteristics governing glyph selection and style parameters
such as font family, font weight, etc.

In constructing the flow object tree, SDQL may be used to identify portions of the SGML
document that have specific formatting characteristics as well as those that can be treated
together for purposes of flowing onto the same column or page. The content that is flowed
together is placed as a sequence of flow objects in a port of the parent in the flow tree.

NOTE 3 For example, if a document consists of several normal paragraphs and some footnote paragraphs, the
footnote paragraphs can be grouped as the content of a port of the parent flow object that represents the footnote.
Similarly, the normal paragraphs can be grouped in a port of a flow object representing a sequence of columns.

© ISO/IEC ISO/IEC 10179:1996(E)

17

6.3.2.4 Flow Object Classes

The flow object classes and the characteristics that apply to them define the formatting
appearance and behavior of the contents of the document.

The following flow object classes are provided in this International Standard:

Sequence flow object class

Display-group flow object class

Simple-page-sequence flow object class

Page-sequence flow object class

Column-set-sequence flow object class

Paragraph flow object class

Paragraph-break flow object class

Line-field flow object class

Sideline flow object class

Anchor flow object class

Character flow object class

Leader flow object class

Embedded-text flow object class

Rule flow object class

External-graphic flow object class

Included-container-area flow object class

Score flow object class

Box flow object class

Side-by-side flow object class

Glyph-annotation flow object class

Alignment-point flow object class

ISO/IEC 10179:1996 © ISO/IEC

18

Aligned-column flow object class

Multi-line-inline-note flow object class

Emphasizing-mark flow object class

Flow object classes for mathematical formulae

Flow object classes for tables

Flow object classes for online display

In addition, DSSSL applications may define their own set of flow object classes as well as their
own set of characteristics that may apply to these or to DSSSL-defined flow object classes.

6.3.2.5 Areas

The result of formatting a flow object is a sequence of areas. An area is a rectangular box with a
fixed width and height. There are two types of areas: inline areas that are parts of lines and
display areas that are not directly parts of lines.

Both types of areas are positioned by a process of filling. The exact nature of the filling process
is different for each of these types of areas. See 12.3 for more information on the filling of areas.

A display area is positioned by being filled into an area container. The size of an area container
may grow in the filling-direction, but is fixed in the other direction.

6.3.2.6 Page and Column Geometry

Page layout in DSSSL is specified by page-model characteristics on the page-sequence flow
object and column-set-model characteristics on the column-set sequence flow object.

The page-sequence flow object is formatted to produce a sequence of page areas. A page-model
is the specification of the possible structure and positioning of the area hierarchy of the page,
including the height and width of the page and the specification of page-regions. Page-regions
are area containers with fixed dimensions into which formatted content is placed as specified by
the page-region-flow-map. The page-region-flow-map provides the connection between the port
name and a page-region. Each of the page-regions may have a header and a footer specification.
For complete information on the page-sequence flow object and the associated page models, see
12.6.4 and 12.6.4.1.

The column-set-sequence flow object is formatted to produce a sequence of column-set areas. A
column-set area contains a set of parallel columns. The structure and positioning of each
column-set area is controlled by the column-set-model to which it conforms. A column-set-
model specifies the possible hierarchy of areas for each column-set. Column-sets may be nested.
The column-set area is divided geometrically in a direction parallel to the filling direction into a
number of columns. Associated with each column-set may be zones that constrain the placement

© ISO/IEC ISO/IEC 10179:1996(E)

19

of areas relative to other areas in the filling-direction. The allowed zones are: top-float, body-
text, bottom-float, and footnote.

The column-set-model specifies the possible structure and positioning of the area hierarchy of
the column-set through the column-subset specification, the filling-direction specification, width
and height specifications, etc. The column-subset specification includes a column-subset-flow-
map that indicates the ports from which the contents are flowed into the specified zone. The
column-set-model also supports spanning. For complete information on the column-set
sequence flow object, see 12.6.5; for complete information on the column-set-model, see
12.6.5.1.

6.3.2.7 Expression Language

The formatting process uses the core expression language defined in 8.6 or, as an optional
feature, the full expression language as described in 8.

Figure 3 illustrates the model of the formatting process.
3

Figure 3 – Formatting Process

6.3.2.8 Model for Coded Characters, Characters, and Glyph Identifiers

The formatting process uses the model for coded characters, characters, and glyph identifiers
described in 6.3.1.2.

Style
Specification

SGML
Document

Grove
Building
Processor

Flow Object
Tree
Constructor

Formatter
Formatted
Result
Document

Source
Grove

Flow Object
Tree

ISO/IEC 10179:1996 © ISO/IEC

20

7 DSSSL Specifications

A DSSSL specification is an SGML document conforming to the DSSSL document architecture.
The DSSSL document architecture is a document architecture conforming to the Architectural
Form Definition Requirements of ISO/IEC 10744.

An SGML document can declare its conformance to the DSSSL document architecture by
including a token ArcBase in the APPINFO parameter of its SGML declaration and the
following declarations in its DTD:

<?ArcBase DSSSL>
<!NOTATION DSSSL PUBLIC "ISO/IEC 10179:1996//NOTATION
 DSSSL Architecture Definition Document//EN"
 -- A document architecture conforming to the
 Architectural Form Definition Requirements of
 ISO/IEC 10744. --
>
<!ATTLIST #NOTATION DSSSL
 -- Support attributes for all architectures --
 ArcFormA -- Attribute name: architectural form --
 NAME #FIXED DSSSL
 ArcNamrA -- Attribute name: attribute renamer --
 NAME #FIXED DNames
 ArcBridA -- Attribute name: bridge functions --
 NAME #FIXED DBrid
 ArcDocF -- Architectural form name: document element --
 CDATA #FIXED dsssl-specification
 ArcVer -- Architecture version identifier --
 CDATA #FIXED "ISO/IEC 10179:1996"
>
<!ENTITY DSSSL SYSTEM CDATA DSSSL>

7.1 DSSSL Document Architecture

The DSSSL document architecture is defined by the following meta-DTD.

<!-- DSSSL Document Architecture -->

<!ENTITY % declarations
 "features | baseset-encoding | literal-described-char | add-name-chars
 | add-separator-chars | standard-chars | other-chars
 | combine-char | map-sdata-entity | char-repertoire | sgml-grove-plan"
>

<!element dsssl-specification - O
 ((%declarations;)*,
 (style-specification | transformation-specification
 | external-specification)+)>
<!attlist dsssl-specification
 dsssl NAME dsssl-specification
 version CDATA #FIXED "ISO/IEC 10179:1996"
>

© ISO/IEC ISO/IEC 10179:1996(E)

21

<!element transformation-specification - O
 ((%declarations;)*, transformation-specification-body*)>
<!attlist transformation-specification
 dsssl NAME transformation-specification
 id ID #IMPLIED
 desc CDATA #IMPLIED
 -- human readable description of specification --

 partial (partial | complete) complete
 -- is the specification complete is or is it just a fragment
 to be used in other specifications? --

 use
 -- reftype(transformation-specification|external-specification) --
 IDREFS #IMPLIED -- Default: none --

 entities
 -- entities available to be specified as DTD for validation
 of result document --
 ENTITIES #IMPLIED -- Default: none --
>

<!element style-specification - O
 ((%declarations;)*, style-specification-body*)>
<!attlist style-specification
 dsssl NAME style-specification
 id ID #IMPLIED
 desc CDATA #IMPLIED
 -- human readable description of specification --

 partial (partial | complete) complete
 -- is the specification complete is or is it just a fragment
 to be used in other specifications? --

 use -- reftype(style-specification|external-specification) --
 IDREFS #IMPLIED -- Default: none --
>

<!-- Assign a local ID to a specification in another document. -->
<!element external-specification - O EMPTY>
<!attlist external-specification
 dsssl NAME external-specification
 id ID #REQUIRED
 document -- document containing spec --
 ENTITY #REQUIRED
 specid -- id of spec in document --
 NAME #IMPLIED -- Default: first spec in document --
>

<!-- Declares features used by specification. -->

<!element features - O (#PCDATA)
 -- lextype(featurename*) -->
<!attlist features
 dsssl NAME features

ISO/IEC 10179:1996 © ISO/IEC

22

>

<!-- Map character numbers in a base character set to character names;
not needed when system knows a character set, and all characters
in character set have universal code. -->
<!element baseset-encoding - O (#PCDATA)
 -- lextype((number, charname)*) -->
<!attlist baseset-encoding
 dsssl NAME baseset-encoding
 name CDATA #REQUIRED -- public identifier of baseset --
>

<!-- Map a character described in the SGML declaration with a minimum literal
to a character name. -->
<!element literal-described-char - O (#PCDATA)
 -- lextype(charname) -->
<!attlist literal-described-char
 dsssl NAME literal-described-char
 desc CDATA #REQUIRED -- the literal description --
>

<!-- Declare additional characters allowed in name within DSSSL notation. -->
<!element add-name-chars - O (#PCDATA)
 -- lextype(charname*) -->
<!attlist add-name-chars
 dsssl NAME add-name-chars
>

<!-- Declare additional characters allowed as separators within
 DSSSL notation. -->
<!element add-separator-chars - O (#PCDATA)
 -- lextype(charname*) -->
<!attlist add-separator-chars
 dsssl NAME add-separator-chars
>

<!-- Define characters associating names with universal codes. -->

<!element standard-chars - O (#PCDATA)
 -- lextype((charname, number))*) -->
<!attlist standard-chars
 dsssl NAME standard-chars
>

<!-- Define characters with no universal codes. -->

<!element other-chars - O (#PCDATA)
 -- lextype(charname*) -->
<!attlist other-chars
 dsssl NAME other-chars
>

<!-- Map an SDATA entity onto a character. -->

<!element map-sdata-entity - O (#PCDATA)
 -- lextype(charname) -->

© ISO/IEC ISO/IEC 10179:1996(E)

23

<!attlist map-sdata-entity
 dsssl NAME map-sdata-entity
 name CDATA #IMPLIED -- Default: mapping uses replacement text only --
 text CDATA #IMPLIED -- Default: mapping uses name only --
>

<!-- Declare character combining. -->

<!element combine-char - O (#PCDATA)
 -- lextype(charname, charname, charname+) -->
<!attlist combine-char
 dsssl NAME combine-char
>

<!-- Declare a character repertoire. -->
<!element char-repertoire - O EMPTY>
<!attlist char-repertoire
 dsssl NAME char-repertoire
 name -- public identifier for repertoire --
 CDATA #REQUIRED
>
<!-- Declare the grove plan for the SGML property set. -->
<!element sgml-grove-plan - O EMPTY>
<!attlist sgml-grove-plan
 dsssl NAME sgml-grove-plan
 modadd -- names of modules to be added to default grove plan --
 NAMES #IMPLIED -- Default: none added --
>

<!element style-specification-body - - CDATA
 -- content uses notation of DSSSL style language -->
<!attlist style-specification-body
 dsssl NAME style-specification-body
 content ENTITY #CONREF -- Default: syntactic content --
>

<!element transformation-specification-body - - CDATA
 -- content uses notation of DSSSL transformation language -->
<!attlist transformation-specification-body
 dsssl NAME transformation-specification-body
 content ENTITY #CONREF -- Default: syntactic content --
>

The element type form dsssl-specification is a container for one or more process
specification element type forms. Declaration elements in a dsssl-specification element
apply to all the process specification elements in the dsssl-specification element.

There are two types of process specification element type forms. The element type form
transformation-specification specifies a transformation process. The element type
form style-specification specifies a formatting process. Instances of these element type
forms are called process specification elements. Each process specification element may be self-
contained, or it may make use of other process specification elements of the same type. Process
specification elements are identified by an SGML unique identifier. A process specification

ISO/IEC 10179:1996 © ISO/IEC

24

element in one SGML document may use a process specification element in another SGML
document by using the external-specification element type form to assign a local
unique identifier to the process specification element in the other document. The combination of
a process specification element with the process specification elements that it uses is a process
specification.

A user specifies processing of an SGML document by identifying a process specification
element. The manner in which these elements are identified is system-dependent.

NOTE 4 A system may identify a process specification element with a system identifier for the document and an
optional unique identifier for the element within the document, with the first process specification element in a
document being used if no unique identifier is specified.

Each process specification element may contain elements, called body elements, whose content
specifies processing in a process-specific notation. For a transformation-
specification, this notation is the DSSSL transformation language; for a style-
specification, this notation is the DSSSL style language. In addition, each process
specification element may contain declaration elements that contain information needed to parse
these notations.

The process specification described by a sequence of process specification elements is
considered as a sequence of parts, where each part consists of declarations expressed using
element type forms, and a specification in the process-specific notation, called the body of the
part. The parts from a sequence of process specification elements consist of the sequence of
parts from the first process specification element, followed by the sequence of parts from the
next process specification element, and so on. The sequence of parts from a single process
specification element consists of a part constructed from the content of the process specification
element followed by the sequence of parts from the sequence of process specification elements
that it uses. The declarations in the first part comprise the declarations contained in the process
specification element together with those contained in the dsssl-specification element
that contains the process specification element. The body of the first part consists of the
concatenation of the body elements contained in the process specification element.

A process specification shall be processed by first processing the declarations of all of the parts,
and then processing the bodies of all of the parts in order. Within a single part, there shall not be
conflicting declarations; when two declarations in different parts conflict, the declaration in the
earlier part shall take precedence. Similarly, within the body of a single part, there shall not be
conflicting specifications, but when two specifications in the bodies of different parts conflict,
the specification in the earlier part shall take precedence.

The declarations of a process specification shall specify how each bit combination occurring in
the bodies of the parts of the specification and in all the SGML input documents are to be
converted to characters. Declarations may occur in any order. In particular, character names may
be used before they are declared.

Every character name used either in declarations or in body elements shall be declared using
either a standard-chars element type form, an other-chars element type form, or a
char-repertoire element type form.

© ISO/IEC ISO/IEC 10179:1996(E)

25

All declaration element type forms other than the char-repertoire, features, and sgml-
grove-plan element type forms require the charset feature.

7.1.1 Features

The features element type form declares the features used by a specification. A process
specification shall declare all the features that it uses.

The content of the element shall be a list of feature names.

This declaration is cumulative.

7.1.2 SGML Grove Plan

The sgml-grove-plan element type form names additional modules that should be included
in the grove plan for the SGML property set. The modadd attribute specifies the modules to be
added. The following modules are included automatically:

— baseabs

— prlgabs0

— instabs

For the transformation language, the prlgabs1 module is also included automatically.

This declaration is cumulative.

7.1.3 Character Repertoire

The char-repertoire element type form declares that the specification uses the character
repertoire whose public identifier is given by the name attribute.

A char-repertoire element is equivalent to a sequence of instances of the element type
forms baseset-encoding, literal-described-char, add-name-chars, add-
separator-chars, standard-chars, other-chars, and map-sdata-entity, and of
character-property-declaration and added-char-properties-declaration language forms.

7.1.4 Standard Characters

The standard-chars element type form declares the names of characters in the character
repertoire which correspond to characters defined in ISO/IEC 10646-1 or ISO/IEC 6429. A
character in ISO/IEC 10646-1 or ISO/IEC 6429 is identified by its code in the corresponding
character set, called its universal code.

ISO/IEC 10179:1996 © ISO/IEC

26

The content of the element shall be a list of pairs of character names and numbers expressed in
decimal. It declares that each character name corresponds to the character with the universal
code specified by the following number.

A process specification shall declare character names for each of the following character
numbers in ISO/IEC 10646-1: 32 (space), 34 (quotation mark), 35 (number sign), 39
(apostrophe), 40 (left parenthesis), 41 (right parenthesis), 42 (asterisk), 43 (plus sign), 45
(hyphen-minus), 46 (full stop), 47 (solidus), 48 to 57 (digit zero to digit nine), 58 (colon), 59
(semicolon), 60 (less-than sign), 61 (equals sign), 62 (greater-than sign), 63 (question mark), 65
to 90 (Latin capital letter A to Latin capital letter Z), 92 (reverse solidus), and 97 to 122 (Latin
small letter a to Latin small letter z). It shall also declare character names for each of the
following character numbers in ISO/IEC 6429: 10 (line feed), and 13 (carriage return).

It shall be an error for a single character name to occur more than once in the standard-
chars elements in a single part. The declaration for a character name in one part in the
standard-chars element type form takes precedence over any declaration for that character
name in any later parts.

A system may inherently know for a base character set identified by a public identifier with an
ISO owner identifier how bit combinations in that character set correspond to universal codes.
Thus, if a base character set has a formal public identifier that includes an ISO owner identifier,
and, for each character used by the document character set from that base character set, exactly
one character name is declared using the standard-chars element type form, then no
baseset-encoding element type form is required for that base character set.

7.1.5 Other Characters

The other-chars element type form declares the names of characters in the character
repertoire which do not correspond to characters defined in ISO/IEC 10646-1 or ISO/IEC 6429.

The content of the element shall consist of a list of character names.

EXAMPLE 1

<other-chars>
logoSGML runic-f runic-u
</other-chars>

These declarations are cumulative.

7.1.6 Baseset Encoding

The baseset-encoding element type form specifies how bit combinations in an SGML
document whose meaning was declared in the SGML declaration to be that of a character number
in a base character set are to be converted to characters.

The content of a baseset-encoding element shall consist of a list of pairs of corresponding
character numbers, specified in decimal, and character names. It specifies the character names

© ISO/IEC ISO/IEC 10179:1996(E)

27

corresponding to character numbers in the character set whose public identifier is given by the
name characteristic.

Conflicts between baseset-encoding elements are resolved separately for each character
number. There can be multiple baseset-encoding elements for the same base character set,
but it shall be an error to have two specifications for the same character number in the same base
character set in a single part.

EXAMPLE 2

<baseset-encoding name="Character set for the Viking age runic script">
31 runic-f
32 runic-u
</baseset-encoding>

7.1.7 Literal Described Character

The literal-described-char element type form specifies that bit combinations in an
SGML document whose meaning was declared in the SGML declaration using a minimum literal
equal to the value of the desc attribute are to be converted to the character whose name is
specified in the content of the element.

EXAMPLE 3

<literal-described-char desc="SGML User’s Group logo">
logoSGML
</literal-described-char>

7.1.8 Sdata Entity Mapping

The map-sdata-entity element type form declares that a reference to an internal SDATA
entity whose name is equal to the value of the name attribute and/or whose replacement text is
equal to the value of the text attribute represents the character whose name is given in the
content of the element. The content of the element shall be a single character name.

If the grove plan includes the entity-name property for the sdata node class, then an
SDATA entity shall be mapped by first searching for a mapping for its name and then, if no
mapping is found, searching for a mapping for its text.

EXAMPLE 4

<map-sdata-entity name="Alpha" text="[Alpha]">greekA</map-sdata-entity>
<map-sdata-entity name="V.Beta" text="[V.Beta]">greekB</map-sdata-entity>

7.1.9 Separator Characters

The add-separator-chars element type form declares characters as separator-characters
allowed in whitespace in the DSSSL transformation and style languages.

These declarations are cumulative.

ISO/IEC 10179:1996 © ISO/IEC

28

7.1.10 Name Characters

The add-name-chars element type form declares additional characters as added-name-
characters allowed in identifiers in the DSSSL transformation and style languages.

These declarations are cumulative.

7.1.11 Character Combination

The combine-char element type form contains a list of three or more character names. It
declares that a sequence of characters comprising the second and following characters shall be
replaced by the first character. Use of this element type form requires the combine-char
feature.

7.2 Public Identifiers

Within this International Standard, public identifiers shall conform to the canonical string form
of a public identifier defined in ISO/IEC 9070.

7.3 Lexical Conventions

7.3.1 Case Sensitivity

Upper- and lower-case forms of a letter are always distinguished.

NOTE 5 Traditionally Lisp systems are case-insensitive.

7.3.2 Identifiers

[1] identifier = initial (subsequent* final)? | peculiar-identifier

[2] initial = letter | special-initial | added-name-character

[3] letter = a | b | c |…| z | A | B | C |…| Z

[4] special-initial = special | :

[5] special = ! | $ | % | & | * | / | < | = | > | ? | ̃ | _ | ^

[6] subsequent = initial | digit | special-subsequent

[7] special-subsequent = . | + | -

[8] final = letter | special | added-name-character | digit | special-subsequent

[9] peculiar-identifier = + | - | ...

© ISO/IEC ISO/IEC 10179:1996(E)

29

Most identifiers allowed by other programming languages are also acceptable in DSSSL. In
addition to letters and digits, identifiers may contain the characters $%&*/:<=>?˜_^+-. and
any characters declared as added-named-characters by the add-name-chars or char-
repertoire element type forms. An identifier shall not begin with a character that can begin a
number; however, +, - , and ... are identifiers. An identifier shall not end with : (unless the
entire identifier is :).

NOTE 6 ... are three period characters and not a single ellipsis character.

7.3.3 Tokens, Whitespace, and Comments

[10] token = identifier | keyword | boolean | number | character | string | named-constant | glyph-
identifier | (|) | ' | . | ` | , | ,@

[11] delimiter = whitespace | (|) | " | ;

[12] whitespace = space | record-start | record-end | tab | form-feed | separator-character

[13] comment = ; any-character-except-record-end*

[14] atmosphere = whitespace | comment

[15] intertoken-space = atmosphere*

Whitespace characters are spaces, record starts, record ends, and separator-characters.
Whitespace is used for improved readability and, as necessary, to separate tokens from each
other, a token being an indivisible lexical unit such as an identifier or number, but is otherwise
insignificant. Whitespace may occur between any two tokens, but not within a token.
Whitespace may also occur inside a string, where it is significant.

A semicolon (;) indicates the start of a comment. The comment continues to the end of the
record on which the semicolon appears. Comments are invisible, but the record end is visible as
whitespace. This prevents a comment from appearing in the middle of an identifier or number.

intertoken-space may occur on either side of any token, but not within a token.

Tokens which require implicit termination (identifiers, numbers, characters, dot, and #!
constants) may be terminated by any delimiter, but not necessarily by anything else.

8 Expression Language

The expression language is inspired by the Scheme Programming Language defined in the IEEE
Scheme standard, R4RS. The following specification is based on this definition.

The expression language differs from Scheme in a number of ways:

ISO/IEC 10179:1996 © ISO/IEC

30

— The expression language uses only the functional, side-effect free subset of Scheme. Features
of Scheme that are not useful in the absence of side-effects have been removed (for example,
begin).

— The vector data type is not provided.

— A character object is uniquely identified by its name rather than its code.

— Dependencies in Scheme on the ASCII character set have been removed.

— The number data type is a subtype of a more general quantity data type that adds the concept
of dimension to a number.

— Continuations are not provided.

— Some optional features of R4RS are not provided.

— The gcd and lcm procedures are not provided.

— Keyword arguments are provided.

In addition, DSSSL specifies certain choices that the definition of Scheme leaves open to
implementations.

A subset of the expression language, called the core expression language, is defined in 8.6.

8.1 Overview of the Expression Language

Following Algol, the expression language is statically scoped. Each use of a variable is
associated with a lexically apparent binding of that variable.

The expression language has latent as opposed to manifest types. Types are associated with
values (also called objects) rather than with variables. (Some authors refer to languages with
latent types as weakly typed or dynamically typed languages.) Other languages with latent types
are other dialects of Lisp, APL, and Snobol. Languages with manifest types (sometimes referred
to as strongly typed or statically typed languages) include Algol 60, Pascal, and C.

All objects created in the course of a computation, including procedures, have unlimited extent.
No expression language object is ever destroyed. The reason that implementations do not
(usually!) run out of storage is that they are permitted to reclaim the storage occupied by an
object if they can prove that the object cannot possibly matter to any future computation. Other
languages in which most objects have unlimited extent include other dialects of Lisp and APL.

Implementations are required to be properly tail-recursive. This allows the execution of an
iterative computation in constant space, even if the iterative computation is described by a
syntactically recursive procedure. Thus, with a tail-recursive implementation, iteration may be

© ISO/IEC ISO/IEC 10179:1996(E)

31

expressed using the ordinary procedure-call mechanics, so that special iteration constructs are
useful only as syntactic sugar.

Procedures are objects in their own right. Procedures may be created dynamically, stored in data
structures, returned as results of procedures, and so on. Other languages with these properties
include Common Lisp and ML.

Arguments to procedures are always passed by value, which means that the actual argument
expressions are evaluated before the procedure gains control, whether the procedure needs the
result of the evaluation or not. ML, C, and APL are three other languages that always pass
arguments by value. This is distinct from the lazy-evaluation semantics of Haskell, or the call-by-
name semantics of Algol 60, where an argument expression is not evaluated unless its value is
needed by the procedure.

The expression language, like most dialects of Lisp, employs a fully parenthesized prefix
notation for expressions and (other) data; the grammar of the expression language generates a
sublanguage of the language used for data.

8.2 Basic Concepts

8.2.1 Variables and Regions

Any identifier that is not a syntactic-keyword may be used as a variable. A variable may name a
value. A variable that does so is said to be bound to the value. The set of all visible bindings in
effect at some point is known as the environment in effect at that point. The value to which a
variable is bound is called the variable’s value.

Certain expression types are used to bind variables to new values. The most fundamental of these
binding constructs is the lambda expression, because all other binding constructs can be
explained in terms of lambda expressions. The other binding constructs are let, let*, and
letrec expressions.

Like Algol and Pascal, and unlike most other dialects of Lisp except for Common Lisp, the
expression language is a statically scoped language with block structure. To each place where a
variable is bound in an expression there corresponds a region of the expression text within which
the binding is effective. The region is determined by the particular binding construct that
establishes the binding; if the binding is established by a lambda expression, for example, then its
region is the entire lambda expression. Every reference to, or assignment of, a variable refers to
the binding of the variable that established the innermost of the regions containing the use. If
there is no binding of the variable whose region contains the use, then the use refers to the
binding for the variable in the top-level environment, if any; if there is no binding for the
identifier, it is said to be unbound.

ISO/IEC 10179:1996 © ISO/IEC

32

8.2.2 True and False

Any expression language value may be used as a boolean value for the purpose of a conditional
test. All values count as true in such a test except for #f. This International Standard uses the
word ‘true’ to refer to any value that counts as true, and the word ‘false’ to refer to #f.

8.2.3 External Representations

An important concept in the expression language (and Lisp) is that of the external representation
of an object as a sequence of characters. For example, an external representation of the integer 28
is the sequence of characters ‘28’, and an external representation of a list consisting of the
integers 8 and 13 is the sequence of characters ‘(8 13)’.

The external representation of an object is not necessarily unique. The list in the previous
paragraph also has the representations ‘(08 13)’ and ‘(8 . (13 . ()))’.

Many objects have external representations, but some, such as procedures, do not.

An external representation may be written in an expression to obtain the corresponding object.

External representations may also be used for communicating between processes defined in this
International Standard.

The syntax of external representations of various kinds of objects accompanies the description of
the primitives for manipulating the objects.

8.2.4 Disjointness of Types

No object satisfies more than one of the following predicates:

boolean?
pair?
symbol?
keyword?
quantity?
char?
string?
procedure?

These predicates define the types boolean, pair, symbol, keyword, quantity, char (or character),
string, and procedure.

8.3 Expressions

An expression is a construct that returns a value, such as a variable reference, literal, procedure
call, or conditional.

[16] expression = primitive-expression | derived-expression

© ISO/IEC ISO/IEC 10179:1996(E)

33

Expression types are categorized as primitive or derived. Primitive expression types include
variables and procedure calls. Derived expression types are not semantically primitive but can
instead be explained in terms of the primitive constructs. They are redundant in the strict sense of
the word, but they capture common patterns of usage, and are, therefore, provided as convenient
abbreviations.

8.3.1 Primitive Expression Types

[17] primitive-expression = variable-reference | literal | procedure-call | lambda-expression |
conditional

8.3.1.1 Variable Reference

[18] variable-reference = variable

An expression consisting of a variable is a variable reference. The value of the variable reference
is the value to which the variable is bound. It shall be an error to reference an unbound variable.

EXAMPLE 5

(define x 28)
x ⇒ 28

[19] variable = identifier

[20] syntactic-keyword = expression-keyword | else | => | define

[21] expression-keyword = quote | lambda | if | cond | and | or | case | let | let* |
letrec | quasiquote | unquote | unquote-splicing

Any identifier that is not a syntactic-keyword may be used as a variable. DSSSL languages may
reserve identifiers as syntactic-keywords in addition to those listed above.

8.3.1.2 Literals

[22] literal = quotation | self-evaluating

[23] quotation = ’datum | (quote datum)

(quote datum) evaluates to datum.

[24] datum = simple-datum | list

[25] simple-datum = boolean | number | character | string | symbol | keyword | named-constant |
glyph-identifier

datum may be any external representation of an expression language object. This notation is used
to include literal constants in expressions. A glyph-identifier is allowed only within a style-
language-body.

ISO/IEC 10179:1996 © ISO/IEC

34

EXAMPLE 6

(quote a) ⇒ a
(quote (+ 1 2)) ⇒ (+ 1 2)

(quote datum) may be abbreviated as ’datum. The two notations are equivalent in all
respects.

EXAMPLE 7

’a ⇒ a
’() ⇒ ()
’(+ 1 2) ⇒ (+ 1 2)
’(quote a) ⇒ (quote a)
’’a ⇒ (quote a)

[26] self-evaluating = boolean | number | character | string | keyword | named-constant | glyph-
identifier

Boolean constants, numerical constants, character constants, string constants, keywords,named
constants, and glyph identifiers evaluate ‘to themselves’; they need not be quoted.

EXAMPLE 8

’"abc" ⇒ "abc"
"abc" ⇒ "abc"
’145932 ⇒ 145932
145932 ⇒ 145932
’#t ⇒ #t
#t ⇒ #t
abc: ⇒ abc:
’abc: ⇒ abc:

8.3.1.3 Procedure Call

[27] procedure-call = (operator operand*)

[28] operator = expression

[29] operand = expression

A procedure call is written by simply enclosing in parentheses expressions for the procedure to
be called and the arguments to be passed to it. The operator and operand expressions are
evaluated, and the resulting procedure is passed the resulting arguments.

EXAMPLE 9

(+ 3 4) ⇒ 7
((if #f + *) 3 4) ⇒ 12

If more than one of the operator or operand expressions signals an error, it is system-dependent
which of the errors will be reported to the user.

© ISO/IEC ISO/IEC 10179:1996(E)

35

A number of procedures are available as the values of variables in the initial environment; for
example, the addition and multiplication procedures in the above examples are the values of the
variables + and *. New procedures are created by evaluating lambda expressions.

Procedure calls are also called combinations.

NOTE 7 In contrast to other dialects of Lisp, the operator expression and the operand expressions are always
evaluated with the same evaluation rules.

8.3.1.4 Lambda Expression

[30] lambda-expression = (lambda (formal-argument-list) body)

A lambda expression evaluates to a procedure. The environment in effect when the lambda
expression was evaluated is remembered as part of the procedure. When the procedure is later
called with some actual arguments, the environment in which the lambda expression was
evaluated shall be extended by binding the variables in the formal argument list to the
corresponding actual argument values, and the body of the lambda expression shall be evaluated
in the extended environment. The result of the body shall be returned as the result of the
procedure call.

EXAMPLE 10

(lambda (x) (+ x x)) ⇒ a procedure
((lambda (x) (+ x x)) 4) ⇒ 8

(define reverse-subtract
 (lambda (x y) (- y x)))
(reverse-subtract 7 10) ⇒ 3

(define add4
 (let ((x 4))
 (lambda (y) (+ x y))))
(add4 6) ⇒ 10

[31] formal-argument-list = required-formal-argument* (#!optional optional-formal-
argument*)? (#!rest rest-formal-argument)? (#!key keyword-formal-argument*)?

[32] required-formal-argument = variable

[33] optional-formal-argument = variable | ((variable initializer))

[34] rest-formal-argument = variable

[35] keyword-formal-argument = variable | ((variable initializer))

[36] initializer = expression

When the procedure is applied to a list of actual arguments, the formal and actual arguments are
processed from left to right as follows:

ISO/IEC 10179:1996 © ISO/IEC

36

a) Variables in required-formal-arguments are bound to successive actual arguments starting
with the first actual argument. It shall be an error if there are fewer actual arguments than
required-formal-arguments.

b) Next variables in optional-formal-arguments are bound to remaining actual arguments. If
there are fewer remaining actual arguments than optional-formal-arguments, then the
variables are bound to the result of evaluating initializer, if one was specified, and otherwise
to #f. The initializer is evaluated in an environment in which all previous formal arguments
have been bound.

c) If there is a rest-formal-argument, then it is bound to a list of all remaining actual arguments.
These remaining actual arguments are also eligible to be bound to keyword-formal-
arguments. If there is no rest-formal-argument and there are no keyword-formal-arguments,
then it shall be an error if there are any remaining actual arguments.

d) If #!key was specified in the formal-argument-list, there shall be an even number of
remaining actual arguments. These are interpreted as a series of pairs, where the first member
of each pair is a keyword specifying the argument name, and the second is the corresponding
value. It shall be an error if the first member of a pair is not a keyword. It shall be an error if
the argument name is not the same as a variable in a keyword-formal-argument, unless there
is a rest-formal-argument. If the same argument name occurs more than once in the list of
actual arguments, then the first value is used. If there is no actual argument for a particular
keyword-formal-argument, then the variable is bound to the result of evaluating initializer if
one was specified, and otherwise to #f. The initializer is evaluated in an environment in which
all previous formal arguments have been bound.

NOTE 8 Use of #!key in a formal-argument-list in the transformation language or style language requires the
keyword feature.

It shall be an error for a variable to appear more than once in a formal-argument-list.

EXAMPLE 11

((lambda x x) 3 4 5 6) ⇒ (3 4 5 6)
((lambda (x y #!rest z) z)
 3 4 5 6) ⇒ (5 6)
((lambda (x y #!optional z #!rest r #!key i (j 1)) (list x y z i: i j: j))
 3 4 5 i: 6 i: 7) ⇒ (3 4 5 i: 6 j: 1)

8.3.1.5 Conditional Expression

[37] conditional = (if test consequent alternate)

[38] test = expression

[39] consequent = expression

[40] alternate = expression

© ISO/IEC ISO/IEC 10179:1996(E)

37

A conditional is evaluated as follows: first, test is evaluated. If it yields a true value, then
consequent is evaluated and its value is returned. Otherwise, alternate is evaluated and its value
is returned.

EXAMPLE 12

(if (> 3 2) ’yes ’no) ⇒ yes
(if (> 2 3) ’yes ’no) ⇒ no
(if (> 3 2)
 (- 3 2)
 (+ 3 2)) ⇒ 1

8.3.2 Derived Expression Types

[41] derived-expression = cond-expression | case-expression | and-expression | or-expression |
binding-expression | named-let | quasiquotation

8.3.2.1 Cond-expression

[42] cond-expression = (cond cond-clause+) | (cond cond-clause* (else expression))

[43] cond-clause = (test expression) | (test) | (test => recipient)

[44] recipient = expression

A cond-expression is evaluated by evaluating the test expressions of each successive cond-clause
in order until one of them evaluates to a true value. When a test evaluates to a true value, then the
result of evaluating the expression in the cond-clause is returned as the result of the entire cond
expression. If the selected cond-clause contains only the test and no expression, then the value
of the test is returned as the result. If the cond-clause contains a recipient, then recipient is
evaluated. Its value shall be a procedure of one argument; this procedure is then invoked on the
value of the test. If all tests evaluate to false values, and there is no else clause, then an error is
signaled; if there is an else clause, then the result of evaluating its expression is returned.

EXAMPLE 13

(cond ((> 3 2) ’greater)
 ((< 3 2) ’less)) ⇒ greater

(cond ((> 3 3) ’greater)
 ((< 3 3) ’less)
 (else ’equal)) ⇒ equal

8.3.2.2 Case-expression

[45] case-expression = (case key case-clause+) | (case key case-clause* (else
expression))

[46] key = expression

[47] case-clause = ((datum*) expression)

ISO/IEC 10179:1996 © ISO/IEC

38

All the datums shall be distinct. A case-expression is evaluated as follows. key is evaluated and
its result is compared against each datum. If the result of evaluating key is equal (in the sense of
equal?) to a datum, then the result of evaluating the expression in the corresponding case-
clause is returned as the result of the case-expression. If the result of evaluating key is different
from every datum, and if there is an else clause, then the result of evaluating its expression is the
result of the case-expression; otherwise, an error is signaled.

EXAMPLE 14

(case (* 2 3)
 ((2 3 5 7) ’prime)
 ((1 4 6 8 9) ’composite)) ⇒ composite
(case (car ’(c d))
 ((a e i o u) ’vowel)
 ((w y) ’semivowel)
 (else ’consonant)) ⇒ consonant

8.3.2.3 And-expression

[48] and-expression = (and test*)

The test expressions are evaluated from left to right, and the value of the first expression that
evaluates to a false value is returned. Any remaining expressions are not evaluated. If all the
expressions evaluate to true values, the value of the last expression is returned. If there are no
expressions then #t is returned.

EXAMPLE 15

(and (= 2 2) (> 2 1)) ⇒ #t
(and (= 2 2) (< 2 1)) ⇒ #f
(and 1 2 ’c ’(f g)) ⇒ (f g)
(and) ⇒ #t

8.3.2.4 Or-expression

[49] or-expression = (or test*)

The test expressions are evaluated from left to right, and the value of the first expression that
evaluates to a true value is returned. Any remaining expressions are not evaluated. If all
expressions evaluate to false values, the value of the last expression is returned. If there are no
expressions then #f is returned.

EXAMPLE 16

(or (= 2 2) (> 2 1)) ⇒ #t
(or (= 2 2) (< 2 1)) ⇒ #t
(or #f #f #f) ⇒ #f

8.3.2.5 Binding expressions

[50] binding-expression = let-expression | let*-expression | letrec-expression

© ISO/IEC ISO/IEC 10179:1996(E)

39

The three binding constructs let, let*, and letrec give the expression language a block
structure, like Algol 60. The syntax of the three constructs is identical, but they differ in the
regions they establish for their variable bindings. In a let expression, the initial values are
computed before any of the variables become bound; in a let* expression, the bindings and
evaluations are performed sequentially; while in a letrec expression, all the bindings are in
effect while their initial values are being computed, thus allowing mutually recursive definitions.

[51] let-expression = (let bindings body)

[52] bindings = (binding-spec*)

[53] binding-spec = (variable init)

[54] init = expression

It shall be an error for a variable to appear more than once in any bindings. The inits are
evaluated in the current environment, the variables are bound to the results, and the result of
evaluating body in the extended environment is returned. Each binding of a variable has body as
its region.

EXAMPLE 17

(let ((x 2) (y 3))
 (* x y)) ⇒ 6

(let ((x 2) (y 3))
 (let ((x 7)
 (z (+ x y)))
 (* z x))) ⇒ 35

See also named-let.

[55] let*-expression = (let* bindings body)

A let*-expression is similar to a let-expression, but the bindings are performed sequentially from
left to right, and the region of a binding indicated by a binding-spec is that part of the let*-
expression to the right of the binding-spec. Thus, the second binding is done in an environment
in which the first binding is visible, and so on.

EXAMPLE 18

(let ((x 2) (y 3))
 (let* ((x 7)
 (z (+ x y)))
 (* z x))) ⇒ 70

[56] letrec-expression = (letrec bindings body)

Each variable in a binding-spec is bound to the result of evaluating the corresponding init, and
the result of evaluating body in the extended environment is returned. The inits are evaluated in
the extended environment. Each binding of a variable in a binding-spec has the entire letrec-

ISO/IEC 10179:1996 © ISO/IEC

40

expression as its region, making it possible to define mutually recursive procedures. It shall be an
error if the evaluation of an init references the value of any of the variables. In the most common
uses of letrec, all the inits are lambda expressions, and this restriction is satisfied
automatically.

EXAMPLE 19

(letrec ((even?
 (lambda (n)
 (if (zero? n)
 #t
 (odd? (- n 1)))))
 (odd?
 (lambda (n)
 (if (zero? n)
 #f
 (even? (- n 1))))))
 (even? 88))
 ⇒ #t

8.3.2.6 Named-let

[57] named-let = (let variable (binding-spec*) body)

Named let has the same syntax and semantics as ordinary let except that variable is bound
within body to a procedure whose formal arguments are the bound variables and whose body is
body. Thus, the execution of body may be repeated by invoking the procedure named by
variable.

EXAMPLE 20

(let loop ((numbers ’(3 -2 1 6 -5))
 (nonneg ’())
 (neg ’()))
 (cond ((null? numbers) (list nonneg neg))
 ((>= (car numbers) 0)
 (loop (cdr numbers)
 (cons (car numbers) nonneg)
 neg))
 ((< (car numbers) 0)
 (loop (cdr numbers)
 nonneg
 (cons (car numbers) neg)))))
 ⇒ ((6 1 3) (-5 -2))

8.3.2.7 Quasiquotation

The following grammar for quasiquote expressions is not context-free. It is presented as a recipe
for generating an infinite number of production rules. Imagine a copy of the following rules for
D = 1, 2, 3, …. D keeps track of the nesting depth.

[58] quasiquotation = quasiquotation_1

© ISO/IEC ISO/IEC 10179:1996(E)

41

[59] template_0 = expression

[60] quasiquotation_D = ‘template_D | (quasiquote template_D)

[61] template_D = simple-datum | list-template_D | unquotation_D

[62] list-template_D = (template-or-splice_D*) | (template-or-splice_D+ . template_D) |
’template_D | quasiquotation_D+1

[63] unquotation_D = ,template_D-1 | (unquote template_D-1)

[64] template-or-splice_D = template_D | splicing-unquotation_D

[65] splicing-unquotation_D = ,@template_D-1 | (unquote-splicing template_D-1)

In quasiquotations, a list-template_D may sometimes be confused with either an unquotation_D
or a splicing-unquotation_D. The interpretation as an unquotation or splicing-unquotation_D
takes precedence.

‘Backquote’ or ‘quasiquote’ expressions are useful for constructing a list structure when most but
not all of the desired structure is known in advance. If no commas appear within the template,
the result of evaluating ‘template is equivalent to the result of evaluating ’template. If a
comma appears within the template, however, the expression following the comma is
evaluated (‘unquoted’), and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (@), then the following
expression shall evaluate to a list; the opening and closing parentheses of the list are then
‘stripped away’ and the elements of the list are inserted in place of the comma at-sign expression
sequence.

EXAMPLE 21

‘(list ,(+ 1 2) 4) ⇒ (list 3 4)
(let ((name ’a)) ‘(list ,name ’,name))
 ⇒ (list a (quote a))
‘(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)
 ⇒ (a 3 4 5 6 b)
‘((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))
 ⇒ ((foo 7) . cons)

Quasiquote forms may be nested. Substitutions are made only for unquoted components
appearing at the same nesting level as the outermost backquote. The nesting level increases by
one inside each successive quasiquotation and decreases by one inside each unquotation.

EXAMPLE 22

‘(a ‘(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)
 ⇒ (a ‘(b ,(+ 1 2) ,(foo 4 d) e) f)
(let ((name1 ’x)
 (name2 ’y))
 ‘(a ‘(b ,,name1 ,’,name2 d) e))
 ⇒ (a ‘(b ,x ,’y d) e)

ISO/IEC 10179:1996 © ISO/IEC

42

The notations ‘template and (quasiquote template) are identical in all respects. ,expression
is identical to (unquote expression), and ,@expression is identical to (unquote-
splicing expression).

EXAMPLE 23

(quasiquote (list (unquote (+ 1 2)) 4)) ⇒ (list 3 4)
’(quasiquote (list (unquote (+ 1 2)) 4))
 ⇒ ‘(list ,(+ 1 2) 4) i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior may result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in positions within a template other than as described above.

8.4 Definitions

[66] definition = variable-definition | procedure-definition

Definitions may take two possible forms.

[67] variable-definition = (define variable expression)

This syntax is primitive.

[68] procedure-definition = (define (variable formal-argument-list) body)

This form is equivalent to

(define variable
 (lambda (variable formal-argument-list) body)).

A definition that does not occur within an expression is known as a top-level definition.

A top-level definition

(define variable expression)

evaluates expression in the top-level environment and binds variable to the result in the top-level
environment.

EXAMPLE 24

(define add3
 (lambda (x) (+ x 3)))
(add3 3) ⇒ 6
(define first car)
(first ’(1 2)) ⇒ 1

A single variable shall not be defined by more than one top-level definition in any process
specification part. A top-level definition of a variable in a process specification part is ignored if
that variable has been defined at the top level in a previous process specification part. See 7.1.

© ISO/IEC ISO/IEC 10179:1996(E)

43

The expression in a top-level definition shall not be evaluated until all top-level variables that
would be referenced by evaluating the expression have been defined.

NOTE 9 This constraint does not prevent the definition of mutually recursive procedures, because evaluating a
lambda expression does not reference variables that occur free within it.

It shall be an error if it is impossible to evaluate all the expressions occurring in top-level
definitions in such a way that this constraint is not violated.

The built-in definition of a variable may be replaced by a top-level definition. The replacement
definition shall be used for all references to that variable, even those that occur in process
specification parts preceding the part that contains the first top-level definition.

NOTE 10 This rule is not easy to implement, but it allows built-in procedures to be added in future versions of this
International Standard without changing the meaning of any conforming DSSSL specifications.

[69] body = definition* expression

Definitions may also occur at the beginning of a body. These are known as internal definitions.
The variable defined by an internal definition is local to the body. The region of the binding is the
entire body. For example,

(let ((x 5))
 (define foo (lambda (y) (bar x y)))
 (define bar (lambda (a b) (+ (* a b) a)))
 (foo (+ x 3))) ⇒ 45

A body containing internal definitions may always be converted into a completely equivalent
letrec expression. For example, the let expression in the previous example is equivalent to

(let ((x 5))
 (letrec ((foo (lambda (y) (bar x y)))
 (bar (lambda (a b) (+ (* a b) a))))
 (foo (+ x 3))))

Just as for the equivalent letrec expression, it shall be possible to evaluate each expression of
every internal definition in a body without referring to the value of any variable being defined.

8.5 Standard Procedures

This section describes the expression language's built-in procedures. The initial (or ‘top-level’)
environment starts out with a number of variables bound to useful values, most of which are
primitive procedures that manipulate data. For example, the variable abs is bound to a
procedure of one argument that computes the absolute value of a number, and the variable + is
bound to a procedure that computes sums.

It shall be an error for a procedure to be passed an argument of a type that it is not specified to
handle.

ISO/IEC 10179:1996 © ISO/IEC

44

8.5.1 Booleans

[70] boolean = #t | #f

The standard boolean objects for true and false are written as #t and #f. What really matters,
though, are the objects that the conditional expressions (if, cond, and, or) treat as true or
false. The phrase ‘a true value’ (or sometimes just ‘true’) means any object treated as true by the
conditional expressions, and the phrase ‘a false value’ (or ‘false’) means any object treated as
false by the conditional expressions.

Of all the standard values, only #f counts as false in conditional expressions. Except for #f, all
standard values, including #t, pairs, the empty list, symbols, numbers, strings, and procedures,
count as true.

NOTE 11 Programmers accustomed to other dialects of Lisp should be aware that the expression language
distinguishes both #f and the empty list from the symbol nil.

Boolean constants evaluate to themselves, so they don't need to be quoted in expressions.

EXAMPLE 25

#t ⇒ #t
#f ⇒ #f
’#f ⇒ #f

8.5.1.1 Negation

(not obj)

not returns #t if obj is false, and returns #f otherwise.

EXAMPLE 26

(not #t) ⇒ #f
(not 3) ⇒ #f
(not (list 3)) ⇒ #f
(not #f) ⇒ #t
(not ’()) ⇒ #f
(not (list)) ⇒ #f
(not ’nil) ⇒ #f

8.5.1.2 Boolean Type Predicate

(boolean? obj)

boolean? returns #t if obj is either #t or #f and returns #f otherwise.

EXAMPLE 27

(boolean? #f) ⇒ #t
(boolean? 0) ⇒ #f
(boolean? ’()) ⇒ #f

© ISO/IEC ISO/IEC 10179:1996(E)

45

8.5.2 Equivalence

(equal? obj1 obj2)

The equal? procedure defines an equivalence relation on objects. It returns #t if obj1 and obj2
should be regarded as the same object, and otherwise returns #f. For objects that have external
representations, two objects shall be the same if their external representations are the same. If
each of obj1 and obj2 is of type boolean, symbol, char, pair, quantity, or string, then the
equal? procedure shall return #t if and only if:

— obj1 and obj2 are both #t or both #f.

— obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)
 (symbol->string obj2))
 ⇒ #t

— obj1 and obj2 are both numbers, are numerically equal in the sense of =, and are either both
exact or both inexact.

— obj1 and obj2 are both strings and are the same string according to the string=?
procedure.

— obj1 and obj2 are both characters and are the same character according to the char=?
procedure.

— obj1 and obj2 are both the empty list.

— obj1 and obj2 are both pairs and the car of obj1 is equal? to the car of obj2 and the cdr of
obj1 is equal? to the cdr of obj2.

If one of obj1 and obj2 is a procedure and the other is not, then equal? shall return #f. If obj1
and obj2 are both procedures then equal? shall return #f if obj1 and obj2 would return a
different value for some arguments, and otherwise shall return either #t or #f.

NOTE 12 In other words equality for procedures is not well defined.

8.5.3 Pairs and Lists

A pair (sometimes called a dotted pair) is a record structure with two fields called the car and cdr
fields (for historical reasons). Pairs are created by the procedure cons. The car and cdr fields are
accessed by the procedures car and cdr. Pairs are used primarily to represent lists. A list may
be defined recursively as either the empty list or a pair whose cdr is a list. More precisely, the set
of lists is defined as the smallest set X such that:

— The empty list is in X.

— If list is in X, then any pair whose cdr field contains list is also in X.

ISO/IEC 10179:1996 © ISO/IEC

46

The objects in the car fields of successive pairs of a list are the elements of the list. For example,
a two-element list is a pair whose car is the first element and whose cdr is a pair whose car is the
second element and whose cdr is the empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

The empty list is a special object of its own type (it is not a pair); it has no elements and its length
is zero.

NOTE 13 The above definitions imply that all lists have finite length and are terminated by the empty list.

[71] list = (datum*) | (datum+ . datum) | abbreviation

The most general notation (external representation) for pairs is the ‘dotted’ notation (c1 . c2)
where c1 is the value of the car field and c2 is the value of the cdr field. For example (4 . 5)
is a pair whose car is 4 and whose cdr is 5. Note that (4 . 5) is the external representation of
a pair, not an expression that evaluates to a pair.

A more streamlined notation may be used for lists: the elements of the list are simply enclosed in
parentheses and separated by spaces. The empty list is written () . For example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

A chain of pairs not ending in the empty list is called an improper list. Note that an improper list
is not a list. The list and dotted notations may be combined to represent improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored in the cdr field.

[72] abbreviation = abbrev-prefix datum

[73] abbrev-prefix = ’ | ‘ | , | ,@

Within literal expressions, the forms ’datum, ‘datum, ,datum, and ,@datum denote the two-
element list whose first element are the symbols quote, quasiquote, unquote, and
unquote-splicing, respectively. The second element in each case is datum. This
convention is supported so that arbitrary expressions and portions of the specification may be
represented as lists. That is, according to the DSSSL expression language grammar, every
expression is also a datum, and a transformation-language-body is a sequence of datums.

© ISO/IEC ISO/IEC 10179:1996(E)

47

8.5.3.1 Pair Type Predicate

(pair? obj)

Returns #t if obj is a pair, and otherwise returns #f.

EXAMPLE 28

(pair? ’(a . b)) ⇒ #t
(pair? ’(a b c)) ⇒ #t
(pair? ’()) ⇒ #f

8.5.3.2 Pair Construction Procedure

(cons obj1 obj2)

Returns a pair whose car is obj1 and whose cdr is obj2.

EXAMPLE 29

(cons ’a ’()) ⇒ (a)
(cons ’(a) ’(b c d)) ⇒ ((a) b c d)
(cons "a" ’(b c)) ⇒ ("a" b c)
(cons ’a 3) ⇒ (a . 3)
(cons ’(a b) ’c) ⇒ ((a b) . c)

8.5.3.3 car Procedure

(car pair)

Returns the contents of the car field of pair. Note that it shall be an error to take the car of the
empty list.

EXAMPLE 30

(car ’(a b c)) ⇒ a
(car ’((a) b c d)) ⇒ (a)
(car ’(1 . 2)) ⇒ 1
(car ’()) ⇒ error

8.5.3.4 cdr Procedure

(cdr pair)

Returns the contents of the cdr field of pair. Note that it shall be an error to take the cdr of the
empty list.

EXAMPLE 31

(cdr ’((a) b c d)) ⇒ (b c d)
(cdr ’(1 . 2)) ⇒ 2
(cdr ’()) ⇒ error

ISO/IEC 10179:1996 © ISO/IEC

48

8.5.3.5 c…r Procedures

(caar pair)

(cadr pair)

(cdar pair)

(cddr pair)

(caaar pair)

(caadr pair)

(cadar pair)

(caddr pair)

(cdaar pair)

(cdadr pair)

(cddar pair)

(cdddr pair)

(caaaar pair)

(caaadr pair)

(caadar pair)

(caaddr pair)

(cadaar pair)

(cadadr pair)

(caddar pair)

(cadddr pair)

(cdaaar pair)

(cdaadr pair)

(cdadar pair)

(cdaddr pair)

(cddaar pair)

(cddadr pair)

(cdddar pair)

(cddddr pair)

These procedures are compositions of car and cdr, where for example caddr could be defined
by

(define caddr (lambda (x) (car (cdr (cdr x))))).

Arbitrary compositions, up to four deep, are provided. There are twenty-eight of these
procedures in all.

8.5.3.6 Empty List Type Predicate

(null? obj)

Returns #t if obj is the empty list, and otherwise returns #f.

© ISO/IEC ISO/IEC 10179:1996(E)

49

8.5.3.7 List Type Predicate

(list? obj)

Returns #t if obj is a list, and otherwise returns #f. By definition, all lists have finite length and
are terminated by the empty list.

EXAMPLE 32

(list? ’(a b c)) ⇒ #t
(list? ’()) ⇒ #t
(list? ’(a . b)) ⇒ #f

8.5.3.8 List Construction

(list obj …)

Returns a list of its arguments.

EXAMPLE 33

(list ’a (+ 3 4) ’c) ⇒ (a 7 c)
(list) ⇒ ()

8.5.3.9 List Length

(length list)

Returns the length of list.

EXAMPLE 34

(length ’(a b c)) ⇒ 3
(length ’(a (b) (c d e))) ⇒ 3
(length ’()) ⇒ 0

8.5.3.10 Lists Appendance

(append list …)

Returns a list consisting of the elements of the first list followed by the elements of the other
lists.

EXAMPLE 35

(append ’(x) ’(y)) ⇒ (x y)
(append ’(a) ’(b c d)) ⇒ (a b c d)
(append ’(a (b)) ’((c))) ⇒ (a (b) (c))

The last argument may actually be any object; an improper list results if the last argument is not
a proper list.

ISO/IEC 10179:1996 © ISO/IEC

50

EXAMPLE 36

(append ’(a b) ’(c . d)) ⇒ (a b c . d)
(append ’() ’a) ⇒ a

8.5.3.11 List Reversal

(reverse list)

Returns a list consisting of the elements of list in reverse order.

EXAMPLE 37

(reverse ’(a b c)) ⇒ (c b a)
(reverse ’(a (b c) d (e (f)))) ⇒ ((e (f)) d (b c) a)

8.5.3.12 Sublist Extraction

(list-tail list k)

Returns the sublist of list obtained by omitting the first k elements. List-tail could be
defined by

(define list-tail
 (lambda (x k)
 (if (zero? k)
 x
 (list-tail (cdr x) (- k 1)))))

8.5.3.13 List Access

(list-ref list k)

Returns the kth element of list. (This is the same as the car of (list-tail list k).)

EXAMPLE 38

(list-ref ’(a b c d) 2) ⇒ c
(list-ref ’(a b c d)
 (inexact->exact (round 1.8))) ⇒ c

8.5.3.14 List Membership

(member obj list)

Returns the first sublist of list whose car is equal? to obj, where the sublists of list are the
non-empty lists returned by (list-tail list k) for k less than the length of list. If obj
does not occur in list, then #f (not the empty list) is returned.

EXAMPLE 39

(member ’a ’(a b c)) ⇒ (a b c)
(member ’b ’(a b c)) ⇒ (b c)
(member ’a ’(b c d)) ⇒ #f

© ISO/IEC ISO/IEC 10179:1996(E)

51

8.5.3.15 Association Lists

(assoc obj alist)

alist (for ‘association list’) shall be a list of pairs. This procedure finds the first pair in alist
whose car field is equal? to obj and returns that pair. If no pair in alist has obj as its car,
then #f (not the empty list) is returned.

EXAMPLE 40

(define e ’((a 1) (b 2) (c 3)))
(assoc ’a e) ⇒ (a 1)
(assoc ’b e) ⇒ (b 2)
(assoc ’d e) ⇒ #f

NOTE 14 Although they are ordinarily used as predicates, member and assoc do not have question marks in their
names because they return useful values rather than just #t or #f.

8.5.4 Symbols

Symbols are objects whose usefulness rests on the fact that two symbols are identical (in the
sense of equal?) if and only if their names are spelled the same way. This is exactly the
property needed to represent identifiers, so most implementations of Lisp dialects use them
internally for that purpose. Symbols are useful for many other applications; for instance, they
may be used the way enumerated values are used in Pascal. Typically, two symbols may be
compared for equality in constant time, no matter how long their names.

[74] symbol = identifier

The rules for writing a symbol are exactly the same as the rules for writing an identifier.

8.5.4.1 Symbol Type Predicate

(symbol? obj)

Returns #t if obj is a symbol, and otherwise returns #f.

EXAMPLE 41

(symbol? ’foo) ⇒ #t
(symbol? (car ’(a b))) ⇒ #t
(symbol? "bar") ⇒ #f
(symbol? ’nil) ⇒ #t
(symbol? ’()) ⇒ #f
(symbol? #f) ⇒ #f

8.5.4.2 Symbol to String Conversion

(symbol->string symbol)

Returns the name of symbol as a string.

ISO/IEC 10179:1996 © ISO/IEC

52

EXAMPLE 42

(symbol->string ’flying-fish) ⇒ "flying-fish"
(symbol->string
 (string->symbol "Malvina")) ⇒ "Malvina"

8.5.4.3 String to Symbol Conversion

(string->symbol string)

Returns the symbol whose name is string. This procedure may create symbols with names
containing special characters, but it is usually a bad idea to create such symbols because they
have no external representation. See symbol->string.

EXAMPLE 43

(equal? ’mISSISSIppi ’mississippi) ⇒ #f
(equal? ’bitBlt (string->symbol "bitBlt")) ⇒ #t
(equal? ’JollyWog
 (string->symbol
 (symbol->string ’JollyWog))) ⇒ #t
(string=? "K. Harper, M.D."
 (symbol->string
 (string->symbol "K. Harper, M.D.")) ⇒ #t

8.5.5 Keywords

Keywords are similar to symbols. The main difference is that keywords are self-evaluating and
therefore do not need to be quoted in expressions. They are used mainly for specifying keyword
arguments.

[75] keyword = identifier:

A keyword is a single token; therefore, no whitespace is allowed between the identifier and the :.
The : is not considered part of the name of the keyword.

8.5.5.1 Keyword Type Predicate

(keyword? obj)

Returns #t if obj is a keyword, and otherwise returns #f.

8.5.5.2 Keyword to String Conversion

(keyword->string keyword)

Returns the name of keyword as a string.

EXAMPLE 44

(keyword->string Argentina:) ⇒ "Argentina"

© ISO/IEC ISO/IEC 10179:1996(E)

53

8.5.5.3 String to Keyword Conversion

(string->keyword string)

Returns the keyword whose name is string.

EXAMPLE 45

(string->keyword "foobar") ⇒ foobar:

8.5.6 Named Constants

[76] named-constant = #!optional | #!rest | #!key

Named-constants are used in formal-argument-lists. They are self-evaluating. The named objects
have their own unique (unnamed) type that is distinct from the type of any other object.

8.5.7 Quantities and Numbers

8.5.7.1 Numerical Types

The expression language provides a quantity data type which represents lengths and quantities
derived from lengths, such as areas and volumes. The SI meter is used as the base unit for
representing quantities. The name of this unit is m. Any quantity may be represented as the
product of a number and the base unit raised to the power of an integer. The dimension of a
quantity is the power to which the base unit is raised when the quantity is so represented. A
quantity with dimension 0 is dimensionless.

It is convenient to be able to express quantities not only in terms of the base unit but also in terms
of other derived units.

[77] unit-declaration = (define-unit unit-name expression)

expression shall evaluate to a quantity. A unit-declaration declares the derived quantity unit-
name to be equivalent to this quantity. In this context, unit-name is a separate token.

Derived units for centimeters, millimeters, inches, picas, and points, corresponding to the
following declarations, are pre-defined.

(define-unit cm 0.01m)
(define-unit mm 0.001m)
(define-unit in 0.0254m)
(define-unit pt 0.0003527778m)
(define-unit pica 0.004233333m)

The number data type is considered to be a subtype of quantity that represents dimensionless
quantities. The expression language provides two types of number: reals and integers. Integers
are considered to be a subtype of reals, and reals are a subtype of numbers. For example, the
integer 3 is also considered to be a real number, which, in turn, is considered to be a

ISO/IEC 10179:1996 © ISO/IEC

54

(dimensionless) quantity. The types quantity, number, real, and integer are defined by the
predicates quantity?, number?, real?, and integer?.

Angle (or more precisely, plane angle) is considered to be a dimensionless quantity (the ratio of
two lengths). The integer 1 is equivalent to 1 radian. It is recommended that rad be declared as
the name of a derived unit equal to the dimensionless quantity 1.

8.5.7.2 Exactness

It is necessary to distinguish between quantities that are represented exactly and those that may
not be. For example, indexes into data structures shall be known exactly. In order to catch uses
of inexact quantities where exact quantities are required, the expression language explicitly
distinguishes exact from inexact quantities. This distinction is orthogonal to the dimension of
type.

Quantities are either exact or inexact. A quantity is exact if it was written as an exact constant or
was derived from exact quantities using only exact operations. A quantity is inexact if it was
written as an inexact constant, if it was derived using inexact ingredients, or if it was derived
using inexact operations. Thus, inexactness is a contagious property of a quantity.

If two implementations produce exact results for a computation that did not involve inexact
intermediate results, the two ultimate results shall be mathematically equivalent. This is
generally not true of computations involving inexact quantities since approximate methods such
as floating point arithmetic may be used, but implementations should make the result as close as
practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact arguments.
If the operation is unable to produce an exact result, then it may either report the violation of an
implementation restriction, or it may silently coerce its result to an inexact value.

With the exception of inexact->exact, the operations described in this section shall
generally return inexact results when given any inexact arguments. An operation may, however,
return an exact result if it can prove that the value of the result is unaffected by the inexactness of
its arguments. For example, multiplication of any quantity by an exact zero may produce an
exact zero result, even if the other argument is inexact.

8.5.7.3 Implementation Restrictions

Implementations may also support only a limited range of numbers of any type, subject to the
requirements of this section. The supported range for exact numbers of any type may be
different from the supported range for inexact numbers of that type. For example, an
implementation that uses floating point numbers to represent all its inexact real numbers may
support a practically unbounded range of exact integers while limiting the range of inexact reals
(and, therefore, the range of inexact integers) to the dynamic range of the floating point format.
All implementations are required to support exact integers between -2147483647 and
2147483647.

© ISO/IEC ISO/IEC 10179:1996(E)

55

An implementation shall support exact integers throughout the range of numbers that may be
used for indexes of lists and strings or that may result from computing the length of a list or
string. The length and string-length procedures shall return an exact integer, and it shall
be an error to use anything but an exact integer as an index. Furthermore, any integer constant
within the index range, if expressed by an exact integer syntax, shall indeed be read as an exact
integer, regardless of any implementation restrictions that may apply outside this range. Finally,
the procedures listed below shall always return an exact integer result provided all their
arguments are exact integers and the mathematically expected result is representable as an exact
integer within the implementation:

+ - *
quotient remainder modulo
max min abs
floor ceiling truncate
round expt

If one of these procedures is unable to deliver an exact result when given exact arguments, then it
may either report a violation of an implementation restriction or it may silently coerce its result
to an inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strategies for
inexact numbers.

This International Standard recommends, but does not require, that the IEEE 32-bit and 64-bit
floating point standards be followed by implementations that use floating point representations,
and that implementations using other representations should match or exceed the precision
achievable using these floating point standards.

In particular, implementations that use floating point representations shall follow these rules. A
floating point result shall be represented with at least as much precision as is used to express any
of the inexact arguments to that operation. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact arguments, to produce exact answers
whenever possible (for example the square root of an exact 4 ought to be an exact 2). If, however,
an exact quantity is operated upon so as to produce an inexact result (as by sqrt), and if the
result is represented as a floating point number, then the most precise floating point format
available shall be used; but if the result is represented in some other way, then the representation
shall have at least as much precision as the most precise floating point format available.

If an implementation encounters an exact numerical constant that it cannot represent as an exact
quantity, then it may either report a violation of an implementation restriction, or it may silently
represent the constant by an inexact quantity.

8.5.7.4 Syntax of Numerical Constants

[78] number = num-2 | num-8 | num-10 | num-16

[79] num-2 = #b sign? digit-2+

[80] num-8 = #o sign? digit-8+

ISO/IEC 10179:1996 © ISO/IEC

56

[81] num-16 = #x sign? digit-16+

[82] num-10 = #d? sign? decimal exponent? unit?

[83] decimal = digit-10+ | . digit-10+ | digit-10+ . digit-10*

[84] exponent = exponent-marker sign? digit+

[85] exponent-marker = e

[86] unit = unit-name (sign? digit-10+)?

[87] unit-name = letter+

[88] sign = + | -

[89] digit-2 = 0 | 1

[90] digit-8 = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

[91] digit-10 = digit

[92] digit-16 = digit-10 | a | b | c | d | e | f

[93] digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A quantity may be written in binary, octal, decimal, or hexadecimal by the use of a radix prefix.
The radix prefixes are #b (binary), #o (octal), #d (decimal), and #x (hexadecimal). With no
radix prefix, a quantity is assumed to be expressed in decimal.

A numerical constant is inexact if it contains a decimal point, an exponent or a unit; otherwise, it
is exact.

NOTE 15 The examples used in this section assume that any numerical constant written using an exact notation is
indeed represented as an exact quantity. Some examples also assume that certain numerical constants written using an
inexact notation may be represented without loss of accuracy; the inexact constants were chosen so that this is likely to
be true in implementations that use floating point numbers to represent inexact quantities.

A numerical constant may have a unit suffix. Each unit-name shall be the name of the base unit
or shall be declared by a unit-declaration. A unit-name shall not be an exponent-marker. If no
number follows the unit-name, the constant is multiplied by the quantity associated with the unit.
If a number with no sign or a sign of + follows the unit-name, the constant is multiplied by the
quantity associated with the number name raised to the power of the following number. If a
number with a sign of - follows the unit-name, the constant is divided by the quantity associated
with the unit-name raised to the power of the absolute value of the following number.

© ISO/IEC ISO/IEC 10179:1996(E)

57

8.5.7.5 Number Type Predicates

(quantity? obj)

(number? obj)

(real? obj)

(integer? obj)

These type predicates may be applied to any kind of argument, including non-quantities. They
return #t if the object is of the named type, and otherwise they return #f. In general, if a type
predicate is true of a quantity, then all higher type predicates are also true of that quantity.
Consequently, if a type predicate is false for a quantity, then all lower type predicates are also
false for that quantity.

If x is an inexact real number, then (integer? x) is true if and only if (= x (round x)).

EXAMPLE 46

(real? 3) ⇒ #t
(integer? 3.0) ⇒ #t

NOTE 16 The behavior of these type predicates on inexact quantities is unreliable, since any inaccuracy may affect
the result.

8.5.7.6 Exactness Predicates

(exact? q)

(inexact? q)

These numerical predicates provide tests for the exactness of a quantity. For any quantity,
precisely one of these predicates is true.

8.5.7.7 Comparison Predicates

(= q1 q2 q3 …)

(< q1 q2 q3 …)

(> q1 q2 q3 …)

(<= q1 q2 q3 …)

(>= q1 q2 q3 …)

These procedures return #t if their arguments are (respectively): equal, monotonically increasing,
monotonically decreasing, monotonically nondecreasing, or monotonically nonincreasing.

These predicates are required to be transitive.

The dimensions of all the arguments shall be identical.

NOTE 17 While it is not an error to compare inexact quantities using these predicates, the results may be unreliable
because a small inaccuracy may affect the result; this is especially true of = and zero?.

ISO/IEC 10179:1996 © ISO/IEC

58

8.5.7.8 Numerical Property Predicates

(zero? q)

(positive? q)

(negative? q)

(odd? n)

(even? n)

These predicates test a quantity for a particular property, returning #t or #f. See note above.

8.5.7.9 Maximum and Minimum

(max q1 q2 …)

(min q1 q2 …)

These procedures return the maximum or minimum of their arguments. The dimensions of all the
arguments shall be identical; the dimension of the result shall be the same as the dimension of the
arguments.

EXAMPLE 47

(max 3 4) ⇒ 4 ; exact
(max 3.9 4) ⇒ 4.0 ; inexact

NOTE 18 If any argument is inexact, then the result shall also be inexact (unless the procedure can prove that the
inaccuracy is not large enough to affect the result, which is possible only in unusual implementations). If min or max
is used to compare quantities of mixed exactness, and the numerical value of the result cannot be represented as an
inexact quantity without loss of accuracy, then the procedure may report a violation of an implementation restriction.

8.5.7.10 Addition

(+ q1 …)

Returns the sum of its arguments, which shall all have the same dimension. The result shall have
the same dimension as the arguments.

EXAMPLE 48

(+ 3 4) ⇒ 7
(+ 3) ⇒ 3
(+) ⇒ 0

8.5.7.11 Multiplication

(* q1 …)

Returns the product of its arguments. The dimension of the result shall be the sum of the
dimensions of the arguments.

EXAMPLE 49

(* 4) ⇒ 4
(*) ⇒ 1

© ISO/IEC ISO/IEC 10179:1996(E)

59

8.5.7.12 Subtraction

(- q1 q2)

(- q)

(- q1 q2 …)

With two or more arguments, returns the difference of its arguments, associating to the left; with
one argument, returns the negation of its argument. The dimensions of all the arguments shall be
identical. The dimension of the result shall be the same as the dimension of the arguments.

EXAMPLE 50

(- 3 4) ⇒ -1
(- 3 4 5) ⇒ -6
(- 3) ⇒ -3

8.5.7.13 Division

(/ q1 q2)

(/ q)

(/ q1 q2 …)

With two or more arguments, returns the quotient of its arguments, associating to the left; with
one argument, returns 1 divided by the argument. The dimension of the result shall be the
difference of the dimensions of each of the arguments.

EXAMPLE 51

(/ 3 4 5) ⇒ 3/20
(/ 3) ⇒ 1/3

8.5.7.14 Absolute Value

(abs q)

Returns the magnitude of its argument.

EXAMPLE 52

(abs -7) ⇒ 7

8.5.7.15 Number-theoretic Division

(quotient n1 n2)

(remainder n1 n2)

(modulo n1 n2)

These procedures implement number-theoretic (integer) division: For positive integers n1 and
n2, if n3 and n4 are integers such that n1 = n2n3 +n4 and 0 ≤ n4 < n2, then the following is true.

(quotient n1 n2) ⇒ n3
(remainder n1 n2) ⇒ n4
(modulo n1 n2) ⇒ n4

ISO/IEC 10179:1996 © ISO/IEC

60

For integers n1 and n2 with n2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))
 (remainder n1 n2)))
 ⇒ #t

provided all numbers involved in that computation are exact. The value returned by quotient
always has the sign of the product of its arguments. remainder and modulo differ on negative
arguments — the remainder is either zero or has the sign of the dividend, whereas the modulo
always has the sign of the divisor:

EXAMPLE 53

(modulo 13 4) ⇒ 1
(remainder 13 4) ⇒ 1

(modulo -13 4) ⇒ 3
(remainder -13 4) ⇒ -1

(modulo 13 -4) ⇒ -3
(remainder 13 -4) ⇒ 1

(modulo -13 -4) ⇒ -1
(remainder -13 -4) ⇒ -1

(remainder -13 -4.0) ⇒ -1.0 ; inexact

8.5.7.16 Real to Integer Conversion

(floor x)

(ceiling x)

(truncate x)

(round x)

These procedures return integers.

floor returns the largest integer not larger than x. ceiling returns the smallest integer not
smaller than x. truncate returns the integer closest to x whose absolute value is not larger than
the absolute value of x. round returns the closest integer to x, rounding to even when x is
halfway between two integers.

NOTES

1 9 round rounds to even for consistency with the default rounding mode specified by the IEEE floating point
standard.

20 If the argument to one of these procedures is inexact, then the result shall also be inexact. If an exact value is
needed, the result should be passed to the inexact->exact procedure.

EXAMPLE 54

(floor -4.3) ⇒ -5.0
(ceiling -4.3) ⇒ -4.0
(truncate -4.3) ⇒ -4.0

© ISO/IEC ISO/IEC 10179:1996(E)

61

(round -4.3) ⇒ -4.0

(floor 3.5) ⇒ 3.0
(ceiling 3.5) ⇒ 4.0
(truncate 3.5) ⇒ 3.0
(round 3.5) ⇒ 4.0 ; inexact

(round 7) ⇒ 7

8.5.7.17 en and Natural Logarithm

(exp x)

(log x)

Returns e raised to the power of x. log computes the natural logarithm of x (not the base-ten
logarithm). If x is zero or negative, an error shall be signaled.

8.5.7.18 Trigonometric Functions

(sin x)

(cos x)

(tan x)

sin, cos, and tan return the sine, cosine, and tangent of their arguments, respectively. The
result shall be a number.

8.5.7.19 Inverse Trigonometric Functions

(asin x)

(acos x)

(atan x)

(atan q1 q2)

asin, acos, and atan return the arcsine, arccosine, and arctangent of their arguments,
respectively. The result shall be a number. The two-argument variant of atan returns the angle
of the complex number whose real part is the numerical value of q2 and whose imaginary part is
the numerical value of q1; the dimensions of q1 and q2 shall be identical.

asin returns a value in the range -π/2 to π/2. acos returns a value in the range 0 to π. atan
returns a value in the range -π/2 to π/2.

8.5.7.20 Square Root

(sqrt q)

Returns the square root of q. The dimension of q shall be even. The dimension of the result shall
be half the dimension of q. If q is negative, an error is signaled.

8.5.7.21 Exponentiation

(expt x1 x2)

ISO/IEC 10179:1996 © ISO/IEC

62

Returns x1 raised to the power x2. (expt x1 0) is defined to be equal to 1.

8.5.7.22 Exactness Conversion

(exact->inexact q)

(inexact->exact q)

Exact->inexact returns an inexact representation of q. The value returned is the inexact
quantity that is numerically closest to the argument. If an exact argument has no reasonably close
inexact equivalent, then a violation of an implementation restriction may be reported.

Inexact->exact returns an exact representation of q. The value returned is the exact
quantity that is numerically closest to the argument. If an inexact argument has no reasonably
close exact equivalent, then a violation of an implementation restriction may be reported.

These procedures implement the natural one-to-one correspondence between exact and inexact
integers throughout an implementation-dependent range.

8.5.7.23 Quantity to Number Conversion

(quantity->number q)

Returns the number of the quantity q.

8.5.7.24 Number to String Conversion

(number->string number)

(number->string number radix)

Radix shall be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to 10. The
procedure number->string takes a number and a radix and returns as a string an external
representation of the given number in the given radix such that

(let ((number number)
 (radix radix))
 (equal? number
 (string->number (number->string number
 radix)
 radix)))

is true. It shall be an error if no possible result makes this expression true.

If number is inexact, the radix is 10, and the above expression may be satisfied by a result that
contains a decimal point, then the result contains a decimal point and is expressed using the
minimum number of digits (exclusive of exponent and trailing zeroes) needed to make the above
expression true; otherwise, the format of the result is unspecified.

The result returned by number->string never contains an explicit radix prefix.

© ISO/IEC ISO/IEC 10179:1996(E)

63

NOTE 21 If number is an inexact number represented using floating-point numbers, and the radix is 10, then the
above expression is normally satisfied by a result containing a decimal point. The unspecified case allows for
infinities, NaNs, and non-floating-point representations.

(format-number n string)

Returns a string representation of n. string specifies the format to use as follows:

— 1 means use 0, 1, 2 …

— 01 means use 00, 01, 02, … 10, 11 … 100, 101 … and similarly for any number of leading
zeros;

— a means use 0, a, b, c, … z, aa, ab, …

— A means use 0, A, B, C, … Z, AA, AB, …

— i means use 0, i, ii, iii, iv, v, vi, vii, viii, ix, x, …

— I means use 0, I, II, III, IV, V, VI, VII, VIII, IX, X, …

(format-number-list list obj1 obj2)

Returns a string representation of list, where list is a list of integers. obj1 specifies the
format to use for each number. It shall be either a single string specifying the format to use for
all numbers in the same manner as format-number or a list of strings with the same number of
members as list specifying the format to use for each string in the same manner as format-
number. obj2 is either a single string or a list of strings specifying the separator to be used
between the strings representing each number; it shall contain either a single string or a list of
strings with one fewer members than list.

8.5.7.25 String to Number Conversion

(string->number string)

(string->number string radix)

Returns a number of the maximally precise representation expressed by the given string.
radix shall be an exact integer, either 2, 8, 10, or 16. If supplied, radix is a default radix that
may be overridden by an explicit radix prefix in string (e.g., "#o177"). If radix is not
supplied, then the default radix is 10. If string is not a syntactically valid notation for a
number, then string->number returns #f.

EXAMPLE 55

(string->number "100") ⇒ 100
(string->number "100" 16) ⇒ 256
(string->number "1e2") ⇒ 100.0

8.5.8 Characters

The character object represents a character.

ISO/IEC 10179:1996 © ISO/IEC

64

[94] character = #\ any-character | #\ character-name

[95] character-name = letter (letter | digit | - | .)+

Characters are written using the notation #\character or #\character-name. For example:

— #\a: lower-case letter ‘a’

— #\A: upper-case letter ‘A’

— #\(: left parenthesis

— #\ : the space character

— #\space: the preferred way to write a space

If the character in #\any-character is alphabetic, then the character following any-character
shall be a delimiter character such as a space or parenthesis. This rule resolves the ambiguous
case where, for example, the sequence of characters ‘#\ space’ could be taken to be either a
representation of the space character or a representation of the character ‘#\ s’ followed by a
representation of the symbol ‘pace.’

The character-name shall be the name of a character declared in the character repertoire
declaration.

Characters written in the #\ notation are self-evaluating. That is, they do not have to be quoted in
expressions.

8.5.8.1 Character Properties

Every character has a set of named properties. Each property has a default value.

[96] character-property-declaration = (declare-char-property identifier expression)

This declares identifier to be a character property with the default value equal to the value of
expression.

[97] added-char-properties-declaration = (add-char-properties keyword-argument-list
character+)

[98] keyword-argument-list = (keyword expression)*

The added-char-properties-declaration adds properties to each of the characters. The keyword-
argument-list specifies the properties to be added. The keyword specifies the property name, and
the expression specifies the property value. Each property either shall be a property that is pre-
defined in this International Standard or it shall be explicitly declared using a character-
property-declaration.

© ISO/IEC ISO/IEC 10179:1996(E)

65

The following character property is pre-defined:

— numeric-equiv: is an integer giving the numeric equivalent of the character or #f. The
default value is #f.

Additional properties are pre-defined for the style language.

8.5.8.2 Language-dependent Operations

Certain operations on characters such as case-conversion and collation are dependent on the
natural language for which the characters are being used. The language data type describes how
language-dependent operations should be performed. Expressions may be evaluated with respect
to a current language. It shall be an error to call procedures which use the current language if
there is no current language.

Some of the procedures that operate on characters ignore the difference between upper case and
lower case. The procedures that ignore case have ‘-ci’ (for ‘case-insensitive’) embedded in
their names. These procedures always behave as if they converted their arguments to upper case.
These procedures all use the current language. See 8.5.8.5 for these procedures.

(language? obj)

Returns #t if obj is of type language, and otherwise returns #f.

(current-language)

At any point in a computation there may be a current language. current-language returns
the current language if there is one, and otherwise returns #f.

[99] default-language-declaration = (declare-default-language expression)

A default-language-declaration declares the current language which is used initially in the
evaluation of an expression. The expression shall evaluate to a language object.

(with-language language proc)

The with-language procedure calls proc, which shall be a procedure of no arguments, with
language as the current language.

8.5.8.2.1 Language Definition

[100] language-definition = (define-language variable [[collation-specification? |
toupper-specification? | tolower-specification?]])

A language-definition defines variable to be an object of type language.

8.5.8.2.1.1 Collation

ISO/IEC 10179:1996 © ISO/IEC

66

[101] collation-specification = (collate [[multi-collating-element-specification* | collating-
symbol-specification*]] order-specification)

A collation-specification determines the relative order of strings.

NOTE 22 The syntax of the collation-specification is based on ISO 9945-2, which contains examples that may assist
the reader.

[102] multi-collating-element-specification = (element multi-collating-element string)

[103] multi-collating-element = identifier

When two strings are compared, each string is divided up into collating elements. Each collating
element is either a single character or a sequence of consecutive characters that is to be treated as
a single unit. A multi-collating-element-specification declares that the sequence of characters in
the string is to be treated as a collating element. Within the order-specification, this collating
element is identified by the multi-collating-element. Identifiers declared as multi-collating-
elements shall be distinct from those used as weight-identifiers.

[104] collating-symbol-specification = (symbol weight-identifier)

[105] weight-identifier = identifier

A collating-symbol-specification declares that weight-identifier is a symbolic identifier for a
weight, which may be used within the order-specification.

[106] order-specification = (order sort-rules collation-entry*)

[107] sort-rules = (level-sort-rules+)

Each order specification defines a number of different comparison levels. If two strings compare
equal at the first level, they are compared at the second level. If they also compare equal at the
second level, they are compared at the third level. This process is repeated until there are no
more levels or until the strings compare unequal. The number of levels in the order specification
is determined by the number of level-sort-rules.

[108] level-sort-rules = sort-keyword | ((sort-keyword+))

[109] sort-keyword = forward | backward | position

The level-sort-rules determine for each level how the strings are to be compared. At a given
level, each collating-element in the strings to be compared is assigned zero or more
weights. This results in an ordered list of weights for each string.

The backward and forward sort-keywords determine the comparison direction for the level.
If the backward sort-keyword is specified, then comparison proceeds from the last weight to the
first; otherwise, it proceeds from the first weight to the last.

© ISO/IEC ISO/IEC 10179:1996(E)

67

If the position sort-keyword is specified, then the position of the collating element
corresponding to each weight is considered when comparing weights. When comparing two
weights with different positions, the weight with the earlier position (in the comparison
direction) shall collate first.

A single level-sort-rules shall not contain both forward and backward.

[110] collation-entry = ((collating-element level-weight*)) | weight-identifier | collating-
element

Each collation entry is associated with a weight determined by its position in the order-
specification. The first collation entry is associated with the lowest weight, the second with the
next lowest weight, and so on.

When a collation-entry is a weight-identifier, then the effect of the collation-entry is to associate
the weight-identifier with the weight with which the collation-entry is associated.

A collation-entry that contains a collating-element serves two purposes. First, it assigns weights
for each level to the collating-element. Second, it makes collating-element stand for the weight
associated with the collation-entry when the collating-element is used in a weight.

If a level-weight is not specified for some level, then the single weight associated with the
collation-entry shall be assigned. For example, a collation-entry of #\a is equivalent to a
collation-entry of (#\a #\a).

[111] collating-element = character | multi-collating-element | #t

When #t is used as a collating-element, then the specified weights are assigned to all collating
elements to which no weight has been explicitly assigned by a collation-entry.

[112] level-weight = weight | weight-list

[113] weight-list = (weight*)

The level-weight specifies the weights to be assigned for a particular level.

[114] weight = weight-identifier | multi-collating-element | character | string

Specifying a string is equivalent to specifying a list of the characters it contains.

8.5.8.2.1.2 Case Conversion

[115] toupper-specification = (toupper case-conversion-list)

[116] tolower-specification = (tolower case-conversion-list)

[117] case-conversion-list = ((character character))*

ISO/IEC 10179:1996 © ISO/IEC

68

In the case-conversion-list, the upper-case or lower-case equivalent of the first character in each
pair is the second character in that pair according as the case-conversion-list occurs in a toupper-
specification or a tolower-specification.

8.5.8.3 Character Type Predicate

(char? obj)

Returns #t if obj is a character, and otherwise returns #f.

8.5.8.4 Character Comparison Predicates

(char=? char1 char2)

(char<? char1 char2)

(char>? char1 char2)

(char<=? char1 char2)

(char>=? char1 char2)

These procedures impose a total ordering on the set of characters. All the procedures other than
char=? use the current language.

8.5.8.5 Case-insensitive Character Predicates

(char-ci=? char1 char2)

(char-ci<? char1 char2)

(char-ci>? char1 char2)

(char-ci<=? char1 char2)

(char-ci>=? char1 char2)

These procedures are similar to char=? etc., but they treat upper-case and lower-case letters as
the same. All these procedures use the current language. For example, (char-ci=? #\A
#\a) returns #t.

8.5.8.6 Character Case Conversion

(char-upcase char)

(char-downcase char)

The procedures return the upper- or lower-case equivalent of char as defined by the current
language. If char has no upper- or lower-case equivalent, char is returned.

8.5.8.7 Character Properties

(char-property symbol char)

(char-property symbol char obj)

Returns the value of the property symbol of char. If symbol is not a character property, an
error is signaled. If char does not have a property symbol, then obj is returned, or if obj was
not specified, the default value of the property is returned.

© ISO/IEC ISO/IEC 10179:1996(E)

69

8.5.9 Strings

Strings are sequences of characters.

[118] string = " string-element* "

[119] string-element = any-character-other-than-"-or-\ | \" | \\ | \character-name;?

Strings are written as sequences of characters enclosed within doublequotes ("). A doublequote
may be written inside a string by escaping it with a backslash (\), as in

"The word \"recursion\" has many meanings."

A backslash may be written inside a string by escaping it with another backslash. Any character
may be written inside a string by writing its name after a backslash. The name shall be followed
by a semi-colon, unless there are no following characters in the string, or the following character
is not a subsequent. The name used here is the same as the name used in #\ syntax for characters.

A string constant may continue from one record to the next and shall contain the characters that
separate the two records in the entity.

The length of a string is the number of characters that it contains. This number is a non-negative
integer that is fixed when the string is created. The valid indexes of a string are the exact non-
negative integers less than the length of the string. The first character of a string has index 0, the
second has index 1, and so on.

In phrases such as ‘the characters of string beginning with index start and ending with
index end,’ it is understood that the index start is inclusive and the index end is exclusive.
Thus, if start and end are the same index, a null substring is referred to, and if start is zero
and end is the length of string, then the entire string is referred to.

Some of the procedures that operate on strings ignore the difference between upper and lower
case by converting the strings to upper case before performing the operation. The versions that
ignore case have ‘-ci’ (for ‘case-insensitive’) embedded in their names.

8.5.9.1 String Type Predicate

(string? obj)

Returns #t if obj is a string, and otherwise returns #f.

8.5.9.2 String Construction

(string char …)

Returns a string composed of the arguments.

ISO/IEC 10179:1996 © ISO/IEC

70

8.5.9.3 String Length

(string-length string)

Returns the number of characters in the given string.

8.5.9.4 String Access

(string-ref string k)

k shall be a valid index of string. string-ref returns character k of string using zero-
origin indexing.

8.5.9.5 String Equivalence

(string=? string1 string2)

(string-ci=? string1 string2)

Return #t if the two strings are the same length and contain the same characters in the same
positions, and otherwise return #f. string-ci=? treats upper- and lower-case letters as though
they were the same character, but string=? treats upper- and lower-case letters as distinct
characters. string-ci=? uses the current language.

(string-equiv? string1 string2 k)

Returns #t if the two strings compare the same at the first k comparison levels of the collation
specification of the current language, and otherwise returns #f. k shall be strictly positive.

8.5.9.6 String Comparison

(string<? string1 string2)

(string>? <string1 string2)

(string<=? string1 string2)

(string>=? string1 string2)

(string-ci<? string1 string2)

(string-ci>? string1 string2)

(string-ci<=? string1 string2)

(string-ci>=? string1 string2)

These procedures are the lexicographic extensions to strings of the corresponding orderings on
characters. For example, string<? is the lexicographic ordering on strings induced by the
ordering char<? on characters. If two strings differ in length but are the same up to the length
of the shorter string, the shorter string is considered to be lexicographically less than the longer
string. These procedures use the current language.

8.5.9.7 Substring Extraction

(substring string start end)

© ISO/IEC ISO/IEC 10179:1996(E)

71

Returns a string formed from the characters of string beginning with index start (inclusive)
and ending with index end (exclusive).

8.5.9.8 String Appendance

(string-append string …)

Returns a string formed by the concatenation of the given strings.

8.5.9.9 Conversion between Strings and Lists

(string->list string)

(list->string chars)

string->list returns a list of the characters that make up the given string. list->string
returns a string formed from the characters in the list chars. string->list and list-
>string are inverses so far as equal? is concerned.

8.5.10 Procedures

8.5.10.1 Procedure Type Predicate

(procedure? obj)

Returns #t if obj is a procedure, and otherwise returns #f.

EXAMPLE 56

(procedure? car) ⇒ #t
(procedure? ’car) ⇒ #f
(procedure? (lambda (x) (* x x)))
 ⇒ #t
(procedure? ’(lambda (x) (* x x)))
 ⇒ #f

8.5.10.2 Procedure Application

(apply proc args)

(apply proc arg1 … args)

Proc shall be a procedure and args shall be a list. The first (essential) form calls proc with the
elements of args as the actual arguments. The second form is a generalization of the first that
calls proc with the elements of the list (append (list arg1 …) args) as the actual
arguments.

EXAMPLE 57

(apply + (list 3 4)) ⇒ 7

(define compose
 (lambda (f g)
 (lambda args
 (f (apply g args)))))

ISO/IEC 10179:1996 © ISO/IEC

72

((compose sqrt *) 12 75) ⇒ 30

8.5.10.3 Mapping Procedures over Lists

(map proc list1 list2 …)

The lists shall be lists, and proc shall be a procedure taking as many arguments as there are
lists. If more than one list is given, then they shall all be the same length. map applies proc
element-wise to the elements of the lists and returns a list of the results, in order from left to
right.

EXAMPLE 58

(map cadr ’((a b) (d e) (g h))) ⇒ (b e h)

(map (lambda (n) (expt n n))
 ’(1 2 3 4 5)) ⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6)) ⇒ (5 7 9)

8.5.10.4 External Procedures

(external-procedure string)

Returns a procedure object which when called shall execute the external procedure with public
identifier string. If the system is unable to find the external procedure, then #f is returned. The
arguments passed to the procedure object shall be passed to the external procedure. If the number
or type of arguments do not match those expected by the external procedure, then an error may
be signaled. The result of the external procedure shall be returned as the result of the call of the
procedure object.

External procedures should be side-effect free, and implementations are free to assume that they
are. They should be used to retrieve information from the system rather than to change the state
of the system.

8.5.11 Date and Time

(time)

(time->string k)

(time->string k boolean)

time returns the number of seconds since 1970-01-01 00:00:00 GMT as an integer.

time->string converts an integer representation as returned by time of the time and date
into a string in the format of ISO 8601.

If the boolean argument is present and true, then the string representation shall be in GMT;
otherwise the string shall be in local time.

(time<? string1 string2)

© ISO/IEC ISO/IEC 10179:1996(E)

73

(time>? string1 string2)

(time<=? string1 string2)

(time>=? string1 string2)

These procedures impose a total ordering on the set of strings that represent dates and times in
ISO 8601 format. It shall be an error if any argument does not represent a date or time in ISO
8601 format.

8.5.12 Error Signaling

(error string)

error signals an error. The string argument describes the error. The action a system takes
when an error is signaled is system-dependent. In particular, the manner in which the error is
reported to the user is system-dependent. It should, however, use string in its report and
describe the context in which the error occurred. No value is returned from error.

8.6 Core Expression Language

This clause defines a subset of the expression language called the core expression language. In
the core expression language, only those expressions and definitions allowed by the productions
in this clause are permitted, and only those procedures with prototypes in this clause are
available. Any expression or definition that is valid in the core expression language has the same
meaning that it does in the full expression language.

8.6.1 Syntax

[120] expression = primitive-expression | derived-expression

[121] primitive-expression = variable-reference | literal | procedure-call | conditional

[122] variable-reference = variable

[123] variable = identifier

[124] literal = quotation | self-evaluating

[125] quotation = ’datum | (quote datum)

[126] datum = simple-datum | list

[127] simple-datum = boolean | number | character | string | symbol | keyword | glyph-identifier

[128] list = (datum*) | ’datum

[129] self-evaluating = boolean | number | character | string | keyword | glyph-identifier

ISO/IEC 10179:1996 © ISO/IEC

74

[130] procedure-call = (operator operand*)

[131] operator = expression

[132] operand = expression

[133] conditional = (if test consequent alternate)

[134] test = expression

[135] consequent = expression

[136] alternate = expression

[137] derived-expression = cond-expression | case-expression | and-expression | or-expression

[138] cond-expression = (cond cond-clause+) | (cond cond-clause* (else expression))

[139] cond-clause = (test expression)

[140] case-expression = (case key case-clause+) | (case key case-clause* (else
expression))

[141] key = expression

[142] case-clause = ((datum*) expression)

[143] and-expression = (and test*)

[144] or-expression = (or test*)

[145] definition = (define variable expression)

8.6.2 Procedures

(not obj)

(boolean? obj)

(equal? obj1 obj2)

(null? obj)

(list? obj)

(list obj …)

(length list)

(append list …)

(reverse list)

(list-tail list k)

(list-ref list k)

(member obj list)

© ISO/IEC ISO/IEC 10179:1996(E)

75

(symbol? obj)

(keyword? obj)

(quantity? obj)

(number? obj)

(real? obj)

(integer? obj)

(= q1 q2 q3 …)

(< q1 q2 q3 …)

(> q1 q2 q3 …)

(<= q1 q2 q3 …)

(>= q1 q2 q3 …)

(max q1 q2 …)

(min q1 q2 …)

(+ q1 …)

(* q1 …)

(- q1 q2)

(- q)

(/ q1 q2)

(/ q)

(abs q)

(quotient n1 n2)

(remainder n1 n2)

(modulo n1 n2)

(floor x)

(ceiling x)

(truncate x)

(round x)

(sqrt q)

(number->string number)

(number->string number radix)

(string->number string)

(string->number string radix)

(char? obj)

(char=? char1 char2)

(char-property symbol char)

(char-property symbol char obj)

(string? obj)

(string char …)

(string-length string)

(string-ref string k)

(string=? string1 string2)

(substring string start end)

(string-append string …)

(procedure? obj)

ISO/IEC 10179:1996 © ISO/IEC

76

(apply proc args)

(external-procedure string)

(time)

(time->string k)

(time->string k boolean)

(error string)

9 Groves

A grove is a set of nodes constructed according to a grove plan. Every node in the grove belongs
to a named class in the grove plan. A node is a set of property assignments, each consisting of a
property name and a property value.

A grove plan defines a set of classes and, for each class, an ordered set of properties.

For each property assignment of a node, there is a unique corresponding property of the node’s
class whose name is the same as the name part of the property assignment. This is referred to as
the property of the property assignment. The value part of a property assignment is referred to as
a value of the property of the property assignment. A node is said to exhibit a value v for a
property p if there is a property assignment of the node whose property is p and whose value part
is v. The properties for which the node exhibits a value are referred to as the properties of the
node.

The ordering of the properties of a class determines for nodes of that class the ordering of the
corresponding property assignments.

Every property value has a data type. The definition of a property declares a certain data type to
be possible for values of the property. This data type is referred to as the declared data type of
the property.

In addition to simple abstract data types such as boolean or string, there are three special data
types called the nodal data types, whose values are nodes or lists of nodes. These are described
in 9.3.3.

The definition of a property may also allow that property to have a null value in certain
circumstances, instead of a value having the declared data type. This null value is the unique
object of the null data type. The null data type can never be used as a declared data type.

9.1 Nodal Properties

A property of a class may be a subnode property. The declared data type of a subnode property
shall be nodal. When a node exhibits a value for a subnode property, all the nodes in the value of
the property are in the same grove as the node exhibiting the value. The values of subnode
properties of nodes in the grove can be viewed as connecting all the nodes in the grove into a
single tree with labeled branches. More precisely,

© ISO/IEC ISO/IEC 10179:1996(E)

77

— in any grove there is a unique node called the grove root that does not occur in the value of
any subnode property of a node.

— for every node n, other than the grove root, there is a unique node o and there is a unique
property p such that both

– p is a subnode property, and

– o exhibits a value for p that is or includes n.

o is called the origin of n and p is called the origin-to-subnode relationship of n.

— for every node n, other than the grove root, there exists a sequence of nodes m1,m2, … mk
such that m1 is the grove root, mk is n, and, for each 1 ≤ i ≤ k - 1, mi is the origin of mi + 1.

This tree is referred to as the subnode tree. It is often useful for applications to deal with certain
subtrees of the subnode tree in which all the children of a node occur as part of the value of a
single property of the node. For this purpose, one property of the class can be distinguished as
the children property for the class. This is done indirectly by making one property the content
property for the class. If the data type of this property is nodal, then this is the children property,
otherwise the primitive data type of the data type shall be char or string and the property is the
data property of the node. The term children as applied to a node refers to the nodes occurring as
the value of the children property. The data of a node that has a children property is the data of
each of its children separated by the value of the data separator property, if any, of the class. A
node has a parent if its origin has a children property which includes that node in its value; if a
node does have a parent, its parent will be the same as its origin. The term tree without
qualification refers to the tree formed using these parent/children relationships. The ancestors of
a node comprise the parent of the node, if any, together with the ancestors of the parent of the
node. The tree root of a node, x, is x if x has no ancestors or otherwise is the node that is an
ancestor of x and that has no ancestors. The siblings of a node are an empty set for the grove root
and are otherwise the nodes in the value of the origin-to-subnode relationship property of the
node's origin other than the node itself.

NOTE 23 A node can have siblings even if it does not have a parent because its origin-to-subnode relationship
property need not be the children property of its origin.

The subtree of a node is the node together with the subtrees of its children. The descendants of a
node are the subtrees of children of the node. A total ordering called tree order is defined on the
set of nodes in the subtree of any node: this ordering corresponds to a pre-order traversal of the
subtree in which a node is visited before its children.

There are two possibilities for properties with a declared data type that is nodal but which are not
subnode properties:

— The property may be an irefnode (internal reference) property; for such a property the nodes
in the value are in the same grove as the node that exhibits the value. The subnode and
irefnode properties connect all the nodes in a grove into a single directed graph. The names of
the properties may be considered as labeling the arcs of the graph.

ISO/IEC 10179:1996 © ISO/IEC

78

— The property may be a urefnode (unrestricted reference) property; for such a property the
nodes in the value may be in different groves from the node that exhibits the value. Thus, the
subnode, irefnode, and urefnode properties connect the nodes in multiple groves together into
a graph. The set of groves thus connected is called a hypergrove.

9.2 Grove Plans

A grove plan specifies a selection of classes and properties from a property set. A property set is
defined by a property set definition expressed in SGML as described in 9.3.

For any source for the grove, the property set determines the complete grove that would be built
using a grove plan that selected all the classes and properties from the property set.

NOTE 24 The complete grove contains all the information that the parser is capable of making available about the
source of the grove. For any particular application, much of this information may be irrelevant. The grove plan
provides a way for an application to get a grove that contains just the information it requires.

The grove to be constructed from the grove plan shall be the same as a grove obtained by
modifying the complete grove in the following manner:

— To mark the subgrove of a node, first mark the node itself; then for each subnode property, if
the property is included in the grove plan, mark the subgrove of each node in the value whose
class is included in the grove plan. The nodes to be included in the grove are determined by
marking the subgrove of the grove root. Only nodes thereby marked will be included in the
constructed grove.

— A node in the constructed grove only exhibits values for those properties that are specified to
be included in the grove.

— If a node in the complete grove exhibits a value for an intrinsic property whose semantics are
that it is the name of a non-intrinsic property exhibited by the node, then if the non-intrinsic
property is not included in the grove plan, the node in the constructed grove shall exhibit a
null value for the intrinsic property.

— If a node in the complete grove exhibits a value for an intrinsic property whose semantics are
that it is a list of names of non-intrinsic properties exhibited by the node, then the node in the
constructed grove shall exhibit a value for the intrinsic property that is obtained from the
value in the complete grove by removing the names of any of the non-intrinsic properties not
included in the grove plan.

— If a node in the complete grove exhibits a value for an irefnode property that has a declared
value of node, but the value of the property is not marked for inclusion in the constructed
grove, then the node shall exhibit a null value for that property in the constructed grove.

— If a node in the complete grove exhibits a value for an irefnode property that has a declared
value of nodelist or nmndlist, then the value in the constructed grove is obtained by removing
from the value exhibited for the property in the complete grove all nodes that are not marked
for inclusion in the constructed grove.

© ISO/IEC ISO/IEC 10179:1996(E)

79

9.3 Property Set Definition

Property set definitions are described fully in the Property Set Definition Requirements of ISO/
IEC 10744. This clause presents a simplified version that includes only those details necessary
for the understanding of this International Standard.

The top-level element is a propset element. The psn and fullnm attributes specify a short
SGML name and a long descriptive name. At various places within the property set, the
following elements are allowed:

— desc contains a description of the object that is being defined by the element in which it
occurs.

— note contains notes about the object being defined.

9.3.1 Common Attributes

9.3.1.1 Component Names

The name of a class, property, or enumerator is not a simple string but a triple of strings, each
appropriate for use as a name in a different context:

— The reference concrete syntax (RCS) name is appropriate for use in a context where a valid
name in the SGML reference concrete syntax is required.

— The application name specifies a name that is appropriate for use as an identifier in a
programming or scripting language. An application name can include multiple words
separated by spaces; the name must be transformed to be a valid identifier in the language in
which it is to be used, using the normal conventions of that language for multi-word
identifiers. For example, the application name ‘processing instruction’, when bound to a
programming language, might become ‘ProcessingInstruction’, ‘processing-instruction’, or
‘PROCESSING_INSTRUCTION’, depending on the language.

— The full name is an unabbreviated name appropriate for use in documentation.

 A three-part name of this kind is called a component name.

These three names are specified by attributes as follows:

— rcsnm specifies the RCS name of the property.

— appnm specifies the application name of the property; this defaults to the RCS name.

— fullnm specifies the full name of the property; this defaults to the application name.

ISO/IEC 10179:1996 © ISO/IEC

80

9.3.1.2 Specification Documents

Various elements occurring in a property set define components by referencing them in a
specification document. These elements use the following common attributes:

— sd specifies the specification document; this defaults to SGML. Formally, the value is the
name of a notation. Other allowed values are GenFac for the General Facilities of ISO/IEC
10744 and DSSSL.

— clause specifies the applicable clause of the specification document; for SGML this uses
the notation of ISO/IEC 13673.

9.3.2 Modules

A property set definition is divided into named modules each described by a psmodule element.
The attributes have the following meaning:

— rcsnm gives the RCS name of the module.

— fullnm gives the full name.

— dependon lists the names of the modules on which this module depends.

— required specifies whether the module is required, that is, shall be included in every grove
plan. A value of required means that it is required; a value of nrequire means that it is
not. The default is nrequire.

Including a module in a grove plan is equivalent to including in the grove plan:

— all the classes and properties defined within the module,

— any modules on which the module depends, and, recursively, any modules on which they
depend.

In addition to modules defined in property sets, there are a number of intrinsic modules defined
in this International Standard that are automatically part of every property set. Properties defined
in intrinsic modules are called intrinsic properties. Intrinsic modules are treated as occurring
before all non-intrinsic modules.

9.3.3 Data Type Definition

Every data type is defined by a datadef element. The attributes have the following meaning:

— rcsnm gives the RCS name of the data type.

NOTE 25 There is no application name for a data type, because when the property set is used in a programming or
scripting language, each abstract data type has to be explicitly bound to one of the data types provided by the
language.

© ISO/IEC ISO/IEC 10179:1996(E)

81

— fullnm gives the full name of the data type.

— nodal specifies whether the data type is nodal; the allowed values are nodal or nonnodal;
the default is nonnodal.

— listof allows formal specification of the semantics of a data type in the case where the data
type is an ordered list or array of some other data type; that other data type is specified as the
value of the attribute.

— super allows for the formal specification of a subtyping hierarchy among defined data types;
the value of the attribute is a list of the names of the super types.

The primitive data type of a data type is the data type itself if the data type has no super type, and
otherwise is the primitive data type of the super type.

Some data types are defined in the following intrinsic module:

<psmodule rcsnm=intrdt fullnm="intrinsic data types" required>
<datadef rcsnm=node nodal>
<desc>
A single node.

<datadef rcsnm=nodelist listof=node nodal>
<desc>
An ordered list of zero or more nodes.

<datadef rcsnm=nmndlist fullnm="named node list" super=nodelist nodal>
<desc>
This is a node list in which each node is uniquely identified within
the node-list by a name, which is the value of one of its properties.
A named node list identifies, for each class of node that occurs in
it, a property of that class, which has data type string, whose value
serves as the name of nodes of that class within that named node list.
In addition, a named node-list also identifies, for each class of node
that occurs in it, a normalization rule to be applied to a
string before it is compared against the name of a node of that class
in the process of name space addressing.

<datadef rcsnm=enum fullnm=enumeration>
<desc>
This is used for a data type that represents one of an enumerated set
of values, called enumerators. The possible enumerators are
defined in each context in which the enum data type is used.

<datadef rcsnm=char fullnm=character>

<datadef rcsnm=string listof=char>

<datadef rcsnm=integer>

<datadef rcsnm=intlist fullnm="integer list" listof=integer>

<datadef rcsnm=strlist fullnm="string list" listof=string>

ISO/IEC 10179:1996 © ISO/IEC

82

<datadef rcsnm=compname fullnm="component name">
<desc>
A component name, that is, a name with three variants, an RCS name,
an application name, and a full name.

<datadef rcsnm=cnmlist fullnm="component name list" listof=compname>

</psmodule>

9.3.4 Class Definition

A class is defined by a classdef element. In addition to the component name attributes and
specification document attributes, the following attributes are allowed:

— conprop identifies the content property of the class, if any.

— dsepprop identifies the data separator property of the class, if any. A class can have a data
separator property only if it has a children property (i.e., a nodal content property).

— mayadd identifies a category of classes that is used in the definition of the verification
mapping in the transformation language. See 11.4.1. Only the value mayadd is allowed for
this attribute. The attribute name can be omitted for this attribute.

9.3.5 Property Definition

A property is defined by a propdef element. In addition to the component name attributes and
specification document attributes, the following attributes are allowed:

— cn specifies the class to which this property belongs. When a propdef element occurs
within a classdef element, the property belongs to that class. Otherwise, the cn attribute
shall be specified, specifying the class name. A value of #all means that it belongs to all
classes of node; a value of #grove means that it belongs to the node at the root of the grove.

— datatype specifies the RCS name of the data type, as defined by a datadef element.

— ac specifies the classes allowed in the value of the property; this applies only if the data type
is nodal. The default is that any class is allowed in the value.

— acnmprop applies when the data type is nmndlist and specifies for each of the classes
allowed in the property value the name of the property that serves as the name of a node of
that class in the named node list. There shall be one property name for each class in ac.

— strnorm specifies a string normalization rule applicable to the value. It applies when the
data type is a string, is a list of strings, or has a super type that is a string. The default is for no
normalization to be applied. Each string normalization rule shall be defined by a normdef
element.

NOTE 26 The upper-case substitution that SGML performs on general names when the reference concrete syntax
is used is an example of a string normalization rule.

© ISO/IEC ISO/IEC 10179:1996(E)

83

— noderel specifies whether the property is a subnode, irefnode, or urefnode property; this
applies only if the data type is nodal. The attribute name is usually omitted for this attribute.

— vrfytype categorizes the property as either derived, optional, or other for purposes of
defining the verification mapping in the transformation language. See 11.4.1. The default is
other. A property set shall not allow a node in a complete grove to exhibit an empty value for
a property that has a declared data type of nodelist or nmmdlist and a vrfytype of optional.

NOTE 27 This does not prohibit a node from exhibiting a null value for such a property.

— strlex gives a lexical type. The value is a lexical type defined by a lexdef element. The
lexical type of a property is not used in this International Standard. The semantics of lexical
types are defined in ISO/IEC 10744.

A propdef can have subelements of the following types in addition to desc and note
elements:

— when specifies a condition that shall be satisfied for a node to exhibit a value with the
declared data type. If this condition is not satisfied, the node shall exhibit a null value for this
property.

— enumdef defines the possible enumerators when the data type is enum. It has only the
component name attributes.

9.3.6 Normalization Rule Definition

A string normalization rule is defined by a normdef element. It has an rcsnm attribute and the
specification document attributes.

9.4 Intrinsic Properties

The following module defines the intrinsic properties of all nodes:

<psmodule rcsnm=intrbase fullnm="intrinsic base" required>
<propdef rcsnm=classnm appnm="class name" datatype=compname>
<desc>
The name of the node’s class.
<propdef cn="#all" rcsnm=grovroot appnm="grove root" datatype=node irefnode>

<propdef cn="#all" rcsnm=subpns appnm="subnode property names"
datatype=cnmlist>
<desc>
The names of all the subnode properties exhibited by the node.

<propdef cn="#all" rcsnm=allpns appnm="all property names" datatype=cnmlist>
<desc>
The names of all the properties exhibited by the node.

<propdef cn="#all" rcsnm=childpn appnm="children property name"
datatype=compname>

ISO/IEC 10179:1996 © ISO/IEC

84

<desc>
The name of the children property.
<when>
The class has a children property.

<propdef cn="#all" rcsnm=datapn appnm="data property name" datatype=compname>
<when>
The class has a data property.

<propdef cn="#all" rcsnm=dseppn appnm="data sep property name"
fullnm="data separator property name" datatype=compname>
<when>
The class has a data separator property.

<propdef cn="#all" rcsnm=parent datatype=node irefnode>
<when>
The node has a parent.

<propdef cn="#all" rcsnm=treeroot appnm="tree root" datatype=node irefnode>
<note>
The value of this property for a node shall be the node itself
if the node has no parent.
</note>

<propdef cn="#all" rcsnm=origin datatype=node irefnode>
<when>
The node is not the grove root.

<propdef cn="#all" rcsnm=otsrelpn appnm="origin-to-subnode rel property name"
fullnm="origin-to-subnode relationship property name" datatype=compname>
<when>
The node is not the grove root.
</psmodule>

<psmodule rcsnm=intrhy fullnm="intrinsic hytime">

<datadef rcsnm=grovepos appnm="grove position" strlex=GROVEPOS>
<desc>
A list each of whose members is either (a) an integer, (b) a pair
consisting of a component name and a string, (c) a pair consisting of
a component name and an integer, or (d) a component name

<propdef cn="#all" rcsnm=grovepos appnm="grove position" sd=GenFac
datatype=grovepos>
<desc>
The position of a node in a grove.

<propdef cn="#all" rcsnm=treepos appnm="tree position" sd=GenFac
datatype=intlist
strlex="marker+">
<desc>
The position of a node in its tree in treeloc format.

<propdef cn="#all" rcsnm=pathpos appnm="path position" sd=GenFac
datatype=intlist
strlex="(marker,marker)+">

© ISO/IEC ISO/IEC 10179:1996(E)

85

<desc>
The position of a node in its tree in pathloc format.
</psmodule>

<propdef cn="#grove" rcsnm=ptreert appnm="principal tree root" sd=GenFac
datatype=node
irefnode>

9.5 Auxiliary Groves

It is sometimes convenient to group nodes in a grove in an application-dependent manner. This
is done by using nodes in the grove as the source for a further parse, called an auxiliary parse. A
grove created by an auxiliary parse is called an auxiliary grove. The grove parsed to create the
auxiliary grove is called the source grove of the auxiliary grove. Each node in an auxiliary grove
has an intrinsic urefnode property, source, that points to those nodes in the source grove from
which it was derived.

<propdef cn="#all" rcsnm=source datatype=nodelist urefnode sd=DSSSL>

9.6 SGML Property Set

The property set for SGML is:

<!-- SGML Property Set -->
<!doctype propset public "ISO/IEC 10744:1993/DTD Property Set//EN"
"sgmlprop.dtd">
<propset psn="sgmlprop" fullnm="SGML Property Set">
<desc>
Defines the classes and properties to be used in the construction of
groves from the parsing of SGML documents.

Classes and properties are classified as follows:
 o Abstract or SGML document string (SDS)
 o SGML declaration, document prolog, or document instance
 o Required only for support of datatag, rank, shortref, link, subdoc,
 formal.

ESIS corresponds roughly to the combination of baseabs (base abstract),
prlgabs0, and instabs (instance abstract).
</desc>
<!--Note: Clause numbering conforms to the rules specified in Clause 6.3
 of ISO/IEC 13673, which defines how the components of
 ISO/IEC 8879 should be identified within conformance tests.
 The first number/letter represents the clause number (letters
 can be treated as hexadecimal in this document), the second
 number identifies the sub-clause, the third the
 sub-sub-clause, and the fourth the
 sub-sub-sub-clause (if any) with the final number/letter
 identifying the paragraph number. (Productions,
 notes and items in a list are counted as separate paragraphs.)
 Where figures are referred to, the clause, sub-clause, and
 sub-sub-clause numbers are replaced by FIG and the
 sub-sub-sub-clause number is replaced by the figure number.
 As an extension to ISO/IEC 13673, subclauses in clause 4

ISO/IEC 10179:1996 © ISO/IEC

86

 are referred to using numbers of the form 4xxxy where xxx
 is the decimal subclause number and y is the paragraph number
 as normal.
-->

<!-- Base abstract classes and properties -->

<psmodule rcsnm=baseabs fullnm="base abstract">

<classdef rcsnm=sgmldoc appnm="sgml document" clause="62001">
<desc>
The parsed SGML document or subdocument. The root of the grove.

<propdef subnode rcsnm=sgmlcsts appnm="sgml constants" datatype=node
ac=sgmlcsts clause="41170 41180">

<propdef rcsnm=appinfo appnm="application info"
fullnm="application information" datatype=string strlex=mindata
clause="d6001">
<desc>
Application information provided by the SGML declaration.
<when>
A literal was specified as the value of the APPINFO parameter
of the SGML declaration applicable to the document/subdocument.

<propdef subnode rcsnm=prolog datatype=nodelist
ac="doctpdcl lktpdcl comdcl pi ssep" cn=sgmldoc clause="71001">

<propdef subnode rcsnm=epilog datatype=nodelist ac="comdcl pi ssep"
cn=sgmldoc clause="71002">
<desc>
Other prolog following the document instance.

<classdef rcsnm=sgmlcsts appnm="sgml constants" clause="b6004 c2101">
<desc>
A holding pen for selected nodes intrinsic to all SGML documents,
which may be needed as irefnodes elsewhere.
<note>
This has no properties unless the srabs (shortref abstract)
or linkabs (link abstract) modules are included.

<classdef rcsnm=attasgn appnm="attribute assignment"
conprop=value dsepprop=tokensep clause="79002">
<desc>
An attribute assignment, whether specified or defaulted.
<note>
In the base module because of data attributes.

<propdef subnode rcsnm=value datatype=nodelist
ac="attvaltk datachar sdata intignch entstart entend" clause="79401">
<note>
If the attribute value is tokenized, the children are of type attvaltk;
otherwise, they are of the other allowed types.
<when>
The attribute is not an impliable attribute for which there is no
attribute specification.

© ISO/IEC ISO/IEC 10179:1996(E)

87

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="93001">

<propdef rcsnm=implied datatype=boolean clause="b3407">
<desc>
True if and only if the attribute is an impliable attribute
for which there is no attribute specification.

<propdef rcsnm=tokensep appnm="token sep" fullnm="token separator"
datatype=char clause="79400">
<desc>
The separator between the tokens of the value. Always equal
to the SPACE character in the concrete syntax.
<when>
The node has two or more children of class attvaltk.

<classdef rcsnm=attvaltk appnm="attribute value token" conprop=token
clause="79305">

<propdef rcsnm=token datatype=string strlex=nmtoken clause="93003">

<classdef rcsnm=datachar appnm="data char" fullnm="data character"
conprop=char clause="92002">

<propdef rcsnm=char fullnm=character datatype=char clause="92003">
<desc>
The character returned by the parser to the application.

<classdef rcsnm=sdata
fullnm="internal specific character data entity reference result"
conprop=char clause="92101">

<propdef rcsnm=sysdata appnm="system data" datatype=string clause="43041">
<note>
The replacement text of a specific character data entity is treated
as system data when referenced.

<propdef rcsnm=char fullnm=character datatype=char sd=DSSSL>
<desc>
The character associated with the SDATA entity by the map-sdata-entity
architectural form.
<when>
A character has been associated with the SDATA entity by the
map-sdata-entity architectural form.

<classdef rcsnm=pi fullnm="processing instruction" clause="80000">
<desc>
Processing instruction.

<propdef rcsnm=sysdata appnm="system data" datatype=string clause="80002">

</psmodule>

<!-- Prolog-related abstract classes and properties, level 0 -->

ISO/IEC 10179:1996 © ISO/IEC

88

<psmodule rcsnm=prlgabs0 fullnm="prolog abstract level 0" dependon=baseabs>

<propdef irefnode rcsnm=govdt appnm="governing doctype" datatype=node
ac=doctype
cn=sgmldoc clause="71004">
<desc>
The document type that governs the parse. When there are more than one
"active" document types specified, each active document type gives rise
to a separate parse, which, in turn, creates a separate sgmldoc grove.

<propdef subnode rcsnm=dtlts appnm="doctypes and linktypes"
fullnm="document types and link types"
datatype=nmndlist ac="doctype linktype" acnmprop="name name" cn=sgmldoc
clause="71001">
<desc>
The document types and link types declared in the prolog, in declaration
order.

<classdef rcsnm=doctype appnm="document type" clause="b1000">
<desc>
The abstraction of a document type declaration.
<note>
It includes entities declared in that declaration’s DTD,
entities treated as being declared therein because they
occur in a link type for which that DTD is the source DTD,
and entities declared in the base declaration which may be
referenced when this document type is active.

<propdef rcsnm=name datatype=string strlex=name strnorm=general clause="b1002">
<desc>
The name associated with the DTD by the document type declaration;
necessarily also the name of the type of the outermost element.

<propdef rcsnm=govrning appnm=governing datatype=boolean clause="71005">
<desc>
True if either this was the active document type or there was
no active document type and this is the base document type.
<note>
The "governing" document type governs the parsing process.
If more than one document type is specified as "active",
each active document type gives rise to a separate parse,
for which it is the governing document type, and thereby
produces a separate grove.

<propdef subnode rcsnm=genents appnm="general entities" datatype=nmndlist
ac=entity acnmprop=name clause="b1004">
<desc>
The general entities of the document or subdocument declared in the DTD.
<note>
Includes entities not explicitly declared, as discussed above
in the description of this class.
<note>
If the DTD provides a default declaration for undeclared
general entity names, there is no entry in the list
corresponding to this declaration, nor any entry for any
such undeclared name. (But such entities are in the

© ISO/IEC ISO/IEC 10179:1996(E)

89

entities property of the sgmldoc class.) See dfltent following.

<propdef subnode rcsnm=nots appnm=notations datatype=nmndlist ac=notation
acnmprop=name clause="b1005">

<classdef rcsnm=entity clause="60000">

<propdef rcsnm=name datatype=string strlex=name strnorm=entity clause="93001">

<propdef rcsnm=enttype appnm="entity type" datatype=enum clause="a5502">

<enumdef rcsnm=text fullnm="SGML text">
<enumdef rcsnm=cdata>
<enumdef rcsnm=sdata>
<enumdef rcsnm=ndata>
<enumdef rcsnm=subdoc appnm=subdocument>
<enumdef rcsnm=pi>

<propdef rcsnm=text fullnm="replacement text" datatype=string clause="92101">
<when>
The entity is an internal entity.

<propdef subnode rcsnm=extid appnm="external id" fullnm="external identifier"
datatype=node ac=extid clause="a1601">
<when>
The entity is an external entity.

<propdef subnode rcsnm=atts appnm=attributes
datatype=nmndlist ac=attasgn acnmprop=name clause="b4120">
<desc>
A list of data attribute assignments, one for each declared attribute of
the entity in the order in which they were declared in the attribute
definition list declaration.
<when>
The entity is an external data entity.

<propdef rcsnm=notname appnm="notation name" datatype=string strlex=name
strnorm=general clause="79408">
<when>
The entity is an external data entity.

<propdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001">
<when>
The entity is an external data entity.

<classdef rcsnm=notation fullnm="data content notation" clause="b4000">

<propdef rcsnm=name datatype=string strlex=name strnorm=general clause="79441">

<propdef subnode rcsnm=extid appnm="external id" fullnm="external identifier"
datatype=node ac=extid clause="a1601">

<classdef rcsnm=extid appnm="external id" fullnm="external identifier"
clause="a1600">

<propdef rcsnm=pubid appnm="public id" fullnm="public identifier"

ISO/IEC 10179:1996 © ISO/IEC

90

datatype=string strlex=mindata clause="a1602">
<when>
The external identifier contained an explicit public identifier.

<propdef rcsnm=sysid appnm="system id" fullnm="system identifier"
datatype=string clause="a1603">
<when>
The external identifier contained an explicit system identifier.

<propdef optional rcsnm=gensysid appnm="generated system id"
fullnm="generated system identifier"
datatype=string>
<desc>
The system identifier generated by the system from the external
identifier and other information available to the system.
<when>
The external identifier is not the external identifier of
the default entity.
</psmodule>

<!-- Document instance related abstract classes and properties -->

<psmodule rcsnm=instabs fullnm="instance abstract" dependon=baseabs>

<propdef subnode rcsnm=docelem appnm="document element" datatype=node
ac=element cn=sgmldoc clause="72003">
<desc>
The document element for the governing document type.

<propdef irefnode rcsnm=elements datatype=nmndlist ac=element acnmprop=id
cn=sgmldoc clause="73001">
<desc>
All the elements in the document which have unique identifiers in the
order in which they are detected by the parser: parents occur
before children; siblings occur in left-to-right order.

<propdef irefnode rcsnm=entities datatype=nmndlist ac=entity acnmprop=name
cn=sgmldoc clause="94410">
<desc>
The explicitly declared general entities from the governing document
type, followed by the defaulted entities.
<note>
This includes both internal and external entities. It does not
include unnamed entities.

<propdef subnode rcsnm=dfltents appnm="defaulted entities" datatype=nmndlist
ac=entity acnmprop=name cn=sgmldoc clause="94412">
<desc>
An entity for each entity name in the document that referenced
the default entity in the governing document type.

<!-- Attribute value token -->

<propdef irefnode rcsnm=entity datatype=node ac=entity cn=attvaltk
clause="79401">
<when>

© ISO/IEC ISO/IEC 10179:1996(E)

91

Declared value of attribute is ENTITY or ENTITIES.

<propdef irefnode rcsnm=notation datatype=node ac=notation cn=attvaltk
clause="79408">
<when>
Declared value of attribute is NOTATION.

<propdef irefnode rcsnm=referent datatype=node ac=element cn=attvaltk
clause="79403">
<when>
Declared value is IDREF or IDREFS.

<classdef rcsnm=element conprop=content clause="73000">

<propdef rcsnm=gi fullnm="generic identifier" datatype=string strlex=name
strnorm=general clause="78001">
<desc>
Generic identifier (element type name) of element.

<propdef derived rcsnm=id fullnm="unique identifier" datatype=string
strlex=name strnorm=general clause="79403">
<when>
A unique identifier was specified for the element.

<propdef subnode rcsnm=atts appnm=attributes
datatype=nmndlist ac=attasgn acnmprop=name clause="79301">
<desc>
A list of attribute assignments, one for each declared attribute
of the element in the order in which they were declared in the
attribute definition list declaration.

<propdef subnode rcsnm=content datatype=nodelist
ac="datachar sdata element extdata subdoc pi msignch ignrs ignre repos
 usemap uselink entstart entend ssep comdcl msstart msend ignmrkup"
clause="76001">

<classdef rcsnm=extdata appnm="external data"
fullnm="reference to external data" clause="a5500">
<desc>
The result of referencing an external data entity.

<propdef rcsnm=entname appnm="entity name" datatype=string strlex=name
strnorm=entity clause="a5101">

<propdef irefnode rcsnm=entity datatype=node ac=entity clause="94410">

</psmodule>

<!-- Base SDS classes and properties -->

<psmodule rcsnm=basesds0 fullnm="base SGML document string level 0"
dependon=baseabs>

<!-- Sdata -->

<propdef optional rcsnm=entname appnm="entity name" datatype=string

ISO/IEC 10179:1996 © ISO/IEC

92

strlex=name strnorm=entity cn=sdata clause="a5101">

<propdef irefnode rcsnm=entity datatype=node ac=entity cn=sdata
clause="94410">

<!-- Processing instruction -->

<propdef rcsnm=entname appnm="entity name" datatype=string strlex=name
strnorm=entity cn=pi clause="a5101">
<when>
The processing instruction resulted from referencing a PI entity.

<propdef irefnode rcsnm=entity datatype=node ac=entity cn=pi
clause="94410">
<when>
The processing instruction resulted from referencing a PI entity.

<!-- Entity -->

<propdef rcsnm=dflted appnm=defaulted datatype=boolean cn=entity
clause="94412">
<desc>
True if this was created because of a reference to the default entity.

</psmodule>

<psmodule rcsnm=basesds1 fullnm="base SGML document string level 1"
dependon=basesds0>

<propdef subnode optional rcsnm=entref appnm="entity ref"
fullnm="entity reference" datatype=nodelist
ac="gendelm name ssep entstart entend refendre shortref" cn=pi
clause="94401">
<desc>
The markup of the entity reference.
<note>
ssep, entstart, and entend may occur only in a name group in a named
entity reference.
<when>
The processing instruction resulted from referencing a PI entity with
a named entity reference or a short reference.

<propdef subnode optional rcsnm=open appnm="open delim"
fullnm="open delimiter" datatype=node ac=gendelm cn=pi clause="80001">
<when>
The processing instruction did not result from referencing a PI entity.

<propdef subnode optional rcsnm=close appnm="close delim"
fullnm="close delimiter" datatype=node ac=gendelm cn=pi clause="80001">
<when>
The processing instruction did not result from referencing a PI entity.

<!-- Attribute -->

<propdef irefnode rcsnm=attspec appnm="attribute spec" fullnm="attribute
specification"

© ISO/IEC ISO/IEC 10179:1996(E)

93

datatype=nodelist ac="name ssep gendelm literal attvalue" cn=attasgn
clause="79002">
<when>
The attribute was specified rather than defaulted or implied.

<propdef irefnode rcsnm=attvalsp appnm="attribute value spec"
fullnm="attribute value specification" datatype=node
ac="attvalue literal" cn=attasgn clause="79301">
<when>
The attribute is not implied.

<!-- Data character -->

<propdef rcsnm=intrplch appnm="interp replaced char"
fullnm="interpretation replaced character" datatype=char cn=datachar
clause="a1704">
<desc>
The character that was replaced.
<note>
When a sequence of RE and/or SPACE characters in a minimum literal
is replaced by a single SPACE character, then the first
character is represented by a datachar possibly with an intrplch
property, and the other characters are represented by an intignch.
<when>
The data character replaced another character
when a literal was interpreted: a SPACE character that replaced a
RE or SEPCHAR in an attribute value literal or an RE in a minimum
literal.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" cn=datachar clause="95001">
<when>
The data character was the replacement of a named character reference.

<propdef subnode optional rcsnm=numcref appnm="numeric char ref"
fullnm="numeric character reference" datatype=nodelist
ac="gendelm name crefcnum refendre" cn=datachar clause="95001">
<when>
The data character was the replacement of a numeric character reference.

<!-- Specific character data -->

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm name ssep entstart entend refendre shortref" cn=sdata
clause="94401">
<note>
ssep, entstart, and entend can occur only in a name group in a named
entity reference.

<classdef rcsnm=ssep appnm="s sep" fullnm="s separator" mayadd
clause="62100">

<propdef rcsnm=char fullnm=character datatype=char clause="92003">

<propdef subnode optional rcsnm=namecref appnm="named char ref"

ISO/IEC 10179:1996 © ISO/IEC

94

fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" clause="95001">
<when>
The character was the replacement of a named character reference.

<classdef rcsnm=comment clause="a3002">

<propdef subnode optional rcsnm=open appnm="open delim"
fullnm="open delimiter" datatype=node ac=gendelm clause="a3002">

<propdef rcsnm=chars fullnm=characters datatype=string clause="92101">
<desc>
The characters in the comment (excluding the com delimiters).

<propdef subnode optional rcsnm=close appnm="close delim"
fullnm="close delimiter" datatype=node ac=gendelm clause="a3002">

<classdef rcsnm=comdcl appnm="comment decl" fullnm="comment declaration"
conprop=markup mayadd clause="a3001">

<propdef subnode rcsnm=markup datatype=nodelist ac="comment ssep"
clause="a3001">

<classdef rcsnm=ignmrkup appnm="ignored markup" conprop=markup
clause="77002 94405 c3007">
<desc>
Ignored markup. Either a start-tag or end-tag that is ignored because
it contains a document type specification that contains a name group
none of the names in which is the name of an active document type, or
a general or parameter entity reference that is ignored because it
contains a name group none of the names in which is the name of an
active document or link type, or a link set use declaration that is
ignored because its link type name is not an active link type,
or a general entity reference in an attribute value literal in
a start-tag that is itself ignored markup, or an entity declaration
that is ignored because the entity was already declared.

<propdef subnode rcsnm=markup datatype=nodelist
ac="gendelm name ssep attvalue literal entstart entend refendre"
clause="74001 75001 94401 c3001">

<classdef rcsnm=entstart appnm="entity start" conprop=markup>
<desc>
The start of the replacement text of an entity.
<note>
The end shall be marked by an entend node. This is the result of an
entity reference that was replaced by the parser.

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm name ssep entstart entend refendre shortref">
<desc>
The markup of the entity reference.

<propdef optional rcsnm=entname appnm="entity name" datatype=string
strlex=name strnorm=entity>

© ISO/IEC ISO/IEC 10179:1996(E)

95

<propdef irefnode rcsnm=entity datatype=node ac=entity clause="a5201">

<classdef rcsnm=entend appnm="entity end" clause="94500">
<desc>
The end of an entity reference that was replaced by the parser.

<classdef rcsnm=msignch appnm="marked section ignored char"
fullnm="marked section ignored character" clause="a4204">
<desc>
A character that has been ignored within a marked section.

<propdef rcsnm=char fullnm=character datatype=char clause="92101">

<classdef rcsnm=intignch appnm="interp ignored char"
fullnm="interpretation ignored char" clause="79303 a1704">
<desc>
A character in a literal that was ignored when the literal was
interpreted: an RS in an attribute value literal or in a minimum literal,
an RE or SPACE character in a minimum literal that immediately
followed another RE or SPACE character in a minimum literal,
or an RE or SPACE character that was the first or last character
in a minimum literal.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" clause="95001">
<when>
The character was the replacement of a named character reference.

<propdef rcsnm=char fullnm=character datatype=char clause="92101">

<classdef rcsnm=gendelm appnm="general delim" fullnm="general delimiter"
clause="FIG30">
<desc>
A general delimiter.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" clause="95001">
<note>
This may happen only for a delimiter that is the first child
of its parent or the value of a close delimiter property.
<when>
The first character of the delimiter was entered with a named
character reference.

<propdef rcsnm=role datatype=string strnorm=rcsgener clause="96001 FIG30">
<desc>
The name of the delimiter role.

<propdef optional rcsnm=origdelm appnm="original delim"
fullnm="original delimiter" datatype=string clause="92102 FIG22">
<desc>
The delimiter as originally entered before any upper-case substitution.

<classdef rcsnm=name clause="93001">

ISO/IEC 10179:1996 © ISO/IEC

96

<desc>
A name within markup.
<note>
Names in attribute values are represented by nodes of type attvaltk
rather than name.

<propdef rcsnm=origname appnm="original name" datatype=string clause="93005">
<desc>
The characters of the name as originally entered before
any upper-case substitution.

<classdef rcsnm=rname appnm="reserved name" clause="d4701">
<desc>
A token in markup that is recognized as a reserved name.

<propdef rcsnm=refname appnm="ref name" fullnm="reference name"
datatype=string strnorm=rcsgener clause="d4704">
<desc>
The reference reserved name.

<propdef optional rcsnm=origname appnm="original name" datatype=string
clause="93005">
<desc>
The reserved name as originally entered before any upper-case
substitution.

<classdef rcsnm=literal conprop=value clause="a1201 79302 a1701 a1603">
<desc>
A parameter literal, attribute value literal, minimum literal, or
system identifier.

<propdef subnode optional rcsnm=open appnm="open delim"
fullnm="open delimiter" datatype=node ac=gendelm clause="96100 FIG30">

<propdef subnode rcsnm=value datatype=nodelist
ac="entstart entend datachar sdata intignch"
clause="a1202 91001 a1702 80002">
<desc>
Interpreted value of literal.
<note>
If the literal is an attribute value literal for a tokenized value,
the value of the literal represents the attribute value before
tokenization but after interpretation.

<propdef subnode optional rcsnm=close appnm="close delim"
fullnm="close delimiter" datatype=node ac=gendelm clause="96100 FIG30">

<classdef rcsnm=number clause="93002">
<desc>
A number in markup that is not a character number in
a character reference.
<note>
Numbers in attribute values are represented by nodes of type attvaltk
rather than number.

<propdef rcsnm=digits datatype=string strlex=number clause="93002">

© ISO/IEC ISO/IEC 10179:1996(E)

97

<classdef rcsnm=crefcnum appnm="char ref char number"
fullnm="character reference character number" clause="95001">
<desc>
A character number occurring in a character reference.
<note>
The numeric value of the number is determined by the char property of
the datachar node.

<propdef optional rcsnm=ndigits appnm="n digits" fullnm="number of digits"
datatype=integer clause="95003 93002">
<desc>
The number of digits used to specify the value.

<classdef rcsnm=refendre appnm="ref end re" fullnm="reference end RE"
clause="94502">
<desc>
An RE in markup that is used as a reference end.

<classdef rcsnm=attvalue appnm="attribute value" clause="79400">
<desc>
An attribute value specification that is an attribute value
rather than an attribute value literal.
<note>
Do not confuse this with the attasgn class.

<propdef rcsnm=value datatype=string clause="93005">
<desc>
The value before any upper-case substitution.

<classdef rcsnm=nmtoken appnm="name token" clause="93003">
<desc>
A name token in markup.
<note>
This is used only for name tokens in name token groups in
declared values. Name tokens in attribute values are represented by
nodes of type attvaltk rather than nmtoken.

<propdef rcsnm=origname appnm="original name token" datatype=string
clause="93005">
<desc>
The characters of the name token as originally entered before
any upper-case substitution.

<classdef rcsnm=msstart appnm="marked section start"
fullnm="marked section declaration start" conprop=markup clause="a4002">
<desc>
The part of a marked section declaration preceding the marked section.

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm rname ssep entstart entend comment ignmrkup" clause="a4002">
<note>
First child will be gendelm for mdo, last will be gendelm for
dso.

<propdef rcsnm=status datatype=enum clause="a4201">

ISO/IEC 10179:1996 © ISO/IEC

98

<desc>
Effective status of marked section.

<enumdef rcsnm=ignore>
<enumdef rcsnm=cdata>
<enumdef rcsnm=rcdata>
<enumdef rcsnm=include>
<enumdef rcsnm=temp>

<classdef rcsnm=msend appnm="marked section end" conprop=markup
clause="a4003">

<propdef subnode optional rcsnm=markup datatype=nodelist ac=gendelm
clause="FIG3e FIG3h">
<note>
Will be a gendelm for the msc and a gendelm for the mdc.

</psmodule>

<!-- SGML Declaration-related abstract classes and properties -->

<psmodule rcsnm=sdclabs fullnm="sgml declaration abstract" dependon=baseabs>

<propdef rcsnm=sgmlver appnm="sgml version" datatype=string strlex=mindata
cn=sgmldoc clause="d0002">
<desc>
The minimum literal specified as the first parameter of the SGML
declaration applicable to this document or subdocument.

<propdef subnode rcsnm=docchset appnm="document char set"
fullnm="document character set" datatype=node ac=charset cn=sgmldoc
clause="d1001">

<propdef subnode rcsnm=capset appnm="capacity set" datatype=node
ac=capset cn=sgmldoc clause="d2001">

<propdef rcsnm=synscope appnm="syntax scope"
fullnm="concrete syntax scope" datatype=enum cn=sgmldoc clause="d3002">

<enumdef rcsnm=instance>
<enumdef rcsnm=document>

<propdef subnode rcsnm=dclsyn appnm="decl syntax"
fullnm="declared concrete syntax" datatype=node ac=syntax cn=sgmldoc
clause="d4001">

<propdef subnode rcsnm=refsyn appnm="ref syntax"
fullnm="reference concrete syntax" datatype=node ac=syntax cn=sgmldoc
clause="d4002 e0001 FIG70">
<desc>
The reference concrete syntax used for the SGML declaration and,
if the concrete syntax scope is INSTANCE, the prolog.
<note>
Not a property of sgmlcsts because it depends on the document character
set.

© ISO/IEC ISO/IEC 10179:1996(E)

99

<propdef irefnode rcsnm=prosyn appnm="prolog syntax"
fullnm="prolog concrete syntax" datatype=node ac=syntax cn=sgmldoc
clause="d4001">
<desc>
The concrete syntax for the prolog.

<propdef subnode rcsnm=features fullnm="feature use" datatype=node
ac=features cn=sgmldoc clause="d5001">

<classdef rcsnm=charset appnm="char set" fullnm="character set"
conprop=chdescs clause="d1000">

<propdef subnode rcsnm=chdescs appnm="char descs"
fullnm="character descriptions" datatype=nodelist ac=chardesc
clause="d1101">

<classdef rcsnm=chardesc appnm="char desc" fullnm="character description"
clause="d1122">

<propdef rcsnm=descnum appnm="desc set number"
fullnm="described set character number" datatype=integer clause="d1123">

<propdef rcsnm=nchars appnm="n chars" fullnm="number of characters"
datatype=integer clause="d1125">

<propdef rcsnm=basenum appnm="base set number"
fullnm="base set character number" datatype=integer clause="d1124">
<when>
Character description included a base set character number.

<propdef rcsnm=baseset appnm="base char set" fullnm="base character set"
datatype=string strlex=mindata clause="d1111">
<desc>
The public identifier of the base character set.
<when>
Character description included a base set character number.

<propdef rcsnm=desclit appnm="desc literal"
fullnm="description literal" datatype=string strlex=mindata
clause="a1701">
<when>
Character description not entered as base set number.

<classdef rcsnm=syntax fullnm="concrete syntax" clause="d4000">
<note>
This represents a concrete syntax bound to this document’s document
character set. Characters are characters in the document character set
not in the syntax reference character set.

<propdef rcsnm=shunctrl appnm="shunchar controls" datatype=boolean
clause="d4204">
<desc>
True if SHUNCHAR included CONTROLS.

<propdef rcsnm=shunchar fullnm="shunned character numbers"
datatype=intlist clause="d4201">

ISO/IEC 10179:1996 © ISO/IEC

100

<propdef subnode rcsnm=synchset appnm="syntax ref char set"
fullnm="syntax-reference character set" datatype=node ac=charset
clause="d4301">

<propdef rcsnm=re fullnm="record end" datatype=char clause="d4401">

<propdef rcsnm=rs fullnm="record start" datatype=char clause="d4401">

<propdef rcsnm=space datatype=char clause="d4401">

<propdef subnode rcsnm=addfuns appnm="added function chars"
fullnm="added function characters" datatype=nmndlist ac=addfun
acnmprop=name clause="d4401">

<propdef rcsnm=lcnmstrt datatype=string clause="d4503">

<propdef rcsnm=ucnmstrt datatype=string clause="d4504">

<propdef rcsnm=lcnmchar datatype=string clause="d4505">

<propdef rcsnm=ucnmchar datatype=string clause="d4506">

<propdef rcsnm=substgen appnm="subst general names"
fullnm="substitute general names" datatype=boolean clause="d4507">
<desc>
True if GENERAL YES is specified in NAMECASE.

<propdef rcsnm=substent appnm="subst entity names"
fullnm="substitute entity names" datatype=boolean clause="d4507">
<desc>
True if ENTITY YES is specified in NAMECASE.

<propdef subnode rcsnm=gdasns appnm="general delim assocs"
fullnm="general delimiter role associations"
datatype=nmndlist ac=dlmrlas acnmprop=role clause="d4611">
<desc>
There is a term for every general delimiter role whether or not
it is changed from that prescribed by the reference concrete syntax.
The terms occur in alphabetical order of their (abstract-syntax)
role names.

<propdef rcsnm=srdelms appnm="shortref delims"
fullnm="short reference delimiters" datatype=strlist clause="d4621">

<propdef subnode rcsnm=slitasns appnm="syntax literal assocs"
fullnm="syntax literal associations" datatype=nmndlist ac=synlitas
acnmprop=refname clause="d4701">
<desc>
The syntax literal/reserved name associations specified by the concrete
syntax. There is a term for every reserved name whether or not
it is changed from that prescribed by the reference concrete syntax.
The terms occur in alphabetical order of the syntactic literals.

<propdef rcsnm=attcnt datatype=integer clause="FIG41">
<propdef rcsnm=attsplen datatype=integer clause="FIG42">

© ISO/IEC ISO/IEC 10179:1996(E)

101

<propdef rcsnm=bseqlen datatype=integer clause="FIG43">
<propdef rcsnm=dtaglen datatype=integer clause="FIG44">
<propdef rcsnm=dtemplen datatype=integer clause="FIG45">
<propdef rcsnm=entlvl datatype=integer clause="FIG46">
<propdef rcsnm=grpcnt datatype=integer clause="FIG47">
<propdef rcsnm=grpgtcnt datatype=integer clause="FIG48">
<propdef rcsnm=grplvl datatype=integer clause="FIG49">
<propdef rcsnm=litlen datatype=integer clause="FIG4a">
<propdef rcsnm=namelen datatype=integer clause="FIG4b">
<propdef rcsnm=normsep datatype=integer clause="FIG4c">
<propdef rcsnm=pilen datatype=integer clause="FIG4d">
<propdef rcsnm=taglen datatype=integer clause="FIG4e">
<propdef rcsnm=taglvl datatype=integer clause="FIG4f">

<classdef rcsnm=addfun appnm="added function char"
fullnm="added function character" clause="d4400">

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="d4402">

<propdef rcsnm=class fullnm="function class" datatype=enum clause="d4403">
<enumdef rcsnm=funchar>
<enumdef rcsnm=msichar>
<enumdef rcsnm=msochar>
<enumdef rcsnm=msschar>
<enumdef rcsnm=sepchar>

<propdef rcsnm=char fullnm=character datatype=char clause="95003">
<desc>
Character assigned to function.

<classdef rcsnm=dlmrlas appnm="delim role assoc"
fullnm="delimiter role association" clause="d4610">
<desc>
The association, made by a concrete syntax, of a character string with
an abstract-syntax delimiter role.

<propdef rcsnm=role datatype=string strnorm=rcsgener clause="d4612">
<desc>
The name of the role.

<propdef rcsnm=delm appnm=delim fullnm=delimiter datatype=string
strnorm=general clause="d4611">
<desc>
The string to be used in the document.

<classdef rcsnm=synlitas appnm="syntactic literal assoc"
fullnm="syntactic literal association" clause="d4700">
<desc>
The association, made by a concrete syntax, of a reserved name with
an abstract-syntax syntactic literal.

<propdef rcsnm=synlit appnm="syntactic literal"
datatype=string strnorm=rcsgener clause="d4702">
<desc>
The syntactic literal. (More precisely, the name which when enclosed in

ISO/IEC 10179:1996 © ISO/IEC

102

double quotation marks becomes the syntactic literal.)

<propdef rcsnm=resname appnm="reserved name" datatype=string strlex=name
strnorm=general clause="d4702">
<desc>
The reserved name to be used in the document.
<note>
In the reference concrete syntax, the syntactic literal is
identical to the reserved name.

<classdef rcsnm=capset appnm="capacity set" clause="d2000">

<propdef rcsnm=totalcap datatype=integer clause="FIG51">
<propdef rcsnm=entcap datatype=integer clause="FIG52">
<propdef rcsnm=entchcap datatype=integer clause="FIG53">
<propdef rcsnm=elemcap datatype=integer clause="FIG54">
<propdef rcsnm=grpcap datatype=integer clause="FIG55">
<propdef rcsnm=exgrpcap datatype=integer clause="FIG56">
<propdef rcsnm=exnmcap datatype=integer clause="FIG57">
<propdef rcsnm=attcap datatype=integer clause="FIG58">
<propdef rcsnm=attchcap datatype=integer clause="FIG59">
<propdef rcsnm=avgrpcap datatype=integer clause="FIG5a">
<propdef rcsnm=notcap datatype=integer clause="FIG5b">
<propdef rcsnm=notchcap datatype=integer clause="FIG5c">
<propdef rcsnm=idcap datatype=integer clause="FIG5d">
<propdef rcsnm=idrefcap datatype=integer clause="FIG5e">
<propdef rcsnm=mapcap datatype=integer clause="FIG5f">
<propdef rcsnm=lksetcap datatype=integer clause="FIG5g">
<propdef rcsnm=lknmcap datatype=integer clause="FIG5h">

<classdef rcsnm=features fullnm="feature use" clause="d5000">

<propdef rcsnm=datatag datatype=boolean clause="d5101">
<desc>
True if DATATAG is YES.

<propdef rcsnm=omittag datatype=boolean clause="d5101">
<desc>
True if OMITTAG is YES.

<propdef rcsnm=rank datatype=boolean clause="d5101">
<desc>
True if RANK is YES.

<propdef rcsnm=shorttag datatype=boolean clause="d5101">
<desc>
True if SHORTTAG is YES.

<propdef rcsnm=simple datatype=integer clause="d5201">
<desc>
0 if SIMPLE is NO.

<propdef rcsnm=implicit datatype=boolean clause="d5201">
<desc>
True if IMPLICIT is YES.

© ISO/IEC ISO/IEC 10179:1996(E)

103

<propdef rcsnm=explicit datatype=integer clause="d5201">
<desc>
0 if EXPLICIT is NO.

<propdef rcsnm=concur datatype=integer clause="d5301">
<desc>
0 if CONCUR is NO.

<propdef rcsnm=subdoc datatype=integer clause="d5301">
<desc>
0 if SUBDOC is NO.

<propdef rcsnm=formal datatype=boolean clause="d5301">
<desc>
True if FORMAL is YES.

</psmodule>

<!-- SGML Declaration-related SGML document string classes and properties -->

<psmodule rcsnm=sdclsds fullnm="SGML declaration SGML document string"
dependon=basesds1>

<propdef subnode optional rcsnm=sgmldcl appnm="sgml decl"
fullnm="SGML declaration" datatype=node ac=sgmldcl cn=sgmldoc
clause="d0001">
<when>
SGML declaration was explicitly present.

<propdef rcsnm=sdcltype appnm="sgml decl type"
fullnm="SGML declaration type" datatype=enum cn=sgmldoc clause="62300">

<enumdef rcsnm=explicit>
<desc>
The SGML declaration was explicitly specified.

<enumdef rcsnm=implied>
<desc>
The SGML declaration was implied.

<enumdef rcsnm=inherit>
<desc>
The SGML declaration comes from the SGML document of which
this is a subdocument.

<classdef rcsnm=sgmldcl appnm="sgml decl" fullnm="SGML declaration"
conprop=markup clause="d0000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="ssep comment name number rname literal gendelm" clause="d0001">
<note>
Also includes any s separators before the SGML declaration;
last child is gendelm for mdc delimiter.

</psmodule>

ISO/IEC 10179:1996 © ISO/IEC

104

<!-- Prolog-related abstract classes and properties, level 1 -->

<psmodule rcsnm=prlgabs1 fullnm="prolog abstract level 1"
dependon=prlgabs0>

<propdef subnode rcsnm=attdefs appnm="attribute defs"
fullnm="attribute definitions" datatype=nmndlist ac=attdef acnmprop=name
cn=notation clause="b3002">

<propdef irefnode rcsnm=attdef appnm="attribute def"
fullnm="attribute definition" datatype=node ac=attdef cn=attasgn
clause="b3003">

<propdef irefnode rcsnm=elemtype appnm="element type" datatype=node ac=elemtype
cn=element clause="b2101">

<propdef subnode rcsnm=dfltent appnm="default entity" datatype=node ac=dfltent
clause="a5105" cn=doctype>
<when>
The DTD declared a default for undeclared entity names. (Each such
undeclared name is associated with an entity using this node as
a pattern, but in certain cases, the system may not select the
same entity for each name.)

<propdef subnode rcsnm=elemtps appnm="element types" datatype=nmndlist
ac="elemtype rankstem" acnmprop="gi rankstem" cn=doctype clause="b2101" >
<desc>
Generic identifiers or rank stems used to name elements.

<propdef subnode rcsnm=parments appnm="parameter entities"
datatype=nmndlist ac=entity acnmprop=name cn=doctype
clause="b1004" >
<note>
Includes entities not explicitly declared, as discussed above in
the description of this class.

<classdef rcsnm=elemtype appnm="element type"
fullnm="element type definition" clause="b2000">

<propdef rcsnm=gi fullnm="generic identifier" datatype=string
strlex=name strnorm=general clause="78002">

<propdef rcsnm=omitstrt appnm="omit start tag" datatype=boolean
clause="b2202">
<desc>
True if start-tag minimization was "O".
<when>
Element type declaration specified omitted tag minimization.

<propdef rcsnm=omitend appnm="omit end tag" datatype=boolean
clause="b2203">
<desc>
True if end-tag minimization was "O".
<when>
Element type declaration specified omitted tag minimization.

© ISO/IEC ISO/IEC 10179:1996(E)

105

<propdef rcsnm=contype appnm="content type" datatype=enum clause="b2300">

<enumdef rcsnm=cdata>
<desc>
Declared content of CDATA.

<enumdef rcsnm=rcdata>
<desc>
Declared content of RCDATA.

<enumdef rcsnm=empty>
<desc>
Declared content of EMPTY.

<enumdef rcsnm=any>
<desc>
Content model of ANY.

<enumdef rcsnm=modelgrp appnm="model group">
<desc>
Content model that is a model group.

<propdef subnode rcsnm=modelgrp appnm="model group" datatype=node
ac=modelgrp clause="b2402">
<when>
Element type declaration includes content model that has a model group.

<propdef rcsnm=excls appnm=exclusions datatype=strlist clause="b2521">
<when>
Contype is any or modelgrp.

<propdef rcsnm=incls appnm=inclusions datatype=strlist clause="b2511">
<when>
Contype is any or modelgrp.

<propdef subnode rcsnm=attdefs appnm="attribute defs"
fullnm="attribute definitions" datatype=nmndlist ac=attdef acnmprop=name
clause="b3003">

<classdef rcsnm=modelgrp appnm="model group" conprop=tokens
clause="b2402">
<desc>
A model group or a data tag group.
<note>
A data tag group is represented by a model group node with connector
equal to seq whose first token is an elemtk and whose second token
is a pcdatatk.

<propdef rcsnm=connect appnm=connector datatype=enum clause="b2410">
<desc>
Connector used within model group.

<enumdef rcsnm=and>
<enumdef rcsnm=or>
<enumdef rcsnm=seq>

ISO/IEC 10179:1996 © ISO/IEC

106

<propdef rcsnm=occur appnm="occur indicator" fullnm="occurrence indicator"
datatype=enum clause="b2420">
<when>
Model group has an occurrence indicator.

<enumdef rcsnm=opt>
<enumdef rcsnm=plus>
<enumdef rcsnm=rep>

<propdef subnode rcsnm=tokens appnm="content tokens" datatype=nodelist
ac="modelgrp pcdatatk elemtk" clause="b2403">

<classdef rcsnm=pcdatatk appnm="pcdata token" clause="b2404">

<classdef rcsnm=elemtk appnm="element token" clause="b2405">

<propdef rcsnm=gi fullnm="generic identifier" datatype=string
strlex=name strnorm=general clause="b2405">

<propdef rcsnm=occur appnm="occur indicator" fullnm="occurrence indicator"
datatype=enum clause="b2405">
<when>
Element token has an occurrence indicator.

<enumdef rcsnm=opt>
<enumdef rcsnm=plus>
<enumdef rcsnm=rep>

<classdef rcsnm=attdef appnm="attribute def" fullnm="attribute definition"
conprop=dfltval clause="b3003">

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="b3201">

<propdef rcsnm=dcltype appnm="decl value type"
fullnm="declared value prescription type" datatype=enum clause="b3301">

<enumdef rcsnm=cdata>
<enumdef rcsnm=entity>
<enumdef rcsnm=entities>
<enumdef rcsnm=id>
<enumdef rcsnm=idref>
<enumdef rcsnm=idrefs>
<enumdef rcsnm=name>
<enumdef rcsnm=names>
<enumdef rcsnm=nmtoken>
<enumdef rcsnm=nmtokens>
<enumdef rcsnm=number>
<enumdef rcsnm=numbers>
<enumdef rcsnm=nutoken>
<enumdef rcsnm=nutokens>
<enumdef rcsnm=notation>
<enumdef rcsnm=nmtkgrp appnm="name token group">
<desc>
The declared value was a name token group.

© ISO/IEC ISO/IEC 10179:1996(E)

107

<propdef rcsnm=tokens datatype=strlist clause="b3301">
<desc>
A list of strings specifying the allowed tokens.
<when>
Declared value is a name token group or a notation.

<propdef rcsnm=dflttype appnm="default value type" datatype=enum
clause="b3401">

<enumdef rcsnm=value>
<desc>
The default value was an attribute value specification without #FIXED.

<enumdef rcsnm=fixed>
<enumdef rcsnm=required>
<enumdef rcsnm=current>
<enumdef rcsnm=conref>
<enumdef rcsnm=implied>

<propdef subnode rcsnm=dfltval appnm="default value" datatype=nodelist
ac="attvaltk datachar sdata intignch entstart entend" clause="b3409">
<when>
The default value includes an attribute value specification.

<propdef irefnode rcsnm=curgrp appnm="current group" datatype=nodelist
ac=attdef clause="b3001">
<desc>
All the attdef nodes that represent the same attribute definition
and which will therefore share the same current value.
<note>
There will be as many members as there were associated element types
in the attribute definition list declaration
that declared this attribute definition.
<when>
The default value type is CURRENT.

<propdef rcsnm=curattix appnm="current attribute index" datatype=integer
clause="b3001">
<desc>
The number of preceding attribute definitions in the document type
declaration with a default value type of CURRENT.
<note>
All the attdef nodes in the value of the curgrp property of an attdef
node will exhibit the same value for the curattix property.
Two attdef nodes will share the same current value just in case they
exhibit the same value for the curattix property.
<when>
The default value type is CURRENT.

<classdef rcsnm=dfltent appnm="default entity">

<propdef rcsnm=enttype appnm="entity type" datatype=enum clause="a5502">

<enumdef rcsnm=text fullnm="SGML text">
<enumdef rcsnm=cdata>
<enumdef rcsnm=sdata>

ISO/IEC 10179:1996 © ISO/IEC

108

<enumdef rcsnm=ndata>
<enumdef rcsnm=subdoc appnm=subdocument>
<enumdef rcsnm=pi>

<propdef rcsnm=text datatype=string fullnm="replacement text"
clause="92101">
<when>
The default entity declaration declares an internal entity.

<propdef subnode rcsnm=extid appnm="external id"
fullnm="external identifier" datatype=node ac=extid clause="a1601">
<when>
The default entity declaration declares an external entity.

<propdef subnode rcsnm=atts appnm=attributes
datatype=nmndlist ac=attasgn acnmprop=name clause="b4120">
<desc>
A list of data attribute assignments, one for each declared attribute of the
entity in the order in which they were declared in the attribute
definition list declaration.
<when>
The default entity declaration declares an external entity.

<propdef rcsnm=notname appnm="notation name" datatype=string strlex=name
strnorm=general clause="79408">
<when>
The default entity declaration declares an external entity.

<propdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001">
<when>
The default entity declaration declares an external entity.

</psmodule>

<!-- Prolog-related SDS classes and properties -->

<psmodule rcsnm=prlgsds fullnm="prolog SGML document string"
dependon=basesds1>

<propdef irefnode rcsnm=entdcl appnm="entity decl"
fullnm="entity declaration" datatype=node ac=entdcl cn=entity
clause="a5001">

<propdef irefnode rcsnm=entdcl appnm="entity decl"
fullnm="entity declaration" datatype=node ac=entdcl cn=dfltent
clause="a5001">

<propdef irefnode rcsnm=notdcl appnm="notation decl"
fullnm="notation declaration" datatype=node ac=notdcl cn=notation
clause="b4001">

<propdef irefnode rcsnm=attdldcl appnm="attribute def list decl"
fullnm="attribute definition list declaration" datatype=node ac=attdldcl
cn=notation clause="b4111">
<when>
The notation has an associated ATTLIST.

© ISO/IEC ISO/IEC 10179:1996(E)

109

<propdef irefnode rcsnm=eltpdcl appnm="element type decl"
fullnm="element type declaration" datatype=node ac=eltpdcl cn=elemtype
clause="b2001">

<propdef irefnode rcsnm=attdldcl appnm="attribute def list decl"
fullnm="attribute definition list declaration"
datatype=node ac=attdldcl cn=elemtype clause="b3001">
<when>
The element type has an associated ATTLIST declaration.

<propdef irefnode rcsnm=doctpdcl fullnm="document type declaration"
datatype=node ac=doctpdcl cn=doctype clause="b1001">

<propdef irefnode rcsnm=attvalsp appnm="attribute value spec"
fullnm="attribute value specification"
datatype=node ac="attvalue literal" cn=attdef clause="79002">
<when>
Default value includes attribute value specification.

<classdef rcsnm=doctpdcl fullnm="document type declaration" mayadd
clause="b1000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="ssep comment name rname literal msstart msend msignch entstart entend
 comdcl pi eltpdcl entdcl notdcl attdldcl usemap srmapdcl"
 clause="b1001">
<note>
First child is gendelm for mdo delimiter; last is gendelm
for mdc delimiter. If there is an external entity, its entend node
will appear immediately before the gendelm for the dsc delimiter,
if there is one, and otherwise immediately before the gendelm node
for the mdc delimiter.

<propdef irefnode rcsnm=doctype appnm="document type" datatype=node
ac=doctype clause="b1008">

<propdef subnode rcsnm=entity datatype=node ac=entity clause="b1008">
<when>
Document type declaration includes external identifier.

<classdef rcsnm=attdldcl appnm="attribute def list decl"
fullnm="attribute definition list declaration" mayadd clause="b3000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="ssep comment entstart entend gendelm name nmtoken attvalue literal"
clause="b3001">

<propdef irefnode rcsnm=asseltps appnm="assoc element types"
fullnm="associated element types" datatype=nodelist ac=elemtype
clause="b3001">
<desc>
The element types to which the attribute definition list is applicable,
ordered as their names occur in the attribute definition
list declaration. This does not include undefined element types.

ISO/IEC 10179:1996 © ISO/IEC

110

<propdef irefnode rcsnm=assnots appnm="assoc notations"
fullnm="associated notations" datatype=nodelist ac=notation clause="b3001">

<classdef rcsnm=eltpdcl appnm="element type decl"
fullnm="element type declaration" mayadd clause="b2000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="ssep comment entstart entend gendelm name number" clause="b2001">

<propdef irefnode rcsnm=elemtype appnm="element type"
fullnm="element type" datatype=node ac=elemtype clause="b2101">

<classdef rcsnm=entdcl appnm="entity decl" fullnm="entity declaration"
mayadd clause="a5000">
<desc>
An entity declaration that is not ignored.

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment gendelm name rname literal attvalue"
clause="a5001">

<propdef subnode rcsnm=entity datatype=node ac=entity clause="a5201">
<desc>
The entity declared by the entity declaration.

<classdef rcsnm=notdcl appnm="notation decl"
fullnm="notation declaration" mayadd clause="b4000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment literal name rname" clause="b4001">

<propdef irefnode rcsnm=notation datatype=node ac=notation clause="b4001">
<desc>
The declared notation.

</psmodule>

<!-- Document instance-related SDS classes and properties -->

<psmodule rcsnm=instsds0 fullnm="instance SGML document string level 0">

<propdef derived rcsnm=included datatype=boolean cn=element>
<desc>
True if and only if the element was an included subelement.

<propdef derived rcsnm=momitend appnm="must omit end tag" datatype=boolean
cn=element clause="b2209">
<desc>
True if and only if the end tag for the element had to be omitted
because the element had a declared content of empty or
an explicit content reference.

</psmodule>

<psmodule rcsnm=instsds1 fullnm="instance SGML document string level 1"
dependon="instsds0 basesds1">

© ISO/IEC ISO/IEC 10179:1996(E)

111

<!-- Element -->

<propdef subnode optional rcsnm=starttag appnm="start tag" datatype=nodelist
ac="gendelm name ssep entstart entend literal attvalue" cn=element
clause="74001">
<note>
First child is gendelm for stago.
Nodes of type entstart and entend can occur only
in the document type specification.
<when>
A start-tag was specified for the element.

<propdef subnode optional rcsnm=endtag appnm="end tag" datatype=nodelist
ac="gendelm name ssep entstart entend ignmrkup" cn=element clause="75001">
<note>
First child is gendelm for etago or net. Nodes of type entstart,
entend, and ignmrkup can occur only in the document type specification.
<when>
An end-tag (not a data tag) was specified for the element.

<!-- Data character -->

<propdef rcsnm=movedre appnm="moved re" datatype=boolean cn=datachar
clause="7610a">
<desc>
True if and only if this character is an RE that was deemed to occur
at a point other than that at which it in fact occurred.
<note>
A node of type repos will indicate the position at which
it in fact occurred.

<propdef irefnode rcsnm=repos appnm="re position" datatype=node cn=datachar
ac=repos clause="7610a">
<desc>
The position at which this RE character in fact occurred.
<when>
This character is an RE that was deemed to occur at a point other
than that at which it in fact occurred.

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm name ssep entstart entend refendre shortref" cn=extdata
clause="94401 94402">
<desc>
The markup of the entity reference.
<note>
ssep, entstart, and entend can occur only in a name group in a named
entity reference.

<classdef rcsnm=ignrs appnm="ignored rs" clause="76101">
<desc>
An RS that was ignored because of the rules in 7.6.1 of ISO 8879.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" clause="95001">

ISO/IEC 10179:1996 © ISO/IEC

112

<when>
The character was the replacement of a named character reference.

<classdef rcsnm=ignre appnm="ignored re" clause="76100">
<desc>
An RE in content that was ignored because of the rules in 7.6.1 of ISO
8879.
<note>
This occurs at the point where the RE originally occurred rather
than at the point it was determined that the RE should be ignored.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" clause="95001">
<when>
The character was the replacement of a named character reference.

<classdef rcsnm=repos appnm="re position" clause="7610a">
<desc>
The original position of an RE that was deemed by the rules of clause
7.6.1 of ISO 8879 to occur at some point other than that at which it
in fact occurred.
<note>
For each node of type repos, there will be a node of type datachar
with a property movedre that is true.

<propdef irefnode rcsnm=re appnm="record end" datatype=node ac=datachar
clause="7610a">
<desc>
The character for which this is the repos.

</psmodule>

<!-- Datatag-related abstract classes and properties -->
<psmodule rcsnm=dtgabs fullnm="datatag abstract" dependon=baseabs>

<propdef derived rcsnm=datatag datatype=boolean cn=element clause="73201">
<desc>
True if and only if a data tag served as the end tag of the element.
<note>
The data characters comprising the data tag will follow the element in
the content of the containing element.

<propdef rcsnm=dtgtemps appnm="data tag templates" datatype=strlist
cn=elemtype clause="b2444">
<when>
The model group was a data tag group.

<propdef rcsnm=dtgptemp appnm="data tag padding template" datatype=string
cn=elemtype clause="b2445">
<when>
The model group was a data tag group whose data tag pattern included a
data tag padding template.

</psmodule>

© ISO/IEC ISO/IEC 10179:1996(E)

113

<!-- Rank-related abstract classes and properties -->
<psmodule rcsnm=rankabs fullnm="rank abstract" dependon=prlgabs1>

<propdef derived rcsnm=ranksuff appnm="rank suffix" datatype=string
cn=elemtype clause="b2114">
<when>
The element type in the element type declaration included a rank suffix.

<propdef rcsnm=rankstem appnm="rank stem" datatype=string cn=elemtype
clause="b2113">
<when>
The element type in the element type declaration used a ranked element
or ranked group.

<propdef rcsnm=rankgrp appnm="rank group" datatype=strlist cn=elemtype
clause="b2112">
<desc>
The rank stems in the ranked group.
<when>
The element type declaration included a ranked group.

<classdef rcsnm=rankstem appnm="rank stem" clause="b2113">

<propdef rcsnm=stem datatype=string strlex=name strnorm=general
clause="b2113">
<desc>
Name of rank stem.

<propdef irefnode rcsnm=elemtps appnm="element types"
datatype=nodelist ac=elemtype clause="b2112">
<desc>
The element types for which this is a rank stem.

</psmodule>

<!-- Shortref-related abstract classes and properties -->
<psmodule rcsnm=srabs fullnm="shortref abstract" dependon=prlgabs0>

<propdef subnode rcsnm=emptymap appnm="empty short ref map"
fullnm="empty short reference map" datatype=node ac=srmap cn=sgmlcsts
clause="b6004">
<desc>
The empty short reference map.

<propdef subnode rcsnm=srmaps appnm="short ref maps"
fullnm="short reference maps" datatype=nmndlist ac=srmap acnmprop=name
cn=doctype clause="b1006">
<note>
Does not include #EMPTY map.

<propdef rcsnm=srmapnm appnm="short ref map name"
fullnm="short reference map name" datatype=string strlex=rniname
strnorm=general cn=elemtype clause="b6004">
<when>
The element type has an associated short reference map.

ISO/IEC 10179:1996 © ISO/IEC

114

<propdef irefnode rcsnm=srmap appnm="short ref map"
fullnm="short reference map" datatype=node ac=srmap cn=elemtype
clause="b6101">
<when>
The element type has an associated short reference map.

<classdef rcsnm=srmap appnm="short ref map" fullnm="short reference map"
clause="b5000">

<propdef rcsnm=name datatype=string strlex=name strnorm=general clause="b5002">
<when>
Map is not the implicitly declared #EMPTY map.

<propdef subnode rcsnm=map datatype=nmndlist ac=srassoc acnmprop=shortref
clause="b5004">

<classdef rcsnm=srassoc appnm="short ref assoc"
fullnm="short reference association" clause="b5004">

<propdef rcsnm=shortref appnm="short ref"
fullnm="short reference delimiter" datatype=string strnorm=general
clause="b5004">

<propdef rcsnm=entname appnm="entity name" datatype=string strlex=name
strnorm=entity clause="b5004">

<propdef irefnode rcsnm=entity datatype=node ac=entity clause="b5001">

</psmodule>

<!-- Shortref-related SDS classes and properties -->
<psmodule rcsnm=srsds fullnm="shortref SGML document string"
dependon=basesds1>

<classdef rcsnm=usemap appnm="short ref use decl"
fullnm="short reference use declaration" conprop=markup clause="b6000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment gendelm name rname ignmrkup"
clause="b6001">
<note>
First child is gendelm for mdo delimiter; last is gendelm for mdc
delimiter.

<propdef irefnode rcsnm=asseltps appnm="assoc element types"
fullnm="associated element types" datatype=nodelist ac=elemtype
clause="a1501">
<note>
SGML specifies that this does not include element types which had
already been associated with a map.
<when>
The short reference use declaration includes an associated element
type.

<propdef irefnode rcsnm=srmap datatype=node ac=srmap clause="b6002">

© ISO/IEC ISO/IEC 10179:1996(E)

115

<classdef rcsnm=shortref appnm="short ref"
fullnm="short reference delimiter" clause="e4620">

<propdef rcsnm=origdelm appnm="original delim"
fullnm="original delimiter" datatype=string clause="96601">
<desc>
The short reference delimiter as originally entered.

<propdef subnode optional rcsnm=namecref appnm="named char ref"
fullnm="named character reference" datatype=nodelist
ac="gendelm name refendre" clause="95001">
<when>
The first character of the delimiter was entered with a named
character reference.

<classdef rcsnm=srmapdcl appnm="short ref map decl"
fullnm="short reference mapping declaration" mayadd clause="b5000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment gendelm name rname literal"
clause="b5001">
<note>
First child is gendelm for mdo delimiter; last is gendelm for mdc
delimiter.

<propdef irefnode rcsnm=map datatype=node ac=srmap clause="b5001">

</psmodule>

<!-- Link-related abstract classes and properties -->
<psmodule rcsnm=linkabs fullnm="link abstract" dependon=prlgabs0>

<propdef subnode rcsnm=emptylks appnm="empty link set" datatype=node ac=linkset
cn=sgmlcsts clause="c3004">
<desc>
Empty link set used to disable current link set.

<propdef subnode optional rcsnm=simplelk appnm="simple link info"
fullnm="simple link information" datatype=nmndlist ac=simplelk
acnmprop=linkset cn=element clause="c1431">
<when>
Element is the document element and there are active simple link
processes.

<propdef irefnode rcsnm=linkatts appnm="link attributes"
datatype=nmndlist ac=attasgn acnmprop=name cn=element clause="c1402">
<desc>
A list of attribute assignments, one for each declared link attribute
of the element.
<note>
The origin of the link attributes will be the link rule.

<propdef derived rcsnm=rsltgi appnm="result gi"
fullnm="result element generic identifier" datatype=string strlex=name
strnorm=general cn=element clause="c2202">
<when>

ISO/IEC 10179:1996 © ISO/IEC

116

There is an applicable link rule which is an explicit link rule whose
result element is not implied.

<propdef irefnode rcsnm=rsltelem appnm="result element type"
datatype=node ac=elemtype cn=element clause="c2202">
<when>
There is an applicable link rule which is an explicit link rule whose
result element is not implied.

<propdef irefnode rcsnm=rsltatts appnm="result attributes"
datatype=nmndlist ac=attasgn acnmprop=name cn=element clause="c2203">
<note>
The origin of the attributes will be the link rule.
<when>
There is an applicable link rule which is an explicit link rule whose
result element is not implied.

<propdef irefnode rcsnm=lksetinf appnm="link set info"
fullnm="link set information" datatype=nodelist ac=linkrule cn=element
clause="c2205">
<desc>
Link rules in the current link set whose source element type is implied.
<when>
There is an active explicit link process.

<propdef irefnode rcsnm=lksetinf appnm="link set info"
fullnm="link set information" datatype=nodelist ac=linkrule cn=datachar>
<desc>
Link rules in the current link set whose source element type is implied.
<when>
There is an active explicit link process and the character occurs
in content.

<classdef rcsnm=simplelk appnm="simple link info"
fullnm="simple link information" clause="c1430">

<propdef rcsnm=linktype appnm="link type" datatype=string strlex=name
strnorm=general clause="c1001">
<desc>
The link type name of the simple link process.

<propdef subnode rcsnm=atts appnm=attributes
datatype=nmndlist ac=attasgn acnmprop=name clause="c1402">

<classdef rcsnm=linktype appnm="link type">

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="c1002">

<propdef rcsnm=active datatype=boolean>
<desc>
True if and only if link type is active.

<propdef rcsnm=ltkind appnm="link type kind"
fullnm="kind of link type" datatype=enum clause="c1001">
<enumdef rcsnm=simple>

© ISO/IEC ISO/IEC 10179:1996(E)

117

<enumdef rcsnm=implicit>
<enumdef rcsnm=explicit>

<propdef rcsnm=srcname appnm="source document type name" datatype=string
strlex=name strnorm=general clause="c1302">

<propdef irefnode rcsnm=source appnm="source document type" datatype=node
ac=doctype clause="c1305 c1306">
<note>
For a simple link type, this will always be the base document type.

<propdef rcsnm=rsltname appnm="result document type name" datatype=string
strlex=name strnorm=general clause="c1303">

<propdef irefnode rcsnm=result appnm="result document type" datatype=node
ac=doctype clause="c1306">
<when>
The link type is an explicit link type.

<propdef subnode rcsnm=inilkset appnm="initial link set" datatype=node
ac=linkset clause="c2004">
<when>
The link type is not simple.

<propdef subnode rcsnm=idlkset appnm="id link set" datatype=node ac=linkset
clause="c2300">
<when>
The link type declaration subset includes an ID link set declaration.

<propdef subnode rcsnm=linksets appnm="link sets" datatype=nmndlist
ac=linkset acnmprop=name clause="c1401">
<note>
Does not include #INITIAL or #EMPTY or ID link set.

<classdef rcsnm=linkset appnm="link set" conprop=lkrules clause="c2000">

<propdef rcsnm=name datatype=string strlex=name strnorm=general
clause="c2003">
<when>
Link set is not #INITIAL nor #EMPTY nor the ID link set.

<propdef subnode rcsnm=lkrules appnm="link rules" datatype=nodelist
ac=linkrule clause="c2002">

<classdef rcsnm=linkrule appnm="link rule" clause="c2002">

<propdef rcsnm=assgis appnm="assoc gis"
fullnm="associated generic identifiers" datatype=strlist strlex=name
clause="c2101">
<desc>
The names of the associated element types.
<when>
The link rule is not an explicit link rule whose source element type
is implied.

<propdef irefnode rcsnm=asseltps appnm="assoc element types"

ISO/IEC 10179:1996 © ISO/IEC

118

fullnm="associated element types" datatype=nodelist ac=elemtype
clause="c2101">
<when>
The link rule is not an explicit link rule whose source element type
is implied.

<propdef rcsnm=id fullnm="unique identifier" datatype=string strlex=name
strnorm=general clause="c2301">
<when>
Link rule occurs in ID link set declaration.

<propdef irefnode rcsnm=uselink datatype=node ac=linkset clause="c2104">
<when>
The link rule includes a USELINK parameter.

<propdef rcsnm=uselknm appnm="uselink name" datatype=string strlex=rniname
strnorm=general clause="c2104">
<desc>
The link set named by the USELINK parameter.
<when>
The link rule includes a USELINK parameter.

<propdef derived rcsnm=postlkrs appnm="postlink restore" datatype=boolean
clause="c2101">
<desc>
True if the link rule includes a POSTLINK parameter of #RESTORE.

<propdef irefnode rcsnm=postlkst appnm="postlink set" datatype=node
ac=linkset clause="c2101">
<when>
The link set specification did not specify #RESTORE.

<propdef rcsnm=postlknm datatype=string strlex=rniname strnorm=general
clause="c2101">
<desc>
The token specified for the link set specification following POSTLINK.
<when>
The link rule includes a POSTLINK parameter.

<propdef subnode rcsnm=linkatts appnm="link attributes"
datatype=nmndlist ac=attasgn acnmprop=name clause="c2102">
<when>
The link rule is not an explicit link rule whose source element type
is implied.

<propdef rcsnm=rsltgi appnm="result gi"
fullnm="result element generic identifier" datatype=string strlex=name
strnorm=general clause="c2202">
<when>
The link rule is an explicit link rule whose result element type is
not implied.

<propdef irefnode rcsnm=rsltelem appnm="result element type" datatype=node
ac=elemtype clause="c2202">
<when>
The link rule is an explicit link rule whose result element type is

© ISO/IEC ISO/IEC 10179:1996(E)

119

not implied.

<propdef subnode rcsnm=rsltatts appnm="result attributes"
datatype=nmndlist ac=attasgn acnmprop=name clause="c2203">
<when>
The link rule is an explicit link rule whose result element type is
not implied.

</psmodule>

<!-- Link-related SDS classes and properties -->
<psmodule rcsnm=linksds fullnm="link SGML document string"
dependon=basesds1>

<propdef irefnode rcsnm=lksetdcl appnm="link set decl"
fullnm="link set declaration" datatype=node ac="lksetdcl idlkdcl"
cn=linkset clause="c2001">
<when>
Link set is not #EMPTY.

<propdef irefnode rcsnm=lktpdcl appnm="link type decl"
fullnm="link type declaration" datatype=node ac=lktpdcl cn=linktype
clause="c1001">

<classdef rcsnm=lktpdcl appnm="link type decl" fullnm="link type declaration"
mayadd clause="c1000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="ssep comment name rname literal msstart msignch msend
 entstart entend pi comdcl entdcl attdldcl lksetdcl idlkdcl"
 clause="c1001">

<propdef irefnode rcsnm=linktype appnm="link type" datatype=node
ac=linktype>

<propdef subnode rcsnm=entity datatype=node ac=entity clause="c1004">
<when>
Link type definition includes external identifier.

<classdef rcsnm=lksetdcl appnm="link set decl" fullnm="link set declaration"
mayadd clause="c2000">

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment gendelm name rname literal attvalue"
clause="c2001">

<propdef irefnode rcsnm=linkset appnm="link set" datatype=node
ac=linkset clause="c2001">

<classdef rcsnm=idlkdcl appnm="id link set decl"
fullnm="ID link set declaration" mayadd clause="c2300">

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment gendelm name rname literal attvalue"
clause="c2301">

ISO/IEC 10179:1996 © ISO/IEC

120

<propdef irefnode rcsnm=linkset appnm="link set" datatype=node ac=linkset
clause="c2301">

<classdef rcsnm=uselink appnm="link set use decl"
fullnm="link set use declaration" conprop=markup clause="c3000">
<desc>
A link set use declaration that is not ignored.

<propdef subnode rcsnm=markup datatype=nodelist
ac="entstart entend ssep comment gendelm name rname ignmrkup"
clause="c3001">
<note>
First child is gendelm for mdo delimiter; last is gendelm
for mdc delimiter.

<propdef derived rcsnm=restore datatype=boolean clause="c3002">
<desc>
True if the link set specification specified #RESTORE.

<propdef irefnode rcsnm=linkset datatype=node ac=linkset clause="c3002">
<when>
The link set specification did not specify #RESTORE.

<propdef rcsnm=lksetnm datatype=string strlex=rniname strnorm=general
clause="c3002">
<desc>
The token specified for the link set specification.

<propdef rcsnm=linktpnm appnm="link type name" datatype=string
strlex=name strnorm=general clause="c3001">

<propdef irefnode rcsnm=linktype appnm="link type" datatype=node
ac=linktype clause="c3001">

</psmodule>

<!-- Subdoc-related abstract classes and properties -->
<psmodule rcsnm=subdcabs fullnm="subdoc abstract" dependon=baseabs>

<classdef rcsnm=subdoc appnm=subdocument fullnm="reference to subdocument">
<desc>
The result of referencing a subdocument entity.

<propdef rcsnm=entname appnm="entity name" datatype=string strlex=name
strnorm=entity clause="a5101">

<propdef irefnode rcsnm=entity datatype=node ac=entity clause="c5501">

</psmodule>

<!-- Subdoc-related SDS classes and properties -->
<psmodule rcsnm=subdcsds fullnm="subdoc SGML document string"
dependon="basesds1 subdabs">

<propdef subnode optional rcsnm=markup datatype=nodelist
ac="gendelm name ssep entstart entend refendre shortref" cn=subdoc

© ISO/IEC ISO/IEC 10179:1996(E)

121

clause="94401">
<desc>
The markup of the entity reference.
<note>
ssep, entstart, and entend can occur only in a name group in a named
entity reference.

</psmodule>

<!-- Formal public identifier-related abstract classes and properties -->
<psmodule rcsnm=fpiabs fullnm="formal public identifier abstract"
dependon=baseabs>

<propdef subnode optional rcsnm=fpi appnm="formal public id"
fullnm="formal public identifier" datatype=node ac=fpi cn=extid
clause="a2001">
<when>
FORMAL YES was specified in the SGML declaration.

<classdef rcsnm=fpi appnm="formal public id" fullnm="formal public identifier"
clause="a2000">
<note>
The string which is the value of each of the string-valued properties
provided by this class is the minimum data specified as such in the
governing productions, without any accompanying "//", "-//", "+//"
or s characters.

<propdef rcsnm=ownertp appnm="owner type" datatype=enum clause="a2100">
<desc>
Type of owner identifier.

<enumdef rcsnm=iso>
<enumdef rcsnm=regist appnm=registered>
<enumdef rcsnm=unregist appnm=unregistered>

<propdef rcsnm=ownerid appnm="owner id" fullnm="owner identifier"
datatype=string strlex=mindata clause="a2100">

<propdef rcsnm=textclas appnm="text class" fullnm="public text class"
datatype=enum clause="a2210">
<enumdef rcsnm=capacity>
<enumdef rcsnm=charset>
<enumdef rcsnm=document>
<enumdef rcsnm=dtd>
<enumdef rcsnm=elements>
<enumdef rcsnm=entities>
<enumdef rcsnm=lpd>
<enumdef rcsnm=nonsgml>
<enumdef rcsnm=notation>
<enumdef rcsnm=shortref>
<enumdef rcsnm=subdoc>
<enumdef rcsnm=syntax>
<enumdef rcsnm=text>

<propdef rcsnm=unavail appnm=unavailable datatype=boolean clause="a2202">
<desc>

ISO/IEC 10179:1996 © ISO/IEC

122

True if and only if unavailable text indicator was specified.

<propdef rcsnm=textdesc appnm="text description"
fullnm="public text description" datatype=string strlex=mindata clause="a2221">

<propdef rcsnm=textlang appnm="text language"
fullnm="public text language" datatype=string clause="a2231">
<when>
The text identifier included a public text language.

<propdef rcsnm=textdseq appnm="text designating sequence"
fullnm="public text designating sequence" datatype=string clause="a2241">
<when>
The text identifier included a public text designating sequence.

<propdef rcsnm=textdver appnm="text display version"
fullnm="public text display version" datatype=string clause="a2251">
<when>
The text identifier included a public text display version
(that is, there was a // following the public text language
or public text designating sequence).

</psmodule>

 <!-- String Normalization Rules -->
<normdef rcsnm=general sd=SGML clause="d4506">
<desc>
Declared concrete syntax general namecase substitution.
<normdef rcsnm=entity sd=SGML clause="d4506">
<desc>
Declared concrete syntax entity namecase substitution.
<normdef rcsnm=rcsgener sd=SGML clause="d4506">
<desc>
Reference concrete syntax general namecase substitution.

<datadef rcsnm=integer lextype=integer>
<datadef rcsnm=boolean lextype=boolean>
<datadef rcsnm=strlist fullnm="string list" listof=string lextype=strlist>
<datadef rcsnm=intlist fullnm="integer list" listof=int lextype=intlist>

 <!-- Lexical Types -->
<!-- Datatypes -->
<lexdef ltn=boolean norm model="[01]">
<lexdef ltn=integer unorm model="’0’|marker">
<lexdef ltn=intlist norm model="integer+">
<lexdef ltn=literal spec sd=SGML clause="96107">
<desc>
Delimited literal as in declared concrete syntax. Character reference
can be used to enter delimiter string within literal, as in SGML
documents.
<lexdef ltn=strlist norm model="literal,(’,’,literal)*">
<desc>
String list in so-called "comma-delimited ASCII" format supported by
data base and spreadsheet programs. The literals, exclusive of their
delimiters, shall conform to the applicable lexical type of the
individual strings.

© ISO/IEC ISO/IEC 10179:1996(E)

123

<!-- Other lexical types -->
<lexdef ltn=mindata spec sd=SGML clause="a1702">
<desc>Minimum data.
<lexdef ltn=NAME spec sd=SGML clause="93001">
<desc>Name in declared concrete syntax.
<lexdef ltn=NMTOKEN spec sd=SGML clause="93004">
<desc>Name token in declared concrete syntax.
<lexdef ltn=number spec sd=SGML clause="93002">
<desc>Number in declared concrete syntax.
<lexdef ltn=nmchar spec sd=SGML clause="92103">
<desc>Name character in declared concrete syntax.
<lexdef ltn=ATTNAME nmsp provider=element property=atts sd=SGML clause="b3201">
<desc>Name of attribute of an element.
<lexdef ltn=attspecs spec sd=SGML clause="79001">
<desc>Attribute specification list.
<lexdef ltn=ENTITY nmsp provider=sgmldoc property=entities sd=SGML
clause="a5101">
<desc>General entity name.
<lexdef ltn=IDREF nmsp provider=sgmldoc property=elements sd=SGML
clause="79403">
<desc>ID of an element (specified in document).
<lexdef ltn=GI nmsp provider=dtd property=elemtps sd=SGML clause="78001">
<desc>Element type name (if dtd:effective is true).
<lexdef ltn=rniname spec sd=SGML>
<desc>A name optionally preceded by an RNI delimiter.

9.7 DSSSL SGML Grove Plan

A DSSSL specification has a single grove plan specified by the sgml-grove-plan
architectural form in the DSSSL specification. See 7.1.2.

10 Standard Document Query Language

SDQL adds two data types to the expression language, node-list and named-node-list.
It also adds some additional syntax for expressions: in SDQL, in any context in which an
expression is allowed, a special-query-expression is also allowed.

A subset of SDQL called the core query language is defined in 10.2.4.

The node-list data type represents an ordered list of zero or more nodes in a grove.

NOTES

28 There is no node data type. A single node is represented by a node-list with a single member.

29 A node-list will typically be implemented in a lazy fashion. In other words, the internal representation of a node-
list is not a list of nodes, but a representation of the specification that constructed the node-list. For example, if an
application uses the node-list-count procedure on a node-list, it would be inefficient to build the node-list, count

ISO/IEC 10179:1996 © ISO/IEC

124

it, and then discard the node-list; it would be better simply to count how many distinct nodes match the node-list’s
specification.

 A node-list with a single member is referred to as a singleton node-list.

The named-node-list data type is a subtype of the node-list data type that represents a
node-list each of whose members has a string-valued property that uniquely identifies the
node in the node-list.

nl is used for an argument that shall be a node-list. snl is used for an argument that shall be a
singleton node-list. nnl is used for an argument that shall be a named-node-list.

10.1 Primitive Procedures

The procedures in this clause are the primitive procedures, in the sense that all other procedures
in SDQL could be defined in terms of the procedures in this clause, but no procedure in this
clause is capable of being defined in terms of the other procedures in this clause.

10.1.1 Application Binding

(current-node)

Returns a singleton node-list. The semantics of this are defined by the context in which the
SDQL expression occurs.

(current-root)

Returns a singleton node-list. The semantics of this are defined by the context in which the
SDQL expression occurs.

10.1.2 Node Lists

(node-list? obj)

Returns #t if obj is a node-list, and otherwise returns #f.

(node-list-empty? nl)

Returns #t if nl is the empty node-list, and otherwise returns #f.

(node-list-first nl)

Returns a node-list containing the first member of nl, if any, and otherwise returns the empty
node-list.

(node-list-rest nl)

Returns a node-list containing all members of nl except the first, if nl has at least one member,
and otherwise returns the empty node-list.

© ISO/IEC ISO/IEC 10179:1996(E)

125

(node-list nl1 nl2 …)

Returns the node-list that results from appending the members of nl1, nl2, …. If there are no
arguments, returns the empty node-list.

(node-list=? nl1 nl2)

Returns #t if nl1 and nl2 are the same node-list, that is, they contain the same members in the
same order, and otherwise returns #f.

(node-list-no-order nl)

Returns a node-list that has the same members as nl but in an unspecified order.

NOTE 30 An implementation may be able to implement (node-list-no-order q) more efficiently than q.

10.1.3 Named Node Lists

(named-node-list? obj)

Returns #t if obj is a named-node-list and otherwise returns #f.

(named-node string nnl)

Returns a singleton node-list comprising the node in nnl whose name is string, if there is such
a node, and otherwise returns the empty node-list. string is normalized according to the string
normalization rule associated with nnl before being compared to the names of the members of
nnl.

(named-node-list-normalize string nnl symbol)

Returns string normalized according to the normalization rule of the named node list nnl
applicable to nodes of class symbol.

(named-node-list-names nnl)

Returns a list of the names of the members of nnl in the same order as nnl. The result shall be
a list of strings with the same number of members as nnl.

10.1.4 Error Reporting

(node-list-error string nl)

This signals an error in a similar way to the error procedure. When an error is signaled with
node-list-error, the system should report to the user that the error is associated with the
nodes in nl. The manner in which this is done is system-dependent.

ISO/IEC 10179:1996 © ISO/IEC

126

10.1.5 Application Name Transformation

In all contexts in SDQL, application names are transformed by replacing each space with a
hyphen and adding a question mark (?) to the application names of properties whose declared
data type is boolean.

10.1.6 Property Values

(node-property propname snl #!key default: null: rcs?:)

Returns the value that the node represented by snl exhibits for the property propname. If the
node does not exhibit the property propname, then if the default: is supplied, it is returned;
otherwise, an error is signaled. If the node exhibits a null value for the property, then if null: is
supplied, it is returned; otherwise, if default: is supplied, it is returned; otherwise, an error is
signaled.

propname shall be a symbol or a string specifying either the application name (transformed as
specified in 10.1.5) or the RCS name of the property. propname is compared against the
property name in a case-independent manner.

Property values are represented as expression language objects according to their abstract data
type:

— An abstract character is represented by an object of type char.

— An abstract string is represented by an object of type string.

— An abstract boolean is represented by an object of type boolean.

— An abstract integer is represented by an object of type integer.

— An abstract integer list is represented by a list of integers.

— An abstract string list is represented by a list of strings.

— An enumeration is represented by a symbol whose name is equal to the application name of
the enumerator (transformed as specified in 10.1.5).

— A component name is represented by a symbol. The name of the symbol shall be the
application name (transformed as specified in 10.1.5), unless the rcs?: argument is supplied
with a true value, in which case the RCS name will be used.

— An abstract component name list is represented by a list of the symbols that represent each
component name.

— An abstract node is represented by a singleton node-list.

— An abstract nodelist is represented by an object of type node-list.

© ISO/IEC ISO/IEC 10179:1996(E)

127

— An abstract nmndlist is represented by an object of type named-node-list.

— Null values have no representation in the expression language.

10.1.7 SGML Grove Construction

(sgml-parse string #!key active: parent:)

Returns a node-list containing a single node that is the root of a grove built by parsing an SGML
document or subdocument using the SGML property set. string is the system identifier of the
SGML document entity or SGML subdocument entity. active: is a list of strings specifying
the names of the active DTD or LPDs. At most one DTD shall be active. If parent: is
specified, then the entity to be parsed is an SGML subdocument entity, and the value shall be a
singleton node-list in the grove in which the subdocument should be treated as being declared.
This uses the default grove plan, which is determined in an application-dependent manner.

10.2 Derived Procedures

For some procedures, a formal definition in the expression language is supplied. These formal
definitions do not handle errors. A correct implementation would need first to verify that
arguments meet the requirements indicated by the procedure prototypes and the procedure
description.

10.2.1 HyTime Support

Use of the facilities in this clause in the style or transformation languages requires the hytime
feature.

The grovepos abstract data type is represented by a list each of whose members is

— an integer,

— a list containing a symbol and a string, or

— a list containing a symbol and an integer.

(value-proploc propname snl #!key apropsrc?: default:)

Returns the value that the member of snl exhibits for the property named propname.
propname shall be a symbol or string, interpreted as for the node-property procedure. If
the member of snl does not exhibit a value for propname or exhibits a null value, then if
default: is supplied, default: shall be returned; otherwise, an error shall be signaled.
apropsrc?:, if true, has the same effect as specifying an apropsrc attribute with a value of
apropsrc for the code proploc form in ISO/IEC 10744.

(list-proploc propname nl #!key apropsrc?: ignore-missing?:)

ISO/IEC 10179:1996 © ISO/IEC

128

Returns a list of objects, one for each member of nl, where each object is the value that the
member of nl exhibits for propname. propname shall be a symbol or string, interpreted as for
the node-property procedure. If some member of nl does not exhibit a value for propname
or exhibits a null value, then if ignore-missing?: is true, the resulting list shall contain no
object for that member; otherwise, an error shall be signaled. apropsrc?:, if true, has the same
effect as specifying an apropsrc attribute with a value of apropsrc for the code proploc
form in ISO/IEC 10744.

(node-list-proploc propname nl #!key apropsrc?: ignore-missing?:)

Returns the node-list that results from concatenating the values that each member of nl exhibits
for propname. propname shall be a symbol or string, interpreted as for the node-property
procedure. For the class of each member of nl, propname shall be nodal. If some member of
nl does not exhibit a value for propname or exhibits a null value, then if ignore-
missing?: is true, the resulting node-list shall contain no nodes for that member; otherwise, an
error shall be signaled. apropsrc?:, if true, has the same effect as specifying an apropsrc
attribute with a value of apropsrc for the code proploc form in ISO/IEC 10744.

(listloc dimlist nl #!key overrun:)

(listloc dimlist list #!key overrun:)

(listloc dimlist string #!key overrun:)

This addresses the members of the second argument in the same manner as the listloc
architectural form defined in ISO/IEC 10744. Returns a node-list, list, or string according to the
type of the second argument. dimlist is a list of integers. overrun: is one of the symbols
error, wrap, truncate, or ignore. The default is error.

(nameloc nmlist nnl #!key ignore-missing?:)

Returns a node-list containing one member for each member of nmlist, where nmlist is a
string, symbol, or a list of strings and/or symbols. It shall be an error if any member of nmlist
does not match the name of some member of nl, unless ignore-missing?: is true.

(groveloc list nl #!key overrun:)

Returns a list of nodes located in the same manner as with the groveloc architectural form of
ISO/IEC 10744. list is a list in the same format as the representation of the grovepos abstract
data type. overrun: is interpreted as with listloc.

(treeloc marklist nl #!key overrun: treecom?:)

Returns a list of nodes located in the same manner as with the treeloc architectural form of
ISO/IEC 10744. marklist is list of integers. overrun: is interpreted as with listloc.
treecom?:, if true, corresponds to a treecom attribute with a value of treecom.

(pathloc dimlist nl #!key overrun: treecom?:)

© ISO/IEC ISO/IEC 10179:1996(E)

129

Returns a list of nodes located in the same manner as with the pathloc architectural form of
ISO/IEC 10744. dimlist is a list of integers. overrun: is interpreted as with listloc.
treecom?:, if true, corresponds to a treecom attribute with a value of treecom.

(relloc-anc dimlist nl #!key overrun:)

(relloc-esib dimlist nl #!key overrun:)

(relloc-ysib dimlist nl #!key overrun:)

(relloc-des dimlist nl #!key overrun:)

Returns a list of nodes located in the same manner as with the relloc architectural form of ISO/
IEC 10744. The procedures relloc-anc, relloc-esib, relloc-ysib, and relloc-
des correspond to values for the relation attribute of anc, esib, ysib, and des. dimlist
is a list of integers. overrun: is interpreted as with listloc.

NOTE 31 Relations of parent and children are handled by parent and children procedures.

(datatok nl #!key filter: concat: catsrcsp: catressp: tokensep:
ascp: stop: min: max: nlword: stem?:)

Returns a list of nodes located in the same manner as with the datatok architectural form of
ISO/IEC 10744.

— filter: is a symbol having one of the values allowed for the filter attribute.

— concat: is one of the symbols catshi, catslo, cattk, catshitk, catslotk,
catrhitk, catrlotk, or nconcat interpreted in the same manner as the concat
attribute.

— catsrcsp:, catressp:, tokensp:, and ascp: are strings interpreted in the same
manner as the attributes with the same name.

— nlword: is a string specifying an ISO 639 language code.

— stem?:, if true, has the same effect as specifying #STEM for the nlword attribute.

— stop: is a list of strings specifying a stop list; the default is the empty list.

— min: is an integer specifying the minimum untruncated token length.

— max: is an integer specifying the maximum untruncated token length.

(make-grove string nl)

make-grove constructs a new grove and returns a node-list containing the grove root. string
is the name of a grove plan. nl is the source text.

ISO/IEC 10179:1996 © ISO/IEC

130

(literal-match string nl #!key level: boundary:
min-hits: max-hits:)

(hylex-match string nl #!key norm?: level: boundary:
min-hits: max-hits:)

These functions construct a new grove using the Data Tokenizer Property Set containing one
tokenized string node for each non-overlapping match found in the data of each member of nl.
A node-list of all tokenized string nodes is returned.

— boundary: is one of the symbols sodeod, sodiec, isceod, or isciec, which shall be
interpreted in the same manner as the boundary attribute of the HyLex element defined in
ISO/IEC 10744.

— level: is a number of comparison levels in the collation specification of the current
language on which string comparison shall be performed; if level: is not specified, strings
shall be compared simply by comparing their constituent characters for equality.

— min-hits: and max-hits: are strictly positive integers specifying the minimum and
maximum number of hits: any match whose parent node does not contain a number of hits
within the specified range shall be excluded from the list of nodes returned. The default for
min-hits: is 1. If max-hits: is not specified, there shall be no maximum.

— norm?: is a boolean specifying whether the lexical model shall be normalized.

(compare proc list)

Returns #t if proc applied to each successive pair of strings returns #t, where proc is an
argument of two strings that returns a boolean. This could be defined by:

(define (compare proc l)
 (if (null? l)
 #t
 (let loop ((prev (car l))
 (rest (cdr l)))
 (cond ((null? rest) #t)
 ((proc prev (car rest))
 (loop (car rest) (cdr rest)))
 (else #f)))))

(ordered-may-overlap? nl)

(ordered-no-overlap? nl)

Each node shall be in an auxiliary grove, and the source nodes of all the nodes shall be in a single
tree. Returns #t if the source nodes are ordered within that tree, and otherwise returns #f. For
ordered-no-overlap?, the source nodes are considered to be ordered if, for each argument
node, all of its source nodes are before any of the source nodes of the next argument node. For
ordered-may-overlap?, the source nodes are considered to be ordered if, for each argument
node, the first of its source nodes is before the first of the source nodes of the next argument
node.

(span nl symbol)

© ISO/IEC ISO/IEC 10179:1996(E)

131

Each node shall be in an auxiliary grove, and the source nodes of all the nodes shall be in a single
tree. Returns the number of quanta between the first and the last source nodes. symbol
specifies the quantum. It shall have one of the values allowed for the filter: argument of the
datatok procedure.

10.2.2 List Operations

These procedures are similar to procedures on normal lists.

(empty-node-list)

Returns an empty node-list.

(node-list-reduce nl proc obj)

If nl has no members, returns obj, and otherwise returns the result of applying node-list-
reduce to

— a node-list containing all but the first member of nl,

— proc, and

— the result of applying proc to obj and the first member of nl.

node-list-reduce could be defined as follows:

(define (node-list-reduce nl combine init)
 (if (node-list-empty? nl)
 init
 (node-list-reduce (node-list-rest nl)
 combine
 (combine init (node-list-first nl)))))

(node-list-contains? nl snl)

Returns #t if nl contains a node equal to the member of snl, and otherwise returns #f. This
could be defined as follows:

(define (node-list-contains? nl snl)
 (node-list-reduce nl
 (lambda (result i)
 (or result
 (node-list=? snl i)))
 #f))

(node-list-remove-duplicates nl)

Returns a node-list which is the same as nl except that any member of nl which is equal to a
preceding member of nl is removed. This could be defined as follows:

(define (node-list-remove-duplicates nl)
 (node-list-reduce nl

ISO/IEC 10179:1996 © ISO/IEC

132

 (lambda (result snl)
 (if (node-list-contains? result snl)
 result
 (node-list result snl)))
 (empty-node-list)))

(node-list-union #!rest args)

Returns a node-list containing the union of all the arguments, which shall be node-lists. The
result shall contain no duplicates. With no arguments, an empty node-list shall be returned. This
could be defined as follows:

(define (node-list-union #!rest args)
 (reduce args
 (lambda (nl1 nl2)
 (node-list-reduce nl2
 (lambda (result snl)
 (if (node-list-contains? result
 snl)
 result
 (node-list result snl)))
 nl1))
 (empty-node-list)))

where reduce is defined as follows:

(define (reduce list combine init)
 (let loop ((result init)
 (list list))
 (if (null? list)
 result
 (loop (combine result (car list))
 (cdr list)))))

(node-list-intersection #!rest args)

Returns a node-list containing the intersection of all the arguments, which shall be node-lists.
The result shall contain no duplicates. With no arguments, an empty node-list shall be returned.
This could be defined as follows:

(define (node-list-intersection #!rest args)
 (if (null? args)
 (empty-node-list)
 (reduce (cdr args)
 (lambda (nl1 nl2)
 (node-list-reduce nl1
 (lambda (result snl)
 (if (node-list-contains? nl2 snl)
 (node-list result snl)
 result))
 (empty-node-list)))
 (node-list-remove-duplicates (car args)))))

(node-list-difference #!rest args)

© ISO/IEC ISO/IEC 10179:1996(E)

133

Returns a node-list containing the set difference of all the arguments, which shall be node-lists.
The set difference is defined to be those members of the first argument that are not members of
any of the other arguments. The result shall contain no duplicates. With no arguments, an empty
node-list shall be returned. This could be defined as follows:

(define (node-list-difference #!rest args)
 (if (null? args)
 (empty-node-list)
 (reduce (cdr args)
 (lambda (nl1 nl2)
 (node-list-reduce nl1
 (lambda (result snl)
 (if (node-list-contains? nl2 snl)
 result
 (node-list result snl)))
 (empty-node-list)))
 (node-list-remove-duplicates (car args)))))

(node-list-symmetric-difference #!rest args)

Returns a node-list containing the symmetric set difference of all the arguments, which shall be
node-lists. The symmetric set difference is defined to be those nodes that occur in exactly one of
the arguments. The result shall contain no duplicates. With no arguments, an empty node-list
shall be returned. This could be defined as follows:

(define (node-list-symmetric-difference #!rest args)
 (if (null? args)
 (empty-node-list)
 (reduce (cdr args)
 (lambda (nl1 nl2)
 (node-list-difference (node-list-union nl1 nl2)
 (node-list-intersection nl1 nl2)))
 (node-list-remove-duplicates (car args)))))

(node-list-map proc nl)

For each member of nl, applies proc to a singleton node-list containing just that member and
appends the resulting node-lists. It shall be an error if proc does not return a node-list when
applied to any member of nl. This could be defined as follows:

(define (node-list-map proc nl)
 (node-list-reduce nl
 (lambda (result snl)
 (node-list (proc snl)
 result))
 (empty-node-list)))

(node-list-union-map proc nl)

For each member of nl, applies proc to a singleton node-list containing just that member and
returns the union of the resulting node-lists. It shall be an error if proc does not return a node-
list when applied to any member of nl. This could be defined as follows:

ISO/IEC 10179:1996 © ISO/IEC

134

(define (node-list-union-map proc nl)
 (node-list-reduce nl
 (lambda (result snl)
 (node-list-union (proc snl)
 result))
 (empty-node-list)))

(node-list-some? proc nl)

Returns #t if, for some member of nl, proc does not return #f when applied to a singleton node-
list containing just that member, and otherwise returns #f. An implementation is allowed, but not
required, to signal an error if, for some member of nl, proc would signal an error when applied
to a singleton node-list containing just that member. This could be defined as follows:

(define (node-list-some? proc nl)
 (node-list-reduce nl
 (lambda (result snl)
 (if (or result (proc snl))
 #t
 #f))
 #f))

(node-list-every? proc nl)

Returns #t if, for every member of nl, proc does not return #f when applied to a singleton node-
list containing just that member, and otherwise returns #f. An implementation is allowed to
signal an error if, for some member of nl, proc would signal an error when applied to a
singleton node-list containing just that member. This could be defined as follows:

(define (node-list-every? proc nl)
 (node-list-reduce nl
 (lambda (result snl)
 (if (and result (proc snl))
 #t
 #f))
 #t))

(node-list-filter proc nl)

Returns a node-list containing just those members of nl for which proc applied to a singleton
node-list containing just that member does not return #f. This could be defined as follows:

(define (node-list-filter proc nl)
 (node-list-reduce nl
 (lambda (result snl)
 (if (proc snl)
 (node-list snl result)
 result))
 (empty-node-list)))

(node-list->list nl)

Returns a list containing, for each member of nl, a singleton node-list containing just that
member. This could be defined as follows:

© ISO/IEC ISO/IEC 10179:1996(E)

135

(define (node-list->list nl)
 (reverse (node-list-reduce nl
 (lambda (result snl)
 (cons snl result))
 ’())))

(node-list-length nl)

Returns the length of nl. This could be defined as follows:

(define (node-list-length nl)
 (node-list-reduce nl
 (lambda (result snl)
 (+ result 1))
 0))

(node-list-reverse nl)

Returns a node-list containing the members of nl in reverse order. This could be defined as
follows:

(define (node-list-reverse nl)
 (node-list-reduce nl
 (lambda (result snl)
 (node-list snl result))
 (empty-node-list)))

(node-list-ref nl k)

Returns a node-list containing the kth member of nl (zero-based), if there is such a member, and
otherwise returns the empty node-list. This could be defined as follows:

(define (node-list-ref nl i)
 (cond ((< i 0)
 (empty-node-list))
 ((zero? i)
 (node-list-first nl))
 (else
 (node-list-ref (node-list-rest nl) (- i 1)))))

(node-list-tail nl k)

Returns the node-list comprising all but the first k members of nl. If nl has k or fewer members,
returns the empty node-list. This could be defined as follows:

(define (node-list-tail nl i)
 (cond ((< i 0) (empty-node-list))
 ((zero? i) nl)
 (else
 (node-list-tail (node-list-rest nl) (- i 1)))))

(node-list-head nl k)

Returns a node-list comprising the first k members of nl. If nl has k or fewer members, returns
nl. This could be defined as follows.

ISO/IEC 10179:1996 © ISO/IEC

136

(define (node-list-head nl i)
 (if (zero? i)
 (empty-node-list)
 (node-list (node-list-first nl)
 (node-list-head nl (- i 1)))))

(node-list-sublist nl k1 k2)

Returns a node-list containing those members of nl that are preceded in nl by at least k1
members but fewer than k2 members. This is equivalent to selecting those members whose zero-
based index in nl is greater than or equal to k1 but less than k2. This could be defined as
follows:

(define (node-list-sublist nl i j)
 (node-list-head (node-list-tail nl i)
 (- j i)))

(node-list-count nl)

Returns the number of distinct members of nl. This could be defined as follows:

(define (node-list-count nl)
 (node-list-length (node-list-remove-duplicates nl)))

(node-list-last nl)

Returns a node-list containing the last member of nl, if nl is not empty, and otherwise returns
the empty node-list. This could be defined as follows:

(define (node-list-last nl)
 (node-list-ref nl
 (- (node-list-length nl) 1)))

When using node-list-some?, node-list-every?, node-list-filter, and node-
list-union-map, the first argument is often a lambda expression with a variable. A syntax
that avoids the need to use an explicit lambda expression in this case is provided in this
International Standard.

[146] special-query-expression = there-exists?-expression | for-all?-expression | select-each-
expression | union-for-each-expression

[147] there-exists?-expression = (there-exists? variable expression expression)

An expression

(there-exists? var nl-expr expr)

is equivalent to:

(node-list-some? (lambda (var) expr) nl-expr)

Read this as: there exists a var in nl-expr such that expr.

[148] for-all?-expression = (for-all? variable expression expression)

© ISO/IEC ISO/IEC 10179:1996(E)

137

An expression

(for-all? var nl-expr expr)

is equivalent to:

(node-list-every? (lambda (var) expr) nl-expr)

Read this as: for all var in nl-expr, expr.

[149] select-each-expression = (select-each variable expression expression)

An expression

(select-each var nl-expr expr)

is equivalent to:

(node-list-filter (lambda (var) expr) nl-expr)

Read this as: select each var in nl-expr such that expr.

[150] union-for-each-expression = (union-for-each variable expression expression)

An expression

(union-for-each var nl-expr expr)

is equivalent to:

(node-list-union-map (lambda (var) expr) nl-expr)

Read this as: the union of, for each var in nl-expr, expr.

10.2.3 Generic Property Operations

These procedures work with any grove, but use only intrinsic properties.

The result of many of the following procedures is the mapping of a function on a node over a
node-list, which is defined to be the node-list that results from appending in order the result of
applying the function to each member of the node-list.

(node-list-property propname nl)

Returns the mapping over nl of the function on a node that returns the value that the node
exhibits for the property propname or an empty node-list if the node does not exhibit a value or
exhibits a null value for propname. propname can be specified in any of the ways allowed for
the node-property procedure. It shall be an error if any node in nl exhibits a non-null, non-
nodal value for propname. This could be defined as follows:

(define (node-list-property prop nl)
 (node-list-map (lambda (snl)

ISO/IEC 10179:1996 © ISO/IEC

138

 (node-property prop snl default: (empty-node-list)))
 nl))

(origin nl)

This is equivalent to:

(define (origin nl)
 (node-list-property ’origin nl))

(origin-to-subnode-rel snl)

Returns the value that the member of snl exhibits for the origin-to-subnode-rel-
property-name property, or #f if it does not exhibit a value or exhibits a null value. This
could be defined as follows:

(define (origin-to-subnode-rel snl)
 (node-property ’origin-to-subnode-rel-property-name snl default: #f))

(tree-root nl)

This is equivalent to:

(define (tree-root nl)
 (node-list-property ’tree-root nl))

(grove-root nl)

This is equivalent to:

(define (grove-root nl)
 (node-list-property ’grove-root nl))

(children nl)

Returns the mapping over nl of the function on a node that returns the value of the node’s
children property, if any, and otherwise the empty node-list. This could be defined as follows:

(define (children nl)
 (node-list-map (lambda (snl)
 (let ((childprop (node-property ’children-property-name
 snl
 default: #f)))
 (if childprop
 (node-property childprop
 snl
 default: (empty-node-list))
 (empty-node-list))))
 nl))

(data nl)

Returns a string containing the concatenation of the data of each member of nl. The data of a
node is:

© ISO/IEC ISO/IEC 10179:1996(E)

139

— if the node has a data property, the value of its data property converted to a string, if
necessary,

— if the child has a children property, the concatenation of the data of each of the children of the
node, separated by the value of the data separator property, if it has a non-null value, or

— otherwise, an empty string.

(parent nl)

This is equivalent to:

(define (parent nl)
 (node-list-property ’parent nl))

(source nl)

This is equivalent to:

(define (source nl)
 (node-list-property ’source nl))

(subtree nl)

Returns the mapping over nl of the function on a node that returns the subtree of a node, where
the subtree of a node is defined to be the node-list comprising the node followed by the subtrees
of its children. This could be defined as follows:

(define (subtree nl)
 (node-list-map (lambda (snl)
 (node-list snl (subtree (children snl))))
 nl))

(subgrove nl)

Returns the mapping over nl of the function on a node that returns the subgrove of a node, where
the subgrove of a node is defined to be the node-list comprising the node followed by the
subgroves of members of the values of each of the node's subnode properties. This could be
defined as follows:

(define (subgrove nl)
 (node-list-map
 (lambda (snl)
 (node-list snl
 (subgrove
 (apply node-list
 (map (lambda (name)
 (node-property name snl))
 (node-property ’subnode-property-names
 snl))))))
 nl))

(descendants nl)

ISO/IEC 10179:1996 © ISO/IEC

140

Returns the mapping over nl of the function on a node that returns the descendants of the node,
where the descendants of a node are defined to be the result of appending the subtrees of the
children of the node. This could be defined as follows:

(define (descendants nl)
 (node-list-map (lambda (snl)
 (subtree (children snl)))
 nl))

(ancestors nl)

Returns the mapping over nl of the function on a node that returns the ancestors of the node,
where the ancestors of a node are an empty node-list if the node is a tree root, and otherwise are
the result of appending the ancestors of the parent of the node and the parent of the node. This
could be defined as follows:

(define (ancestors nl)
 (node-list-map (lambda (snl)
 (let loop ((cur (parent snl))
 (result (empty-node-list)))
 (if (node-list-empty? cur)
 result
 (loop (parent snl)
 (node-list cur result)))))
 nl))

(grove-root-path nl)

Returns the mapping over nl of the function on a node that returns the grove root path of the
node, where the grove root path of a node is defined to be an empty node-list if the node is the
grove root, and otherwise is the result of appending the grove root path of the origin of the node
and the origin of the node. This could be defined as follows:

(define (grove-root-path nl)
 (node-list-map (lambda (snl)
 (let loop ((cur (origin snl))
 (result (empty-node-list)))
 (if (node-list-empty? cur)
 result
 (loop (origin nl)
 (node-list cur result)))))
 nl))

(rsiblings nl)

Returns the mapping over nl of the function on a node that returns the reflexive siblings of the
node, where the reflexive siblings of a node are defined to be the value of the origin-to-subnode
relationship property of the node’s origin, if the node has an origin, and otherwise the node itself.
This could be defined as follows:

(define (rsiblings nl)
 (node-list-map (lambda (snl)
 (let ((rel (origin-to-subnode-rel snl)))
 (if rel
 (node-property rel

© ISO/IEC ISO/IEC 10179:1996(E)

141

 (origin snl)
 default: (empty-node-list))
 snl)))
 nl))

(ipreced nl)

Returns the mapping over nl of the function on a node that returns the immediately preceding
sibling of the node, if any. This could be defined as follows:

(define (ipreced nl)
 (node-list-map (lambda (snl)
 (let loop ((prev (empty-node-list))
 (rest (siblings snl)))
 (cond ((node-list-empty? rest)
 (empty-node-list))
 ((node-list=? (node-list-first rest) snl)
 prev)
 (else
 (loop (node-list-first rest)
 (node-list-rest rest))))))
 nl))

(ifollow nl)

Returns the mapping over nl of the function on a node that returns the immediately following
sibling of the node, if any. This could be defined as follows:

(define (ifollow nl)
 (node-list-map (lambda (snl)
 (let loop ((rest (siblings snl)))
 (cond ((node-list-empty? rest)
 (empty-node-list))
 ((node-list=? (node-list-first rest) snl)
 (node-list-first (node-list-rest rest)))
 (else
 (loop (node-list-rest rest))))))
 nl))

(preced nl)

Returns the mapping over nl of the function on a node that returns the preceding siblings of the
node, if any. This could be defined as follows:

(define (preced nl)
 (node-list-map (lambda (snl)
 (let loop ((scanned (empty-node-list))
 (rest (siblings snl)))
 (cond ((node-list-empty? rest)
 (empty-node-list))
 ((node-list=? (node-list-first rest) snl)
 scanned)
 (else
 (loop (node-list scanned
 (node-list-first rest))

ISO/IEC 10179:1996 © ISO/IEC

142

 (node-list-rest rest))))))
 nl))

(follow nl)

Returns the mapping over nl of the function on a node that returns the following siblings of the
node, if any. This could be defined as follows:

(define (follow nl)
 (node-list-map (lambda (snl)
 (let loop ((rest (siblings snl)))
 (cond ((node-list-empty? rest)
 (empty-node-list))
 ((node-list=? (node-list-first rest) snl)
 (node-list-rest rest))
 (else
 (loop (node-list-rest rest))))))
 nl))

(grove-before? snl1 snl2)

Returns #t if snl1 is strictly before snl2 in grove order. It is an error if snl1 and snl2 are not
in the same grove. This could be defined as follows:

(define (grove-before? snl1 snl2)
 (let ((sorted
 (node-list-intersection (subgrove (grove-root snl1))
 (node-list snl1 snl2))))
 (and (= (node-list-length sorted) 2)
 (node-list=? (node-list-first sorted) snl1))))

(sort-in-tree-order nl)

Returns the members of nl sorted in tree order. Any duplicates shall be removed. It is an error
if the members of nl are not all in the same tree. This could be defined as follows:

(define (sort-in-tree-order nl)
 (node-list-intersection (subtree (tree-root nl))
 nl))

(tree-before? snl1 snl2)

Returns #t if snl1 is strictly before snl2 in tree order. It is an error if snl1 and snl2 are not in
the same tree. This could be defined as follows:

(define (tree-before? snl1 snl2)
 (let ((sorted
 (sort-in-tree-order (node-list snl1 snl2))))
 (and (= (node-list-length sorted) 2)
 (node-list=? (node-list-first sorted) snl1))))

(tree-before nl)

Returns the mapping over nl of the function on a node that returns those nodes in the same tree
as the node that are before the node. This could be defined as follows:

© ISO/IEC ISO/IEC 10179:1996(E)

143

(define (tree-before nl)
 (node-list-map (lambda (snl)
 (node-list-filter (lambda (x)
 (tree-before? x snl))
 (subtree (tree-root snl))))
 nl))

(property-lookup propname snl if-present if-not-present)

If snl exhibits a non-null value for the property propname, property-lookup returns the
result of applying if-present to that value, and otherwise returns the result of calling if-
not-present without arguments. propname can be specified in any of the ways allowed for
the node-property procedure. This could be defined as follows:

(define (property-lookup name snl if-present if-not-present)
 (let ((val (node-property name snl default: #f)))
 (cond (val (if-present val))
 ((node-property name snl default: #t) (if-not-present))
 (else (if-present val)))))

(select-by-class nl sym)

Returns a node-list comprising members of nl that have node class sym. sym is either the
application name (transformed as specified in 10.1.5) or the RCS name of the class.

(select-by-property nl sym proc)

Returns a node-list comprising those members of nl that have a non-nodal property named sym
that exhibits a non-null value such that proc applied to it returns a true value.

(select-by-null-property nl sym)

Returns a node-list comprising members of nl for which the property sym exhibits a null value.

(select-by-missing-property nl sym)

Returns a node-list comprising members of nl for which the property sym does not exhibit a
value.

10.2.4 Core Query Language

This clause defines a subset of SDQL. In addition to the procedures defined in this clause, the
current-node, node-list-empty?, node-list?, parent, and node-list-error
procedures are allowed in the subset. This subset is designed so that a node-list never contains
more than one node and so that any node that it does contain is always of type element.

In the following procedures, the argument that is of type node-list can be omitted and defaults to
(current-node). osnl (optional singleton node-list) denotes an argument that shall be a
node-list containing zero or one nodes.

ISO/IEC 10179:1996 © ISO/IEC

144

10.2.4.1 Navigation

(ancestor string osnl)

Returns a node-list containing the nearest ancestor of osnl with a gi equal to string, or an
empty node-list if there is no such ancestor or if osnl is empty.

(gi osnl)

Returns the value of the gi property of the node contained in osnl or #f if osnl is empty or if
osnl has no gi property or a null gi property.

(first-child-gi osnl)

Returns the value of the gi property of the first child of osnl of class element or #f if osnl is
empty or has no such child.

(id osnl)

Returns the value of the id property of the node contained in osnl or #f if osnl is empty or if
osnl has no id property or a null id property.

10.2.4.2 Counting

(child-number snl)

Returns the child number of snl. The child number of an element is one plus the number of
element siblings of the current element that precede in tree order the current element and that
have the same generic identifier as the current element.

(ancestor-child-number string snl)

Returns the child number of the nearest ancestor of snl whose generic identifier is string, or
#f if there is no such ancestor.

(hierarchical-number list snl)

Returns a list of non-negative integers with the same number of members as list. list shall
be a list of strings. The last member is the child number of the nearest ancestor of snl whose
generic identifier is equal to the last member of list, the next to last member is the child
number of the nearest ancestor of that element whose generic identifier is equal to the next to last
member, and so on for each member of list.

(hierarchical-number-recursive string snl)

Returns a list of non-negative integers. The last member of the list is the child number of the
nearest ancestor of the snl element whose generic identifier is equal to string, the next to last
member is the child number of the nearest ancestor of that element whose generic identifier is

© ISO/IEC ISO/IEC 10179:1996(E)

145

equal to string, and so on for each ancestor of the current element with generic identifier equal
to string. Note that the length of this list is the nesting level of string.

(element-number snl)

Returns the number of elements before or equal to snl with the same gi as snl.

(element-number-list list snl)

Returns a list of non-negative integers, one for each member of list, which shall be a list of
strings, where the i-th integer is the number of elements that:

— are before or equal to snl,

— have a generic identifier equal to the i-th member of list, and

— if i is greater than 1, are after the last element before snl whose generic identifier is equal to
the i-1th member of list.

NOTES

32 In effect the counter for each argument is reset at the start of the element referred to by the previous argument.

33 An element is considered to be after its parent.

34 This procedure could be used to number footnotes sequentially within a chapter (by using the last number in the
list). It could also be used to number headings in a document whose DTD lacks container elements.

10.2.4.3 Accessing Attribute Values

In the following procedures, attribute values are represented as strings by applying the data
procedure to the attribute-assignment node.

(attribute-string string osnl)

Returns a string representation of the attribute with name equal to string of osnl, or #f if
osnl has no such attribute, or the attribute is implied, or osnl is empty.

(inherited-attribute-string string osnl)

Returns a string representation of the attribute with name equal to string of osnl or of the
nearest ancestor of osnl for which this attribute is present and not implied, or #f if there is no
such element or osnl is empty. For the purpose of this procedure, a node is considered an
ancestor of itself.

(inherited-element-attribute-string string1 string2
osnl)

ISO/IEC 10179:1996 © ISO/IEC

146

Returns a string representation of the attribute with name equal to string2 of the nearest
ancestor of osnl whose generic identifier is equal to string1 and for which this attribute is
present and not implied, or #f if there is no such element or osnl is empty. For the purpose of
this procedure, a node is considered an ancestor of itself.

10.2.4.4 Testing Current Location

(first-sibling? snl)

Returns #t if snl has no preceding sibling that is an element with the same generic identifier as
itself, and otherwise returns #f.

(absolute-first-sibling? snl)

Returns #t if snl has no preceding sibling that is an element, and otherwise returns #f.

(last-sibling? snl)

Returns #t if snl has no following sibling that is an element with the same generic identifier as
itself, and otherwise returns #f.

(absolute-last-sibling? snl)

Returns #t if snl has no following sibling that is an element, and otherwise returns #f.

(have-ancestor? obj snl)

obj shall be either a string or a list of strings. If obj is a string, then have-ancestor? returns
#t if snl has an ancestor with a generic identifier that matches that string and otherwise returns
#f. If obj is a list of strings, then have-ancestor? returns #t if snl has an ancestor with
generic identifier equal to the last member of obj, which itself has an ancestor with generic
identifier equal to the next to last member of obj, and so on for each member, and otherwise
returns #f.

10.2.4.5 Entities and Notations

snl here determines the document in which to find the entity.

(entity-public-id string snl)

Returns the value of the public-id property of the value of the external-id property of the general
entity whose name is string in the governing document type of the same grove as snl, or #f if
there is no such entity or the entity has a null value for the external-id property or the external-id
has a null value for the public-id property.

(entity-system-id string snl)

Returns the value of the system-id property of the value of the external-id property of the general
entity whose name is string in the governing document type of the same grove as snl, or #f if

© ISO/IEC ISO/IEC 10179:1996(E)

147

there is no such entity or the entity has a null value for the external-id property or the external-id
has a null value for the system-id property.

(entity-generated-system-id string snl)

Returns the value of the generated-system-id property of the value of the external-id property of
the general entity whose name is string in the governing document type of the same grove as
snl, or #f if there is no such entity or the entity has a null value for the external-id property or
the external-id has a null value for the generated-system-id property.

(entity-text string snl)

Returns the value of the text property of the general entity whose name is string in the
governing document type of the same grove as snl, or #f if there is no such entity or the entity
has a null value for the text property.

(entity-notation string snl)

Returns the value of the notation-name property of the general entity whose name is string in
the governing document type of the same grove as snl, or #f if there is no such entity or the
entity has a null value for the notation-name property.

(entity-attribute-string string1 string2 snl)

Returns a string representation of the value of the attribute named string2 of the general entity
whose name is string1 in the governing document type of the same grove as snl, or #f if there
is no such entity or the entity has no such attribute or the attribute is implied.

(entity-type string snl)

Returns the value of the entity-type property of the general entity whose name is string in the
governing document type of the same grove as snl, or #f if there is no such entity or the entity
has a null value for the entity-type property.

(notation-public-id string snl)

Returns the value of the public-id property of the value of the external-id property of the general
notation whose name is string in the governing document type of the same grove as snl, or #f
if there is no such notation or the external-id has a null value for the public-id property.

(notation-system-id string snl)

Returns the value of the system-id property of the value of the external-id property of the general
notation whose name is string in the governing document type of the same grove as snl, or #f
if there is no such notation or the external-id has a null value for the system-id property.

(notation-generated-system-id string snl)

ISO/IEC 10179:1996 © ISO/IEC

148

Returns the value of the generated-system-id property of the value of the external-id property of
the general notation whose name is string in the governing document type of the same grove
as snl, or #f if there is no such notation or the external-id has a null value for the generated-
system-id property.

10.2.4.6 Name Normalization

(general-name-normalize string snl)

Returns string transformed using the general namecase substitution string normalization rule
of the grove in which snl occurs. This could be defined as follows:

(define (general-name-normalize string snl)
 (named-node-list-normalize string
 (node-property ’elements (grove-root snl))
 ’element))

(entity-name-normalize string snl)

Returns string transformed using the entity namecase substitution string normalization rule of
the grove in which snl occurs. This could be defined as follows:

(define (entity-name-normalize string snl)
 (named-node-list-normalize string
 (node-property ’entities (grove-root snl))
 ’entity))

10.2.5 SGML Property Operations

These procedures make use of particular properties that are defined by the property set for
SGML.

(attributes nl)

This is equivalent to:

(define (attributes nl)
 (node-list-property ’attributes nl))

(attribute string nl)

Returns the mapping over nl of the function that returns the member of the value of the
attributes property whose name is equal to string. This could be defined as follows:

(define (attribute name nl)
 (node-list-map (lambda (snl)
 (named-node name (attributes snl)))
 nl))

(element-with-id string snl)

© ISO/IEC ISO/IEC 10179:1996(E)

149

Returns a singleton node-list returning the element in the same grove as snl whose unique
identifier is string, if there is such an element, and otherwise returns the empty node-list. snl
defaults to (current-node).

(referent nl)

This is equivalent to:

(define (referent nl)
 (node-list-property ’referent nl))

(match-element? pattern snl)

Returns #t if snl is a node of class element that matches pattern. pattern is either a list or a
single string or symbol. A string or symbol is equivalent to a list containing just that string or
symbol. The list can contain strings or symbols. The element matches the list if the last string or
symbol matches the gi of the element, and the next to last matches the gi of the element’s parent,
and so on. Each string or symbol may optionally be followed by a list containing an even
number of strings or symbols, which are interpreted as attribute name and value pairs all of
which the element whose gi matches the preceding string or symbol shall have.

For example,

(match-element? ’(e1 (a1 v1 a2 v2) e2 (a3 v3) e3 e4) n)

 returns true if

— the gi of n is e4,

— the gi of n's parent is e3,

— the gi of n's grandparent is e2,

— n's grandparent has an a3 attribute with a value equal to v3,

— the gi of n's great grandparent is e1,

— n's great grandparent has an a2 attribute with a value equal to v2, and

— n's great grandparent has an a1 attribute with a value equal to v1.

snl defaults to the node-list returned by the current-node procedure.

When a string or symbol in the pattern is compared against a property value, and the property
value was subject to upper-case substitution, upper-case substitution shall also be performed on
the string before comparison.

(select-elements nl pattern)

ISO/IEC 10179:1996 © ISO/IEC

150

Returns a node-list comprising those members of nl that match pattern as defined by the
match-element? procedure.

(q-element pattern nl)

(q-element pattern)

Searches in the subgroves whose roots are each members of nl for elements matching pattern,
as defined by the match-element? procedure. nl defaults to the node-list returned by
current-node.

(q-class symbol nl)

(q-class symbol)

Searches in the subgroves whose roots are each members of nl for nodes whose class is
symbol. nl defaults to the node-list returned by current-node.

(q-sdata string nl)

(q-sdata string)

Searches in the subgroves whose roots are each members of nl for nodes whose class is sdata
and the value of whose sysdata property is string. nl defaults to the node-list returned by
current-node.

10.3 Auxiliary Parsing

10.3.1 Word Searching

Use of the facilities in this clause in the style or transformation languages requires the word
feature.

(word-parse nl string)

(word-parse nl)

This builds a new grove by performing an auxiliary parse using the Data Tokenizer Property Set.
string, if specified, is the ISO 639 language code of the language which should be assumed for
the purposes of determining what constitutes a word. The algorithm to be used is not specified in
this International Standard.

<propset psn=datatok fullnm="Data Tokenizer Property Set">
<classdef rcsnm=tokroot appnm="tokenized root" conprop=strings>
<propdef rcsnm=strings datatype=nodelist ac=tokenstr>
<classdef rcsnm=tokenstr appnm="tokenized string" conprop=string>
<propdef rcsnm=string datatype=string>

For each member of nl, a tokenized string node is created for each word in the data of that
member. The root of the auxiliary grove has these tokenized string nodes as children. A node-
list of all the tokenized string nodes is returned. If a member, x, of nl contains another member,

© ISO/IEC ISO/IEC 10179:1996(E)

151

y, of nl as a descendant, then the data of y is removed from the data of x before x is parsed for
words.

(select-tokens nl string)

Returns a node-list containing each member of nl that is a tokenized-string node with a string
property equal to string.

10.3.2 Node Regular Expressions

Use of the facilities in this clause in the style or transformation languages requires the regexp
feature.

The regexp type represents a node regular expression. A node regular expression is an object
that can be used to perform an auxiliary parse of a grove. This auxiliary parse creates a new
grove that contains nodes that group together nodes that correspond to nodes in the original
grove. The semantics of a node regular expression define for any node-list s and any node-list t
that is a sublist of s whether t matches the node regular expression with respect to s. This is
defined inductively for each of the procedures that construct regexps. s is referred to as the
search list.

A node-list s immediately precedes a node-list t with respect to a node-list x that contains all the
members of both s and t if

— s is empty, or

— t is empty, or

– the member of s that occurs latest in x occurs in x before the element of t that occurs first
in x, and

– there is no node in x that

• follows in x all those members of x that occur in s, and

• precedes in x all those members of x that occur in t.

(regexp? obj)

Returns #t if obj is a regexp, and otherwise returns #f.

10.3.3 Regexp Constructors

The procedures in this section construct regexp objects that are used by the subparsing
procedures.

(regexp-node proc)

ISO/IEC 10179:1996 © ISO/IEC

152

Returns a regexp that matches a node-list with respect to any search list if the node-list contains
exactly one node and proc applied to that node-list returns a true value.

(regexp-seq regexp1 regexp2 … regexpn)

Returns a regexp that matches a node-list with respect to a search list x if the node-list can be
split into sublists s1, s2,…, sn such that regexpi matches si with respect to the search list x for 1
≤ i ≤ n and such that si immediately precedes si+1 with respect to x for 1 ≤ i ≤ n-1.

(regexp-or regexp1 regexp2 … regexpn)

Returns a regexp that matches a node-list with respect to a search list x if, for some i such that 1 ≤
i ≤ n, the node-list matches regexpi with respect to x.

(regexp-and regexp1 regexp2 … regexpn)

Returns a regexp that matches a node-list with respect to a search list x if, for every i such that 1
≤ i ≤ n, the node-list matches regexpi with respect to x.

(regexp-rep regexp)

Returns a regexp that matches a node-list with respect to a search list x if the node-list is empty or
if there is some integer n ≥ 1 such that the node-list can be split into sublists s1,s2,…,sn such that
si matches regexp for each i such that 1 ≤ i ≤ n and such that si immediately precedes si+1 with
respect to x for each i such that 1 ≤ i ≤ n-1.

(regexp-plus regexp)

Returns a regexp that matches a node-list with respect to a search list x if there is some integer n
≥ 1 such that the node-list can be split into sublists s1, s2,…,sn such that si matches regexp for
each i such that 1 ≤ i ≤ n and such that si immediately precedes si+1 with respect to x for each i
such that 1 ≤ i ≤ n-1.

(regexp-opt regexp)

Returns a regexp that matches a node-list with respect to a search list x if either the node-list is
empty or the node-list matches regexp with respect to x.

(regexp-range regexp k1 k2)

Returns a regexp that matches a node-list with respect to a search list x if there is some integer n
with k1 ≤ n ≤ k2 such that the node-list can be split into sublists s1,s2,…,sn such that si matches
regexp for each i such that 1 ≤ i ≤ n and such that si immediately precedes si+1 with respect to x
for each i such that 1 ≤ i ≤ n-1. If k1 is zero, then the returned regexp shall match the empty
node-list.

(string->regexp string)

© ISO/IEC ISO/IEC 10179:1996(E)

153

Returns the regexp represented by string. It shall be an error if string is not a valid
representation of an extended regular expression as defined in ISO 9945-2. A normal character in
string matches a node with a char property whose value is that character.

NOTE 35 This could be implemented in terms of the above primitives.

10.3.4 Regular Expression Searching Procedures

The procedures in this clause use regexp objects to create a new auxiliary grove using the
Regular Expression Property Set as follows:.

<propset psn=regexp fullnm="Regular Expression Property Set">
<classdef rcsnm=root conprop=groups sd=DSSSL>
<desc>
The root of the grove.
<propdef rcsnm=groups datatype=nodelist ac=group sd=DSSSL>
<classdef rcsnm=group sd=DSSSL>

(regexp-search nl regexp)

Returns a new auxiliary grove built using the regexp property set. The grove contains one group
node for each sublist of nl that matches regexp with respect to nl. The source property of each
group node contain the nodes in the matching sublist.

NOTE 36 The source property is an intrinsic property of every node in an auxiliary grove.

(regexp-search-disjoint nl regexp)

This is the same as regexp-search except that the sublists are disjoint. When two sublists
overlap, if one sublist has a member that occurs in nl before all members of the other sublist,
then the first sublist is preferred. If one sublist contains another sublist as a proper sublist, then
the containing sublist is preferred.

11 Transformation Language

This clause describes the DSSSL transformation language. Syntactically, the DSSSL
transformation language is a data content notation as defined by ISO 8879. The content of an
element in this notation is parsed as a transformation-language-body.

[151] transformation-language-body = [[unit-declaration* | added-char-properties-declaration*
| character-property-declaration* | transliteration-map-definition* | language-definition* |
default-language-declaration? | definition* | association*]]

The transformation language uses the expression language defined in clause 8 and SDQL defined
in clause 10.

A transformation process requires a single grove as input, which is transformed as specified by
the associations. An association may cause other groves to be transformed. The grove being
transformed is referred to as the current grove.

ISO/IEC 10179:1996 © ISO/IEC

154

11.1 Features

The following features are optional in the transformation language:

— The combine-char feature allows character-combination-declarations.

— The keyword feature allows #!key in formal-argument-lists.

— The multi-source feature allows use of the transform-grove procedure.

— The multi-result feature allows multiple result groves.

— The regexp feature allows the use of node regular expressions described in 10.3.2.

— The word feature allows the use of the facilities for word searching described in 10.3.1.

— The hytime feature allows the use of the facilities for HyTime location addressing described
in 10.2.1.

— The charset feature allows the use of the declaration element type forms other than char-
repertoire, features, and sgml-grove-plan.

11.2 Associations

The transformation process is specified by a collection of associations.

[152] association = (=> query-expression transform-expression priority-expression?)

[153] query-expression = expression

[154] transform-expression = expression

[155] priority-expression = expression

Each association has up to three components:

— a query-expression returning a node-list; an association is potentially applicable to any node
in the node-list returned by its query-expression.

— a transform-expression that is evaluated for each of the nodes to which the association is
applicable. The value returned describes the node or nodes in the result grove corresponding
to the selected node in the source grove.

— an optional priority-expression that affects whether the association actually applies to a node
to which it is potentially applicable.

© ISO/IEC ISO/IEC 10179:1996(E)

155

A query-expression shall evaluate to a node-list. All the nodes in the node-list returned by a
query-expression shall be nodes in the current grove or shall be nodes in an auxiliary grove
whose source grove is the current grove. Auxiliary groves are described in 9.5. In a query-
expression, the current-root procedure and current-node procedure return a singleton
node-list containing the root of the current grove.

A priority-expression shall evaluate to an integer. The number specifies the priority of the
association. If the priority-expression is omitted for an association, the priority of the
association is 0. Larger numbers indicate higher priorities.

Each node to which an association is potentially applicable has a constituent set of nodes in the
current grove. When the node is in the current grove, the constituent set contains just that node.
When the node is in an auxiliary grove, then the constituent set contains the nodes in the current
grove that occur in the value of the source property of the node in the auxiliary grove. An
association is actually applicable to any node, n, to which it is potentially applicable unless some
higher priority association applies to a node whose constituent set contains a node that is in the
constituent set of n.

11.3 Transform-expression

Within a transform-expression, the current-node procedure returns a singleton node-list
containing the node that is being transformed.

Each transform-expression shall return an object of type create-spec or of type transform-grove-
spec or a (possibly empty) list of objects each of type create-spec or transform-grove-spec. Each
create-spec describes a subgrove to be created at a specified place in the result grove. The
subgrove may consist either of a single node or of multiple nodes forming a subgrove rooted in a
single node. The place at which the subgrove is to be created may be specified as the root of a
result grove, or it may be specified relative to some other node in the result grove.

For each node that is created in the result grove, links are created from each of the constituent
nodes of the node whose transformation resulted in creation of the node in the result grove to the
created node. These links are referred to as arrows. An arrow is labeled with an expression
language object. The start-point of an arrow is called the transformation origin of its end-point.
The arrow for a node in the source grove says where that node was transformed to. The labels on
the arrows distinguish between different transformations that were applied to a node. The
transform-expression for a node either specifies that the created subgrove shall be the root of a
result grove or specifies the position of the created subgrove in the result grove relative to a node
in the result grove to which some other node in the source grove was transformed.

11.3.1 Subgrove-spec

The subgrove to be created is described using an object of type subgrove-spec.

(subgrove-spec #!key node: subgrove: class: add: null: remove:
children: sub: label: sort-children:)

ISO/IEC 10179:1996 © ISO/IEC

156

Returns an object of type subgrove-spec.

The node: argument shall be a singleton node-list; it specifies that the node at the root of the
created subgrove shall have the same class as the value of node:, the same non-nodal, non-
intrinsic properties as the value of node: (as modified by the add: and remove: arguments),
and the same null-valued properties as the value of node: (except as modified by the null:
and remove: arguments).

The subgrove: argument shall be a singleton node-list; it specifies the creation of a subgrove
that is a copy of the subgrove rooted in the argument node.

The class: argument is a symbol specifying the class of the node to be created. Exactly one of
the node:, subgrove:, and class: arguments shall be specified.

The add: argument specifies non-nodal, non-intrinsic properties with non-null values that shall
be added to the node. The add: argument shall be a list of two-element lists whose first member
is the name of a property and whose second member is the value of that property. The property
shall be a non-nodal, non-intrinsic property of the node’s class. The value for a property
specified in the add: argument replaces any value for that property that the node specified by
the node: argument had.

The null: argument is a list of symbols specifying the names of additional non-intrinsic
properties of the node which shall have null values. This replaces any non-null property which
the node would have by virtue of the node: argument.

The remove: argument is a list of non-intrinsic properties which the node specified by the
node: argument has and which the node to be created should not have; it defaults to the empty
list. This may be used to remove properties with both null and non-null values.

The sub: argument is a list specifying subnodes for the node at the root of the subgrove returned
by subgrove-spec. The members of the list shall be lists whose first member is a symbol
specifying the name of the subnode property and the rest of whose members are subgrove-specs
specifying the nodes in the value of the property. This argument defaults to the empty list.

The children: argument is a list of subgrove-specs specifying the nodes in the value of the
children property of the node at the root of the subgrove returned by subgrove-spec.

NOTE 37 These can also be specified using the sub: argument, but using children: is often more convenient.

This argument defaults to the empty list.

The label: argument specifies the label for the arrow which shall be created from the
transformed node in the source grove to the node at the root of the subgrove being created in the
result grove. It may be any expression language object. The default value is #f.

The sort-children: argument is a procedure that affects the ordering of the children of the
root node. See 11.3.2.

© ISO/IEC ISO/IEC 10179:1996(E)

157

Classes and properties are named by their application names as defined in the SGML property
set, with the usual transformation described in 10.1.5.

11.3.2 Create-spec

(create-spec? obj)

Returns #t if obj is of type create-spec, and otherwise returns #f.

(create-root obj sg)

Returns a create-spec specifying the creation of the root of a result grove. sg is a subgrove-spec
for the root of the result grove. obj is an identifier for the result grove.

(create-sub snl sg #!key property: label: result-path: optional:
unique:)

(create-preced snl sg #!key label: result-path: optional: unique:)

(create-follow snl sg #!key label: result-path: optional: unique:)

create-sub, create-preced, and create-follow return a create-spec specifying that
for each arrow labeled label: with a start-point of snl the subgrove specified by sg shall be
created in the result grove. The evaluation of the create-sub, create-preced, or
create-follow procedures does not of itself cause the creation of nodes in the result grove; a
create-spec that is not returned by a transform-expression shall be ignored.

label: can be any expression language object; it defaults to #f.

If optional: is #f, then it shall be an error if there never is any such arrow; optional:
defaults to #f.

result-path: is a procedure that for each arrow is applied to a result-node-list whose only
member is the end-point of the arrow. result-path: may be applied to this result-node-list at
various points in the construction of the grove. At some point in the construction of the grove, it
shall return a result-node-list that contains exactly one member. This is the creation origin. At
no point shall it return a result-node-list that contains more than one member. If result-
path: is not specified, it defaults to the identity procedure.

For create-sub, property: is a symbol or string specifying a property name. This property
shall be a subnode property of the creation origin, and the subgrove shall be created as a member
of that property of the creation origin. If the property: argument is omitted, it defaults to the
children property of the creation origin; it shall not be omitted if the creation origin has no
children property. For create-preced, the subgrove shall be created as a preceding sibling of
the creation origin. For create-follow, the subgrove shall be created as a following sibling
of the creation origin.

Two subgroves are said to have the same creation method if and only if the roots of the
subgroves were created with the same creation origin and same creation procedure and, if the
creation procedure was create-sub, the same propname.

ISO/IEC 10179:1996 © ISO/IEC

158

If unique: is not #f, then this subgrove shall be the only one that is ever created with the same
creation method as this one. unique: defaults to #f.

When unique: is #f, the relative order of subgroves created with the same creation method is
determined in a way that is independent of the order in which the subgroves are created. Let the
immediately dependent siblings of a node be those siblings of the node that were created with a
creation origin of that node using the create-follow or create-preced procedures. Let
the dependent siblings of a node be the immediately dependent siblings of the node together with
the dependent siblings of the immediately dependent siblings. Let the creation siblings of a
subgrove to be inserted be those nodes that were created with the same creation procedure and
with the same creation origin. In addition, if a subgrove is to be inserted using create-sub,
then any nodes that will be siblings of the inserted subgrove and were created as part of the same
subgrove as the origin node shall be treated as creation siblings. The position of a subgrove to be
inserted is first determined relative to its creation siblings. It is then inserted in such a way that it
follows all the dependent siblings of all those creation siblings that it is to follow and precedes all
the dependent siblings of all those creation siblings that it is to precede so that there is no node
between it and its creation origin that is neither a creation sibling nor a dependent sibling of a
creation sibling.

When the node at the root of the subgrove is a child of the node that will be the origin of the
subgrove, the position of the subgrove among its creation siblings is determined by the ordering
predicate of the origin node. The ordering predicate is the procedure specified by the sort-
children: argument to the subgrove-spec procedure. The ordering predicate is passed the
transformation origins of two nodes in the result grove that are to be compared. It shall return
true if the first is before the second. If no ordering predicate was specified, then the tree-
before? procedure shall be used as an ordering predicate. In this case, it shall be an error if the
transformation origins of the subgrove and its creation siblings are not all in the same tree. When
the node at the root of the subgrove is not a child of the origin node, then the position of the
subgrove among its creation siblings is determined in the same way as for the children of a node
with an ordering predicate of grove-before?.

An arrow triggers another arrow if the second arrow was created by a call to a create procedure
that specified the start-point of the first arrow as the first argument and specified the label of the
first arrow as the label: argument. It shall be an error if there is a sequence of arrows where
each arrow triggers the next arrow and where the last arrow has the same start-point and label as
the first arrow.

NOTE 38 This requirement avoids the possibility of an infinite loop.

11.3.3 Result-node-list

A result-node-list represents a list of nodes in the result grove. A subset of the operations
permitted on node-lists are permitted on result-node-lists. In a prototype, an argument name rnl
shall be of type result-node-list.

NOTE 39 The allowed operations are designed to ensure that if a node in the result grove is contained in the result-
node-list that results from evaluating an expression at some point in the construction of the result grove, then that node

© ISO/IEC ISO/IEC 10179:1996(E)

159

shall be contained in the result-node-list that results from evaluating that expression at any subsequent point in the
construction of the result grove.

(node-list-union rnl …)

(node-list-intersection rnl …)

(children rnl)

(attributes rnl)

(preced rnl)

(follow rnl)

(parent rnl)

(ancestors rnl)

(descendants rnl)

(origin rnl)

(select-by-class rnl sym)

(select-by-property rnl sym proc)

(select-by-null-property rnl sym)

(select-by-missing-property rnl sym)

These procedures behave in the same way as the corresponding operations on node-lists except
that the return value is of type result-node-list rather than node-list.

(select-by-relation rnl i proc)

Returns a result-node-list containing those nodes contained in rnl which are such that proc
applied to a result-node-list containing exactly that node returns a result-node-list containing i or
more nodes. For example,

(lambda (x)
 (select-by-relation (children x)
 1
 (lambda (y)
 (select-elements (descendants y) "para"))))

 selects those children of a node that have a descendant element with a gi of para.

(select-by-attribute-token rnl string1 string2)

Returns a result-node-list containing those nodes in rnl that have an attribute named string1
and that have an attribute with a child of class attribute-value-token with a token property equal
to string2 after any applicable string normalization.

11.3.4 Transform-grove-spec

An object of type transform-grove-spec represents a grove to be transformed in addition to the
current grove.

(transform-grove-spec? obj)

ISO/IEC 10179:1996 © ISO/IEC

160

Returns #t if obj is of type transform-grove-spec, and otherwise returns #f.

(transform-grove snl obj …)

snl shall be the root of a grove. transform-grove creates a new grove from snl by adding
a transform-args property to the grove root whose value is a list containing obj, …, and
returns an object of type transform-grove-spec specifying the transformation of that new grove.

(select-grove nl obj)

Returns a node-list containing those members of nl whose grove root has a transform-args
property that contains a member equal to obj.

11.3.5 SGML Prolog Parsing

(sgml-parse-prolog string)

Returns a node-list containing a single node that is the root of a grove built by parsing the prolog
of an SGML document. string is the system identifier of the SGML document entity. This is
built using the default grove plan modified to exclude the instabs module.

NOTE 40 This procedure is typically used to specify the subgrove: argument to the subgrove-spec: procedure
when the source and result groves have different DTDs.

11.4 SGML Document Generator

The SGML document generator generates an SGML document or subdocument from a result
grove. The operation of the SGML document generator is specified in terms of a verification
grove, which is the grove that would be built by parsing the SGML document or subdocument
generated from the result grove using a grove plan that included all classes and properties of the
SGML property set.

NOTE 41 An implementation is not required to build a verification grove.

A result grove is valid if it is possible to generate a conforming SGML document or
subdocument from the result grove such that there is a verification mapping from the result grove
to the verification grove which meets the requirements specified in 11.4.1. If the result grove is
valid, an implementation shall generate such a document or subdocument. An implementation
shall report that a result grove is not valid if and only if the result grove is not valid.

11.4.1 Verification Mapping

Any result grove satisfies the following requirements:

— A node in the result grove does not exhibit a value for a property with a declared data type
that is nodal unless the property is a subnode property.

— A node in the result grove never exhibits a value for a property that is in the derived category.

© ISO/IEC ISO/IEC 10179:1996(E)

161

The verification mapping, V, maps each node in the result grove to a node in the verification
grove. V(n) denotes the result of applying V to the node n; n[p] denotes the value that n exhibits
for property p. A node n′ in the verification grove is said to be grounded if and only if there is a
node n in the result grove such that V(n) is n′.

V shall satisfy the following requirements:

— If n is the root of the result grove, then V(n) shall be the root of the verification grove.

— For each distinct m and n in the result grove, V(m) shall be distinct from V(n).

— For each n in the result grove, V(n) shall have the same class as n.

— For each node n in the result grove, and each non-intrinsic property p with a non-nodal
declared data type for which V(n) exhibits a null value, n shall exhibit a null value for p unless
p is in the derived or optional category.

— For each node n in the result grove, and each non-intrinsic property p for which V(n) exhibits
a non-null, non-nodal value, n shall exhibit a value for p unless p is in the derived or optional
category.

— A node in the verification grove shall be grounded if its class is not in the mayadd category
and either

– any of its siblings are grounded, or

• the origin of the node is grounded, and

• the origin-to-subnode relationship property of its origin is not in the optional category.

— For each node n in the result grove, and for each non-intrinsic property p for which n exhibits
a null value, V(n) shall exhibit a null value for p.

— For each node n in the result grove, and for each non-intrinsic non-nodal property p for which
n exhibits a non-null value, n[p] shall be equal, after any applicable string normalization
specified for the property by the property set, to V(n)[p].

— For each node n in the result grove and each subnode property p with a declared data type of
node for which n exhibits a non-null value, V(n[p]) shall be equal to V(n)[p].

— For each node n in the result grove and each subnode property p with a declared data type of
nodelist or nmndlist for which n exhibits a non-null value, and for each node s in n[p], V(s)
shall be in V(n)[p].

— For each node n in the result grove and each subnode property p with a declared data type of
nodelist for which n exhibits a value, and for any nodes r and s in n[p], if r precedes s in the
result grove, V(r) shall precede V(s) in the verification grove.

ISO/IEC 10179:1996 © ISO/IEC

162

The transliteration property described in 11.4.2 is not considered in the verification mapping.

As an exception to these rules, a node in the verification grove of class attribute-assignment need
not be grounded if the rules of ISO 8879 that apply with an SGML declaration that specified
SHORTTAG YES would not require the attribute to be specified.

11.4.2 Transliteration

[156] transliteration-map-definition = (define-transliteration-map variable
transliteration-entry)

[157] transliteration-entry = (character character-list)

[158] character-list = (character+)

A transliteration-map-definition binds variable to an object of type transliteration-map. The
transliteration-map specifies a transliteration in which certain characters are represented by
sequences of one or more other characters. Each transliteration entry specifies that the first
character is represented by the sequence of characters in the character-list.

(transliteration-map? obj)

Returns #t if obj is of type transliteration-map, and otherwise returns #f.

Each node in a result grove can have a non-nodal transliteration property whose value is an
object of type transliteration-map. If no transliteration property is specified for a node, the value
of the transliteration property is the value of the transliteration property of the origin of the node.
If no transliteration property is specified for the root node of a result grove, then the value shall
be an empty transliteration map.

For each consecutive sequence of data-char nodes in the result grove with the same
transliteration property, the sequence of characters that the sequence of characters in the result
grove represents with respect to the transliteration-map shall be output instead of the sequence of
characters in the result grove. In case of ambiguity, the longest transliteration-entry shall be
used.

12 Style Language

This clause describes the DSSSL style language. Syntactically, the style language is a data
content notation, as defined in ISO 8879. The content of an element in this notation is parsed as a
style-language-body.

[159] style-language-body = [[unit-declaration* | definition* | construction-rule* | mode-
construction-rule-group* | application-flow-object-class-declaration* | application-
characteristic-declaration* | application-char-characteristic+property-declaration* | initial-
value-declaration* | reference-value-type-declaration* | page-model-definition* | column-set-

© ISO/IEC ISO/IEC 10179:1996(E)

163

model-definition* | added-char-properties-declaration* | character-property-declaration* |
language-definition* | default-language-declaration?]]

The style language described in this International Standard uses the core expression language
described in 8.6 or, optionally, the full expression language described in clause 8, and the core
query language described in 10.2.4 or, optionally, the full query language (SDQL) described in
clause 10.

[160] style-language-expression = make-expression | style-expression | with-mode-expression

Within a style-language-body, an expression may be a style-language-expression.

NOTE 42 A style-expression is used to specify the values for inherited characteristics.

12.1 Features

The following features are optional in the style language:

— The expression feature allows the full expression language. Without this feature only the
core expression language shall be used.

— The multi-process feature allows the unrestricted use of process-children and
related procedures as described in 12.4.4.

— The query feature allows use of the full query language described in 10 and related facilities
described in this clause. Without this feature only the core query language shall be used. This
implies the multi-process feature.

— The regexp feature allows the use of node regular expressions described in 10.3.2.

— The word feature allows the use of the facilities for word searching described in 10.3.1.

— The hytime feature allows the use of the facilities for HyTime location addressing described
in 10.2.1.

— The combine-char feature allows character-combination-declarations.

— The keyword feature allows #!key in formal-argument-lists.

— The side-by-side feature allows use of the side-by-side and side-by-side-item flow object
classes.

— The sideline feature allows use of the sideline flow object class.

— The aligned-column feature allows use of the aligned-column flow object class.

ISO/IEC 10179:1996 © ISO/IEC

164

— The bidi feature allows use of the right-to-left writing-mode and the embedded-text flow
object class.

— The vertical feature allows use of the top-to-bottom writing-mode.

— The math feature allows use of the flow object classes for mathematical formulae described
in 12.6.26.

— The table feature allows use of the flow object classes for tables described in 12.6.27.

— The table-auto-width feature allows the widths of table columns to be computed
automatically. This implies the table feature.

— The simple-page feature allows use of the facilities for simple page layout described in
12.6.3.

— The page feature allows use of the page-sequence and column-set-sequence flow object
classes and related features.

— The multi-column feature allows use of column-sets containing more than one column.
This implies the page feature.

— The nested-column-set feature allows use of a column-set-sequence flow object with a
column-set-sequence flow object ancestor. This implies the multi-column and page
features.

— The general-indirect feature allows use of the general-indirect-sosofo
procedure.

— The inline-note feature allows use of the inline-note flow object class.

— The glyph-annotation feature allows use of the glyph-annotation flow object class.

— The emphasizing-mark feature allows use of the emphasizing-mark flow object class.

— The included-container feature allows use the included-container flow object class.

— The actual-characteristic feature allows use of the actual-c procedures for each
inherited characteristic c.

— The online feature allows use of the facilities described in 12.6.28.

— The font-info feature allows use of the facilities described in the 12.5.7.

— The cross-reference feature allows the use of the process-element-with-id
procedure. The charset feature allows the use of the declaration element type form other
than char-repertoire, features, and sgml-grove-plan.

© ISO/IEC ISO/IEC 10179:1996(E)

165

12.2 Flow Object Tree

A flow object tree is an abstract representation of the merger of the formatting specification and
the source document. The nodes of the flow object tree are flow objects. Each flow object is of
a type called a flow object class. A flow object is said to be an instance of its class. A flow
object also has a set of characteristics. The characteristics that are applicable to a flow object
depend on the flow object’s class. A flow object’s class and characteristics together constitute a
specification of the desired formatting behavior of the flow object.

Each flow object has a set of ports to each of which an ordered list of flow objects can be
attached. The set of ports may be empty. One port of each flow object that has any ports may be
distinguished as the principal port. The principal port is unnamed. Every other port has a name
which uniquely identifies it in the context of its flow object. The list of flow objects attached to a
port is known as a stream, and the members of the list are called members of the stream. There is
a single flow object in the flow object tree that is not a member of any stream. This flow object is
called the root of the flow object tree. Every other flow object in the flow object tree is a
member of exactly one stream. This stream is referred to as the flow object’s stream. The flow
object to which a flow object’s stream is attached is called the flow parent of the flow object. The
set of ports that a flow object has is controlled by its class, and for some classes also by its
characteristics. A flow object that has no ports is called an atomic flow object, and a flow object
class whose instances are always atomic is an atomic flow object class. The relative positioning
of flow objects in different streams can be constrained by synchronizing the flow objects. In
addition, the value of a characteristic may result in the creation of a flow object.

12.3 Areas

The concept of an area is used to give semantics to flow objects. The result of formatting a flow
object other than the root flow object is a sequence of areas. The nature of these areas is not fully
specified by this International Standard. An area is a rectangular box with a fixed width and
height. An area is also a specification of a set of marks that can be imaged on a presentation
medium. An area may contain other areas. In particular, an area may contain a glyph.
Information may be attached to areas depending on the flow object that produced the area and the
context in which it is to be used. Areas are of two types: display areas and inline areas. Each type
of area is placed in a different way. For an illustration of the concept of displayed and inlined
areas, see Figure 4.

ISO/IEC 10179:1996 © ISO/IEC

166

4

Figure 4 – Displayed and Inlined Areas

12.3.1 Display Areas

Display areas are areas that are not directly parts of lines. A display area has an inherent absolute
orientation.

NOTE 43 Informally, the box has an arrow on it saying ‘this way up’.

The positioning of display areas is specified by area containers. An area container has its own
coordinate system with its origin at the lower left corner, the positive x-axis extending
horizontally to the right and the positive y-axis extending vertically upward.

An area container has a filling-direction specified in terms of its own coordinate system. The
filling-direction gives a starting edge and an ending edge which are opposite to each other. The
size of an area container is always fixed in the direction perpendicular to the filling-direction.
This means that the lengths of the starting and ending edges are always fixed and equal to each
other.

.

© ISO/IEC ISO/IEC 10179:1996(E)

167

5

Figure 5 – Area Containers and Display Areas

The size of an area container in the filling-direction may be fixed or it may be specified to grow
as necessary to contain the areas with which it is filled. The display areas with which an area
container is filled are always created so that their size in the direction perpendicular to the filling-
direction is equal to the size of the area container in that direction. This is called the display-size
of the area. An area container is filled with a sequence of display areas as follows. The first
display area is positioned with its starting edge aligned with the area container’s starting edge.
The next display area is then positioned with its starting edge on the previous area’s ending edge,
and so on. This is illustrated in Figure 5.

An area container resulting from an included-container-area flow object may also specify a
rotation to be applied to each of the display areas with which it is to be filled. The angle of
rotation is restricted to be a multiple of 90 degrees. This rotation is applied to each display area,
thus changing the display area’s starting and ending edges.

NOTE 44 It is possible to have paragraphs with lines with different placement directions on the same page without
using rotation. See Figure 15.

Solid gray box
represents
area
container

Display-Size

Starting edge
of area container

Ending edge
of area container

Filling-direction of displayed
area placed inside an area
container

Display Area A

Display Area B

Starting
edge of
area A

Ending
edge of
area A

Ending
edge of
area B

Starting
edge of
area B

ISO/IEC 10179:1996 © ISO/IEC

168

The direction between a display area’s starting and ending edges is the placement direction of the
display area. A display area also has an associated writing-mode that is perpendicular to the
area’s placement direction. This is illustrated in Figure 6.

6

Figure 6 – Placement Direction for Left-to-Right Writing-Mode

Writing-mode may be left-to-right, right-to-left, or top-to-bottom. See Figure 7.
7

Figure 7 – Different Writing-modes

.

1
2

5

3

4

WesternEastern

Top-to-Bottom
Writing Mode

Left-to-Right
Writing Mode

© ISO/IEC ISO/IEC 10179:1996(E)

169

12.3.2 Inline Areas

Inline areas are areas that are parts of lines. An inline area has a position point that lies on one
edge of its box and an orientation called the escapement direction, which is perpendicular to the
edge of the box on which the position point lies. The point on the box which lies in the
escapement direction from the position point and is on the opposite edge of the box is called the
escapement point of the inline area.

NOTE 45 Informally the box has an arrow pointing from the position point that says ‘place me so that the arrow lies
parallel to the line I'm in’.

Inline areas are positioned to form lines in the following manner. The writing-mode for a
paragraph gives an inline-progression direction for the paragraph. There is a placement point
associated with the process of constructing a line. The first inline area is oriented so that its
escapement direction is the same as the inline-progression direction of the paragraph, and the
point on the inline area’s box opposite to the position point becomes the current placement point.
The next area is placed so that its position point is coincident with the current placement point
and oriented so that its escapement direction is the same as the inline-progression direction of the
paragraph. The point on the inline area’s box opposite to the position point becomes the current
placement point for placing the next area. This is illustrated in Figure 8.

8

Figure 8 – Inline Area Placement and Positioning

The use of kerning modifies this positioning as illustrated in Figure 9.

Left-to-right writing mode

ISO/IEC 10179:1996 © ISO/IEC

170

9

Figure 9 – Positioning with Kerning

The path containing the position points of the inline areas, which have the direction determined
by the paragraph’s writing-mode, is known as the placement path. This is illustrated in Figure 10
for the left-to-right writing-mode and in Figure 11 for the right-to-left writing-mode.

(a)

(a)

(a)

(b)

(b)

(c)

(c)

© ISO/IEC ISO/IEC 10179:1996(E)

171

10

Figure 10 – Glyph Positioning for the Left-to-Right Writing-Mode
11

Figure 11 – Glyph Positioning for the Right-to-Left Writing-Mode

There are additional steps in the process when the paragraph uses more than one writing-mode.
For example, in Figure 12, there is an inline-progression direction of left-to-right for the English
text and an inline-progression direction of right-to-left for the Hebrew text. In addition, line
breaking becomes more complex in this case.

12

Figure 12 – Mixed Writing-Mode for Hebrew and English

placement path

position point escapement point escapement direction

placement pathescapement direction

escapement point
position point

ISO/IEC 10179:1996 © ISO/IEC

172

The alignment mode specified by the alignment mode property for the font resource also
influences how glyphs are positioned, as illustrated in Figure 13. There are characteristics on
inlined flow objects that can modify this process.

13

Figure 13 – Scripts with Mixed Alignment Modes

An inline area also has a line-progression direction, which is perpendicular to the inline-
progression direction for its paragraph. Certain characteristics of inline areas are specified in
terms of the line-progression direction.

12.3.3 Inlined and Displayed Flow Objects

A flow object that is to be formatted so as to produce a sequence of inline areas is said to be
inlined. A flow object that is to be formatted so as to produce a sequence of display areas is said
to be displayed. Instances of some flow object classes can only be inlined; instances of others
can only be displayed; and instances of others can be either inlined or displayed. In the last case,
whether a flow object is to be inlined or displayed is controlled by the characteristics of the flow
object or by whether the flow objects attached to its ports are themselves inlined or displayed.
The class of a flow object determines for each port of that flow object whether the flow objects
associated with that port shall be inlined, or whether they shall be displayed, or whether they may
be either inlined or displayed.

NOTE 46 The included-container-area flow object described in 12.6.16 allows a flow object that can only be
displayed to occur indirectly in a line without causing a break. For example, one may wish to mix vertical Japanese in
a line of English text without causing a break.

position point
in nominal
alignment mode

escapement point
in nominal

alignment mode

position point in
nominal alignment mode

position point position point in nominal
alignment mode

escapement point escapement point
in nominal
alignment mode

position point
in alignment
mode used

placement path

position point (shifted)

escapement point (shifted)

© ISO/IEC ISO/IEC 10179:1996(E)

173

12.3.4 Attachment Areas

A display area can have a number of associated inline areas called attachment areas. These are
illustrated in Figure 14 which shows the use of sidelines and graphics as attachment areas on
either side of the display area.

NOTE 47 Attachment areas are used for sidelines, line numbers, and marginalia.

14

Figure 14 – Attachment Areas

Each attachment area is positioned relative to a point on the display area’s box called the
attachment point for the attachment area. The attachment point may be different for each of the
attachment areas of the display area. An attachment point lies on an edge of the display area that
is parallel to the placement direction.

There is a specification for each attachment area that indicates which such edge of the display
area it is attached to. Each attachment area has an alignment point and is positioned so that the
attachment area’s alignment point is at the same position in the placement direction as the
corresponding attachment point on the display area.

Each attachment area has a specified separation from the display area. If the attachment point is
on the edge that is at the start in the direction determined by the writing-mode, then the
separation is the distance in that direction from the attachment area’s alignment point to the
attachment point, and the attachment area’s alignment point is its escapement point. If the

c

animals2.ttf

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

ISO/IEC 10179:1996 © ISO/IEC

174

attachment point is on the edge that is at the end in the direction determined by the writing-mode,
then the separation is the distance in that direction from the attachment point to attachment area’s
alignment point, and the attachment area’s alignment point is its position point.

NOTE 48 A negative value for the separation means that the attachment point is inside the display area.

12.4 Flow Object Tree Construction

12.4.1 Construction Rules

[161] construction-rule = query-construction-rule | id-construction-rule | element-construction-
rule | root-construction-rule | default-element-construction-rule

The construction-rules in a style-specification (see 7.1) specify how a node in the
source grove is to be processed. Each construction-rule matches some (possibly empty) set of the
nodes in a source grove. Refer to 9 for information about groves and their use in this
International Standard.

A construction-rule includes a construct-expression, which is an expression returning an object
of type sosofo. A sosofo is a specification of a sequence of flow objects to be added to the flow
object tree. See 12.4.3. When a construction-rule is applied to a node, its construct-expression is
evaluated. The node to which it is applied becomes the current node for the evaluation of the
construct-expression.

The most specific construction-rule (as defined below) that matches the node is applied to the
node.

NOTE 49 Processing a node has no side-effects; it just returns a value.

A node is processed with respect to a current processing mode. In addition to named processing
modes that are specified with mode-construction-rule-groups, there is an initial processing mode
that is unnamed. construction-rules not in any mode-construction-rule-group can match nodes
both when the processing mode is the initial processing mode and when it is a named processing
mode.

A flow object tree is constructed from a source grove by processing the root node of the source
grove in the initial processing mode; the flow objects specified by the resulting sosofo are added
as children of the root of the flow object tree. The flow objects specified by this sosofo shall all
be unlabeled, and shall either be all of class scroll, or shall be all of class page-sequence or
simple-page-sequence.

[162] mode-construction-rule-group = (mode mode-name construction-rule*)

[163] mode-name = identifier

A construction-rule in a mode-construction-rule-group matches a node only when the current
processing mode is mode-name.

© ISO/IEC ISO/IEC 10179:1996(E)

175

The relative specificity of construction-rules is determined as follows:

— A construction-rule in a mode-construction-rule-group is more specific than any
construction-rule not in a mode-construction-rule-group.

— Among construction-rules that have the same specificity according to the preceding rule, a
construction-rule in one part of a style-specification is more specific than any
construction-rule in a subsequent part (see 7.1).

— Among construction-rules that have the same specificity according to the preceding rules,
each of the following is more specific than the next:

– query-construction-rule

– id-construction-rule

– element-construction-rule

– default-element-construction-rule

– root-construction-rule

— A query-construction-rule is more specific than another query-construction-rule with a lesser
priority.

— An element-construction-rule with a qualified-gi containing two or more gis is more specific
than another element-construction-rule with no qualified-gi or with a qualified-gi containing
fewer gis.

It shall be considered an error if there are two or more equally specific construction rules that
match the node.

In addition to construction-rules explicitly specified in style-language-bodys, there is an implicit
default construction-rule. The default construction rule matches any node in a source grove but
is less specific than any explicitly specified construction-rule. The result returned by the default
construction-rule shall depend on the type of node to which it is applied:

— for a node of class sgml-document, it shall return (process-children).

— for a node of class element, it shall return (process-children).

— for a node with a char property, it shall return (make character).

— for a node of class attribute-assignment, it shall return (process-children).

— for any other kind of node, it shall return (empty-sosofo).

ISO/IEC 10179:1996 © ISO/IEC

176

[164] query-construction-rule = (query style-query-expression construct-expression priority-
expression?)

A query-construction-rule matches any node in the node-list returned by the style-query-
expression. query-construction-rules require the query feature.

[165] style-query-expression = expression

A style-query-expression shall return an object of type node-list. Within a style-query-
expression, the current-root and current-node procedures both return the grove root of
the grove being processed.

[166] construct-expression = expression

A construct-expression shall return an object of type sosofo. When the query feature is enabled,
within a construct-expression, the current-node procedure shall return the current node.

[167] priority-expression = expression

The priority-expression specifies the priority of the query-construction-rule. It shall evaluate to a
number. If the priority-expression is omitted, then the priority shall be 0. Bigger numbers
indicate higher priorities.

[168] element-construction-rule = (element (gi | qualified-gi) construct-expression)

[169] gi = string | symbol

[170] qualified-gi = ((gi+))

An element-construction-rule matches any node of class element that matches the gi or
qualified-gi. A node matches a gi if its generic identifier is equal to the string or symbol. A node
matches a qualified-gi if it matches the last gi in the qualified-gi, and its parent matches the next
to last gi, and so on for each gi in the qualified-gi.

[171] default-element-construction-rule = (default construct-expression)

A default-element-construction-rule matches any node of class element.

[172] root-construction-rule = (root construct-expression)

A root-construction-rule matches any node of class sgml-document.

[173] id-construction-rule = (id unique-id construct-expression)

[174] unique-id = symbol | string

An id-construction-rule matches any node of class element that has a unique identifier equal to
unique-id.

© ISO/IEC ISO/IEC 10179:1996(E)

177

12.4.2 Primary Flow Object

A flow object is associated with a node in a source grove if it was constructed when that node
was the current node and the flow object occurs in the flow object tree, that is, not within a
reference value or a characteristic value. Flow objects constructed using the implicit default
construction rule are considered to be associated with the nodes in the source grove for which the
rule was applied, just as for flow objects constructed using explicit construction rules.

One flow object associated with a node is more closely associated with the node than another
flow object associated with the node if:

— the one flow object was constructed when the current processing mode was the initial
processing mode, and the other flow object was constructed when the current processing
mode was some mode other than the initial processing mode, or

— the one flow object contains directly or indirectly the other flow object.

If there is a flow object associated with a node that is more closely associated with the node than
any other flow object associated with the node, then that flow object is the primary flow object
for the node.

12.4.3 Sosofos

An object of type sosofo is a specification of a sequence of flow objects to be added to the flow
object tree.

NOTES

50 The expression language never operates on flow objects directly; it only operates on their specifications using the
sosofo data type.

51 An implementation will use the information in a sosofo to construct portions of the flow object tree when a sosofo
is returned by a construct-expression in a construction-rule that has been applied to some node in a source grove.

Each flow object specified by a sosofo may be labeled with a symbol. A sosofo whose members
are all unlabeled is called an unlabeled sosofo.

NOTE 52 A flow object is labeled by specifying a label: argument in a make-expression.

(sosofo? obj)

Returns #t if obj is a sosofo, and otherwise returns #f.

[175] make-expression = (make flow-object-class-name keyword-argument-list content-
expression*)

[176] content-expression = expression

ISO/IEC 10179:1996 © ISO/IEC

178

The result of evaluating a make-expression is a sosofo (the result sosofo) whose first specified
member is a flow object of the class named by the flow-object-class-name. This flow object is
called the constructed flow object. Each content-expression shall return an object of type sosofo.
The sosofos returned by the content-expressions are concatenated to form the content sosofo. No
content-expressions shall be specified if the flow-object-class-name is of an atomic flow object
class. If the flow-object-class-name is not of an atomic flow object class and the make-expression
contains no content-expressions, then a content-expression with the effect of (process-
children) shall be used.

Each make-expression has a content map that maps labels to ports. Each flow object specified in
the content sosofo is considered in turn. If it is unlabeled, it is appended to the stream attached to
the principal port of the constructed flow object, if the constructed flow object has a principal
port, otherwise this shall be an error. If it is labeled, and the label is one that is mapped by the
content map, then the flow object is appended to the stream attached to the port of the flow object
to which that label is mapped. Otherwise, the flow object is appended to the result sosofo; these
flow objects are after the constructed flow object in the result sosofo.

A keyword shall be treated as part of the keyword-argument-list rather than as a content-
expression. If the same keyword occurs more than once in the keyword-argument-list, it shall not
be an error, but all except the first occurrence shall be ignored. The following keywords are
allowed in the keyword-argument-list:

— A keyword that is the name of a characteristic and specifies the value of that characteristic for
the flow object (unless it is an inherited characteristic that is overridden) as described in
12.4.6. If the characteristic is not inherited, then the characteristic shall be one that is
applicable to the constructed flow object.

— A keyword force!c: where c is the name of an inherited characteristic that specifies the
value of that characteristic for the flow object and prevents overriding of that value as
described in 12.4.6.

— A keyword that is the name of a reference value type and specifies that the constructed flow
object has a reference value of that type with the specified value.

— use: specifying a style to be used for the constructed flow object as described in 12.4.6. The
value shall be a style object or #f indicating that no style shall be used.

— content-map: specifying the content map for the make-expression. The value shall be a
list of lists of two objects, where the first object is a symbol that specifies a label and the
second object is either a symbol specifying the name of a port or #f specifying the principal
port. No label shall occur more than once in a content map.

If the content-map: argument is not specified, then a content map shall be used that for
each non-principal port of the flow object contains a list of two symbols both equal to the
name of the port.

— label: specifying the label for the constructed flow object in the result sosofo. This
argument shall be a symbol.

© ISO/IEC ISO/IEC 10179:1996(E)

179

[177] flow-object-class-name = identifier

Any identifier that is the name of a flow object class is a flow-object-class-name.

[178] application-flow-object-class-declaration = (declare-flow-object-class
identifier string)

This declares identifier to be a flow-object-class-name for a class with a public identifier
specified by string.

[179] with-mode-expression = (with-mode mode-specification expression)

[180] mode-specification = mode-name | #f

A with-mode-expression evaluates expression with the processing mode specified by mode-
specification. A mode-specification of #f indicates the initial unnamed processing mode. The
mode-name in mode-specification shall have been specified in a mode-construction-rule-group.

(empty-sosofo)

Returns an empty sosofo.

(literal string …)

Returns a sosofo containing one flow object of class character for every char in string, … in
the same order. Each character flow object is constructed as if by evaluating a make-expression
with character as the flow-object-class-name and a char: argument specifying the
character.

(process-children)

Returns the sosofo that results from appending the sosofos that result from processing in order
the children of the current node. When the current node is of class sgml-document, the value
of the document-element property is treated as being the children of the node.

(process-children-trim)

Returns the sosofo that results from appending the sosofos that result from processing in order
the children of the current node after removing any leading and trailing sequence of nodes that
have a char property with the input-whitespace property true.

(process-matching-children pattern …)

Returns the sosofo that results from appending the sosofos that result from processing in order
those children of the current node that match any of pattern, …. A pattern shall be an object

ISO/IEC 10179:1996 © ISO/IEC

180

that is allowed as the second argument to the match-element? procedure. It is interpreted as
it is by match-element?.

(process-first-descendant pattern …)

Returns the sosofo that results from processing the first descendant in tree order of the current
node that matches any of pattern, …. A pattern shall be an object that is allowed as the
second argument to the match-element? procedure. It is interpreted as it is by match-
element? .

(process-element-with-id string)

Returns the sosofo that results from processing the element in the same grove as the current node
whose unique identifier is string, if there is such an element, and otherwise returns an empty
sosofo. This procedure requires the cross-reference feature.

(process-node-list ndlist)

Returns the sosofo that results from appending the sosofos that result from processing the
members of the ndlist in order. This requires the query feature.

(map-constructor procedure node-list)

For each node in node-list, procedure is evaluated with that node as a current node.
procedure shall be a procedure of no arguments and shall return a sosofo. map-
constructor shall return the sosofo that results from concatenating the results of evaluating
the procedure. This requires the query feature.

(sosofo-append sosofo …)

Returns the sosofo that results from appending sosofo ….

(sosofo-label sosofo symbol)

Returns a sosofo that results from labeling with symbol each member of sosofo that is
currently unlabeled. A new sosofo is constructed; neither the sosofo nor its members are
modified.

(sosofo-discard-labeled sosofo symbol)

Returns a sosofo that results from discarding from sosofo any flow object that is labeled with
symbol. A new sosofo is constructed; the sosofo is not modified.

(next-match)

(next-match style)

© ISO/IEC ISO/IEC 10179:1996(E)

181

Returns the sosofo that results from applying the next most specific construction rule that
matches the current node. If style is specified, then that style shall become the current
overriding style for the evaluation of that construction rule.

12.4.4 Multi-process Feature

A call to any of the procedures process-children, process-children-trim,
process-matching-children, or process-first-descendant is a descending
recursive call if:

— it does not occur during the evaluation of a call to process-node-set or process-
element-with-id, and

— it does not occur during the evaluation of the value of a reference value.

Unless the multi-process feature is enabled, it shall be an error if there occur two
descending recursive calls both made when the same node was the current node and when the
same processing mode was the current processing mode.

12.4.5 Styles

A style object contains a set of expressions specifying values for inherited characteristics.

[181] style-expression = (style keyword-argument-list)

Evaluates to an object of type style. The following keywords are allowed in the keyword-
argument-list:

— A keyword that is the name of an inherited characteristic and specifies the value of that
characteristic for the style (unless overridden) as described in 12.4.6.

— A keyword force!c: where c is the name of an inherited characteristic that specifies the
value of that characteristic for the style and prevents overriding of that value as described in
12.4.6.

— use: specifying another style whose characteristics are to be added to this style as described
in 12.4.6.

NOTE 53 A style-expression is interpreted in a similar manner to a make-expression with an atomic flow object class
that has only inherited characteristics.

(style? obj)

Returns #t if obj is of type style, and otherwise returns #f.

(merge-style style …)

ISO/IEC 10179:1996 © ISO/IEC

182

Returns a style object constructed by merging style, …. The expression for a characteristic in
the returned style object is the expression for that characteristic in the first of the argument style
objects that contains an expression for that characteristic.

12.4.6 Characteristic Specification

Every characteristic is inherited unless it is explicitly specified not to be in this International
Standard. For each inherited characteristic, there is an expression in this International Standard
specifying the initial value for that characteristic. Each non-inherited characteristic has a default
value.

While a construct-expression is being evaluated, a current overriding style is in effect. When the
processing of a node starts, the current overriding style is empty. The next-match procedure
can change the current overriding style during the evaluation of a construct-expression. That
construct-expression may, in turn, call next-match to change the current overriding style, and
so on.

The expression specifying an inherited characteristic c for a flow object is determined when the
make-expression is evaluated using the first of the following rules that is applicable:

— If a keyword of force!c: was specified, then the corresponding expression shall be used.

— If the current overriding style contains an expression for c, then that expression shall be used.

— If a keyword of c: was specified, then the corresponding expression shall be used.

— If use: was specified on the flow object, and the corresponding style object specifies an
expression for c, then that expression shall be used.

— Otherwise, an expression (inherited-c) shall be used.

The set of characteristics and corresponding expressions for a style object is determined in a
similar manner during the evaluation of the style-expression. For each inherited characteristic c,
the expression that the style object has for c is determined using the first of the following rules
that is applicable:

— If a keyword of force!c: was specified, then the corresponding expression shall be used.

— If the current overriding style contains an expression for c, then that expression shall be used.

— If a keyword of c: was specified, then the corresponding expression shall be used.

— If use: was specified on the flow object, and the corresponding style object specifies an
expression for c, then that expression shall be used.

 If none of these rules are applicable, then the style object contains no expression for c.

© ISO/IEC ISO/IEC 10179:1996(E)

183

For each non-inherited characteristic c applicable to some flow object, if the make-expression for
that flow object specifies the c: keyword, then the corresponding expression shall be evaluated
and used; otherwise, the default for that characteristic shall be determined as specified for that
characteristic and flow object class.

The expression specifying the value of a characteristic in a make-expression or style-expression
shall not be evaluated immediately; instead the expression shall be associated with the
characteristic in the created flow object or style object. The values of the free variables in the
expression are remembered and are used when the expression is evaluated, as with a lambda
expression. The current node is also remembered and restored for the evaluation of the
expression.

When the flow object tree has been sufficiently constructed so that the position of a flow object
in the flow object tree has been determined, then the expressions specifying the values for the
characteristics applicable to that flow object shall be evaluated.

An expression specifying the value of a characteristic shall be evaluated with respect to two flow
objects, which are referred to as the value flow object and the specification flow object. The value
of a characteristic for a flow object is determined by evaluating the expression specifying that
characteristic with both the value flow object and the specification flow object equal to that flow
object.

(inherited-c)

For any inherited characteristic, c, there is a procedure inherited-c. This procedure shall be
used only in the evaluation of an expression specifying a value for a characteristic. The
procedure returns the result of evaluating the expression that specifies c for the flow parent of the
specification flow object; this expression is evaluated with the value flow object unchanged and
with the specification flow object equal to the flow parent of the current specification flow
object. If the current specification flow object has no flow parent because it occurs as a
characteristic value of some flow object, then that flow object shall be treated as the flow parent
for this purpose. If the current specification flow object has no flow parent because it is used in a
generate-specification or a decoration-specification, then the page-sequence or column-set-
sequence flow object that is using the page-model or column-set-model in which that generate-
specification or decoration-specification occurs shall be treated as the flow parent for this
purpose. Otherwise, if the current specification flow object has no flow parent then
inherited-c returns the result of evaluating the expression specifying the initial value of c;
there is no specification flow object during the evaluation of this specification, and it shall be an
error if it calls inherited-c for any inherited characteristic c.

The procedure inherited-c behaves differently when:

— the flow parent of the specification flow object is a table or a table-part;

— the value flow object is a table-cell of that table or table-part or is in a table-cell of that table
or table-part; and

ISO/IEC 10179:1996 © ISO/IEC

184

— the table or table-part contains a table-column flow object that specifies c and has the same
column number as that table-cell.

In this case, inherited-c shall return the result of evaluating the specification of c in the
table-column; this expression shall be evaluated with the value flow object unchanged and with
the specification flow object equal to the table flow object.

(actual-c)

For each inherited characteristic c, actual-c shall return the value of c for the value flow
object. This procedure shall be used only in the evaluation of an expression specifying a value for
a characteristic. It shall be an error to call actual-c with a value flow object of f in the course
of determining the value of c for f. Use of this procedure requires the actual-
characteristic feature.

(char-script-case string1 obj1 … stringn-1 objn-1 objn)

This procedure shall be used only in the evaluation of an expression specifying a value for an
inherited characteristic. There shall be an odd number of arguments. All arguments other than
the last shall be interpreted as a series of pairs, where the first member of the pair is a string
specifying a public identifier, and the second member is any object. If the value flow object is
not a character flow object or is a character flow object that has a script property that is not #f,
then char-script-case shall return its last argument. Otherwise, the value of the script
characteristic shall be compared in turn against the first member of each argument pair; if it
matches, then the second member shall be returned; if there is no match, then the last argument
shall be returned.

NOTE 54 For example, in formatting Japanese text, it is common to use different fonts for the Katakana, Han, and
Latin portions of the text.

[182] application-characteristic-declaration = (declare-characteristic identifier string
expression)

This declares identifier to be an additional inherited characteristic. It also has the effect of
declaring procedures inherited-identifier and actual-identifier. The string is a
public identifier specifying the semantics of the characteristic. If an implementation does not
recognize the specified public identifier, it shall ignore uses of the characteristic. The expression
is the specification of the initial value of the characteristic.

[183] application-char-characteristic+property-declaration = (declare-char-
characteristic+property identifier string expression)

This declares identifier to be an additional non-inherited characteristic of a character flow object
and also declares identifier to be an additional character property. The string shall be a public
identifier specifying the semantics of the characteristic. The default value of the characteristic is
the value of the identifier property of the character that is the value of the char: characteristic
of the flow object. The default value of the property is the value of expression. This expression

© ISO/IEC ISO/IEC 10179:1996(E)

185

shall be evaluated normally; it shall not be evaluated in the special way that the values of
characteristics are evaluated, nor shall it be evaluated with respect to a current node.

[184] initial-value-declaration = (declare-initial-value identifier expression)

This declares the initial value of the inherited characteristic identifier to be an expression. This
shall not be used for characteristics declared with an application-characteristic-declaration.

12.4.7 Synchronization of Flow Objects

Facilities in this clause require the page feature.

It is sometimes necessary to constrain the relative positioning of flow objects in different
streams. For example, a footnote might be constrained to be on the same page as the
corresponding reference, or a sidenote might be constrained to be at the same vertical position as
its reference. Such constraints are specified by creating a synchronization set. A
synchronization set is a set of flow objects whose relative positioning is constrained. A flow
object contains information describing the synchronization sets to which it belongs. A flow
object can belong to any number of synchronization sets. For every synchronization set, there
shall be a flow object, the synchronizing flow object, that is a flow ancestor of all the flow objects
in the synchronization set. In addition, each stream of that flow object can contain (either directly
or as a descendant) at most one flow object in the synchronization set.

(sync sosofo1 sosofo2
 #!key type: min: max:)

Creates a synchronization set whose members are the first member of sosofo1 and the first
member of sosofo2. sync returns a sosofo comprising:

a) a copy of the first flow object of sosofo1 with added synchronization information,

b) any remaining flow objects of sosofo1,

c) a copy of the first flow object of sosofo2 with added synchronization information, and

d) any remaining flow objects of sosofo2.

The type: argument is a symbol specifying the type of constraint on the areas created by
formatting the synchronized flow objects. The min: and max: arguments are integers that
further specify the type of constraint. The value of max: shall be greater than or equal to that of
min:. min: and max: default to 0. The permitted values for type: are:

— page specifying that the number of pages separating

a) the first of the areas created from the first synchronized flow object from

b) the first of the areas created from the second synchronized flow object

ISO/IEC 10179:1996 © ISO/IEC

186

shall not be less than min: nor greater than max:. The synchronizing flow object shall be a
page-sequence flow object or a column-set-sequence flow object with a page-sequence flow
object as an ancestor. The number of pages from one area to another area is defined to be the
index, among all the pages of the page-sequence, of the page on which the second area lies
minus the index of the page on which the first area lies.

NOTE 55 If min: were -1 and max: were 2, then the first of the areas created from the second synchronized flow
object would be constrained to be either on the page before the first of the areas created from the first synchronized
flow object, on the same page as the first of the areas created from the first synchronized flow object, on the page
after the first of the areas created from the first synchronized flow object, or on the next page after that.

— spread specifying that the number of spreads from the first of the areas created from the first
synchronized flow object to the first of the areas created from second synchronized flow
object shall not be less than min: nor greater than max:. The synchronizing flow object shall
be a page-sequence flow object or a column-set-sequence flow object with a page-sequence
flow object as an ancestor.

— column specifying that the first of the areas created from the first synchronized flow object
and the first of the areas created from the second synchronized flow object shall be in the
same column-subset and that the number of columns from the first of the areas created from
the first synchronized flow object to the first of the areas created from the second
synchronized flow object shall be between min: and max:. The synchronizing flow object
shall be of class column-set-sequence.

 The default value of type: is page.

(side-sync list)

Creates a synchronization set containing the first members of each of the members of list,
which shall be a list of two or more sosofos. side-sync returns the sosofo that results from
concatenating the members of the list except that the first member of each sosofo is replaced by a
copy with added synchronization information. The first areas produced by each member of the
synchronization set are constrained to be positioned in the same column-set so that the position
of their placement paths is the same in the filling-direction, possibly adjusted for any difference
in alignment mode.

12.5 Common Data Types and Procedures

12.5.1 Layout-driven Generated Text

This clause describes the facilities for generating text when the value of the text to be generated
at some point in the flow object tree may not be known until some formatting has been done. The
facilities in this clause require the page feature.

NOTE 56 Examples of layout-driven generated text include page numbers, per-page footnote numbers, and dictionary
heads.

© ISO/IEC ISO/IEC 10179:1996(E)

187

Each such piece of generated text is represented by an indirect flow object. An indirect flow
object contains a specification for a list of flow objects. The result of formatting an indirect flow
object is the result of formatting the list of flow objects it specifies. Indirect flow objects are
created only by using the procedures in 12.5.1.1 and are not created using the normal flow object
creation mechanism. The content of the indirect flow object is defined to be the list of flow
objects that it specifies. For the purposes of inheritance, the contents of an indirect flow object
have the indirect flow object as their flow parent.

The generated-object data type is the specification of an expression-language object. The kernel
of a generated-object is defined to be the object that is specified. The kernel of a generated-
object is not available directly but only through the procedures in 12.5.1.1.

(generated-object? obj)

Returns #t if obj is of type generated-object, and otherwise returns #f.

12.5.1.1 Constructing Indirect Sosofos

(general-indirect-sosofo procedure generated-object …)

Returns a sosofo containing a single indirect flow object, the content of which is an unlabeled
sosofo that is the result of applying the procedure to a list of the kernels of the generated-
objects. This requires the general-indirect feature.

(asis-indirect-sosofo generated-object)

Returns a sosofo containing a single indirect flow object whose content is the kernel of
generated-object. The kernel of generated-object shall be a sosofo.

NOTE 57 Typically, the generated-object is created by one of the procedures in 12.5.1.3.

(number-indirect-sosofo generated-object #!key format: add: multiple:)

Returns a sosofo containing a single indirect flow object whose content is the kernel of
generated-object, which shall be an integer converted to a string and then to a sosofo. The
keyword arguments control the conversion of the integer to a string as follows:

— format: is a string specifying the format to use for conversion of the number as in the
format-number procedure. The default is 1.

— add: is an integer to be added to the kernel of generated-object before conversion. The
default is 0.

— multiple: is an integer. The integers to be converted that are not multiples of this integer
shall be converted to the empty string. The integer specified in the add: argument shall be
added to the kernel of generated-object before testing whether it is a multiple. The
default is 1.

ISO/IEC 10179:1996 © ISO/IEC

188

12.5.1.2 Layout Numbering

The following procedures all return a generated-object whose kernel is a number that may
depend on the result of formatting. When the first-area-of-node: and last-area-of-
node: arguments are allowed, the number is specified relative to a reference area. At most one
of the first-area-of-node: and last-area-of-node: arguments shall be supplied. If
the first-area-of-node: argument is supplied, then its value shall be a node, and the
reference area is the first area resulting from the primary flow object of that node. If the last-
area-of-node: argument is supplied, then its value shall be a node, and the reference area is
the last area resulting from the primary flow object of that node. One of first-area-of-
node: or last-area-of-node: shall be supplied unless either:

— there is a current node when the procedure is evaluated, in which case the reference area is the
first area resulting from the primary flow object of the current node, or

— the procedure is used within a generate-specification, in which case the reference area is the
generated area, or

— the procedure is used in the construction of a decoration area, in which case the reference area
is the decorated area.

Although a column is not an area, in this clause it is treated as an area, and an area is deemed to
be in a particular column if it is in the column-set of that column and if that column is the first
column in the column-set that the area spans.

It shall be an error to use one of the procedures defined in this clause in such a way that it
requires the primary flow object of a node that has no primary flow object.

(page-number #!key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of pages before or the same as the
reference area.

(category-page-number #!key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of pages before or the same as the
reference area that has the same category as the page that is or that contains the reference area.

(page-number-in-node nd)

Returns a generated-object whose kernel is the number of pages that:

— are before or contain the first of the areas generated by the indirect-sosofo in which the
generated-object is used, and

— contain areas from the flow object that corresponds to nd.

NOTE 58 This procedure could be used within a table header or footer.

© ISO/IEC ISO/IEC 10179:1996(E)

189

(total-node-page-numbers nd)

Returns a generated-object whose kernel is the total number of pages that contain an area from
the primary flow object associated with nd.

(column-number #!key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of columns in the same column-subset as
the reference area that is before or the same as the reference area.

(footnote-number symbol #!key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of footnote areas that are before or the
same as the reference area and are descendants of the nearest ancestor of the reference area that is
of the type specified by symbol, which is one of page, page-region, or column. For this
purpose, a footnote area is an area which is the first in the sequence of areas produced from a
flow object whose stream is directed into the footnote zone of a column-set-sequence flow
object.

(line-number symbol #!key first-area-of-node: last-area-of-node:)

Returns a generated-object whose kernel is the number of line areas that are before or the same as
the reference area and are descendants of the nearest ancestor of the reference area that is of the
type specified by symbol, where symbol is one of page, page-region, column, or
paragraph. Line areas from paragraphs for which the numbered-lines?: characteristic
was #f shall not be counted.

12.5.1.3 Reference Values

A flow object may have a number of named objects associated with it called reference values.

[185] reference-value-type-declaration = (declare-reference-value-type identifier)

A reference-value-type-declaration declares identifier to be the name of a reference-value type.
The identifier shall not be the name of a characteristic or of any other keyword argument
accepted by a make-expression.

(first-area-reference-value symbol #!key default: inherit:)

(last-area-reference-value symbol #!key default: inherit:)

(last-preceding-area-reference-value symbol #!key default:)

(all-area-reference-values symbol #!key unique: inherit:)

Each of these procedures may be used only in a generate-specification or in the construction of a
decoration area. The context in which these procedures are used determines a list of areas, the
associated-areas list, on which these procedures operate.

When the procedures are used in the construction of a decoration area, the associated-areas list
contains just the decorated area. When the procedures are used in a generate-specification in a

ISO/IEC 10179:1996 © ISO/IEC

190

header-specification, footer-specification, or footnote-separator-specification in a column-
specification, then the associated-area list contains the areas that are placed in the same column-
set area container and that are in the body-text zone and that overlap the column. When the
procedures are used in a generate-specification in a header-specification or footer-specification,
or in a page-region-specification, then the associated-area list contains the areas that are placed
in the same page-region area container as the generated area.

A flow object is eligible if

— it has a reference value symbol, or

— it has an ancestor with a reference value symbol, and inherit: is specified and is not #f.

The relevant reference value for an eligible flow object is the reference value symbol of the
eligible flow object, if the eligible flow object has the reference value symbol, and otherwise is
the reference value symbol of the nearest ancestor of the eligible flow object that has the
reference value symbol.

first-area-reference-value does a pre-order traversal of the flow object tree searching
for the first eligible flow object that produces an area that

— is one of the areas in the associated-area list, or

— is contained in one of the areas in the associated-area list

and returns a generated-object whose kernel is the value of the relevant reference value for that
flow object. When a flow object has more than one stream, then each stream is searched
separately. If the search finds flow objects in more than one stream, then the flow object that is
earlier in the layout order of the area is returned. If the search finds no flow object, the value of
the default: argument is returned, which shall be a generated-object.

last-area-reference-value behaves the same as first-area-reference-value
except that the order of the search is reversed.

last-preceding-area-reference-value does a pre-order traversal of the flow object
tree searching for the last eligible flow object, all of whose areas are before all the areas in the
associated-areas list, and returns a generated-object whose kernel is the value of the relevant
reference value for that flow object. If no flow object is found, the value of the default:
argument is returned, which shall be a generated-object.

NOTE 59 This procedure might be used in the default: argument for the first-area-reference-value
procedure.

all-area-reference-values does a pre-order traversal of the flow object tree searching
for all eligible flow objects that produce an area that is, or is contained in, one of the areas in the
associated-area list; it returns a generated-object whose kernel is a list containing the value of the
relevant reference value for each such eligible flow object in the order in which it was found. If
unique: is not #f, then duplicate (in the sense of equal?) values shall be discarded.

© ISO/IEC ISO/IEC 10179:1996(E)

191

12.5.2 Length Specification

An object of type length-spec specifies a length as a linear combination of other lengths that
may not be currently known. Whenever a value of type length-spec is required, a length (a
quantity of dimension 1) may always be used.

(+ length-spec …)

(- length-spec …)

(* length-spec x)

(* x length-spec)

(/ length-spec x)

(/ x length-spec)

These procedures behave in the same way as their counterparts on quantities, except that they
shall return a length-spec if any of their arguments is a length-spec (as opposed to just a length).

(display-size)

This procedure shall be used only in the evaluation of an expression specifying a value for a
characteristic. The value flow object shall be a displayed flow object. It returns a length-spec
specifying the display-size of the value flow object.

12.5.3 Decoration Areas

Facilities in this clause require the page feature.

An area container may be ‘decorated’ with one or more other areas called decoration areas.
Decoration areas do not affect how parent areas treat the decorated area; in particular, they shall
not change the width or height of the decorated area.

(decoration-area sosofo #!key placement-point-x:
 placement-point-y: placement-direction:)

Returns an object of type decoration-area. The sosofo can specify a single flow object of any
class that can be used inline. The result of formatting the sosofo is used as the decoration area.
The decoration area has a placement point and a placement direction specified by the other
arguments. The inline area produced by the sosofo is placed so that its position point lies on
the placement point of the decoration area and its escapement direction is in the placement
direction of the decoration area.

placement-point-x: is a length-spec specifying the distance between the bottom left corner
of the decorated area and the placement point of the decoration area in the x-direction of the
decorated area. placement-point-y: is a length-spec specifying the distance between the
bottom left corner of the decorated area and the placement point of the decoration area in the y-
direction of the decorated area. placement-direction: is one of the symbols left-to-
right, right-to-left, or top-to-bottom giving the placement direction of the

ISO/IEC 10179:1996 © ISO/IEC

192

decoration area relative to the orientation of the decorated area. In this case, the line-progression
direction of the decoration area is the placement direction of the decorated area.

(decorated-area-width)
(decorated-area-height)

decorated-area-width and decorated-area-height return a length-spec specifying,
respectively, the width and height of the area to be decorated. They may be used in the
specification for the placement-point-x: and placement-point-y: arguments of a
decoration-area.

12.5.4 Spaces

12.5.4.1 Display Spaces

Objects of type display-space are used to describe the desired space between displayed areas.

(display-space? obj)

Returns #t if obj is an object of type display-space, and otherwise returns #f.

(display-space length-spec #!key min: max: conditional?: priority:)

Returns an object of type display-space. length-spec specifies the nominal size of the space.
min: and max: are length-specs specifying the minimum and maximum size of the space. These
both default to the nominal size. priority: is either an integer or the symbol force. The
default is 0. Higher integers indicate higher priorities. When two display-spaces are adjacent,
then if one has a higher priority than the other, the minimum, nominal, and maximum values
from the higher priority space shall be used, and the lower priority space shall be ignored. If the
priorities are equal, but one display-space has a higher nominal value than the other, then the
minimum, nominal, and maximum values from the space with the higher nominal value shall be
used, and the other space shall be ignored. Otherwise, the priorities and nominal values are both
equal; in this case, that nominal value, the lesser of the maximum values, and the greater of the
minimum values shall be used. A priority of force is considered greater than any other priority.
However, if both priorities are force, then the nominal, minimum, and maximum values shall
be added together. The conditional: argument is a boolean; if true, the space shall be
discarded if it starts an area. The default is #t.

NOTE 60 This allows spaces to disappear at page or column breaks.

12.5.4.2 Inline Spaces

Objects of type inline-space are used to describe the desired space between inline areas.

(inline-space? obj)

Returns #t if obj is an object of type inline-space, and otherwise returns #f.

© ISO/IEC ISO/IEC 10179:1996(E)

193

(inline-space length-spec #!key min: max:)

Returns an object of type inline-space. length-spec specifies the nominal size of the space.
min: and max: are length-specs specifying the minimum and maximum size of the space. These
both default to the nominal size.

12.5.5 Glyph Identifiers

Glyph identifiers are represented by objects of type glyph-id.

(glyph-id? obj)

 Returns #t if obj is a glyph-id, and otherwise returns #f.

(glyph-id string)

Returns a glyph-id with public identifier string.

[186] glyph-identifier = afii-glyph-identifier

[187] afii-glyph-identifier = #Adigit-10+

An afii-glyph-identifier is a single token; therefore, no whitespace is allowed between the #A and
the digits. An afii-glyph-identifier represents the glyph-id returned by

(glyph-id "ISO/IEC 10036/RA//Glyphs::n")

where n is the same sequence of digits occurring in the afii-glyph-identifier with leading zeros
removed. The value represented by the digits shall be between 1 and 232-1.

12.5.6 Glyph Substitution Tables

An object of type glyph-subst-table represents a one-to-one mapping from glyph-ids to glyph-
ids.

(glyph-subst-table? obj)

Returns #t if obj is of type glyph-subst-table, and otherwise returns #f.

(glyph-subst-table list)

Returns an object of type glyph-subst-table. list shall contain a list of pairs of glyph-ids. In the
resulting glyph-subst-table, the substitution for the first member of each pair is the second
member. The substitution for any glyph-id that does not occur as the first member of a pair is
itself. If a glyph-id occurs as the first member of more than one pair, then the substitution for that
glyph-id is the second member of the first pair that has that glyph-id as its first member.

(glyph-subst glyph-subst-table glyph-id)

ISO/IEC 10179:1996 © ISO/IEC

194

Returns the glyph-id that substitutes for glyph-id in the glyph-subst-table.

12.5.7 Font Information

Facilities in this clause require the font-info feature.

(font-property string list
#!key size: name: family-name: weight: posture: structure:
proportionate-width: writing-mode:)

Returns the value of a property in a font resource. The arguments name:, family-name:,
weight:, posture:, structure:, or proportionate-width: select the font in the
same manner as the corresponding characteristics, with a prefix of font- added, of a character
flow object. The size: argument is a length specifying the size of the font, which shall be
supplied if the ISO/IEC 9541-1 data type of the value is REL-RATIONAL. string is a string
representing a public identifier specifying the name of the property. list is a list, each of whose
members is either:

— a string, or

— a list of three strings and an object.

The property value to be returned shall be determined as follows. Initially, the active property-list
is the font-resource property-list. Each member of list in turn shall set the active property-list
to a property-list nested in the active property-list, as follows:

— If the member is a string, then it shall set the property-list to the property-list that is the value
of the property of that name in the active property-list.

— Otherwise, the active property-list shall be searched for a property whose name is equal to the
first string. The value of the property shall be a property-list. The active property-list shall be
set to the value of the property in that list whose name is equal to the second string and whose
value is a property-list that contains a property whose name is equal to the third string and
whose value is equal to the fourth member of the list.

Finally, the value of the property whose name is string in the active property-list shall be
returned.

The optional writing-mode: argument shall have one of the values left-to-right,
right-to-left, or top-to-bottom. The value left-to-right is equivalent to
prefixing list with the list

("ISO/IEC 9541-1//WRMODES"
 "ISO/IEC 9541-1//WRMODE"
 "ISO/IEC 9541-1//WRMODENAME"
 "ISO/IEC 9541-1//LEFT-TO-RIGHT")

 and so on for the other allowed values.

© ISO/IEC ISO/IEC 10179:1996(E)

195

The object returned shall depend on the data type of the value of the property as defined in ISO/
IEC 9541-1:

— for a BOOLEAN property, a boolean value shall be returned.

— for a STRUCTURED-NAME, a string containing the ISO 9070 canonical representation shall
be returned.

— for MATCH-STRING or MESSAGE, a string shall be returned.

— for OCTET, INTEGER, CARDINAL, or CODE, a number shall be returned.

— for REL-RATIONAL, a length shall be returned which is obtained by scaling the font size.

— for ANGLE, a number shall be returned corresponding to the angle in degrees.

— for an OCTET-STRING, a list of integers shall be returned.

— for a value-list or an ordered-value-list, a list containing the result of converting the members
of the value-list or ordered-value-list shall be returned.

 Other types of values shall cause an error to be signaled.

12.5.8 Addresses

An address object shall be used as the destination of a hypertext link. An address object
represents the address of one or more objects.

(address? obj)

Returns #t if obj is an object of type address, and otherwise returns #f.

(address-local? address)

Returns #t if the address is local to the current document, and otherwise returns #f.

(address-visited? address)

Returns #t if address has been visited, and otherwise returns #f.

(hytime-linkend)

Returns an object of type address. The current node shall be an element conforming to the clink
architectural form as defined in ISO/IEC 10744. The address identifies the linkend of the current
node.

(idref-address string)

ISO/IEC 10179:1996 © ISO/IEC

196

The string is divided into one or more space-separated tokens, and an object of type address
shall be returned representing the elements whose unique ID is one of the tokens.

(current-node-address)

Returns an address object representing the current node.

(entity-address string)

The string is divided into one or more space-separated tokens, and an object of type address
shall be returned representing the entities whose names are the tokens.

(sgml-document-address string1 string2)

string1 shall be the system identifier of an SGML document entity and string2 shall be a
unique ID in that SGML document. Returns an address object representing the element in the
SGML document that has that unique ID.

(node-list-address node-list)

Returns an address object representing the nodes in node-list. This procedure requires the
query feature.

NOTE 61 External procedures may be used to allow other addressing mechanisms.

12.5.9 Color

A color shall always be specified with respect to a color-space.

(color-space string arg …)

Returns an object of type color-space. The string specifies a public identifier identifying the
color-space family. The remaining arguments specify parameters to the color-space family. The
type and number of the remaining arguments depend on the color-space family as described
below.

(color-space? obj)

 Returns #t if obj is a color-space, and otherwise returns #f.

(color color-space arg …)

Returns an object of type color. color-space is the color-space relative to which color is to be
specified. The type and number of the remaining arguments depend on the color-space family to
which color-space belongs. If no arguments other than color-space are specified, then
the default color in color-space is returned.

NOTE 62 This is normally black.

© ISO/IEC ISO/IEC 10179:1996(E)

197

(color? obj)

 Returns #t if obj is a color, and otherwise returns #f.

This International Standard defines the following color-space families:

— ISO/IEC 10179:1996//Color-Space Family::Device Gray

— ISO/IEC 10179:1996//Color-Space Family::Device RGB

— ISO/IEC 10179:1996//Color-Space Family::Device CMYK

— ISO/IEC 10179:1996//Color-Space Family::Device KX

— ISO/IEC 10179:1996//Color-Space Family::CIE LAB

— ISO/IEC 10179:1996//Color-Space Family::CIE LUV

— ISO/IEC 10179:1996//Color-Space Family::CIE Based ABC

— ISO/IEC 10179:1996//Color-Space Family::CIE Based A

The semantics of each of these color-space families is that of the corresponding color-space
family in ISO/IEC 10180. The additional arguments required by color-space when one of
these color-space families is specified as the first argument are determined by the parameters of
the corresponding Color-Space Object in ISO/IEC 10180. When the ISO/IEC 10180 Color-
Space Object has no parameters, color-space takes no additional arguments. When the ISO/
IEC 10180 Color-Space Object has a single parameter of type Dictionary, color-space
accepts a keyword argument for each key allowed in the Dictionary. The name of each keyword
is derived from the name of the Dictionary key by inserting a hyphen before each upper-case
letter in the name that is not the first letter and that is followed by a lower-case letter, and by then
mapping all characters to lower-case. The type of each keyword argument shall be determined
by the type of the corresponding Dictionary value:

— If the ISO/IEC 10180 type is a number, then the argument type shall be a number.

— If the ISO/IEC 10180 type is a procedure, then the argument type shall be a procedure.

— If the ISO/IEC 10180 type is a reference to a vector of numbers, then the argument type shall
be a list of numbers of the same length.

— If the ISO/IEC 10180 type is a reference to a vector of procedures, then the argument type
shall be a list of procedures of the same length.

The number and type of the additional arguments required by the color procedure when the
first argument is a color-space that belongs to one of these families shall be determined by the
number and type of the argument required by the ISO/IEC 10180 SetColor operator to specify a
color in the corresponding ISO/IEC 10180 color-space. These additional arguments are all

ISO/IEC 10179:1996 © ISO/IEC

198

required arguments (not keyword arguments). Their types are determined from the ISO/IEC
10180 types in the same manner as the arguments for color-space. The default color for each
color-space is determined by the value that ISO/IEC 10180 defines the CurrentColor Graphics
State Variable to have immediately after execution of the SetColorSpace operator for the
corresponding ISO/IEC 10180 color-space.

NOTE 63 A color specified in a color-space with a procedure argument may be transformed in a device-independent
manner to a color specified in a color-space without any procedure arguments. There is, therefore, no need when
implementing the style language with output to an ISO/IEC 10180 device to be able to compile an arbitrary expression
into the language defined in ISO/IEC 10180.

12.6 Flow Object Classes

12.6.1 Sequence Flow Object Class

A sequence flow object class is formatted to produce the concatenation of the areas produced by
each of its children. It has a single principal port. Its children may be inlined or displayed.

NOTE 64 A sequence flow object is useful for specifying inherited characteristics. For example, a sequence flow
object with a specification of a font-posture: characteristic may be constructed for an emphasized phrase element
in a paragraph.

A port of a flow object shall accept a sequence flow object if and only if it would accept each of
the flow objects in that sequence.

12.6.2 Display-group Flow Object

A display-group flow object class is formatted to produce the concatenation of the areas
produced by each of its children. It has a single principal port. Its children shall all be displayed,
and it is itself displayed.

NOTE 65 It will, therefore, cause a line break in a paragraph even if the display-group has no content.

The following characteristics are applicable:

— coalesce-id: is a string specifying the coalesce-id of the flow object, or #f if the flow
object has no coalesce-id. This characteristic is not inherited. The default value is #f. If the
areas from two or more flow objects with the same coalesce-id are flowed into the same top-
float, bottom-float, or footnote zone of a column-set area, then the areas from the
second and subsequent such flow objects shall be discarded. A value other than #f is allowed
for this characteristic only if the flow object is flowed into a top-float, bottom-float,
or footnote zone of a column-set.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

199

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

ISO/IEC 10179:1996 © ISO/IEC

200

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

12.6.3 Simple-page-sequence Flow Object Class

The facilities in this clause require the simple-page feature.

A simple-page-sequence flow object class is formatted to produce a sequence of page areas. A
simple-page-sequence flow object has a single principal port that accepts any displayed flow
object.

NOTE 66 The simple-page-sequence flow object is intended for systems that wish to provide a very simple page
layout facility. More complex page layouts can be obtained with the page-sequence and column-set-sequence flow
object classes.

A simple-page-sequence flow object shall not be allowed within the content of any other flow
object class.

A simple-page-sequence may have a single-line header and footer containing text that is constant
except for a page number.

NOTE 67 A document can contain multiple simple-page-sequences. For example, each chapter of a document could
be a separate simple-page-sequence; this would allow the chapter title within a header or footer line.

The page shall be filled from top to bottom. The display-size for the contents of the simple-page-
sequence shall be the value of the page-width: less the value of the left-margin: and
right-margin: characteristics.

A simple-page-sequence flow object has the following characteristics:

— page-width: is a length specifying the total width of the page. The initial value is system-
dependent.

— page-height: is a length specifying the total height of the page. The initial value is
system-dependent.

— left-margin: is a length specifying the left margin. The initial value is 0pt.

— right-margin: is a length specifying the right margin. The initial value is 0pt.

— top-margin: is a length specifying the distance from the top of the page to the top of the
area container used for the content of the simple-page-sequence. The initial value is 0pt.

NOTE 68 The header line is within the top margin.

© ISO/IEC ISO/IEC 10179:1996(E)

201

— bottom-margin: is a length specifying the distance from the bottom of the page to the
bottom of the area container used for the content of the simple-page-sequence. The initial
value is 0pt.

NOTE 69 The footer line is within the bottom margin.

— header-margin: is a length specifying the distance from the top of the page to the
placement path for the header line. The initial value is 0pt.

— footer-margin: is a length specifying the distance from the bottom of the page to the
placement path for the footer line. The initial value is 0pt.

— left-header: is an unlabeled sosofo containing only inline flow objects that is aligned
with the left margin of the page in the header line. This characteristic is not inherited. The
default value is an empty sosofo.

— center-header: is an unlabeled sosofo containing only inline flow objects that is centered
between the left and right margins of the page in the header line. This characteristic is not
inherited. The default value is an empty sosofo.

— right-header: is an unlabeled sosofo containing only inline flow objects that is aligned
with the right margin of the page in the header line. This characteristic is not inherited. The
default value is an empty sosofo.

— left-footer: is an unlabeled sosofo containing only inline flow objects that is aligned
with the left margin of the page in the footer line. This characteristic is not inherited. The
default value is an empty sosofo.

— center-footer: is an unlabeled sosofo containing only inline flow objects that is centered
between the left and right margins of the page in the footer line. This characteristic is not
inherited. The default value is an empty sosofo.

— right-footer: is an unlabeled sosofo containing only inline flow objects that is aligned
with the right margin of the page in footer line. This characteristic is not inherited. The
default value is an empty sosofo.

— writing-mode: is one of the symbols left-to-right or right-to-left. This
determines the writing-mode of the header and footer lines. The initial value is left-to-
right.

(page-number-sosofo)

Returns an indirect-sosofo whose content is a sequence of character flow objects representing the
page number of the page on which the first area resulting from the indirect flow object specified
by the indirect-sosofo occurs.

(current-node-page-number-sosofo)

ISO/IEC 10179:1996 © ISO/IEC

202

Returns an indirect-sosofo whose content is a sequence of character flow objects representing the
page number of the primary flow object of the current node.

NOTE 70 This is intended to handle cross references in conjunction with process-element-with-id.

12.6.4 Page-sequence Flow Object Class

A page-sequence flow object is formatted to produce a sequence of page areas. The structure and
positioning of the page areas shall be controlled by page-models.

A page-sequence flow object has the following characteristics:

— initial-page-models: is a list of page-models used for the initial pages. The initial
value is the empty list.

— repeat-page-models: is a list of page-models used for pages after the initial pages. The
initial value is the empty list.

— force-last-page: is either #f or one of the symbols front or back specifying the
required type of the last page of the page-sequence. If the last page is not of the required type,
then an additional blank page shall be generated. A value of #f indicates that the last page
may be of either type. The initial value is #f.

— force-first-page: is either #f or one of the symbols front or back specifying the
required type of the first page of the page-sequence. If the value is not #f, then the parent
flow object shall be of type root; if there is a preceding flow object, then it shall be of type
page-sequence. If the value of the force-last-page: characteristic of the preceding
page-sequence is not #f, it shall have the opposite type to the specified value of the
characteristic. If the last page of the preceding page-sequence is not of the opposite type to
the value specified for this characteristic, then the preceding page-sequence shall have an
additional blank page added. If there is no preceding flow object and the value is not #f, then
it shall be an error if the specified type of the first page is not the actual type as determined by
the first-page-type: characteristic. The initial value is #f.

— first-page-type: is either one of the symbols front or back indicating that the first
page of the page-sequence is a front or back page, or the symbol parent indicating that the
type of the first page shall be determined by the parent flow object. The initial value is
parent. A value of parent shall be allowed only if the parent flow object is the root flow
object. In this case, if there is a preceding flow object, then it shall be of type page-sequence,
and the first page shall be a front or back page if the last page of the preceding page-sequence
was a back or front page; if there is no preceding flow object, then the first page shall be a
front page. This characteristic does not cause additional pages to be generated; it merely
states that this page will be of the specified type when it is printed and bound. The value shall
be parent unless the value of the force-first-page: characteristic is #f.

NOTE 71 This information makes it possible to determine which pairs of pages are spreads.

© ISO/IEC ISO/IEC 10179:1996(E)

203

— blank-back-page-model: is a page-model that shall be used for the final page if it was a
back page and was required only because of the force-last-page: or force-first-
page: characteristics, or it is #f if the normal page-model should be used for the final page.
The initial value is #f.

— blank-front-page-model: is a page-model that shall be used for the final page if it was
a front page and was required only because of the force-last-page: or force-first-
page: characteristics, or it is #f if the normal page-model should be used for the final page.
The initial value is #f.

— justify-spread?: is a boolean specifying whether the bottom of each page in a spread
shall be justified. The initial value is #f.

— page-category: specifies the category of the page areas resulting from this page-
sequence flow object. It may be any expression language object for which the equal?
procedure is defined. The category of an area is used by procedures defined in 12.5.1.2.

— binding-edge: is one of the symbols left, right, top, or bottom specifying the edge
of a front page to be bound. This affects whether a side of the page is considered to be on the
inside or outside. The initial value is left.

There shall be an applicable page-model for every page produced by the page-sequence.

The ports of a page-sequence flow object are determined by the page-models.

12.6.4.1 Page-model

A page-model is the specification of a set of possible hierarchies of areas.

(page-model? obj)

Returns #t if obj is of type page-model, and otherwise returns #f.

[188] page-model-definition = (define-page-model page-model-name [[page-region-
specification+ | width-specification | height-specification | filling-direction-specification? |
decoration-specification*]])

[189] page-model-name = variable

define-page-model binds page-model-name to a page-model object.

The top-level area is the page area. The page area contains a number of sub-areas called page-
regions. The layout order of the page-regions corresponds to the order of their specification in
the page-model-definition. Page-regions may overlap.

[190] page-region-specification = (region [[x-origin-specification | y-origin-specification |
width-specification | height-specification | decoration-specification* | filling-direction-
specification? | header-specification? | footer-specification? | page-region-flow-map?]])

ISO/IEC 10179:1996 © ISO/IEC

204

A page-region-specification specifies an area container with fixed dimensions that is filled to
produce a page-region area. Each page-region has a single predominant filling-direction.

NOTE 72 Included-container-area flow objects may use a different filling direction.

It is possible to have display areas with different placement directions on the same page using
multiple page-regions, as illustrated in Figure 15.

15

Figure 15 – Multiple Filling Directions on a Single Page

[191] page-region-flow-map = (flow port-specifier+)

A page-region-flow-map specifies that areas resulting from formatting flow objects directed into
any of the ports identified by one of the port-specifiers may be assigned to this page-region.

If there is no page-region-flow-map, then (flow #f) is the default.

Display-Size
of Area A

D
is

pl
ay

-S
iz

e
of

A
re

a
B

Starting edge
of area container 1

Starting edge
of area container 2

Ending edge
of area container 1

Ending edge
of area container 2

Display Area A

D
is

pl
ay

A
re

a
B

Starting
edge of
area A

Ending
edge of
area A

Ending
edge of
area B

Starting
edge of
area B

(b)

(b)

(a)

(a)

(d
)

(d)

(c
)

(c)

Boundary between
page region 1
and page region 2

Page Region 2
(Area Container 2)

Page Region 1
(Area Container 1)

© ISO/IEC ISO/IEC 10179:1996(E)

205

If a port-specifier occurs in more than one page-region-flow-map in a page-region-specification
in a page-model-definition, then the page-regions shall be filled in the order in which their page-
region-specifications occur in the page-model-definition.

[192] port-specifier = identifier | #f

A port-specifier that is an identifier specifies a port with that name; a port-specifier of #f
specifies the principal port.

[193] header-specification = (header generated-area-clauses)

A header-specification specifies areas to be generated at the beginning of a page-region or
column.

[194] footer-specification = (footer generated-area-clauses)

A header-specification specifies areas to be generated at the end of a page-region or column.

[195] generated-area-clauses = [[height-specification? | width-specification? | filling-direction-
specification? | contents-alignment-specification? | generate-specification]]

generated-area-clauses specifies areas to be generated.

[196] generate-specification = (generate expression)

The expression shall evaluate to an unlabeled sosofo specifying only displayed flow objects.

[197] x-origin-specification = (x-origin expression)

The expression shall evaluate to a length which specifies the x component of the origin of the
area container with respect to its parent’s coordinate system.

[198] y-origin-specification = (y-origin expression)

The expression shall evaluate to a length which specifies the y component of the origin of the
area container with respect to its parent’s coordinate system.

[199] width-specification = (width expression)

The expression shall evaluate to a length which specifies the width (size in the positive x
direction) of the area container with respect to its parent’s coordinate system.

[200] height-specification = (height expression)

The expression shall evaluate to a length which specifies the height (size in the positive y-
direction) of the area container with respect to its parent’s coordinate system.

[201] decoration-specification = (decorate expression)

ISO/IEC 10179:1996 © ISO/IEC

206

The expression shall evaluate to a decoration-area object. The area is decorated by the object as
explained in 12.5.3.

[202] filling-direction-specification = (filling-direction expression)

The expression shall evaluate to one of the symbols left-to-right, right-to-left, or
top-to-bottom specifying the filling-direction of the area container.

If the filling-direction is not specified on the page-region, it shall be inherited from the page-
model. It shall be an error if it is not specified on either the page-region or the page-model.

[203] contents-alignment-specification = (contents-alignment expression)

The expression shall evaluate to one of the symbols start, end, center, or justify
specifying the alignment of the child areas within the area container in the filling-direction of the
area container. The default is start.

12.6.5 Column-set-sequence Flow Object Class

A column-set-sequence flow object is formatted to produce a sequence of column-set areas. A
column-set area is a display area. A column-set area is produced by creating and filling an area
container. A column-set area contains a set of parallel columns. Typically, column-set areas
may be used to fill page-regions; however, column-set areas may also be used to fill other
column-set areas. The structure and positioning of each column-set area shall be controlled by
the column-set-model to which it conforms. A column-set-sequence flow object shall only be
displayed.

A column-set-sequence has the following characteristics.

— column-set-model-map: is a list of lists each with two members, the first a page-model
and the second a column-set-model; whenever an area from this column-set-sequence is
placed in an area whose nearest ancestor of type page-region uses the specified page-model,
then the specified column-set-model shall be used. The initial value is the empty list.

— column-set-model: is a column-set-model specifying the default column-set-model to
use if none of the column-set-models specified in the column-set-model-map:
characteristic are applicable or #f if there is no default column-set-model. If the value is #f,
then it shall be an error if a result area is to be placed within a page-region whose page-model
is not listed in the value of the column-set-model-map: characteristic. The initial value
is #f.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

207

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

ISO/IEC 10179:1996 © ISO/IEC

208

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

A column-set-sequence flow object has a port for each port listed in a column-subset-flow-map
for any of its column-set-models.

12.6.5.1 Column-set-model

A column-set-model specifies the possible hierarchy of areas for each column-set. For some
possible examples of column-sets and column-subset configurations, see Figures 16 and 17.

© ISO/IEC ISO/IEC 10179:1996(E)

209

16

Figure 16 – An Example of Column-Subsets

ISO/IEC 10179:1996 © ISO/IEC

210

17

Figure 17 – Another Example of Column-Subsets

The top-level area in the hierarchy is the column-set area. A column-set area shall have a filling-
direction. If the column-set-model-definition does not contain a filling-direction-specification,
then the filling-direction of the parent area shall be used. The size of the column-set area shall be
fixed in the direction perpendicular to the filling-direction. It can be fixed either by a width-
specification or a height-specification or because this direction is the direction perpendicular to
the area’s placement direction. The size of a column-set area in the filling-direction may be
fixed, or it may grow according to the areas flowed into it.

The area container that produces the column-set shall be filled in a more complicated way than
normal area containers. Areas are placed in the column-set area in such a way that they satisfy a
number of different constraints.

© ISO/IEC ISO/IEC 10179:1996(E)

211

The most basic constraint is that the areas shall not overlap. This constraint does not apply to
decoration areas.

There is a partial ordering defined on the areas that have been placed in a column-set area. This
is called the layout order.

NOTE 73 The layout order corresponds to the order in which the areas should be read.

A fundamental constraint on the filling of an area container is that if two areas placed in the
column-set area container come from the same stream, then they shall be placed so that their
layout order is consistent with their order in the stream.

The column-set area is divided geometrically in a direction parallel to the filling-direction into a
number of columns.

NOTE 74 When an area is said to be divided in some direction, this means that it is divided in such a way that the
dividing line is in that direction.

A column is not an area container. Each column has an extent that is fixed in the direction
perpendicular to the filling-direction.

Each column is a member of exactly one column-subset. The layout order of columns in a
column-subset is the order of the column-specifications in a column-subset specification. There
is no layout order defined between columns in different column-sets.

NOTE 75 It is for this reason that the layout order is a partial order.

ISO/IEC 10179:1996 © ISO/IEC

212

18

Figure 18 – Multiple Column-Subsets

A column-subset is defined to be spannable unless a column in the column-subset is
geometrically between any two other consecutive columns in the column-subset. For example,
see Figure 19.

synchronization
set

column-subset 1
column-subset 2

side note

side note

Main te xt

© ISO/IEC ISO/IEC 10179:1996(E)

213

19

Figure 19 – Non-spannable Column-Subsets

Each area to be placed in a column-set area shall be associated with a single column-subset. If
the filling-direction of the column-set area is top-to-bottom, each area that is placed in the
column-set area shall be placed so that the left edge is aligned with the left edge of a column in
the column-subset and the right edge is aligned with the right edge of a column in the same
column-subset. If the filling-direction of the column-set area is left-to-right or right-to-left, each
area that is placed in the column-set area shall be placed so that its top edge is aligned with the
top edge of a column in the column-subset and its bottom edge is aligned with the bottom edge of
a column in the same column-subset. An area may span more than one column only if the
column-subset is spannable. The number of columns in the column-subset that an area spans
shall be equal to the value of the span: characteristic of the flow object from which the area
comes.

An area that is to be placed in a column-set area shall be created in such a way that its size in the
direction perpendicular to the filling direction is such that it exactly spans the required number of
columns. In other words, the display-size of the area shall be equal to the distance between one
edge of the first column it spans and the opposite edge of the last column it spans.

ISO/IEC 10179:1996 © ISO/IEC

214

NOTE 76 This is an exception to the general principle that an area to be placed in an area container is created so that
the area’s size in the direction perpendicular to the area’s placement direction is equal to the size of the area container in
the direction perpendicular to the area container’s filling-direction.

Each area that is to be placed in a column-set area container is labeled with a zone, which
constrains the placement of the area relative to other areas. The allowed zones are top-float,
body-text, bottom-float, and footnote. An area labeled with one zone shall be
positioned so that it precedes, in the filling-direction, an area that is labeled with a zone that is
later in the list, unless there is no column that is spanned by both areas. For example, see Figure
20.

20

Figure 20 – Column-set areas

An area labeled with the footnote zone shall span exactly one column.

Column Column

G
u
t
t
e
r

Footnote
zone

Body-text
zone

Body-text
zone

Top-float zone

Bottom-float
zone

Bottom-float
zone

Page

© ISO/IEC ISO/IEC 10179:1996(E)

215

NOTE 77 Full-width footnotes in a multi-column layout may be achieved using a nested-column-set.

An area that spans more than one column may span either weakly or strongly depending on the
value of the span-weak?: characteristic on the flow object from which the area comes. An
area that spans more than one column strongly is defined to follow in the layout order any areas
that:

— are in the same column-subset as the area,

— precede the area geometrically in the filling-direction,

— have a span that is completely included in the span of the area, and

— are labeled with the same zone as the area.

An area that spans more than one column weakly is defined to follow in the layout order exactly
those areas that it would follow if it occupied only the first of the columns that it spans.

Two or more column-subsets may be tied together. Column-subsets that are tied together shall
have the same number of columns. When an area spans strongly more than one column of a
column-subset, then the layout order of each column-subset that is tied to that column-subset
shall be modified as if an empty area had been created and placed at the same position in the
filling-direction as the spanning area and with the same size in the filling-direction as the
spanning area so that it spans the corresponding columns of the tied-column-subset; this area can
overlap the spanning area.

NOTE 78 A sequence of columns containing sidenotes is usually tied to the sequence of columns containing the text
to which the sidenotes refer.

When the spanning area is synchronized using the side-sync procedure with an area in a tied-
column-subset that does not span, then it shall be placed in the first column in the tied column-
subset:

— whose corresponding column in the other column-subset is spanned by the spanning area, and

— which is not covered by the spanning area.

[204] column-set-model-definition = (define-column-set-model variable [[column-
subset-specification* | fill-out-specification? | tied-column-subset-specification* | filling-
direction-specification? | width-specification? | height-specification? | decoration-
specification*]])

A column-set-model-definition defines variable to be an object of type column-set-model.

(column-set-model? obj)

Returns #t if obj is of type column-set-model, and otherwise returns #f.

ISO/IEC 10179:1996 © ISO/IEC

216

[205] fill-out-specification = (fill-out expression)

The expression shall evaluate to a boolean. If it is #t, then each column-set area shall be filled
out in the filling-direction to the maximum size allowed by the area in which it is placed.

[206] column-subset-specification = (column-subset [[column-specification+ | column-
subset-flow-map | top-float-space-below-specification? | bottom-float-space-above-
specification? | balance-specification? | justify-specification? | justify-limit-specification? |
justify-last-limit-specification? | length-deviation-specification? | length-decrease-order-
specification? | align-lines-specification?]])

For each column-subset in the column-set-model, there shall be a column-subset-specification.

[207] column-subset-flow-map = (flow ((port-specifier zone-name+))+)

[208] zone-name = top-float | body-text | bottom-float | footnote

A column-subset-flow-map specifies that areas resulting from flow objects directed in port-
specifier shall be labeled with one of the specified zone-names. Multiple zone-names may be
specified for a single port-specifier only if the zone-names are top-float and bottom-
float.

[209] top-float-space-below-specification = (top-float-space-below expression)

The expression shall evaluate to an object of type display-space specifying the size of a space to
be added. For each column in the column-set that is spanned by an area in the top-float zone, a
space of the specified size shall be added immediately after all the areas that span the column and
that are in the top-float zone.

[210] bottom-float-space-above-specification = (bottom-float-space-above
expression)

The expression shall evaluate to an object of type display-space specifying the size of a space to
be added. For each column in the column-set that is spanned by an area in the bottom-float zone,
a space of the specified size shall be added immediately before all the areas that span the column
and that are in the bottom-float zone.

[211] balance-specification = (balance? expression)

The expression shall evaluate to a boolean. A value of #t indicates that a column-subset in the
last column-set produced by a column-set-sequence shall be balanced. A value of #f indicates
that it shall not be. If a column-subset is balanced, then free space shall be allocated evenly
among all the columns in the column-subset. If a column-subset is not balanced, then free space
shall be allocated to the columns in reverse order. The default is for the column-subset not to be
balanced.

[212] justify-specification = (justify? expression)

© ISO/IEC ISO/IEC 10179:1996(E)

217

The expression shall evaluate to a boolean specifying whether the column-subset is to be
justified. If a column subset is to be justified, the free space shall be distributed before and after
the areas in the column-subset according to the minimum and maximum allowed space specified
in the display spaces. Otherwise, all free space shall be distributed at the end of each column.
The default is for the column-subset not to be justified. A column-subset may only be justified if
the fill-out-specification specifies that the column-set is to be filled out.

[213] justify-limit-specification = (justify-limit expression)

The expression shall evaluate to a number between 0 and 100. If the amount of free space in a
column as a percentage of the total size of the column exceeds this, then that column shall not be
justified. The default is 100.

[214] justify-last-limit-specification = (justify-last-limit expression)

The expression shall evaluate to a number between 0 and 100. A column shall not be justified if
the amount of free space in a column in the last column-set in a column-set-sequence as a
percentage of the total size of the column exceeds the number returned by the expression. The
default is 0.

[215] length-deviation-specification = (length-deviation expression)

The expression shall evaluate to a positive length. When a column-subset is being justified or
balanced, then the lengths of the columns may differ by up to this amount. The default is 0pt.

[216] length-decrease-order-specification = (length-decrease-order expression)

The expression shall evaluate to one of the following symbols:

— forward specifying that as columns progress in the forward direction their length shall not
increase,

— backward specifying that as columns progress in the backward direction their length shall
not increase,

 or #f implying no additional constraint on the relative length of the columns.

[217] align-lines-specification = (align-lines? expression)

The expression shall evaluate to a boolean specifying, if true, that an attempt shall be made in the
course of distributing free space to keep lines in different columns aligned.

[218] column-specification = (column [[width-specification? | height-specification? | x-origin-
specification? | y-origin-specification? | footnote-separator-specification? | header-specification?
| footer-specification?]])

If the column-set filling-direction is top-to-bottom, then the column-specification shall contain a
width-specification and an x-origin-specification. If the column-set filling-direction is right-to-

ISO/IEC 10179:1996 © ISO/IEC

218

left or left-to-right, then the column-specification shall contain a height-specification and a y-
origin-specification. These specifications give the geometry of the column.

[219] footnote-separator-specification = (footnote-separator generated-area-clauses)

A footnote-separator-specification specifies areas that shall be generated immediately before the
areas in the footnote zone if the footnote zone contains any areas.

[220] tied-column-subset-specification = (tie column-subset-specification column-subset-
specification+)

A tied-column-subset-specification specifies two or more column-subsets that are tied together.
See Figure 18.

NOTE 79 This may be used, for example, with sidenotes.

12.6.6 Paragraph Flow Object Class

A paragraph flow object represents a paragraph. It has a single principal port. The contents of
this port may be either inlined or displayed. Inline flow objects are formatted to produce line
areas. Displayed flow objects implicitly specify a break, and their areas shall be added to the
resulting sequence of areas. A paragraph flow object may only be displayed.

NOTE 80 Typically, a break implies that a new line is to be started.

The following characteristics are applicable:

— lines: is a symbol specifying how the content of the paragraph shall be broken into lines in
the formatted output, as follows:

– wrap specifying that lines shall be broken so that they fit in the available space.

– asis specifying that lines shall be broken only after character flow objects for which the
record-end?: characteristic is true.

– asis-wrap specifying that lines shall be broken after character flow objects for which
the record-end?: characteristic is true, and as necessary to make lines fit in the
available space.

– asis-truncate specifying that lines shall be broken only after character flow objects
for which the record-end?: characteristic is true, and that lines that do not fit the in the
available space shall be truncated.

– none specifying that lines shall not be broken at all.

NOTE 81 This is useful in tables when the table-auto-width feature is present to ensure that the width
of a column is made large enough so that the content of a cell fits on a single line.

© ISO/IEC ISO/IEC 10179:1996(E)

219

In all cases, line breaks shall also be allowed where explicitly specified with the break-
before: or break-after: characteristics. The initial value is wrap.

— asis-truncate-char: is either #f or a char object that determines the glyph to be
inserted when the lines: characteristic has the value asis-truncate and a line is
truncated. The initial value is #f.

— asis-wrap-char: is either #f or a char object that determines the glyph to be inserted at
the end of a line when the lines: characteristic has the value asis-wrap and the line is
broken other than after a character flow object for which the record-end?: characteristic
is true. The initial value is #f.

— asis-wrap-indent: is a length-spec giving an indent to be added to the start-indent when
the lines: characteristic has the value asis-wrap for a line following a break other than
after a character flow object for which the record-end?: characteristic is true. The initial
value is #f.

— first-line-align: is either #f, #t, or a char object. If it is not #f, then the quadding:
and last-line-quadding: characteristics are ignored for the first line of the paragraph,
and the first line shall be aligned using an alignment point in the line. If the value is a char
object, then the alignment point shall be the position point of the first area produced by the
first occurrence on the line of a character flow object with a char: characteristic equal to
that char object; otherwise, the alignment point shall be the position of the first alignment-
point flow object in the line. If alignment-point-offset: is not #f, then the first line
of the paragraph shall be aligned so that the percentage of the line length (that is, the display-
size less the applicable start and end indents) before the alignment point is equal to the value
of alignment-point-offset:. If alignment-point-offset: is #f, then the
paragraph is an externally aligned paragraph and shall have an ancestor of class table-cell or
aligned-column. Furthermore, the area container in which the areas from this paragraph are
placed shall be the same as the area container in which the areas from that ancestor are placed;
in this case, the paragraph shall be aligned so that its alignment point is aligned with other
such paragraphs in the table-column or aligned-column. If an externally aligned paragraph
occurs in a table-cell, then the table-auto-width feature shall be enabled. The initial
value is #f.

— alignment-point-offset: is either #f or a number between 0 and 100 specifying the
percentage of the line length (that is, the display-size less the start and end indents) before the
alignment point. The initial value is 50.

— ignore-record-end?: is a boolean specifying whether a record-end shall be ignored. If
this characteristic is true, then a character with the record-end? property true shall be
ignored. The initial value is #f.

— expand-tabs?: is either #f or a strictly positive integer specifying the tab interval. When
a tab interval is specified, each character flow object that has the input-tab?:
characteristic true shall be treated as equivalent to the smallest strictly positive number of
spaces that when added to the number of character flow objects following the last preceding
record-end character flow object shall be a multiple of the tab interval. The initial value is 8.

ISO/IEC 10179:1996 © ISO/IEC

220

— line-spacing: is a length-spec giving the normal spacing between the placement paths of
lines in the paragraph as described in 12.6.6.1. The initial value is 12pt.

— line-spacing-priority: is either an integer or the symbol force specifying the
priority of any conditional space before the line. This shall be interpreted in the same manner
as the priority: argument for the display-space procedure. The initial value is 0.

— min-pre-line-spacing: is a length-spec specifying the minimum size of the line in the
placement direction before the placement path as described in 12.6.6.1. A value of #f shall
also be allowed, specifying that the value is determined from the paragraph's font. The initial
value is #f.

— min-post-line-spacing: is a length-spec specifying the minimum size of the line in
the placement direction after the placement path as described in 12.6.6.1. A value of #f shall
also be allowed, specifying that the value is determined from the paragraph's font. The initial
value is #f.

— min-leading: is either #f or a length-spec specifying the minimum space between the line
areas in the placement direction as described in 12.6.6.1. A value of #f means that the line
spacing shall not be automatically adjusted to take into account the size of the content of the
lines. The initial value is #f.

— first-line-start-indent: is a length-spec giving an indent to be added to the start-
indent for the first line. The length may be negative. The initial value is 0pt.

— last-line-end-indent: is a length-spec giving an indent to be added to the end-indent
for the last line. The length may be negative. The initial value is 0pt.

— hyphenation-char: is a char that is used to determine the glyph that is inserted when
hyphenation is performed. The characteristics of the character flow object preceding the
hyphenation point shall determine the mapping of the character to a glyph, as well as the font
resource and font-size of the glyph. The initial value is #\- (the hyphen character).

— hyphenation-ladder-count: is a strictly positive integer specifying the maximum
number of consecutive lines ending with the same glyph as the glyph determined by the value
of the hyphenation-char: characteristic, or #f indicating that there is no limit. The
initial value is #f.

— hyphenation-remain-char-count: is a positive integer specifying the minimum
number of characters in a hyphenated word before the hyphenation character. This is the
minimum number of characters in the word left on the line ending with the hyphenation
character. The initial value is 2.

— hyphenation-push-char-count: is a positive integer specifying the minimum number
of characters in a hyphenated word after the hyphenation character. This is the minimum
number of characters in the word pushed to the next line after the line ending with the
hyphenation character. The initial value is 2.

© ISO/IEC ISO/IEC 10179:1996(E)

221

— hyphenation-keep: is either #f or one of the following symbols:

– spread means that both parts of a hyphenated word shall lie within a single spread.

– page means that both parts of a hyphenated word shall lie within a single page.

– column means that both parts of a hyphenated word shall lie within a single column.

The initial value is #f.

— hyphenation-exceptions: is a list of strings. Each string is a word which may contain
hyphen characters, #\-, indicating where hyphenation may occur. If a word to be
hyphenated occurs in the list, it may only be hyphenated in the specified places. The initial
value is the empty list.

NOTE 82 The determination of a word is system-dependent.

— line-breaking-method: is #f or a string specifying a public identifier for the line-
breaking-method to be used for this paragraph. The initial value is #f.

— line-composition-method: is #f or a string specifying a public identifier for the line-
composition-method to be used for this paragraph. The initial value is #f.

NOTE 83 Typically, the line-composition-method: uses characteristics declared using an application-
characteristic-declaration or an application-char-characteristic+property-declaration.

— implicit-bidi-method: is #f or a string specifying a public identifier for the method to
be used for implicitly determining the directionality of the content of the paragraph. This
includes both the writing-mode of characters, which, when this characteristic is #f, is
specified with the writing-mode characteristic, and how portions of content with a common
writing-mode are nested within each other, which, when this characteristic is #f, is specified
with embedded-text flow objects. It is part of the semantics of the method which
characteristics of character flow objects, if any, it uses. A method may be specific to a
particular character repertoire, in which case, it may not make use of any characteristics. It
may be part of the semantics of a method for certain glyph substitutions to be applied
depending on the writing-mode that is determined for a character, and possibly also on
characteristics of the character. The initial value is #f.

— glyph-alignment-mode: is one of the symbols base, center, top, bottom, or font
specifying the alignment mode to be used for glyphs. font means that the nominal alignment
mode of the font in the flow object's writing-mode should be used. The initial value is font.

— font-family-name: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial value is iso-
serif.

NOTE 84 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font families iso-serif,
iso-sanserif, and iso-monospace.

ISO/IEC 10179:1996 © ISO/IEC

222

This characteristic is applicable when the glyph-alignment-mode: is font or when
min-pre-line-spacing: or min-post-line-spacing: are #f.

— font-weight: is either #f, indicating that any font weight is acceptable, or one of the
symbols not-applicable, ultra-light, extra-light, light, semi-light,
medium, semi-bold, bold, extra-bold, or ultra-bold, giving the weight property
of the desired font resource. The initial value is medium. This characteristic is applicable
when the glyph-alignment-mode: is font or when min-pre-line-spacing: or
min-post-line-spacing: is #f.

— font-posture: is either #f, indicating that any posture is acceptable, or one of the symbols
not-applicable, upright, oblique, back-slanted-oblique, italic, or
back-slanted-italic, giving the posture property of the desired font resource. The
initial value is upright. This characteristic is applicable when the glyph-alignment-
mode: is font or when min-pre-line-spacing: or min-post-line-spacing: is
#f.

— font-structure: is either #f, indicating that any structure is applicable, or one of the
symbols not-applicable, solid, or outline. The initial value is solid. This
characteristic is applicable when the glyph-alignment-mode: is font or when min-
pre-line-spacing: or min-post-line-spacing: is #f.

— font-proportionate-width: is either #f, indicating that any proportionate width is
acceptable, or one of the symbols not-applicable, ultra-condensed, extra-
condensed, condensed, semi-condensed, medium, semi-expanded, expanded,
extra-expanded, or ultra-expanded. The initial value is medium. This characteristic
is applicable when the glyph-alignment-mode: is font or when min-pre-line-
spacing: or min-post-line-spacing: is #f.

— font-name: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of the font-family-name:, font-weight:, font-posture:,
font-structure:, and font-proportionate-width: characteristics are not used in
font selection. The initial value is #f. This characteristic is applicable when the glyph-
alignment-mode: is font or when min-pre-line-spacing: or min-post-line-
spacing: is #f.

— font-size: is a length specifying the body size to which the font resource should be
scaled. The initial value is 10pt. This characteristic is applicable when min-pre-line-
spacing: or min-post-line-spacing: is #f.

— numbered-lines?: is #t if the lines produced by this paragraph shall be considered for the
purposes of line numbering, and #f otherwise. The initial value is #t.

— line-number: is either #f or an unlabeled sosofo containing only inline flow objects. If it
is a sosofo, then for each line in the paragraph, the sosofo is formatted to produce a single
inline area that is positioned as an attachment area for the line. See 12.3.4. The initial value
is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

223

NOTES

85 The sosofo may include indirect flow objects that refer to the line’s number by using the line-number
procedure.

86 The rules for the positioning of an attachment area mean that line numbers are usually positioned so that the
edges nearest the line are aligned. Different alignments can be achieved by using the line-field flow object class.

— line-number-side: is one of the symbols start, end, spread-inside, spread-
outside, page-inside, or page-outside specifying the side of the line for the
attachment specified with the line-number: characteristic. A value of spread-inside
or spread-outside shall be allowed only if the flow object has an ancestor of class page-
sequence. A value of page-inside or page-outside shall be allowed only if the flow
object has an ancestor of column-set-sequence.

— line-number-sep: is a length-spec specifying the separation for the attachment specified
with the line-number: characteristic.

— quadding: is one of the symbols start, end, spread-inside, spread-outside,
page-inside, page-outside, center, or justify specifying the alignment of lines
other than the last line in the paragraph in the direction determined by the writing-mode. A
value of spread-inside or spread-outside shall be allowed only if the flow object
has an ancestor of class page-sequence. A value of page-inside or page-outside shall
be allowed only if the flow object has an ancestor of column-set-sequence. The initial value is
start.

— last-line-quadding: is one of the symbols relative, start, end, spread-
inside, spread-outside, page-inside, page-outside, center, or justify
specifying the alignment of the last line of the paragraph in the direction determined by the
writing-mode. This shall apply also to any line in the paragraph that immediately precedes a
break. A value of relative means that the value of the quadding: characteristic shall be
used, except when that value is justify, in which case, a value of start shall be used. A
value of spread-inside or spread-outside shall be allowed only if the flow object
has an ancestor of class page-sequence. A value of page-inside or page-outside shall
be allowed only if the flow object has an ancestor of column-set-sequence. The initial value is
relative.

— last-line-justify-limit: is a length-spec specifying the maximum amount of free
space in the last line that shall cause the last line to be justified rather than aligned as specified
by the last-line-quadding: characteristic. The initial value is 0.

— justify-glyph-space-max-add: is a length-spec specifying the maximum space that
may be added between glyphs in order to justify a line. The initial value is 0pt.

— justify-glyph-space-max-remove: is a length-spec specifying the maximum space
that may be removed between glyphs in order to justify a line. The initial value is 0pt.

ISO/IEC 10179:1996 © ISO/IEC

224

— hanging-punct?: is a boolean specifying whether the paragraph shall be formatted with
the punctuation characters hanging into the margin or gutter of a column. The initial value is
#f.

— widow-count: is a positive integer specifying the minimum number of lines of the
paragraph that shall be kept together at the beginning of an area. If the widow-count: is n,
then no break shall be allowed between the last n lines of the paragraph. The initial value is 2.

— orphan-count: is a positive integer specifying the minimum number of lines of the
paragraph that shall be kept together at the end of an area. If the orphan-count: is n, then
no break shall be allowed between the first n lines of the paragraph. The initial value is 2.

— language: is #f or a symbol specifying the ISO 639 language code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— country: is #f or a symbol specifying the ISO 3166 country code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. This controls the orientation of
the placement path of the lines.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This applies only to lines from the
paragraph itself.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This applies only to lines from the
paragraph itself.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

225

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

ISO/IEC 10179:1996 © ISO/IEC

226

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

The line-progression direction for inline areas in the paragraph is the placement direction of the
paragraph.

12.6.6.1 Line Spacing

The size of the line areas produced by the paragraph shall be min-pre-line-spacing:
before the placement path and min-post-line-spacing: after the placement path. If min-
leading: is not #f, the size of the line shall be increased to cover all the areas in the line. If the
previous area is a line, then conditional space shall be added, if necessary, before the line so that
the total distance between the previous line's placement path and this placement path is the value
of the line-spacing: characteristic. If the previous area is not a line, then conditional space
shall be added, if necessary, before the line so that the total distance between the end of the
previous area and this placement path is the value of the line-spacing: characteristic less the
value of the min-post-line-spacing: characteristic. If min-leading: is not #f, then
additional conditional space shall be added, if required, to make the space between the previous
area and this one no less than the value of min-leading:. The conditional space has the
priority specified by the line-spacing-priority: characteristic.

12.6.7 Paragraph-break Flow Object Class

Paragraph-break flow objects can be used to make a paragraph flow object represent a sequence
of paragraphs. The paragraphs are separated by paragraph-break flow objects, which are atomic.
Paragraph-break flow objects are allowed only in paragraph flow objects. All the characteristics
that are applicable to a paragraph flow object are also applicable to a paragraph-break flow
object. The characteristics of a paragraph-break flow object determine how the portion of the
content of the paragraph flow object following that paragraph-break flow object up to the next
paragraph-break flow object, if any, is formatted.

NOTE 87 The paragraph-break flow object inherits from its containing paragraph flow object in the usual way.

The first-line-start-indent: characteristic is applicable to the line following a
paragraph-break flow object, and the last-line-end-indent: characteristic is applicable
to the line preceding a paragraph-break flow object.

NOTE 88 It is recommended that paragraph-break flow objects be used only if there is no other way of specifying the
desired formatting.

12.6.8 Line-field Flow Object Class

The line-field flow object class is inlined and has inline content. It produces a single inline area.
The width of this area is equal to the value of the field-width: characteristic. If the content
of a line-field area cannot fit in this width, then the area grows to accommodate the content and,
if the line-field occurs in a paragraph, there shall be a break after the line-field.

© ISO/IEC ISO/IEC 10179:1996(E)

227

It has a single principal port.

It has the following characteristics:

— field-width: is a length-spec specifying the width of the area produced by the flow
object. The initial value is 0pt.

— field-align: is one of the symbols start, end, or center specifying the alignment of
the contents of the field. The initial value is start.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0.

A line-break shall be allowed immediately before and after a line-field used in a paragraph.

12.6.9 Sideline Flow Object Class

Use of this flow object requires the sideline feature.

A sideline flow object is used to contain flow objects that have an attachment area (see 12.3.4)
consisting of a line parallel to the placement direction. A sideline flow object has a single
principal port which can contain both inlined and displayed flow objects. For each display area
produced by its content, the sideline flow object adds an attachment. For each inline area
produced by its content, the sideline flow object annotates that area so as to cause the paragraph
in which the flow object occurs to add an attachment area to the line in which that inline area
occurs.

NOTE 89 Sidelines are often used to mark changes.

This is illustrated in Figure 14.

ISO/IEC 10179:1996 © ISO/IEC

228

A sideline flow object has the following characteristics:

— sideline-side: is one of the symbols start, end, both, spread-inside, spread-
outside, page-inside, or page-outside, specifying the side of the line area for the
sideline attachment. A value of spread-inside or spread-outside is allowed only if
the flow object has an ancestor of class page-sequence. A value of page-inside or page-
outside is allowed only if the flow object has an ancestor of column-set-sequence. A value
of both means that there shall be a sideline attachment on both sides of the line area
containing the text.

— sideline-sep: is a length-spec specifying the separation for the sideline attachment. A
negative value is allowed.

— color: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— layer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— line-cap: is one of the symbols butt, round, or square specifying the cap style for the
line. The initial value is butt.

— line-dash: is a list of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
0pt.

— line-thickness: is a length that specifies the thickness of the line or lines. The initial
value is 1pt.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1.

— line-sep: is a length that gives the distance between the centers of parallel lines. The
initial value is 1pt.

Sidelines on consecutive areas in a single area container which have no space between them
should be drawn as a single line.

12.6.10 Anchor Flow Object Class

Use of this flow object requires the page feature.

An anchor flow object is atomic and serves only as a flow object to be synchronized. It may be
either inlined or displayed. If inlined, it produces a single area with zero size in the escapement
direction. If displayed, it produces a single area with zero size in the placement direction. The

© ISO/IEC ISO/IEC 10179:1996(E)

229

resulting area will be kept with the first area resulting from the flow object that follows unless the
anchor-keep-with-previous?: characteristic is true.

Anchor flow objects have the following characteristics:

— anchor-keep-with-previous?: is a boolean specifying whether the resulting area
shall be kept with the last area of the previous flow object instead of the first area resulting
from the following flow object. The initial value is #f.

— display?: is a boolean specifying whether the flow object is displayed rather than inlined.
This characteristic is not inherited. The default value is #f.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0.

12.6.11 Character Flow Object Class

A character flow object is atomic. Flow objects of this class can only be inlined. Flow objects of
this class have the following characteristics:

— char: is an object of type char specifying the character. This characteristic is not inherited.
If it is not specified, and there is a current node, and the current node has a char property,
then the value of the char property shall be used as the value of this characteristic. If the
value of the char-map: characteristic is not #f, then it is applied to the value of the char

ISO/IEC 10179:1996 © ISO/IEC

230

property, and the result is used as the value of the characteristic. This characteristic may be
used to control hyphenation as well as possibly being used in the selection of the glyph.

— char-map: is either #f or a procedure that is applied in the construction of the default value
of the char: characteristic. The initial value is #f.

— glyph-id: is an object of type glyph-id specifying the glyph that shall be imaged in the
resulting area or #f if no image is associated with the resulting area. This characteristic is not
inherited. If this characteristic is not specified, it is computed using the value of the char:
characteristic: if the blank? property of the character is true, then the value of the
characteristic shall be #f; otherwise, the value of the characteristic shall be the value of the
glyph-id property of the character, which shall not be #f in this case.

— glyph-subst-table: is either #f or a glyph-subst-table or a list of glyph-subst-tables
specifying substitutions to be performed on the glyph-id specified by the glyph-id:
characteristic. If the value is a list, then the substitutions shall be performed in the specified
order. The initial value is #f.

— glyph-subst-method: is either #f or a string or a list of strings. Each string shall be a
public identifier specifying a method for performing glyph substitution. The initial value is #f.

NOTE 90 This allows for context-dependent glyph substitution and for glyph substitutions that involve multiple
glyphs.

— glyph-reorder-method: is either #f or a string or a list of strings. Each string shall be a
public identifier specifying a method for reordering glyphs. The initial value is #f.

NOTE 91 This is typically used for Indic scripts.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. This controls which writing-
mode of the font resource is used for the metrics of the glyph.

— font-family-name: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial value is iso-
serif.

NOTE 92 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font families iso-serif,
iso-sanserif, and iso-monospace.

— font-weight: is either #f, indicating that any font weight is acceptable, or one of the
symbols not-applicable, ultra-light, extra-light, light, semi-light,
medium, semi-bold, bold, extra-bold, or ultra-bold, giving the weight property
of the desired font resource. The initial value is medium.

— font-posture: is either #f, indicating that any posture is acceptable, or one of the symbols
not-applicable, upright, oblique, back-slanted-oblique, italic, or

© ISO/IEC ISO/IEC 10179:1996(E)

231

back-slanted-italic, giving the posture property of the desired font resource. The
initial value is upright. In addition, the value math is allowed specifying that the font
posture shall be the value of the math-font-posture: characteristic.

— math-font-posture: specifies the posture property of the desired font resource to be
used when the font-posture: characteristic has the value math. It shall have the value #f
or one of the symbols not-applicable, upright, oblique, back-slanted-
oblique, italic, or back-slanted-italic. This characteristic is not inherited. The
default value is the value of the math-font-posture character property of the char:
characteristic.

— font-structure: is either #f, indicating that any structure is applicable, or one of the
symbols not-applicable, solid, or outline. The initial value is solid.

— font-proportionate-width: is either #f, indicating that any proportionate width is
acceptable, or one of the symbols not-applicable, ultra-condensed, extra-
condensed, condensed, semi-condensed, medium, semi-expanded, expanded,
extra-expanded, or ultra-expanded. The initial value is medium.

— font-name: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of the font-family-name:, font-weight:, font-posture:,
font-structure:, and font-proportionate-width: characteristics are not used in
font selection. The initial value is #f.

— font-size: is a length specifying the body size to which the font resource should be
scaled. The initial value is 10pt.

— stretch-factor: is a number specifying the factor by which the character should be
stretched. This characteristic is not inherited. The default is 1.

NOTES

93 It is implementation- and font-dependent how this is achieved.

94 This is designed primarily for math delimiters of various kinds. The size of the delimiter is determined by the
product of the font-size and the stretch-factor, but the visual appearance is designed to be consistent with glyphs
with that font-size.

— hyphenate?: is a boolean specifying whether hyphenation is allowed. The initial value is
#f.

— hyphenation-method: is a string specifying a public identifier for a hyphenation method
or #f. The initial value is #f.

— kern?: is a boolean specifying whether kerning (escapement adjustment) is allowed. If true,
then kerning shall be performed as specified in 8.8.1.6 of ISO 9541-1 according to the kern-

ISO/IEC 10179:1996 © ISO/IEC

232

mode: characteristic. Escapement adjustment is not performed for glyphs whose escapement
adjustment indicator property has the value non-adjusting. The initial value is #f.

— kern-mode: is one of the symbols loose, normal, kern, tight, or touch specifying
the escapement adjustment mode. The initial value is normal.

— ligature?: is a boolean specifying whether ligatures are allowed. The initial value is #f.

— allowed-ligatures: is a list of allowed ligatures. Each member of the list shall be
either a glyph-id or a char. Only ligatures whose result is one of the glyph-ids in the list or is
equal to the glyph-id property of one of the chars in the list shall be used. The initial value is
the empty list.

— space?: is a boolean specifying whether the flow object is a space. This characteristic is
not inherited. This affects only whether the inline-space specified as the value of the
inline-space-space: characteristic is applicable to this flow object. The default value
is the value of the space? character property of the char: characteristic.

— inline-space-space: is an object of type inline-space which is applicable to the flow
object if it is a space. This is in addition to any space from the escapement-space-
before: and escapement-space-after: characteristics.

— escapement-space-before: is an object of type inline-space specifying space to be
added before the first result area in the escapement direction. The initial value is (inline-
space 0pt).

— escapement-space-after: is an object of type inline-space specifying space to be
added after the last result area in the escapement direction. The initial value is (inline-
space 0pt).

— record-end?: is a boolean specifying whether the flow object is a record-end. Flow
objects for which the record-end?: characteristic is true shall be treated differently by
paragraphs for which the lines: characteristic has the value asis or for which the
ignore-record-end?: characteristic is true. This characteristic is not inherited. The
default value is the value of the record-end? character property of the char:
characteristic.

— input-tab?: is a boolean specifying whether the flow object is a tab on input. This
characteristic is not inherited. Character flow objects that are tabs shall be treated differently
by paragraphs for which the expand-tabs property is not #f. The default value is the value
of the input-tab? character property of the char: characteristic if the char:
characteristic was not explicitly specified, and otherwise #f.

— input-whitespace-treatment: is one of the following symbols:

– preserve specifying no special action.

© ISO/IEC ISO/IEC 10179:1996(E)

233

– collapse specifying that a character flow object for which the input-
whitespace?: characteristic is true shall be ignored if the preceding flow object was a
character flow object also with the input-whitespace?: characteristic true.

– ignore specifying that any character flow object for which the input-whitespace?:
characteristic is true shall be ignored.

The initial value is preserve.

— input-whitespace?: is a boolean specifying whether the character shall be considered
as whitespace on input. This characteristic is not inherited. The default value is the value of
the input-whitespace? character property of the char: characteristic if the char:
characteristic was not explicitly specified, and otherwise #f.

— punct?: is a boolean specifying whether the character should be treated as punctuation for
the purposes of formatting the paragraph with hanging punctuation. This shall only take
effect if the hanging-punct?: characteristic of the paragraph is true. This characteristic is
not inherited. The default value is the value of the punct? character property of the char:
characteristic.

— break-before-priority: is an integer that affects whether a break is allowed before
this character. The break priority of a potential breakpoint is the maximum of the break-after-
priority of the character immediately preceding the potential breakpoint and the break-before-
priorities of the character immediately following the potential breakpoint, and any characters
immediately following that character for which the drop-after-line-break?:
characteristic is true. A break is allowed at a potential breakpoint only if the break priority is
even. This characteristic is not inherited. The default value is the value of the break-
before-priority character property of the char: characteristic.

NOTE 95 For example, for ideographs, the break-before-priority: and break-after-priority:
characteristics would typically be 0 and 0, for a Latin letter 1 and 1, and for a space character 2 and 3.

— break-after-priority: is an integer that affects whether a break is allowed after this
character as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is the value of the
break-after-priority character property of the char: characteristic.

— drop-after-line-break?: is a boolean specifying whether this character should be
discarded if it follows a line break. This characteristic is not inherited. The default value is
the value of the drop-after-line-break? character property of the char:
characteristic.

— drop-unless-before-line-break?: is a boolean specifying whether this character
shall be discarded unless it precedes a line break. This characteristic is not inherited. The
default value is the value of the drop-unless-before-line-break? character
property of the char: characteristic.

ISO/IEC 10179:1996 © ISO/IEC

234

— math-class: is one of the symbols ordinary, operator, binary, relation,
opening, closing, punctuation, inner, or space. This is used by the flow object
classes for mathematical formulae to adjust the spacing of the character. A value of space is
used for character flow objects that specify additional space; flow objects with this math-class
should be ignored when adjusting the spacing of another character flow object. This
characteristic is not inherited. The default value is the value of the math-class character
property of the char: characteristic.

— script: is a string specifying a formal public identifier that identifies the character's script
or #f if the character is not associated with any single script. This characteristic is not
inherited. The default value is the value of the script character property of the char:
characteristic.

— position-point-shift: is a length-spec specifying a shift of the position point in the
line-progression direction. The initial value is 0pt.

NOTE 96 Shifting the position point by a positive amount in the line-progression direction has the effect of
shifting the areas produced by flow object in the opposite direction to the line-progression direction.

— language: is #f or a symbol specifying the ISO 639 language code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— country: is #f or a symbol specifying the ISO 3166 country code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— color: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— layer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

A character flow object is formatted to produce a single inline area. This may be merged with
adjacent inline areas if the ligature?: property is true. The position point of the inline area is
the position point property of the glyph specified in the font resource for the specified writing-
mode. The escapement direction is the direction between the position point and escapement
points as specified in the font resource for the specified writing-mode. The size of the area in the
escapement direction is the distance between the position and escapement points. The size of the
area before and after the placement path in the line-progression direction is the smallest that will
enclose the extent of the glyph in those directions as specified in the font resource for the
specified writing-mode. If the nominal alignment mode of the font resource for the character
flow object's writing-mode is not the same as the paragraph's alignment mode, then the glyph
area is automatically adjusted as specified by the alignment mode property in the font resource
for the specified writing-mode.

© ISO/IEC ISO/IEC 10179:1996(E)

235

12.6.11.1 Character Properties

Character properties are used to determine the default values of certain non-inherited
characteristics of character flow objects. In addition, character properties are accessible with the
char-property procedure. The properties of a character do not affect how the flow objects
are formatted. They are only used during the construction of the flow object tree and may affect
how the flow object tree is constructed.

NOTE 97 Character properties should not be confused with properties of nodes of class data-char.

The following character properties are pre-defined for the style language:

— space? is a boolean specifying whether the character is a space. The default value is #f.

— record-end? is a boolean specifying whether the character is a record-end. The default
value is #f. Both the space? and record-end? properties are usually true for a record-end
character.

— blank? is a boolean which is true if the character has no glyph associated with it. The
default value is #f.

— input-tab? is a boolean specifying whether the character is a tab on input. The default
value is #f.

— input-whitespace? is a boolean specifying whether the character should be considered
as whitespace on input. The default value is #f.

— punct? is a boolean which is true if the character is treated as a punctuation character for the
purposes of hanging punctuation. The default value is #f.

— script is a string specifying a formal public identifier that identifies the character's script or
#f if the character is not associated with any single script. The following script public
identifiers are defined in this International Standard:

– ISO/IEC 10179:1996//Script::Latin

– ISO/IEC 10179:1996//Script::Greek

– ISO/IEC 10179:1996//Script::Cyrillic

– ISO/IEC 10179:1996//Script::Arabic

– ISO/IEC 10179:1996//Script::Hebrew

– ISO/IEC 10179:1996//Script::Armenian

– ISO/IEC 10179:1996//Script::Georgian

ISO/IEC 10179:1996 © ISO/IEC

236

– ISO/IEC 10179:1996//Script::Devanagari

– ISO/IEC 10179:1996//Script::Gujarati

– ISO/IEC 10179:1996//Script::Gurmukhi

– ISO/IEC 10179:1996//Script::Bengali

– ISO/IEC 10179:1996//Script::Oriya

– ISO/IEC 10179:1996//Script::Telugu

– ISO/IEC 10179:1996//Script::Tamil

– ISO/IEC 10179:1996//Script::Kannada

– ISO/IEC 10179:1996//Script::Malayalam

– ISO/IEC 10179:1996//Script::Thai

– ISO/IEC 10179:1996//Script::Lao

– ISO/IEC 10179:1996//Script::Han

– ISO/IEC 10179:1996//Script::Bopomofo

– ISO/IEC 10179:1996//Script::Hiragana

– ISO/IEC 10179:1996//Script::Katakana

– ISO/IEC 10179:1996//Script::Hangul

– ISO/IEC 10179:1996//Script::Burmese

– ISO/IEC 10179:1996//Script::Khmer

– ISO/IEC 10179:1996//Script::Mongolian

– ISO/IEC 10179:1996//Script::Ethiopian

– ISO/IEC 10179:1996//Script::Sinhala

– ISO/IEC 10179:1996//Script::Tibetan

– ISO/IEC 10179:1996//Script::Punctuation

– ISO/IEC 10179:1996//Script::Symbol

© ISO/IEC ISO/IEC 10179:1996(E)

237

– ISO/IEC 10179:1996//Script::Digit

NOTE 98 Characters representing punctuation and symbols typically have a script value of #f.

— glyph-id is an object of type glyph-id representing the nominal glyph to be used for this
character or #f if the character has no glyph. If the character was declared using the
standard-chars architectural form, then the default value is the glyph-id for the nominal
glyph for that character, if there is one, and otherwise #f. Otherwise, the default value is #f.

NOTE 99 The nominal glyph-id may be transformed using one or more glyph-substitution-tables. This allows for
selective mapping to, for example, small caps or old style glyphs.

— drop-after-line-break? is a boolean specifying whether the character is dropped
when it immediately follows a line break. The default value is #f.

NOTE 100 This is usually true for a space character.

— drop-unless-before-line-break?: is a boolean specifying whether this character
shall be discarded unless it precedes a line break. The default value is #f.

NOTE 101 This is usually true for a soft hyphen.

— break-before-priority is an integer that affects whether a break is allowed before this
character in the manner described in the specification for the break-before-priority:
characteristic of the character flow object. The default value is 0.

— break-after-priority is an integer that affects whether a break is allowed after this
character in the manner described in the specification for the break-after-priority:
characteristic of the character flow object. The default value is 0.

— math-class is one of the symbols ordinary, operator, binary, relation,
opening, closing, punctuation, or inner. The default value is ordinary.

— math-font-posture is either #f, meaning that any posture is acceptable, or one of the
symbols not-applicable, upright, oblique, back-slanted-oblique, italic,
back-slanted-italic, or math giving the posture property of the font resource to be
used when the font-posture: characteristic has the value math.

NOTE 102 This set of character properties is not exhaustive. Additional properties may be added using an added-
char-properties-declaration.

12.6.12 Leader Flow Object Class

A leader flow object can only be inlined. A leader flow object has a single principal port
containing the inline flow objects to be repeated. A leader flow object class has the following
characteristics:

— length: is a length-spec specifying the length of the leader. This characteristic is not
inherited. If this characteristic is not specified, the length of the leader shall be determined by

ISO/IEC 10179:1996 © ISO/IEC

238

the context in which it is used. The length shall be specified for a leader in a paragraph unless
the leader occurs on the last line.

— truncate-leader?: is a boolean specifying whether the final repetition of the sequence
of inline flow objects that is the content of this flow object may be truncated. The initial value
is #f.

— align-leader?: is a boolean specifying whether the leaders shall be aligned against an
imaginary grid associated with the page. The initial value is #t.

— min-leader-repeat: is a strictly positive integer specifying the minimum number of
times that the pattern shall be repeated. This characteristic is applicable only if length: is
not specified. If the available space is insufficient for the leader to be repeated this number of
times, then the leader shall be blank. When a leader occurs in a paragraph, the available space
consists of the display-size of the paragraph less the sum of the start-indent applicable to the
last line, the last-line-end-indent, the total length of everything following the leader in the
paragraph, and the smallest portion of the paragraph preceding the leader that shall be kept
with the leader. The initial value is 1.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0.

12.6.13 Embedded-text Flow Object Class

The embedded-text flow object class is used for embedding right-to-left text within left-to-right
text or vice-versa. This flow object class shall only be inlined. It has a single principal port.

An embedded text flow object has the following characteristics:

— direction: is one of the symbols left-to-right or right-to-left. It shall be
parallel to the writing-mode of the paragraph. This characteristic is not inherited and shall be
specified.

— language: is #f or a symbol specifying the ISO 639 language code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

239

— country: is #f or a symbol specifying the ISO 3166 country code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

The effect of the embedded text flow object is to make any line fragments that contain the
content of the embedded text flow object use the specified direction as their inline-progression
direction. For example, suppose a line contains four inline areas whose order (in the flow object
stream) is A, B, C, D, where the B and C were contained in an embedded text flow object whose
direction was the reverse of the paragraph's writing-mode. Then the line shall be built up as
follows: first a partial line shall be built up containing B and C by placing the position point of C
on the escapement point of B. Then the resulting partial line area shall be treated as an inline
area whose position point is the escapement point of C and whose escapement point is the
position point of B. The line shall then consist of A, then the inline partial line area produced
from B and C, and finally D all placed using the writing-mode of the paragraph. See Figure 12.

12.6.14 Rule Flow Object Class

A rule is used to specify a straight line. Rules may be inlined or displayed. A rule flow object
class has the following characteristics:

— orientation: is one of the symbols horizontal, vertical, escapement, or line-
progression which specifies the orientation of the rule and also determines whether the
rule is inlined or displayed. This characteristic is not inherited. It has no default value and so
it shall be specified.

If the orientation is horizontal or vertical, then the rule is displayed. In this case, if
the orientation of the rule is perpendicular to the placement direction, then the size of the area
in the placement direction shall be 0; otherwise, the size of the area in the placement direction
shall be equal to the length of the rule.

NOTE 103 The size of the area is distinct from the thickness of the rule.

If the orientation is escapement, then the rule shall be inlined. In this case, the rule shall be
centered in the line-progression direction about the position point, and the escapement shall
be equal to the length of the rule. The rule may be offset in the line-progression direction
using the position-point-shift: characteristic. If the orientation is line-
progression, the rule shall be inlined. In this case, the rule shall start at the position point
and extend in the line-progression direction the length of the rule. The escapement shall be 0.

NOTE 104 Thus, a rule whose orientation is line-progression does not affect the positioning of subsequent
flow objects.

— length: is a length specifying the length of the rule. This characteristic is not inherited. If
this characteristic is not specified, the length of the rule shall be determined by the context in
which it is used.

ISO/IEC 10179:1996 © ISO/IEC

240

— color: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— layer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— line-cap: is one of the symbols butt, round, or square specifying the cap style for the
line. The initial value is butt.

— line-dash: is a list of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
0pt.

— line-thickness: is a length that specifies the thickness of the line or lines. The initial
value is 1pt.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1.

— line-sep: is a length that gives the distance between the centers of parallel lines. The
initial value is 1pt.

— position-point-shift: is a length-spec specifying a shift of the position point in the
line-progression direction. The initial value is 0pt. This applies only if the flow object is
inlined.

NOTE 105 Shifting the position point by a positive amount in the line-progression direction has the effect of
shifting the areas produced by flow object in the opposite direction to the line-progression direction.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:

© ISO/IEC ISO/IEC 10179:1996(E)

241

characteristic. This characteristic is not inherited. The default value is 0. This applies only if
the flow object is inlined.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— display-alignment: is one of the symbols start, center, end, inside, or
outside specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value is start. This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

– if the alignment is start, the space is all added at the end in the direction of the writing-
mode;

– if the alignment is end, the space is all added at the start in the direction of the writing-
mode;

– if the alignment is center, the space is added equally at the start and the end in the
direction of the writing-mode;

– if the alignment is inside, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular to the binding-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

– if the alignment is outside, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
binding-edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This applies only if the flow object is displayed.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This applies only if the flow object
is displayed.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This applies only if the flow object is
displayed.

ISO/IEC 10179:1996 © ISO/IEC

242

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. This applies only if the flow
object is displayed.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

© ISO/IEC ISO/IEC 10179:1996(E)

243

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

12.6.15 External-graphic Flow Object Class

The external-graphic flow object class is used for graphics contained in an external entity. Flow
objects of this class may be inlined or displayed. This flow object is atomic. Flow objects of this
class have the following characteristics:

— display?: is a boolean specifying whether the flow object shall be displayed rather than
inlined. This characteristic is not inherited. The default value is #f.

— scale: is either a number or a list of two numbers or one of the symbols max or max-
uniform. If it is a number, then the graphic shall be scaled by that factor in both the
horizontal and vertical directions. If it is a list of two numbers, then the graphic shall be
scaled by the factor specified by the first number in the horizontal direction and by the factor
specified by the second number in the vertical direction. If it is the symbol max-uniform,
then it shall be scaled uniformly in the horizontal and vertical directions so that its size in
either the horizontal or vertical direction is as large as allowed. If it is the symbol max, then it
shall be scaled in the horizontal and vertical directions so that its size in the horizontal and
vertical directions is as large as allowed. This characteristic is not inherited. The default
value is max-uniform.

ISO/IEC 10179:1996 © ISO/IEC

244

— max-width: is a length-spec specifying the maximum allowed width of the resulting area
when scale: is max or max-uniform. This characteristic is not inherited.

— max-height: is a length-spec specifying the maximum allowed height of the resulting area
when scale: is max or max-uniform. This characteristic is not inherited.

— entity-system-id: is a string specifying the system identifier of the entity containing
the external graphic or #f if the entity has no system identifier. This characteristic is not
inherited and shall be specified.

NOTE 106 The external identifier specified in an entity declaration in the source document shall be resolved into
a system identifier by the entity manager of the SGML system. The resulting system identifier is available as the
effective-system-id node property in the source grove.

— notation-system-id: is a string specifying the system identifier of the notation of the
external graphic. This characteristic is not inherited and shall be specified.

NOTE 107 The external identifier specified in a notation declaration in the source document shall be resolved into
a system identifier by the entity manager of the SGML system. The resulting system identifier is available as the
effective-notation-system-id node property in the source grove. The manner in which this system
identifier identifies the processor for the notation is system-dependent.

— color: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— layer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— display-alignment: is one of the symbols start, center, end, inside, or
outside specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value is start. This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

– if the alignment is start, the space is all added at the end in the direction of the writing-
mode;

– if the alignment is end, the space is all added at the start in the direction of the writing-
mode;

© ISO/IEC ISO/IEC 10179:1996(E)

245

– if the alignment is center, the space is added equally at the start and the end in the
direction of the writing-mode;

– if the alignment is inside, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular to the binding-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

– if the alignment is outside, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
binding-edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This applies only if the flow object is displayed.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This applies only if the flow object
is displayed.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This applies only if the flow object is
displayed.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. This applies only if the flow
object is displayed.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

ISO/IEC 10179:1996 © ISO/IEC

246

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

© ISO/IEC ISO/IEC 10179:1996(E)

247

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

— position-point-x: is a length-spec giving the x-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This shall apply only when the
flow object is inlined. This characteristic is not inherited. If this characteristic is not
specified and the writing-mode: characteristic is left-to-right or right-to-
left, then the value shall default to 0.

— position-point-y: is a length-spec giving the y-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified and
the writing-mode: characteristic is top-to-bottom, then the value shall default to 0.

— escapement-direction: is one of the symbols top-to-bottom, left-to-right,
bottom-to-top, or right-to-left specifying the escapement direction of the resulting
area relative to the area's coordinate system. For this purpose, the area is considered to have a
coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified,
then its value shall default to the value of the writing-mode: characteristic.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.
This applies only if the flow object is inlined.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0. This applies only if
the flow object is inlined.

ISO/IEC 10179:1996 © ISO/IEC

248

12.6.16 Included-container-area Flow Object Class

An included-container-area flow object results in a sequence of one or more areas each of which
is specified as an area container. An included-container-area flow object has a single principal
port. The contents of this port shall be displayed.

Flow objects of the included-container-area class may be inlined or displayed.

The size of the container shall be fixed in the direction perpendicular to the area container’s
filling-direction. It shall be specified unless the flow object is being displayed and the filling-
direction is the same as the placement direction, in which case the size is the display-size. It need
not be specified in the filling-direction. In this case, it shall be determined by the size of the child
areas. If the included-container-area flow object is displayed and its placement direction is
parallel to the area container’s filling-direction and the size in the filling-direction is not
specified, then the size in the filling-direction shall be limited by the size of its parent in that
direction. If the flow object is being displayed and its placement direction is perpendicular to the
area container’s filling direction and the size in the filling-direction is not specified, then the size
in the filling-direction shall be limited to the display-size.

An included-container-area has the following characteristics:

— display?: is a boolean specifying whether the flow object shall be displayed rather than
inlined. This characteristic is not inherited. The default value is #f.

— filling-direction: is one of the symbols top-to-bottom, left-to-right, or
right-to-left. It specifies the filling-direction of the area container. The filling-
direction of the area container may be perpendicular to the placement direction. The initial
value is top-to-bottom.

— width: is a length specifying the width of the area container. This characteristic is not
inherited.

— height: is a length specifying the height of the area container. This characteristic is not
inherited.

— contents-alignment: is one of the symbols start, end, center, or justify
specifying the alignment of the child areas within the area container in the filling-direction of
the area container. The initial value is start.

— overflow-action: is one of the symbols truncate, error, or repeat specifying the
action to be taken if the content of the area container does not fit within the dimensions
specified for the area container. The initial value is repeat.

— contents-rotation: is one of the integers 0, 90, 180, or 270 specifying the counter-
clockwise rotation to be applied to the area contents. This characteristic is not inherited. The
default is 0.

© ISO/IEC ISO/IEC 10179:1996(E)

249

— scale: is a number specifying a scaling factor to be applied to the content of the area.
Numbers less than 1 shall make the content smaller. Numbers greater than 1 shall make it
larger. This characteristic is not inherited. If not specified, it shall default to 1.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— display-alignment: is one of the symbols start, center, end, inside, or
outside specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value is start. This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

– if the alignment is start, the space is all added at the end in the direction of the writing-
mode;

– if the alignment is end, the space is all added at the start in the direction of the writing-
mode;

– if the alignment is center, the space is added equally at the start and the end in the
direction of the writing-mode;

– if the alignment is inside, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular to the binding-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

– if the alignment is outside, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
binding-edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This applies only if the flow object is displayed.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This applies only if the flow object
is displayed.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This applies only if the flow object is
displayed.

ISO/IEC 10179:1996 © ISO/IEC

250

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. This applies only if the flow
object is displayed.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

© ISO/IEC ISO/IEC 10179:1996(E)

251

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

— position-point-x: is a length-spec giving the x-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This shall apply only when the
flow object is inlined. This characteristic is not inherited. If this characteristic is not
specified and the writing-mode: characteristic is left-to-right or right-to-
left, then the value shall default to 0.

— position-point-y: is a length-spec giving the y-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified and
the writing-mode: characteristic is top-to-bottom, then the value shall default to 0.

— escapement-direction: is one of the symbols top-to-bottom, left-to-right,
bottom-to-top, or right-to-left specifying the escapement direction of the resulting
area relative to the area's coordinate system. For this purpose, the area is considered to have a
coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified,
then its value shall default to the value of the writing-mode: characteristic.

ISO/IEC 10179:1996 © ISO/IEC

252

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.
This applies only if the flow object is inlined.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0. This applies only if
the flow object is inlined.

12.6.17 Score Flow Object Class

The score flow object has a single principal port. The content of this port is scored. The port can
contain only inlined flow objects.

NOTE 108 Kendot scoring is achieved using the emphasizing-mark flow object class.

The applicable characteristics are:

— type: is one of

– the symbol before specifying that a score should be drawn parallel to the placement path
and at a position specified by the font of the score flow object for scores that are before the
placement path in the line-progression direction.

– the symbol through specifying that a score should be drawn parallel to the placement
path and at a position specified by the font of the score flow object for scores that are
drawn through the characters of the font.

– the symbol after specifying that a score shall be drawn parallel to the placement path
and at a position specified by the font of the score flow object for scores that are after the
placement path in the line-progression direction.

– a length-spec specifying that a score shall be drawn parallel to the placement path such
that the distance in the line-progression direction from the center of the score to the
placement path is the specified length; a positive value shall cause the score to be after the
placement path in the line-progression direction.

– a character, which means that each glyph shall be overstruck with that character.

© ISO/IEC ISO/IEC 10179:1996(E)

253

This characteristic is non-inherited and shall be specified.

— score-spaces?: is a boolean specifying whether the scoring shall be applied to spaces.
The initial value is #t.

— color: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— layer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— line-cap: is one of the symbols butt, round, or square specifying the cap style for the
line. The initial value is butt. This applies only when type: is a length-spec.

— line-dash: is a list of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
0pt. This applies only when type: is a length-spec.

— line-thickness: is a length that specifies the thickness of the line or lines. The initial
value is 1pt. This applies only when type: is a length-spec.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1. This applies
only when type: is a length-spec.

— line-sep: is a length that gives the distance between the centers of parallel lines. The
initial value is 1pt. This applies only when type: is a length-spec.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— font-family-name: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial value is iso-
serif.

NOTE 109 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font families iso-
serif, iso-sanserif, and iso-monospace.

— font-weight: is either #f, indicating that any font weight is acceptable, or one of the
symbols not-applicable, ultra-light, extra-light, light, semi-light,
medium, semi-bold, bold, extra-bold, or ultra-bold, giving the weight property
of the desired font resource. The initial value is medium.

ISO/IEC 10179:1996 © ISO/IEC

254

— font-posture: is either #f, indicating that any posture is acceptable, or one of the symbols
not-applicable, upright, oblique, back-slanted-oblique, italic, or
back-slanted-italic, giving the posture property of the desired font resource. The
initial value is upright.

— font-structure: is either #f, indicating that any structure is applicable, or one of the
symbols not-applicable, solid, or outline. The initial value is solid.

— font-proportionate-width: is either #f, indicating that any proportionate width is
acceptable, or one of the symbols not-applicable, ultra-condensed, extra-
condensed, condensed, semi-condensed, medium, semi-expanded, expanded,
extra-expanded, or ultra-expanded. The initial value is medium.

— font-name: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of the font-family-name:, font-weight:, font-posture:,
font-structure:, and font-proportionate-width: characteristics are not used in
font selection. The initial value is #f.

— font-size: is a length specifying the body size to which the font resource should be
scaled. The initial value is 10pt.

When the type: is before, after, or through, the font characteristics shall determine the
positioning of the score. When the type: is a character, the font characteristics shall determine
the glyph used.

12.6.18 Box Flow Object Class

The box flow object may be used to put a box around a sequence of flow objects. The box flow
object is either displayed or inlined depending on the value of the display?: characteristic.
The box flow object has a single principal port. If the box is displayed, then the port shall accept
any displayed flow objects. If the box is inlined, then the port shall accept any inlined flow
objects.

The box flow object may result in more than one area. In this case, the border of the box adjacent
to the break may be omitted if the box-open-end?: characteristic is true.

If the box is inlined, then this border shall be perpendicular to the writing-mode. If the box is
displayed, then this border shall be parallel to the writing-mode.

When the box is displayed, the size of the box (that is, the distance between the positions of the
borders) in the direction determined by the writing-mode shall be equal to the display-size of the
box less the start and end indents. The display-size for the content of the box shall be equal to the
size of the box.

NOTE 110 Thus, the start-indent: and end-indent: characteristics for the content of the box shall be set to
give the desired separation between the border of the box and its content. There is no automatic separation to take
account of the thickness of border.

© ISO/IEC ISO/IEC 10179:1996(E)

255

The applicable characteristics are:

— display?: is a boolean that specifies whether the box shall be displayed rather than inlined.
This characteristic is not inherited. The default value is #f.

— box-type: is one of the following symbols:

– border specifying that the box shall have a border.

– background specifying that the box shall have a background.

– both specifying that the box shall have both a border and a background.

The initial value is border.

— box-open-end?: is a boolean that specifies whether a broken box shall have an open end.
If the value is #t, the ending edge of the area before the line break shall not have the visible
border, and the starting edge of the area after the line break shall not have the visible border.
If the value is #f, broken box areas shall have the visible borders as usual. The initial value is
#f.

— background-color: is either #f or an object of type color that specifies the color in which
the marks for the flow object's background should be made. The initial value is #f. This
applies only if the box-type: characteristic does not have the value border.

— background-layer: is an integer specifying the layer of the marks of the areas resulting
from the background of a flow object. The initial value is -1. This applies only if the box-
type: characteristic does not have the value border.

— box-corner-rounded: specifies whether the corners of the box shall be drawn as quarter
circles as follows:

– #f indicating that no corners shall be rounded.

– #t indicating that all corners shall be rounded.

– a list of the symbols identifying the individual corners that shall be rounded; each symbol
shall be of the form x-y where x and y are before or after; if the box is displayed then
x specifies whether the corner is before or after the box in the direction determined by the
writing-mode, and y specifies whether the corner is before or after the box in the
placement direction of the area's coordinate system; if the box is inlined, then x indicates
whether the corner is before or after the box in the escapement direction, and y indicates
whether the corner is before or after the box in the line-progression direction.

The initial value is #f.

— box-corner-radius: is a length-spec specifying the radius of the quarter circles to be
used when box-corner-rounded: is not #f. A negative value indicates that the center of

ISO/IEC 10179:1996 © ISO/IEC

256

the circle is at the point where the edges intersect; in this case, the corners shall be concave.
The initial value is 3pt.

— box-border-alignment: is a symbol specifying the alignment of the border's line
relative to the position of the border, as follows:

– center specifying that the line shall be centered with respect to the position of the
border.

– outside specifying that the edge of the line that is an outer edge of the box shall be
aligned with the position of the border.

– inside specifying that the edge of the line that is an inner edge of the box shall be
aligned with the position of the border.

The initial value is outside.

— box-size-before: is a length that specifies the distance from the placement path to the
edge of the box that is before the placement path in the line-progression direction. This shall
apply only if the flow object is inline. The initial value is 8pt.

— box-size-after: is a length that specifies the distance from the placement path to the
edge of the box that is after the placement path in the line-progression direction. This shall
apply only if the flow object is inline. The initial value is 4pt.

— color: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space. This
applies to the box's border.

— layer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0. This applies to the box's border.

— line-cap: is one of the symbols butt, round, or square specifying the cap style for the
line. The initial value is butt. This applies to the box's border.

— line-dash: is a list of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
0pt. This applies to the box's border.

— line-thickness: is a length that specifies the thickness of the line or lines. The initial
value is 1pt. This applies to the box's border.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1. This applies to
the box's border.

© ISO/IEC ISO/IEC 10179:1996(E)

257

— line-sep: is a length that gives the distance between the centers of parallel lines. The
initial value is 1pt. This applies to the box's border.

— line-miter-limit: is a number that specifies the miter limit for line joins. The
semantics of the miter limit are described in ISO/IEC 10180. The initial value is 10. This
applies to the box's border.

— line-join: is one of the symbols miter, round, or bevel specifying the join style of
the line. The initial value is miter. This applies to the box's border.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. When the box is inline, this
determines the placement of flow objects in the box.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.
This applies only if the flow object is inlined.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0. This applies only if
the flow object is inlined.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This applies only if the flow object
is displayed.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This applies only if the flow object is
displayed.

ISO/IEC 10179:1996 © ISO/IEC

258

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

© ISO/IEC ISO/IEC 10179:1996(E)

259

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

12.6.19 Side-by-side Flow Object Class

Use of this flow object requires the side-by-side feature.

A side-by-side flow object is always displayed. It has a single port whose contents are side-by-
side-item flow objects that are potentially aligned with each other in the placement direction of
the side-by-side.

NOTE 111 When two objects are aligned in some direction, then their relative position is adjusted in that direction so
that their alignment points lie on a line that is perpendicular to that direction.

The following characteristics are applicable:

— side-by-side-overlap-control: is one of the symbols none or indent
determining how the side-by-side handles the possibility of its side-by-side-items overlapping
each other. The initial value is indent.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

ISO/IEC 10179:1996 © ISO/IEC

260

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

261

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

12.6.20 Side-by-side-item Flow Object Class

Use of this flow object requires the side-by-side feature.

A side-by-side-item flow object is always displayed. It has a single principal port whose
contents are displayed. The display-size of the content is the same as the display-size of the side-
by-side. A side-by-side-item flow object shall be allowed only in a side-by-side flow object.

The following characteristics are applicable:

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This determines only whether
adjacent side-by-side-items overlap when the side-by-side-overlap-control:
characteristic of the containing side-by-side has the value indent.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This determines only whether adjacent
side-by-side-items overlap when the side-by-side-overlap-control: characteristic
of the containing side-by-side has the value indent.

— side-by-side-pre-align: is a symbol specifying the point that shall be used to align
this item with the preceding side-by-side-item as follows:

– start meaning the beginning edge in the placement direction of the first area produced
by this side-by-side-item flow object;

– initial meaning the placement path of the first line area produced by this side-by-side-
item flow object;

– final meaning the placement path of the last line area produced by this side-by-side-item
flow object;

– end meaning the ending edge in the placement direction of the last line area produced by
this side-by-side-item flow object.

The initial value is initial.

— side-by-side-post-align: is a symbol specifying the point that shall be used to align
this item with the following side-by-side-item, in the same manner as side-by-side-
pre-align:. The initial value is initial.

ISO/IEC 10179:1996 © ISO/IEC

262

The side-by-side-items are positioned so that, for each side-by-side-item except the first, its side-
by-side-pre-align point is aligned in the placement direction with the side-by-side-post-align
point of the preceding side-by-side-item.

If side-by-side-overlap-control: has the value indent, and if the start-indent of a
side-by-side-item in a side-by-side flow object is less than the difference between the display-
size and the end-indent of the previous side-by-side-item in the side-by-side, then it shall be
positioned after the previous side-by-side-item in the placement direction.

Any space-before: applicable to the first area produced by a side-by-side-item and any
space-after: applicable to the last area produced by a side-by-side-item shall be ignored.

12.6.21 Glyph-annotation Flow Object Class

Flow objects of class glyph-annotation are mainly used for characters, words, or phrases that
have an associated description of their meaning or pronunciation. The annotation is placed on the
before side in the line-progression direction of the annotated glyphs. A glyph-annotation flow
object that has more than one annotated glyph shall not be broken between lines.

NOTE 112 Users should explicitly divide long annotations between several glyph-annotation flow objects.

A glyph-annotation flow object has the following ports:

— the principal port is used for the annotated glyph. Only character flow objects shall be flowed
into this port.

— annotation is used for the annotating glyph or glyphs that are placed on the annotated
glyph or glyphs. Only character flow objects shall be flowed into this port.

The applicable characteristics are:

— annotation-glyph-placement: is a symbol that specifies the nominal placement rule
of the annotating glyph. The shouldered placement shall be applied only for a glyph-
annotation flow object that has exactly one annotated glyph. Permitted values are:

– centered indicating that annotating glyphs shall be centered,

– shouldered indicating that annotating glyphs shall be placed in relation to the number
of annotating glyphs and the starting edge of the annotated glyph. There shall be exactly
one annotated glyph with this placement. The precise placement of the annotating glyph is
determined by the annotation-glyph-style.

The initial value is centered.

— annotation-glyph-style: is #f or a string that specifies a public identifier for
additional rules to be applied in formatting. The initial value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

263

NOTE 113 These rules might, for example, control details about placement, different forms at the start and end of
the line, or space adjustment in the line.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0.

12.6.22 Alignment-point Flow Object Class

An alignment-point flow object specifies an explicit alignment point for paragraphs with a
first-line-align: characteristic equal to #t. It is atomic and inlined.

12.6.23 Aligned-column Flow Object Class

Use of this flow object requires the aligned-column feature.

An aligned-column flow object is used for grouping together externally aligned paragraphs. An
aligned-column is displayed. It has a single principal port that may contain any displayed flow
objects. Displayed flow objects in the port that are not externally aligned paragraphs shall be
formatted normally. The externally aligned paragraphs in the content or in side-by-side flow
objects in the content are aligned in the direction of the writing-mode so that their alignment
points lie on a line in the placement direction. The resulting group of aligned lines is then
positioned according to the display-alignment:, start-indent:, and end-indent:
characteristics.

The following characteristics are applicable:

— display-alignment: is one of the symbols start, center, end, inside, or
outside specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value is start. This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

– if the alignment is start, the space is all added at the end in the direction of the writing-
mode;

ISO/IEC 10179:1996 © ISO/IEC

264

– if the alignment is end, the space is all added at the start in the direction of the writing-
mode;

– if the alignment is center, the space is added equally at the start and the end in the
direction of the writing-mode;

– if the alignment is inside, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular to the binding-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

– if the alignment is outside, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
binding-edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This is used for aligning the first line of each externally aligned
paragraph.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This is used for aligning the first
line of each externally aligned paragraph.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This is used for aligning the first line of
each externally aligned paragraph.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

© ISO/IEC ISO/IEC 10179:1996(E)

265

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

ISO/IEC 10179:1996 © ISO/IEC

266

12.6.24 Multi-line-inline-note Flow Object Class

Flow objects of class multi-line-inline-note are used for placing a note inline. A multi-line-inline-
note is inlined. Typically, a multi-line-inline-note consists of the following:

a) an open parenthesis in approximately the same size as the glyphs before the note;

b) two lines placed one before the other in the line-progression direction with the contents in a
smaller size than the surrounding glyphs; the content shall be used to fill the first line and then
the second line so that the length of the two lines is approximately equal;

c) a close parenthesis in the same size as the open parenthesis.

The multi-line-inline-note may be broken between two or more lines. In this case, the contents
shall be used to fill each fragment of the multi-line-inline-note in turn. For example, a character
occurring on the second line of the first part of a broken multi-line-inline-note shall have
occurred in the content before a character that occurs in the first line of the second part of the
note. In addition, the breaking may be affected by the inline-note-style: characteristic.

This flow object has a single principal port containing the content of the inline note. It shall
accept any inlined flow objects.

NOTE 114 Usually, a smaller point-size is specified for the content.

The applicable characteristics are:

— open: is an unlabeled sosofo which is used to open the multi-line-inline-note. The sosofo
shall contain only inline flow objects. This characteristic is not inherited. If not specified, the
default shall be the result of evaluating (literal "(").

— close: is an unlabeled sosofo which is used to close the multi-line-inline-note. The sosofo
shall contain only inline flow objects. This characteristic is not inherited. If not specified, the
default shall be the result of evaluating (literal ")").

— inline-note-line-count: is a positive integer that specifies the number of lines in the
note. The initial value is 2.

— inline-note-style: is #f or a string specifying the public identifier of the additional or
detailed rules to be applied in formatting the flow object. The initial value is #f.

NOTE 115 These rules might control details of placement or breaking.

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-

© ISO/IEC ISO/IEC 10179:1996(E)

267

after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0.

12.6.25 Emphasizing-Mark Flow Object Class

Flow objects of class emphasizing-mark are used for emphasizing characters, words, or phrases.
Each emphasizing-mark shall be placed on a path that is perpendicular to the line-progression
direction and that lies before the placement path in the line-progression direction. This path is
called the emphasizing-mark placement path.

NOTE 116 The emphasizing-mark flow object class can be used to handle the Kendot feature of Japanese typesetting
in a generalized way.

The emphasizing-marks are distributed in the following ways:

— With glyph distribution, the emphasizing-mark shall be placed on the emphasizing-mark
placement path so that it is centered with respect to the glyph.

NOTE 117 This distribution should be used for emphasizing characters, words, or phrases in a monospaced font.

— With even distribution, emphasizing-marks shall be distributed evenly along the
emphasizing-mark placement path of the area or areas resulting from the content of the flow
object.

For both distributions, the details of the formatting of the flow object shall be affected by the
rules identified by the public identifier specified by the mark-style characteristic.

The applicable characteristics are:

— mark: is an unlabeled sosofo specifying the areas that shall be used as the emphasizing-
mark. The sosofo shall contain only inline flow objects. This characteristic is not inherited.
This characteristic shall not be defaulted.

— mark-distribution: is one of the symbols glyph or even specifying the distribution
of the emphasizing-marks. The initial value is glyph.

— mark-style: is #f or a string that specifies the public identifier of the additional or detailed
rules that shall be applied in formatting the flow object. The initial value is #f.

NOTE 118 For example, details of the placing rules or breaking rules.

ISO/IEC 10179:1996 © ISO/IEC

268

— inhibit-line-breaks?: is a boolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: is an integer that affects whether a break is allowed before
this flow object. The break priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which the drop-after-line-
break?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0.

— break-after-priority: is an integer that affects whether a break is allowed after this
flow object as described in the specification of the break-before-priority:
characteristic. This characteristic is not inherited. The default value is 0.

12.6.26 Flow Object Classes for Mathematical Formulae

The flow object classes for mathematical formulae are math-sequence, unmath, subscript,
superscript, script, mark, fence, fraction, radical, math-operator, and grid.

NOTE 119 These flow objects may also be used for ‘linear’ chemical formulae.

Character flow objects are used for characters in mathematical formulae; there is no special flow
object class for this. Characteristics such as font-size: or font-posture: are determined
in the usual way by the characteristics of the character flow object. These characteristics are not
automatically changed by the mathematical formulae flow object classes. However, the math
value for the font-posture: characteristic may be used to make different characters within
math formulae have different font postures.

12.6.26.1 Math-sequence Flow Object Class

A math-sequence flow object produces a single area.

The flow object has a single principal port used for the content of the area. The port shall accept
flow objects of the following classes: math-sequence, unmath, subscript, superscript, script,
mark, fence, fraction, radical, math-operator, grid, character, or alignment-point. The spacing
between the flow objects in the contents may be adjusted based on their class and characteristics.
The applicable characteristics are:

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

When one of the mathematical formulae flow object classes has a port that accepts the same
classes as a math-sequence flow object, then the spacing between the flow objects is adjusted as
if it were in a math-sequence flow object.

© ISO/IEC ISO/IEC 10179:1996(E)

269

12.6.26.2 Unmath Flow Object Class

An unmath flow object is used to get words of natural language within a mathematical formula.
The characters in such words are spaced differently from adjacent characters in a mathematical
formula. The flow object has a single principal port. The port shall accept any inline flow
objects. These flow objects are positioned in the normal way.

The following characteristics are applicable:

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right.

— glyph-alignment-mode: is one of the symbols base, center, top, bottom, or font
specifying the alignment mode to be used for glyphs. font means that the nominal alignment
mode of the font in the flow object's writing-mode should be used. The initial value is font.

— font-family-name: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial value is iso-
serif.

NOTE 120 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font families iso-
serif, iso-sanserif, and iso-monospace.

This is applicable when the glyph-alignment-mode: is font.

— font-weight: is either #f, indicating that any font weight is acceptable, or one of the
symbols not-applicable, ultra-light, extra-light, light, semi-light,
medium, semi-bold, bold, extra-bold, or ultra-bold, giving the weight property
of the desired font resource. The initial value is medium. This is applicable when the
glyph-alignment-mode: is font.

— font-posture: is either #f, indicating that any posture is acceptable, or one of the symbols
not-applicable, upright, oblique, back-slanted-oblique, italic, or
back-slanted-italic, giving the posture property of the desired font resource. The
initial value is upright. This is applicable when the glyph-alignment-mode: is font.

— font-structure: is either #f, indicating that any structure is applicable, or one of the
symbols not-applicable, solid, or outline. The initial value is solid. This is
applicable when the glyph-alignment-mode: is font.

— font-proportionate-width: is either #f, indicating that any proportionate width is
acceptable, or one of the symbols not-applicable, ultra-condensed, extra-
condensed, condensed, semi-condensed, medium, semi-expanded, expanded,
extra-expanded, or ultra-expanded. The initial value is medium. This is applicable
when the glyph-alignment-mode: is font.

ISO/IEC 10179:1996 © ISO/IEC

270

— font-name: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of the font-family-name:, font-weight:, font-posture:,
font-structure:, and font-proportionate-width: characteristics are not used in
font selection. The initial value is #f. This is applicable when the glyph-alignment-
mode: is font.

12.6.26.3 Subscript Flow Object Class

A subscript flow object is allowed in a math-sequence or in a port on a math flow object that
accepts the same flow object classes as a math-sequence. A subscript flow object causes its
parent to position the content of the subscript flow object as a subscript on the preceding area. It
has a single principal port.

12.6.26.4 Superscript Flow Object Class

A superscript flow object is allowed in a math-sequence or in a port on a math flow object that
accepts the same flow object classes as a math-sequence. A superscript flow object causes its
parent to position the content of the superscript flow object as a superscript on the preceding
area. It has a single principal port.

12.6.26.5 Script Flow Object Class

The script flow object describes a seven-part area. The parts described are:

— the base area,

— the pre-superscript area,

— the pre-subscript area,

— the mid-superscript area,

— the mid-subscript area,

— the post-superscript area,

— the post-subscript area.

The applicable ports are:

— the principal port, which is used for the main content of the flow object.

— pre-sup, which is used for a superscript that shall be placed before the base content in the
direction determined by the writing-mode.

— pre-sub, which is used for a subscript that shall be placed before the base content in the
direction determined by the writing-mode.

© ISO/IEC ISO/IEC 10179:1996(E)

271

— post-sup, which is used for a superscript that shall be placed after the base content in the
direction determined by the writing-mode.

— post-sub, which is used for a subscript that shall be placed after the base content in the
direction determined by the writing-mode.

— mid-sup, which is used for a superscript that shall be placed above the base content.

— mid-sub, which is used for a subscript that shall be placed below the base content.

 Each port shall accept flow objects of the same class as the port of a math-sequence flow object.

The applicable characteristics are:

— script-pre-align: is a symbol that specifies the alignment of the pre-superscript and
pre-subscript areas. Permitted values are:

– independent specifying that the pre-subscript and pre-superscript areas shall be aligned
independently of each other.

– pile specifying that the trailing edges of the areas shall be aligned.

– sup-out specifying that the trailing edge of the area associated with the pre-sup port
shall be aligned with the leading edge of the area associated with the pre-sub port.

– sub-out specifying that the trailing edge of the area associated with the pre-sub port
shall be aligned with the leading edge of the area associated with the pre-sup port.

The initial value is independent.

— script-post-align: is a symbol that specifies the alignment of the post-superscript and
post-subscript areas. Permitted values are:

– independent specifying that the post-subscript and post-superscript areas shall be
aligned independently of each other.

– pile specifying that the leading edges of the areas shall be aligned.

– sup-out specifying that the leading edge of the area associated with the post-sup port
shall be aligned with the trailing edge of the area associated with the post-sub port.

– sub-out specifying that the leading edge of the area associated with the post-sub port
shall be aligned with the trailing edge of the area associated with the post-sup port.

The initial value is independent.

— script-mid-sup-align: is a symbol that specifies the alignment of the mid-superscript
and base areas. Permitted values are:

ISO/IEC 10179:1996 © ISO/IEC

272

– lead-edge specifying that the leading edges of the areas shall be aligned.

– trail-edge specifying that the trailing edges of the areas shall be aligned.

– center specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value is center.

— script-mid-sub-align: is a symbol that specifies the alignment of the mid-subscript
and base areas. Permitted values are:

– lead-edge specifying that the leading edges of the areas shall be aligned.

– trail-edge specifying that the trailing edges of the areas shall be aligned.

– center specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value is center.

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

12.6.26.6 Mark Flow Object Class

The mark flow object describes a three-part area. The parts described are:

— the base area,

— the over-mark area,

— the under-mark area.

The applicable ports are:

— the principal port, which is used for the main content of the flow object.

— over-mark, which is used for the flow objects that shall be placed in the over-mark area.

— under-mark, which is used for the flow objects that shall be placed in the under-mark area.

If the over-mark or under-mark port contains exactly one flow object of class character, rule, or
leader, then that flow object shall be extended to cover the full width of the base area.

NOTE 121 It is implementation- and font-dependent how character flow objects are extended.

© ISO/IEC ISO/IEC 10179:1996(E)

273

Each port shall accept flow objects of the same class as the port of a math-sequence flow object.
The applicable characteristics are:

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

12.6.26.7 Fence Flow Object Class

The fence flow object describes a three-part area. The parts described are:

— the base area,

— the open-fence area,

— the close-fence area.

 The fences should be extended according to the height of the base area.

NOTE 122 It is implementation- and font-dependent how this is achieved.

The flow object has the following ports:

— the principal port, which is used for the main content of the flow object. It shall accept flow
objects of the same class as the port of a math-sequence flow object.

— open, which is used for the open-fence area. It shall accept a single flow object of type
character.

— close, which is used for the close-fence area. It shall accept a single flow object of type
character.

 The applicable characteristics are:

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

12.6.26.8 Fraction Flow Object Class

The fraction flow object class describes a three-part area. The parts described are:

— the numerator area,

— the fraction-bar area,

— the denominator area.

The flow object has the following ports:

ISO/IEC 10179:1996 © ISO/IEC

274

— numerator, which is used for the content that shall be placed in the numerator area.

— denominator, which is used for the content that shall be placed in the denominator area.

 Each port shall accept flow objects of the same class as the port of a math-sequence flow object.

The applicable characteristics are:

— fraction-bar: is an unlabeled sosofo containing a single rule flow object to be used for
the fraction-bar. The initial value is a rule with all applicable inherited characteristics equal to
their initial values.

— numerator-align: is a symbol that specifies the alignment of the numerator area and the
fraction-bar area. Permitted values are:

– lead-edge specifying that the leading edges of the areas shall be aligned.

– trail-edge specifying that the trailing edges of the areas shall be aligned.

– center specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value is center.

— denominator-align: is a symbol that specifies the alignment of the denominator area
and the fraction-bar area. Permitted values are:

– lead-edge specifying that the leading edges of the areas shall be aligned.

– trail-edge specifying that the trailing edges of the areas shall be aligned.

– center specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value is center.

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

12.6.26.9 Radical Flow Object Class

The radical flow object describes a three-part area. The parts described are:

— the base area,

— the degree area,

— the radical-glyph area.

© ISO/IEC ISO/IEC 10179:1996(E)

275

The flow object has the following ports:

— the principal port, which is used for the main content of the flow object.

— degree, which is used for the degree of the root of the flow object.

 Each port shall accept flow objects of the same class as the port of a math-sequence flow object.

The applicable characteristics are:

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

— radical: is an unlabeled sosofo containing a single character flow object to be used for the
radical glyph. This characteristic is not inherited. If not specified, it is defaulted in a system-
dependent way.

12.6.26.10 Math-operator Flow Object Class

The math-operator flow object describes a four-part area. The parts described are:

— the base area,

— the lower-limit area,

— the upper-limit area,

— the operator-symbol area.

The flow object has the following ports:

— the principal port, which is used for the main content of the flow object.

— operator, which is used for the operator symbol.

— lower-limit, which is used for the lower-limit content of the flow object.

— upper-limit, which is used for the upper-limit content of the flow object.

 Each port shall accept flow objects of the same class as the port of a math-sequence flow object.

The applicable characteristics are:

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

ISO/IEC 10179:1996 © ISO/IEC

276

NOTE 123 display indicates that the limits are typically placed before or after the operator-symbol in the line-
progression direction. inline indicates that the limits are typically placed after the operator-symbol in the inline-
progression direction.

12.6.26.11 Grid Flow Object Class

The grid flow object describes a series of areas arranged in a grid. The column-progression
direction for the grid is the escapement direction, and the row-progression direction is the line-
progression direction.

NOTE 124 A matrix is handled by enclosing a grid flow object in a fence flow object.

The flow object has a single principal port used for all content. It shall accept flow objects of the
class grid-cell.

The applicable characteristics are:

— grid-position-cell-type: is a symbol specifying how the positioning of cells in the
grid is determined as follows:

– explicit indicating that each grid-cell has an explicit row- and column-number.

– row-major indicating that the position of each cell is determined by where it occurs in
the content of the grid; the cells in one row occur before the cells in subsequent rows.

– column-major indicating that the position of each cell is determined by where it occurs
in the content of the grid; the cells in one column occur before the cells in subsequent
columns.

The initial value is row-major.

— grid-n-columns: is a strictly positive integer that specifies the number of columns in the
grid. This characteristic is not inherited and shall be specified if grid-position-cell-
type: is row-major or explicit.

— grid-n-rows: is a strictly positive integer that specifies the number of rows in the grid.
This characteristic is not inherited and shall be specified if grid-position-cell-type:
is column-major or explicit.

— grid-column-alignment: is a symbol that specifies the alignment of the areas in the
grid in the grid's column-progression direction. Permitted values are start, center, and
end. The initial value is center.

— grid-row-alignment: is a symbol that specifies the alignment of the areas in the grid in
the grid's row-progression direction. Permitted values are start, center, and end. The
initial value is center.

© ISO/IEC ISO/IEC 10179:1996(E)

277

— grid-equidistant-rows?: is a boolean that specifies whether the areas in the grid shall
be positioned so that their centers are equidistant in the grid's row-progression direction. The
initial value is #f.

— grid-equidistant-columns?: is a boolean that specifies whether the areas in the grid
shall be positioned so that their centers are equidistant in the grid's column-progression
direction. The initial value is #f.

— math-display-mode: is one of the symbols display or inline specifying the style of
formatting. The initial value is display.

12.6.26.12 Grid-cell Flow Object Class

The grid-cell flow object is a container for the content of each cell in a grid.

The flow object has a single principal port used for all content. It shall accept flow objects of the
same class as the port of a math-sequence flow object.

The applicable characteristics are:

— column-number: is a strictly positive integer specifying the column for this cell. This
characteristic is not inherited. This characteristic shall be specified if and only if it occurs in a
grid with a grid-position-cell-type: of explicit. The value shall not exceed the
value specified for the grid-n-columns: characteristic of the grid in which it occurs. The
number of the first column is 1.

— row-number: is a strictly positive integer specifying the row for this cell. This
characteristic is not inherited. This characteristic shall be specified if and only if it occurs in a
grid with a grid-position-cell-type: of explicit. The value shall not exceed the
value specified for the grid-n-rows: characteristic of the grid in which it occurs. The
number of the first row is 1.

In any grid, there shall not be two or more grid cells that have both the same column-number:
and the same row-number: characteristic.

12.6.27 Flow Object Classes for Tables

Specification of tabular formatting makes use of the following flow object classes:

— table,

— table-part,

— table-column,

— table-row,

— table-cell,

ISO/IEC 10179:1996 © ISO/IEC

278

— table-border.

12.6.27.1 Table Flow Object Class

A table flow object has a single principal port. The contents of this port shall be either:

— all of class table-part, or

— all of class table-column, table-row, or table-cell.

 If it contains flow objects of class table-column, they shall occur before all flow objects of other
classes. A table flow object can only be displayed.

A table has two directions associated with it, a row-progression direction and a column-
progression direction. The row-progression direction is equal to the placement direction of the
table flow object. The column-progression direction is given by the value of the writing-
mode: characteristic of the table flow object. These shall be perpendicular.

A table flow object has the following characteristics:

— table-width: is a length-spec that specifies the size of the table in the column-progression
direction, or, if the table-auto-width feature is used, #f indicating that the width of the
table should be the minimum that will accommodate its content. This characteristic is not
inherited. The default value is the display-size less any applicable indent.

— table-auto-width-method: is #f or a string specifying a public identifier for the
method to be used to determine the widths of columns. This applies only if the table-
auto-width feature is present. The initial value is #f.

— table-border: is an unlabeled sosofo containing a single table-border flow object. A
value of #t or #f is also allowed; this is equivalent to a table-border with a border-
present?: characteristic equal to #t or #f, respectively, and all other characteristics
inherited from the table. This characteristic determines the default value for the before-
row-border:, after-row-border:, before-column-border:, and after-
column-border: characteristics. The initial value is #f.

— before-row-border: is an unlabeled sosofo containing a single table-border flow object
to be used as the border on the side of the table that is before the table in the row-progression
direction. A value of #t or #f is also allowed; this is equivalent to a table-border with a
border-present?: characteristic equal to #t or #f, respectively, and all other
characteristics inherited from the table. This characteristic is not inherited. The default value
is the value of the table-border: characteristic.

— after-row-border: is the same as before-row-border: but applies to the side of
the table that is after the table in the row-progression direction.

— before-column-border: is the same as before-row-border: but applies to the side
of the table that is before the table in the column-progression direction.

© ISO/IEC ISO/IEC 10179:1996(E)

279

— after-column-border: is the same as before-row-border: but applies to the side
of the table that is after the table in the column-progression direction.

— table-corner-rounded: specifies whether the corners of the table shall be drawn as
quarter circles as follows:

– #f indicating that no corners shall be rounded.

– #t indicating that all corners shall be rounded.

– a list of the symbols identifying the individual corners that shall be rounded; each symbol
shall be of the form x-y where x is before or after specifying whether the corner is
before or after the table in the column-progression direction and y is before or after
specifying whether the corner is before or after the table in the row-progression direction.

The initial value is #f.

— table-corner-radius: is a length-spec specifying the radius of the quarter circles to be
used when table-corner-rounded: is not #f. A negative value indicates that the center
of the circle is at the point where the edges intersect; in this case, the corners shall be concave.
The initial value is 3pt.

— position-preference: is either #f or one of the symbols top or bottom. This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— display-alignment: is one of the symbols start, center, end, inside, or
outside specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value is start. This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

– if the alignment is start, the space is all added at the end in the direction of the writing-
mode;

– if the alignment is end, the space is all added at the start in the direction of the writing-
mode;

– if the alignment is center, the space is added equally at the start and the end in the
direction of the writing-mode;

– if the alignment is inside, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular to the binding-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

ISO/IEC 10179:1996 © ISO/IEC

280

– if the alignment is outside, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
binding-edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset and has a span: characteristic
with a value greater than 1. The initial value is #f.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

281

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

12.6.27.2 Table-part Flow Object Class

A table-part flow object is allowed only within a table flow object. A table-part flow object has
three ports:

— the principal port, which is used for the table body.

— header, which is used for the table header.

— footer, which is used for the table footer.

 The flow objects that are allowed in the ports of a table-part flow object shall be only those
explicitly specified herein. Flow objects of class table-column are allowed in the principal port;

ISO/IEC 10179:1996 © ISO/IEC

282

they shall occur before flow objects of any other class. All ports shall accept flow objects of class
table-row and table-cell.

The result of formatting a table-part flow object is a sequence of areas. Each area consists of the
content of the header port (unless omitted because of the table-part-omit-middle-
header?: characteristic), followed by some portion of the content of the principal port,
followed by the content of the footer port (unless omitted because of the table-part-omit-
middle-footer?: characteristic). Each row in the principal port occurs exactly once, and the
order of the rows shall be preserved. The rows in the header and footer ports shall be replicated
for each result area.

All table-parts in a table have the same width.

The following characteristics are applicable:

— table-part-omit-middle-header?: is a boolean which if true specifies that a table-
part whose first area is not at the beginning of an area produced by the table shall not start
with the content of its header port. The initial value is #f.

— table-part-omit-middle-footer?: is a boolean which if true specifies that a table-
part whose last area is not at the end of an area produced by the table shall not end with the
content of its footer port. The initial value is #f.

— space-before: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space-after: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-with-previous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-with-next?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— break-before: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break-after: is #f or one of the symbols page, page-region, column, or column-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

© ISO/IEC ISO/IEC 10179:1996(E)

283

– #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

– the symbol page indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

– the symbol column-set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

– the symbol column indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

– #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may-violate-keep-before?: is a boolean which, if true, specifies that constraints
imposed by the keep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

— may-violate-keep-after?: is a boolean which, if true, specifies that constraints
imposed by keep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

12.6.27.3 Table-column flow object

A table-column flow object is an atomic flow object that specifies characteristics applicable to
table-cells that have the same column and span.

It has the following characteristics:

— column-number: is a strictly positive integer specifying the column number of the table-
cells that are to inherit their characteristics from this table-column flow object. The default is
1 plus the column-number: of the previous table-column flow object, if there is a previous
table-column, and otherwise 1. This characteristic is not inherited.

— n-columns-spanned: is a strictly positive integer specifying the number of columns
spanned by table-cells that are to inherit their characteristics from this table-column flow
object. This characteristic is not inherited. The default value is 1.

— width: is a length-spec specifying the width of this column. This characteristic is not
inherited. This characteristic shall not be specified for table-column flow objects for which

ISO/IEC 10179:1996 © ISO/IEC

284

the n-columns-spanned: characteristic is greater than 1. The width: characteristic shall
be specified for every column unless the table-auto-width feature is present.

— display-alignment: is one of the symbols start, center, end, inside, or
outside specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value is start. This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

– if the alignment is start, the space is all added at the end in the direction of the writing-
mode;

– if the alignment is end, the space is all added at the start in the direction of the writing-
mode;

– if the alignment is center, the space is added equally at the start and the end in the
direction of the writing-mode;

– if the alignment is inside, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular to the binding-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

– if the alignment is outside, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
binding-edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This is used for aligning the first line of each externally aligned
paragraph in the column.

— start-indent: is a length-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is 0pt. This is used for aligning the first
line of each externally aligned paragraph in the column.

— end-indent: is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is 0pt. This is used for aligning the first line of
each externally aligned paragraph in the column.

Any inherited characteristic that is specified on a table-column flow object may be inherited by
table-cells (or indirectly by the content of table-cells) as described in 12.4.

If the table-auto-width feature is not enabled, the number of columns in a table-part or in a
table that contains no table-parts is determined by the table-column flow objects in its principal
port. For every cell in the content, and for every column spanned by that cell, there shall be a

© ISO/IEC ISO/IEC 10179:1996(E)

285

table-column flow object whose column-number is equal to the number of that column. If the
table-auto-width feature is enabled, then the number of columns is determined
automatically from the content of the table.

(table-unit k)

Returns a length-spec that specifies k units of proportional measure. This may be used in the
value of the width: characteristic. The value of a unit of proportional measure for a particular
table is chosen so that the total width of the columns is equal to the specified width of the table.

NOTE 125 This allows the width of a column to be specified proportionally.

12.6.27.4 Automatic Table-width Computation

This clause applies when the table-auto-width feature is enabled.

The width of a column for which no width is specified shall be at least as great as the maximum
of the minimum possible widths of the content of any table-cells that span exactly that column.

NOTE 126 When a table-cell includes a paragraph for which the lines: characteristic has a value of wrap, the
minimum possible width of that paragraph is determined in a system-dependent manner. It might, for example, be the
length of the longest word.

If a table-cell spans more than one column, then the sum of the widths of the columns that it
spans shall be at least as great as the width of the content of the table-cell.

If a length-spec is specified for a column’s width, then the column shall be exactly that wide, and
that length shall be used as the display-size for any table-cells which span exactly that column.

Other aspects of the width computation method can be controlled with the table-auto-
width-method: characteristic.

12.6.27.5 Table-row Flow Object Class

A table-row flow object serves to group table-cells into rows: all table-cells in a table-row start in
the same geometric row.

A table-row has a single principal port, which accepts flow objects of class table-cell.

A table-row flow object can only occur as the child of a table-part or table flow object.

When flow objects of class table-cell occur directly in a table-part or table, then cells are grouped
into rows using the starts-row?: and ends-row?: characteristics.

12.6.27.6 Table-cell Flow Object Class

A table-cell has a single principal port. It shall accept any flow object that can be displayed. A
table-cell flow object shall only occur as the child of a table-row, table-part, or table flow object.

ISO/IEC 10179:1996 © ISO/IEC

286

A table-cell has the following characteristics:

— column-number: is a strictly positive integer specifying the number of the first column to
be spanned by this table-cell. This characteristic is not inherited. The default value is the
current column-number. For the first table-cell in a table-row, the current column-number is
1. For other table-cells, the current column-number is the column-number of the previous
table-cell in the row plus the number of columns spanned by that previous table-cell.

NOTE 127 When an earlier table-row has table-cells that span more than one row, then table-cells in subsequent
table-rows shall use the column-number: characteristic to avoid conflict.

— n-columns-spanned: is a strictly positive integer specifying the number of columns
which this cell spans in the column-progression direction starting with the current column.
This characteristic is not inherited. The default value is 1.

— n-rows-spanned: is a strictly positive integer specifying the number of rows which this
cell spans in the row-progression direction starting with the current row. This characteristic is
not inherited. The default value is 1.

— cell-before-row-margin: is a length giving the margin before the row in row-
progression direction. The initial value is 0pt.

— cell-after-row-margin: is a length giving the margin after the row in row-progression
direction. The initial value is 0pt.

— cell-before-column-margin: is a length giving the margin before the column in
column-progression direction. The initial value is 0pt. The display-size for the content of the
cell is equal to the width of the cell less the sum of the cell-before-column-margin:
and cell-after-column-margin: characteristics.

— cell-after-column-margin: is a length giving the margin after the column in the
column-progression direction. The initial value is 0pt.

— cell-row-alignment: is one of the symbols start, end, or center specifying the
alignment of the content of the cell in the row-progression direction. The initial value is
start.

— cell-background?: is a boolean specifying whether the cell has a solid background. If it
does, then the background-color: characteristic specifies the color to be used for the
background. The initial value is #f.

— background-color: is either #f or an object of type color that specifies the color in which
the marks for the flow object's background should be made. The initial value is #f. This
applies only if the cell-background?: characteristic is true.

— background-layer: is an integer specifying the layer of the marks of the areas resulting
from the background of a flow object. The initial value is -1. This applies only if the cell-
background?: characteristic is true.

© ISO/IEC ISO/IEC 10179:1996(E)

287

— cell-before-row-border: is an unlabeled sosofo containing a single table-border flow
object to be used as the border on the side of the table that is before the cell in the row-
progression direction. A value of #t or #f is also allowed; this is equivalent to a table-border
with a border-present?: characteristic equal to #t or #f, respectively, with all other
characteristics inherited from the table-cell. The initial value is #f.

— cell-after-row-border: is the same as cell-before-row-border: but applies
to the side of the cell that is after the cell in the row-progression direction.

— cell-before-column-border: is the same as cell-before-row-border: but
applies to the side of the cell that is before the cell in the column-progression direction.

— cell-after-column-border: is the same as cell-before-row-border: but
applies to the side of the cell that is after the cell in the column-progression direction.

— starts-row?: is a boolean specifying whether this cell starts a row. This is allowed only
for table-cells that are not in table-rows. The default value is #f. This characteristic is not
inherited. A cell that is not part of a table-row will start a row if the starts-row?:
characteristic is true, or if there is no previous flow object, or if the previous flow object is not
a table-cell, or if the previous flow object is a table-cell with the ends-row?: characteristic
true.

— ends-row?: is a boolean specifying whether this cell ends a row. This is allowed only for
table-cells that are not in table-rows. The default value is #f. This characteristic is not
inherited.

— cell-crossed: is either #f or one of the following symbols:

– with specifying that a single diagonal line shall be drawn through the cell from the corner
that is first in both the row- and column-progression directions to the diagonally opposite
corner.

– against specifying that a single diagonal line shall be drawn from the corner that is first
in the row-progression direction and last in the column-progression direction to the
diagonally opposite corner.

– both specifying that a pair of lines shall be drawn through the cell from each corner to the
diagonally opposite corner.

The initial value is #f. The appearance of the lines is determined by the values of the
following line characteristics for the table-cell.

— line-cap: is one of the symbols butt, round, or square specifying the cap style for the
line. The initial value is butt. This applies to the lines drawn when the cell-crossed:
characteristic is true.

— line-dash: is a list of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable

ISO/IEC 10179:1996 © ISO/IEC

288

in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
0pt. This applies to the lines drawn when the cell-crossed: characteristic is true.

— line-thickness: is a length that specifies the thickness of the line or lines. The initial
value is 1pt. This applies to the lines drawn when the cell-crossed: characteristic is true.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1. This applies to
the lines drawn when the cell-crossed: characteristic is true.

— line-sep: is a length that gives the distance between the centers of parallel lines. The
initial value is 1pt. This applies to the lines drawn when the cell-crossed: characteristic
is true.

— float-out-sidelines?: is a boolean which if true specifies that sideline attachments on
the content of a cell shall be detached from the cell and attached to the table instead. The
initial value is #f.

— float-out-marginalia?: is a boolean which if true specifies that marginalia
attachments on the content of a cell shall be detached from the cell and attached to the table
instead. The initial value is #f.

— float-out-line-numbers?: is a boolean which if true specifies that line-number
attachments on the content of a cell shall be detached from the cell and attached to the table
instead. The initial value is #f.

NOTE 128 The alignment of the content of a table-cell in the column-progression direction (e.g., horizontal alignment
for left-to-right, top-to-bottom text) shall be controlled by the display-alignment: or quadding:
characteristics of the content of the table-cell.

12.6.27.7 Table-border Flow Object Class

A table-border flow object is an atomic flow object used to specify the border of a table-cell or of
the table as a whole. A table-border flow object is not allowed in the content of any flow object.
The following characteristics are applicable:

— border-priority: is an integer that determines how conflicts between border
specifications are resolved. When there are two table-border flow objects that apply to a
particular segment of a border, then the one that has the larger priority shall be used. It shall
be an error if there are two such table-borders that have the same priority but are not identical.
The initial value is 0.

NOTE 129 This characteristic resolves conflicts between the specification of the border of the table and the
specification of the border of cells as well as between the specifications of the borders of adjacent cells.

— border-alignment: is a symbol specifying the alignment of the border's line relative to
the position of the border, as follows:

© ISO/IEC ISO/IEC 10179:1996(E)

289

– center specifying that the line shall be centered with respect to the position of the
border.

– start specifying that the edge of the line that is the starting edge in the row- or column-
progression direction shall be aligned with the position of the border.

– end specifying that the edge of the line that is the ending edge in the row- or column-
progression direction shall be aligned with the position of the border.

– outside specifying that the edge of the line that is an outer edge of the table shall be
aligned with the position of the border. This is allowed only for borders that are at the edge
of the table.

– inside specifying that the edge of the line that is not the outer edge of the table shall be
aligned with the position of the border. This is allowed only for borders that are at the
edge of the table.

The initial value is center.

— border-present?: is a boolean specifying whether the border shall be present. The initial
value is #t.

— border-omit-at-break?: is a boolean specifying whether this border shall be omitted
if adjacent to a break in the table. A border shall be omitted if either this characteristic or the
border-present?: characteristic is #f. This is applicable only to borders that are parallel
to the row-progression direction. The initial value is #f.

— color: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— layer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— line-cap: is one of the symbols butt, round, or square specifying the cap style for the
line. The initial value is butt.

— line-dash: is a list of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
0pt.

— line-thickness: is a length that specifies the thickness of the line or lines. The initial
value is 1pt.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1.

ISO/IEC 10179:1996 © ISO/IEC

290

— line-sep: is a length that gives the distance between the centers of parallel lines. The
initial value is 1pt.

— line-miter-limit: is a number that specifies the miter limit for line joins. The
semantics of the miter limit are described in ISO/IEC 10180. The initial value is 10.

— line-join: is one of the symbols miter, round, or bevel specifying the join style of
the line. The initial value is miter.

The width of borders does not affect the width of cells, nor the positioning of the contents of
cells, nor the width of the table, nor the size of the area produced by the table. In particular, the
width of the table, as specified by the table-width: characteristic on the table, is equal to the
sum of the widths of the cells.

12.6.28 Flow Object Classes for Online Display

The facilities described in this clause require the online feature.

12.6.28.1 Scroll Flow Object Class

A scroll flow object class is used as the top-level flow object for online display that does not
divide output into pages.

It has a single principal port, which accepts displayed flow objects.

The size of the flow object in the direction perpendicular to the filling-direction is determined by
the viewing environment.

This flow object has the following characteristics:

— filling-direction: is one of the symbols top-to-bottom, left-to-right, or
right-to-left. It specifies the filling-direction of the area container. The filling-
direction of the area container may be perpendicular to the placement direction. The initial
value is top-to-bottom.

— writing-mode: is one of the symbols left-to-right, right-to-left, or top-
to-bottom. The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial value is left-to-right. This is used to determine which
side of the flow object the start-margin: and end-margin: characteristics apply to.

— background-color: is either #f or an object of type color that specifies the color in which
the marks for the flow object's background should be made. The initial value is #f.

— background-layer: is an integer specifying the layer of the marks of the areas resulting
from the background of a flow object. The initial value is -1.

— background-tile: is either #f or a public identifier specifying an image that should be
repeated to cover the background of the scroll. The initial value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

291

— start-margin: is a length-spec specifying the distance from the edge of the resulting area
that is first in the writing-mode direction to the nearest edge of the text area. The initial value
is 0pt.

— end-margin: is a length-spec specifying the distance from the edge of the resulting area
that is last in the writing-mode direction to the nearest edge of the text area. The initial value
is 0pt.

12.6.28.2 Multi-mode Flow Object Class

A multi-mode flow object is a flow object with two or more modes of presentation. The flow
object can be switched between these modes of presentation in a system-dependent way.

NOTE 130 An implementation might present a menu of the different modes. Alternatively, clicking on the formatted
flow object might cycle through the modes.

This flow object is inlined or displayed according to its content and mode of presentation.

This flow object has the following characteristics:

— multi-modes: is a list. The number of members of the list gives the number of modes of
presentation. The list shall have at least two members. Each member of the list can be a
specification of a port or a list consisting of a specification of a port and a string giving a
description of the mode. The specification of a port is either #f specifying the principal port or
a symbol specifying a named port. A port specification shall not occur more than once in the
list. There shall be one port specification of #f in the list. The corresponding mode is the
principal mode.

NOTE 131 The string might be displayed in a menu.

This characteristic is not inherited and shall be specified.

— principal-mode-simultaneous?: is a boolean specifying whether the principal mode
is simultaneous with the other modes. If it is, then when the current presentation mode is a
mode other than the principal mode, both the content of the port for the principal mode and
the content of the port for the current mode shall be displayed. The initial value is #f.

The flow object has one port for each mode. The content of that port specifies the presentation in
the corresponding mode. Initially, the flow object shall be displayed using the principal mode.

NOTE 132 For example, an icon which when clicked causes a window to be popped up could be represented by a
multi-mode flow object with two ports, the first containing a character flow object representing an icon and the second
containing a scroll flow object. In this case, the principal-mode-simultaneous?: characteristic would be true.

12.6.28.3 Link Flow Object Class

A link flow object represents a hypertext link that can be interactively traversed, typically by
clicking on the areas representing the flow object and its content. A link has a single principal

ISO/IEC 10179:1996 © ISO/IEC

292

port, which can contain both inlined and displayed flow objects. Link flow objects can be nested,
and the innermost link is effective. It has the following characteristic:

— destination: is either #f or an object of type address or a list of one or more objects of
type address. See 12.5.8. This characteristic is not inherited and shall be specified. A value
of #f is used for a nested link and indicates that the contents of the flow object shall not be
considered part of the containing link.

12.6.28.4 Marginalia Flow Object Class

The marginalia flow object class is used to contain flow objects whose resulting areas shall be
attachment areas for the line in which the marginalia flow object occurs. See 12.3.4. The
marginalia flow object has a single principal port which shall contain only inlined flow objects.
A marginalia flow object shall have an ancestor flow object that is of class paragraph.

The behavior when there is more than one marginalia area attached to a single line is system-
dependent.

A marginalia flow object has the following characteristics:

— marginalia-sep: is a length-spec specifying the separation for the attachment. The initial
value is 0pt.

— marginalia-side: is one of the symbols start or end specifying which side of the line
the marginalia area shall be attached to. The initial value is start.

— marginalia-keep-with-previous?: specifies whether the marginalia area shall be
associated with the last area of the previous flow object instead of the first area resulting from
the following flow object. The initial value is #f.

© ISO/IEC ISO/IEC 10179:1996(E)

293

Annex A: Further Information

For examples, tutorials, production cross reference list, and other relevant material for the
understanding and implementation of DSSSL see the following web site and ftp address:

http://www.ornl.gov/sgml/WG8/wg8home.htm

ftp.ornl.gov/sgml/wg8/dsssl

