

eXtensible rights Markup Language (XrML) 2.0 Specification
Part III: Standard Extension Schema
20 November 2001

Available formats: HTML and PDF. In case of a discrepancy, the HTML is considered definitive.

NOTE: To enable interactive browsing of the XrML schemas and examples, the XrML Specification and its companion Example Use Cases
document use an HTML version that leverages the XML access functionality provided by the W3C Xpath recommendation. For this reason, you
need to view these HTML documents with a browser that supports that recommendation (for example, Internet Explorer Version 6.0). If your
browser does not support this functionality, please view the PDF versions of those documents.

Copyright © 2001 ContentGuard Holdings, Inc. All rights reserved. "ContentGuard" is a registered trademark and "XrML", "eXtensible rights Markup Language", the XrML logo, and the ContentGuard logo are trademarks of
ContentGuard Holdings, Inc. All other trademarks are properties of their respective owners.

Quick Table of Contents

Part 1: Primer

1 About XrML

2 XrML Concepts
3 Extensibility of the XrML Core
4 Conformance

Part II: XrML Core Schema

5 Technical Reference

Part III: Standard Extension Schema

6 Standard Extension

Part IV: Content Extension Schema

7 About the Content Extension

8 Content Extension Data Model
9. Content Extension Elements

Part V: Appendices

A XrML Schema
B Glossary
C Index of Types and Attributes
D References
E Acknowledgements

Full Table of Contents for Part III: Standard Extension Schema

6 Standard Extension

6.1 Condition Extensions

6.1.1 StatefulCondition

6.1.1.1 StatefulCondition/stateReference

6.1.2 StateReferenceValuePattern
6.1.3 The ExerciseLimit Condition
6.1.4 The SeekApproval Condition
6.1.5 The TrackReport Condition

6.1.5.1 TrackReport/communicationFailurePolicy

6.1.6 The TrackQuery Condition

6.1.6.1 TrackQuery/notMoreThan
6.1.6.2 TrackQuery/notLessThan

6.1.7 The ValidityIntervalFloating Condition
6.1.8 The ValidityTimeMetered Condition

6.1.8.1 ValidityTimeMetered/quantum

6.1.9 The ValidityTimePeriodic Condition

6.1.9.1 ValidityTimePeriodic/start
6.1.9.2 ValidityTimePeriodic/period
6.1.9.3 ValidityTimePeriodic/phase
6.1.9.4 ValidityTimePeriodic/duration
6.1.9.5 ValidityTimePeriodic/periodCount

6.1.10 The Fee Condition

6.1.10.1 Fee/paymentAbstract
6.1.10.2 Fee/min
6.1.10.3 Fee/max
6.1.10.4 Fee/to
6.1.10.5 AccountPayable

6.1.10.5.1 AccountPayable/paymentService
6.1.10.5.2 AccountPayable/aba

6.1.11 The Territory Condition

6.1.11.1 Territory/location

6.1.11.1.1 Territory/location/region
6.1.11.1.2 Territory/location/country
6.1.11.1.3 Territory/location/state
6.1.11.1.4 Territory/location/city
6.1.11.1.5 Territory/location/postalCode
6.1.11.1.6 Territory/location/street

6.1.11.2 Territory/domain

6.1.11.2.1 Territory/domain/url

6.1.12 State Interaction Elements

6.1.12.1 approval
6.1.12.2 count
6.1.12.3 paid
6.1.12.4 validFor
6.1.12.5 validUntil

6.2 Payment and its Extensions

6.2.1 PaymentAbstract
6.2.2 Cash
6.2.3 PaymentFlat

6.2.3.1 PaymentFlat/rate
6.2.3.2 PaymentFlat/paymentRecord

6.2.4 PaymentMetered

6.2.4.1 PaymentMetered/rate
6.2.4.2 PaymentMetered/per
6.2.4.3 PaymentMetered/by
6.2.4.4 PaymentMetered/phase

6.2.5 PaymentPerInterval

6.2.5.1 PaymentPerInterval/rate
6.2.5.2 PaymentPerInterval/per
6.2.5.3 PaymentPerInterval/paidThrough

6.2.6 PaymentPerUse

6.2.6.1 PaymentPerUse/rate
6.2.6.2 PaymentPerUse/allowPrePay

6.2.6.2.1 PaymentPerUse/allowPrePay/initialNumberOfUses
6.2.6.2.2 PaymentPerUse/allowPrePay/prepaidUsesRemaining

6.2.7 BestPriceUnder
6.2.8 CallForPrice

6.2.8.1 CallForPrice/location

6.2.9 Markup

6.2.9.1 Markup/rate
6.2.9.2 Markup/feeForResource

6.3 Name Extensions

6.3.1 Name

6.3.2 EmailName
6.3.3 DnsName
6.3.4 CommonName
6.3.5 X509SubjectName
6.3.6 X509SubjectNamePattern

6.4 Revocation Extensions

6.4.1 Revocable

6 Standard Extension

Some concepts arise commonly in many XrML usage scenarios, but the elements and types that are used to capture them do not really belong in
the core. The extensions defined in the Standard Extension are classified according to the purpose that they serve. They are broadly classified
into conditions, payment notions, name, and revocation extensions.

6.1 Condition Extensions

Condition Extensions

The standard extension schema defines nine extensions of the type Condition. Of these, six extensions require a notion of communication with
an external authoritative value. To facilitate the definition of these extensions, a type StatefulCondition is defined as well. Condition
extensions are constructed either by extending StatefulCondition type or by directly extending the Condition type. Naturally, what it means
for a condition extension to be satisfied is left to its description.

6.1.1 StatefulCondition

Some conditions may be tied to an external authoritative piece of data. These arise when the exercise of a right is predicated upon querying or
manipulating the value of this external piece of data. For example, the number of times some content may be rendered can be bounded by some
value. To cover such usages, XrML2.0 standard extension defines a type called StatefulCondition. The type is an extension of the type
Condition defined in the core. It includes a child element stateReference, which indicates the means with which communication is made with
the state or service. The state holds the piece of data and returns it in the form of one or more XML nodes when queried for its value. The
schema that describes the XML nodes returned by the state is left to the specific Condition that extends StatefulCondition. Manipulations of
the state value must also be permitted. Elements of type StatefulCondition (or a derivation thereof) must define specifically their interaction
with the state.

Schema representation of StatefulCondition
-<xsd:complexType name="StatefulCondition">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence minOccurs="0">

<xsd:element ref="sx:stateReference" minOccurs="0"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

6.1.1.1 StatefulCondition/stateReference

The element stateReference indicates the means by which the state is to be queried or manipulated. It has type ServiceReference as defined
in the core.

6.1.2 StateReferenceValuePattern

A pattern that identifies a set of state reference values using pattern matching.

Schema representation of StateReferenceValuePattern

-<xsd:complexType name="StateReferenceValuePattern">
-<xsd:complexContent>
-<xsd:extension base="r:XmlPatternAbstract">
-<xsd:sequence>

<xsd:any namespace="##any" processContents="lax" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Schema representation of stateReferenceValuePattern
-<xsd:element name="stateReferenceValuePattern" type="sx:StateReferenceValuePattern" substitutionGroup="r:xmlPatternAbstract">
</xsd:element>

The element stateReferenceValuePattern specifies an unbounded number of XML element nodes. This element matches a stateReference if
and only if for every XML element node that is a sub element of the stateReferenceValuePattern element, there exists an identical XML
element node in the set of XML element nodes returned by the state designated by the stateReference, when queried for its value.

Using the stateReferenceValuePattern element

The element stateReferenceValuePattern is typically used with the obtain element. When the right to obtain a grant with a stateful condition
s issued, then to specify the initial values the state value happen to take, a stateReferenceValuePattern is created containing the XML nodes
that correspond to the desired state value. This ensures that only stateReferences whose designated states have the requisite state values
appear in the obtained grant.

The following example illustrates a grant issued to Alice that allows her to obtain another grant to play "A Clockwork Orange" up to twenty
times. The obtained grant uses the stateful condition ExerciseLimit.

Example use of stateReferenceValuePattern
-<grant>
-<forAll varName="stateX">
-<patternFromLicensePart>
-<sx:stateReference>
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>

</patternFromLicensePart>
-<sx:stateReferenceValuePattern>

<sx:count>20</sx:count>
</sx:stateReferenceValuePattern>

</forAll>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<obtain/>

-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="AClockworkOrange"/>

-<sx:exerciseLimit>
<sx:stateReference varRef="stateX"/>

</sx:exerciseLimit>
</grant>

</grant>

6.1.3 The ExerciseLimit Condition

ndicates a maximum number of times that the right may be exercised.

Schema representation of ExerciseLimit
-<xsd:complexType name="ExerciseLimit">
-<xsd:complexContent>

<xsd:extension base="sx:StatefulCondition"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of exerciseLimit
-<xsd:element name="exerciseLimit" type="sx:ExerciseLimit" substitutionGroup="r:condition">
</xsd:element>

Using the exerciseLimit element

Sometimes grants have an upper bound on the number of times the associated rights may be exercised. This can be a certain number of times a
document may be printed or the number of times a piece of music may be played. The element exerciseLimit captures these cases. The
element has type ExerciseLimit, which is based on StatefulCondition. Typically, all of the information needed to evaluate an exerciseLimit
condition is obtained by querying the state designated by stateReference, including the initial value of the limit associated with the grant.

Interaction with the State

When a right conditioned by exerciseLimit is exercised, the state designated by the stateReference in exerciseLimit is queried for its
value. The state returns count containing an integer value c. Upon exercise of the right, the value of the state is updated to return count
containing c - 1 hereon.

The exerciseLimit condition is satisfied if and only if c is greater than zero and the value of the state is updated as described above.

In the following example, Alice may print the book, but only for a certain number of times.

Example use of exerciseLimit
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:exerciseLimit>
-<sx:stateReference>
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>

</sx:exerciseLimit>
</grant>

6.1.4 The SeekApproval Condition

Indicates that the specified service must be contacted and its approval gained before exercising the associated right.

Schema representation of SeekApproval
-<xsd:complexType name="SeekApproval">
-<xsd:complexContent>

<xsd:extension base="sx:StatefulCondition"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of seekApproval
-<xsd:element name="seekApproval" type="sx:SeekApproval" substitutionGroup="r:condition">
</xsd:element>

Using the seekApproval element

A grant may have rights that may be exercised only upon specific approval from a service. The element seekApproval of type SeekApproval is
used to model these cases. seekApproval is based on the type StatefulCondition. The exercise of such a right typically involves querying the
appropriate state for approval. The means to connect to the state is made available with the child element stateReference.

Interaction with the State

When a right conditioned by seekApproval is exercised, the state designated by the stateReference in seekApproval is queried for its value.
The state returns approval containing a boolean value b.

The seekApproval condition is satisfied if and only if b is true.

In the following example, Alice may print the book, but only upon prior approval from the designated state reference.

Example use of seekApproval
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:seekApproval>
-<sx:stateReference>
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>

</sx:seekApproval>
</grant>

6.1.5 The TrackReport Condition

Indicates that exercising a right must be reported to a designated tracking service.

Schema representation of TrackReport
-<xsd:complexType name="TrackReport">
-<xsd:complexContent>
-<xsd:extension base="sx:StatefulCondition">
-<xsd:sequence minOccurs="0">

-<xsd:element name="communicationFailurePolicy" default="required" minOccurs="0">
-<xsd:simpleType>
-<xsd:restriction base="xsd:NMTOKEN">

<xsd:pattern value="lax"/>
<xsd:pattern value="required"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Schema representation of trackReport
-<xsd:element name="trackReport" type="sx:TrackReport" substitutionGroup="r:condition">
</xsd:element>

6.1.5.1 TrackReport/communicationFailurePolicy

This locally defined element is used to indicate what should happen if communication with the designated state should fail. With a setting of "lax"
communication failures may be ignored and the right may be exercised, whereas a setting of "required" would prevent exercises. The default is
"required".

Using the trackReport element

The trackReport condition requires that the exercise of the associated right is reported to a designated state. The trackReport element is
based on the TrackReport type, which is an extension of StatefulCondition. The means to connect to the state is made available with the
child element stateReference. A child element, communicationFailurePolicy, allows the setting of policy regarding the exercise should the
communication with the state fail.

Interaction with the State

When a right conditioned by trackReport is exercised, the state designated by the stateReference is notified of the exercise. The state
responds in some fashion to confirm the notification.

Except when the communicationFailurePolicy is set to lax, the trackReport condition is satisfied if and only if the state is successfully notified
of the exercise of the right. Note that trackReport does not define how the state records the report. This may be done with a boolean value or an
integer value.

n the following example, Alice has the right to print a book, but the exercise of that right must be reported.

Example use of trackReport
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:trackReport>
-<sx:stateReference licensePartId="stateReferenceAlias">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>
<sx:communicationFailurePolicy>required</sx:communicationFailurePolicy>

</sx:trackReport>
</grant>

6.1.6 The TrackQuery Condition

Represents a condition on the tracking state updated by TrackReport. For example, this condition can be used to predicate the granting of one
right on the successful exercise of another.

Schema representation of TrackQuery
-<xsd:complexType name="TrackQuery">
-<xsd:complexContent>
-<xsd:extension base="sx:StatefulCondition">
-<xsd:sequence minOccurs="0">
-<xsd:element name="notLessThan" type="xsd:integer" minOccurs="0">
</xsd:element>

-<xsd:element name="notMoreThan" type="xsd:integer" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of trackQuery
-<xsd:element name="trackQuery" type="sx:TrackQuery" substitutionGroup="r:condition">
</xsd:element>

Using the trackQuery element

The trackQuery condition represents a condition on a specific value that a state holds. The trackQuery element is based on the TrackQuery
type, which is an extension of StatefulCondition. The means to connect to the state is made available with the child element
stateReference. For the trackQuery condition to be satisfied the state must have a value within the range is specified by two child elements
notMoreThan and notLessThan.

Interaction with the State

When a grant conditioned by trackQuery is exercised, the state designated by the stateReference is queried for its value. The state returns
count containing an integer v.

The trackQuery condition is satisfied if and only if v lies between the values contained in notMoreThan and notLessThan.

In the following example, Alice can print the book only when the designated state value is between five and ten.

Example use of trackQuery
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:trackQuery>
-<sx:stateReference licensePartId="stateReferenceAlias">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>
<sx:notLessThan>10</sx:notLessThan>
<sx:notMoreThan>5</sx:notMoreThan>

</sx:trackQuery>
</grant>

TrackQuery is commonly used together with trackReport, to model exercise of rights predicated on the exercise of other rights. The following
example demonstrates one such usage. The idea is that Alice may listen to a piece of music as many times as she pleases provided she has
listened to some commercial. The grant related to the commercial has a trackReport condition. When Alice attempts to listen to the piece of
music, the trackQuery condition herein allows exercise of the right only when the state value tracked by the trackReport condition has a value
greater than zero.

Example use of trackQuery with trackReport
-<license>
-<inventory>
-<keyHolder licensePartId="Alice">
-<info>
-<dsig:KeyValue>
-<dsig:RSAKeyValue>

<dsig:Modulus>n5gzmvv4/...</dsig:Modulus>
<dsig:Exponent>AQABAA==</dsig:Exponent>

</dsig:RSAKeyValue>
</dsig:KeyValue>

</info>
</keyHolder>

-<digitalResource licensePartId="Commercial">
-<cx:metadata>
-<xml>
-<cx:simpleDigitalWorkMetadata>

<cx:title>Toyota Ad</cx:title>
</cx:simpleDigitalWorkMetadata>

</xml>
</cx:metadata>

</digitalResource>
-<digitalResource licensePartId="music">
-<dsig:Reference URI="http://www.server.com/downloads/anInterestingSong.mp3">

<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</dsig:DigestValue>

</dsig:Reference>
</digitalResource>

</inventory>
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="Commercial"/>

-<sx:trackReport>
-<sx:stateReference licensePartId="AdState">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>
<sx:communicationFailurePolicy>lax</sx:communicationFailurePolicy>

</sx:trackReport>
</grant>

-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="Music"/>

-<sx:trackQuery>
-<sx:stateReference licensePartId="AdState">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>
<sx:notLessThan>1</sx:notLessThan>

</sx:trackQuery>
</grant>

-<issuer>
-<dsig:Signature>
-<dsig:SignedInfo>

<dsig:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

-<dsig:Reference>
-<dsig:Transforms>

<dsig:Transform Algorithm="http://www.xrml.org/schema/2001/11/xrml2core#license"/>
</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>PB4QbKOQCo941tTExbj1/Q==</dsig:DigestValue>

</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>zIRYaxl5E...</dsig:SignatureValue>

-<dsig:KeyInfo>
-<dsig:KeyValue>
-<dsig:RSAKeyValue>

<dsig:Modulus>g8NRYMG30...</dsig:Modulus>
<dsig:Exponent>AQABAA==</dsig:Exponent>

</dsig:RSAKeyValue>
</dsig:KeyValue>

</dsig:KeyInfo>
</dsig:Signature>

-<details>
<timeOfIssue>2001-01-27T15:30:00</timeOfIssue>

-<validityInterval>
<notBefore>2000-02-03T17:26:00</notBefore>
<notAfter>3000-02-03T17:26:00</notAfter>

</validityInterval>
</details>

</issuer>
</license>

6.1.7 The ValidityIntervalFloating Condition

Represents an interval of time that begins with the first exercise of a right.

Schema representation of ValidityIntervalFloating
-<xsd:complexType name="ValidityIntervalFloating">
-<xsd:complexContent>

<xsd:extension base="sx:StatefulCondition"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of ValidityIntervalFloating
-<xsd:element name="validityIntervalFloating" type="sx:ValidityIntervalFloating" substitutionGroup="r:condition">
</xsd:element>

Using the validityIntervalFloating element

ValidityIntervalFloating is a temporal condition that is used to indicate for what length of time a right may be exercised. For example, we
may speak of a grant that provides a right that can be exercised for one week. The element validityIntervalFloating is based on the type
ValidityIntervalFloating, which is based on StatefulCondition. The semantic of the condition expressed is that the interval of exercise of
the right to which a validityIntervalFloating is applied must lie wholly within some contiguous duration of time.

Interaction with the state

When a right conditioned by validityIntervalFloatingis exercised, the state designated by the stateReference is queried for its value. The
state returns EITHER a) validUntil holding a dateTime value v OR b) validFor holding a duration value d. It the state returns d, and the
right is currently to be exercised, then it is updated to return validUntil from hereon with a value equal to c + d, where c is the current time.

The validityIntervalFloating condition is satisfied if and only if the interval of exercise of the right lies wholly within the interval {from: c,

to: v} or within the interval {from: c, to: c+ d}

n the following example, Alice can exercise the right to print the book only when time has not run out of the state clock.

Example use of validityIntervalFloating
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:validityIntervalFloating>
-<sx:stateReference licensePartId="stateReferenceAlias">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>

</sx:validityIntervalFloating>
</grant>

6.1.8 The ValidityTimeMetered Condition

Represents an accumulative period of time. A user can start and stop exercising a right, and the metering clock runs only when the right is being
exercised. The right can be exercised as long as the total remaining time has not been used.

Schema representation of ValidityTimeMetered
-<xsd:complexType name="ValidityTimeMetered">
-<xsd:complexContent>
-<xsd:extension base="sx:StatefulCondition">
-<xsd:sequence minOccurs="0">
-<xsd:element name="quantum" type="xsd:duration" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of validityTimeMetered
-<xsd:element name="validityTimeMetered" type="sx:ValidityTimeMetered" substitutionGroup="r:condition">
</xsd:element>

6.1.8.1 validityTimeMetered/quantum

A locally defined element of type integer. It serves to indicate the period with which the metered time is measured. For example, a quantum of
one hour would meter every usage to the closest hour.

Using the validityTimeMetered element

The validityTimeMetered condition that is used to indicate for what non-contiguous length of time a right may be exercised. Unlike the
validityIntervalFloating condition, the length in question only takes into account the periods of time of actual exercise. For example, a user
may be granted the right to play music clips from a catalog for a cumulative period of one hour; the user may exercise this right by playing, say,
twelve five-minute clips over a week, or over a month. The element validityTimeMetered has type ValidityTimeMetered , which is an
extension of StatefulCondition. The means to connect to the state is made with the child element stateReference.

Interaction with the state

Upon exercise of a right conditioned by validityTimeMetered, beginning with the moment of exercise, at regular intervals of quantum q units of
time, the state designated by the stateReference is queried for its value. Suppose at interval i the state returns validFor containing a duration
value di. Then, the state is updated to return di - q hereon. This continues until the value of di is lesser than q, or when the interval of exercise
of the right is complete.

The validityTimeMetered condition is said to be satisfied at interval i if and only if di is greater than q.

n the following example, Alice can exercise the right to read the book only when time has not run out on the designated state clock.

Example use of validityTimeMetered
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:validityTimeMetered>
-<sx:stateReference licensePartId="stateReferenceAlias">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>
<sx:quantum>P1D</sx:quantum>

</sx:validityTimeMetered>
</grant>

6.1.9 The ValidityTimePeriodic Condition

ndicates a validity time window that recurs periodically. For example, this condition can be used to express time windows such as "every
weekend" or "the second week of every month".

Schema representation of ValidityTimePeriodic
-<xsd:complexType name="ValidityTimePeriodic">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence minOccurs="0">
-<xsd:element name="start" type="xsd:dateTime">
</xsd:element>

-<xsd:element name="period" type="xsd:duration">
</xsd:element>

-<xsd:element name="phase" type="xsd:duration" minOccurs="0">
</xsd:element>

-<xsd:element name="duration" type="xsd:duration">
</xsd:element>

-<xsd:element name="periodCount" type="xsd:nonNegativeInteger" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of validityTimePeriodic
-<xsd:element name="validityTimePeriodic" type="sx:ValidityTimePeriodic" substitutionGroup="r:condition">
</xsd:element>

6.1.9.1 ValidityTimePeriodic/start

A locally defined element of type dateTime. Indicates the start of the time, typically date, from which the periods designated in this right become
meaningful.

6.1.9.2 ValidityTimePeriodic/period

A locally defined element of type duration. This indicates the frequency with which the exercise time window recurs.

6.1.9.3 ValidityTimePeriodic/phase

A locally defined element of type duration. This is used to indicate a period of latency before beginning each time window. When this value is
positive then it directly specifies the duration of latency. When this value is negative, then the duration of latency is equal to the length of period
minus the absolute value specified herein.

6.1.9.4 ValidityTimePeriodic/duration

A locally defined element of type duration. This indicates the actual length of the time window.

6.1.9.5 ValidityTimePeriodic/periodCount

A locally defined element of type integer. Indicates a bound on the number of time windows. This element is optional.

Using the validityTimePeriodic element

Sometimes grants may predicate rights to be exercisable on a periodic basis, such as "every weekend after Jan 1 2001 for a total of ten times".
That is following some starting date, a time window of exercise periodically recurs. Such conditions are expressed using the
validityTimePeriodic element. The element validityTimePeriodic has type ValidityTimePeriodic, which is an extension of Condition.
The child element start marks the starting date for this condition to become relevant. The child element period indicates how often this time
window should recur. The length of the duration is indicated by the element duration. An optional element phase is used to mark latency from the
beginning of the period.

Formally, let s be the start time, p the period, h the phase, d the duration and c the count. Then the interval of exercise of the right must fall in one
of the intervals described by the expression {from:s + i*p + h, to: s + i*p + h + d} where the value of i ranges from 0 to c - 1 if h is
positive and ranges from 1 to c if h is negative. If c is unspecified then i is unbounded.

n the following example, starting January 1st 2001, Alice may print the book only on the first two days of the second week of every month.
Furthermore, this right lapses after twelve months.

Example of validityTimePeriodic
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:validityTimePeriodic>
<sx:start>2001-01-01T00:00:00</sx:start>
<sx:period>P1M</sx:period>
<sx:phase>P7D</sx:phase>
<sx:duration>P2D</sx:duration>
<sx:periodCount>12</sx:periodCount>

</sx:validityTimePeriodic>
</grant>

The negative phase can be used to capture certain interesting periods. For example, on Memorial day, people who are veterans may watch the
movie "Pearl Harbor" for free. Memorial day is the last Monday of May. So we combine three validityTimePeriodic conditions. The first one
captures the last week of every month, the second one captures the month of May and the final one captures all Mondays beginning Jan 1 2001.

Example of validityTimePeriodic
-<grant>
-<keyHolder licensePartIdRef="VeteransGroup">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="PearlHarbor"/>

-<allConditions>
-<sx:validityTimePeriodic>

<sx:start>2001-01-01T00:00:00</sx:start>
<sx:period>P1M</sx:period>
<sx:phase>-P7D</sx:phase>
<sx:duration>P7D</sx:duration>

</sx:validityTimePeriodic>
-<sx:validityTimePeriodic>

<sx:start>2001-05-01T00:00:00</sx:start>
<sx:period>P1Y</sx:period>
<sx:duration>P1M</sx:duration>

</sx:validityTimePeriodic>
-<sx:validityTimePeriodic>

<sx:start>2001-01-01T00:00:00</sx:start>
<sx:period>P7D</sx:period>
<sx:duration>P1D</sx:duration>

</sx:validityTimePeriodic>
</allConditions>

</grant>

Astute readers will note that Memorial Day can actually be characterized without the usage of phase.

Example of validityTimePeriodic
-<grant>
-<keyHolder licensePartIdRef="VeteransGroup">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="PearlHarbor"/>

-<allConditions>
-<sx:validityTimePeriodic>

<sx:start>2001-05-25T00:00:00</sx:start>
<sx:period>P1Y</sx:period>
<sx:duration>P7D</sx:duration>

</sx:validityTimePeriodic>
-<sx:validityTimePeriodic>

<sx:start>2001-01-01T00:00:00</sx:start>
<sx:period>P7D</sx:period>
<sx:duration>P1D</sx:duration>

</sx:validityTimePeriodic>
</allConditions>

</grant>

6.1.10 The Fee Condition

ndicates that a fee must be paid before a right is exercised.

Schema representation of Fee
-<xsd:complexType name="Fee">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence minOccurs="0">

<xsd:element ref="sx:paymentAbstract"/>
-<xsd:element name="min" minOccurs="0">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="sx:paymentAbstract"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

-<xsd:element name="max" minOccurs="0">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="sx:paymentAbstract"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

-<xsd:element name="to" type="sx:AccountPayable" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of fee
-<xsd:element name="fee" type="sx:Fee" substitutionGroup="r:condition">
</xsd:element>

6.1.10.3 Fee/paymentAbstract

This element of type paymentAbstract is abstract. It is meant to be substitutable. For more details and examples of extensions see
paymentAbstract.

6.1.10.2 Fee/min

This locally defined optional element contains a paymentAbstract element. It specifies the minimum amount due the fee recipient. If the total
amount paid is less than the value of this element, a new payment in the amount of the difference is due.

6.1.10.3 Fee/max

This locally defined optional element contains a paymentAbstract element. It specifies the maximum amount due the fee recipient. If the total
amount paid is greater than the value of this element, a new credit in the amount of the difference is due. If the total amount paid is equal to the
value of this element all other payments resulting from this fee are void until the value of max increases.

6.1.10.4 Fee/to

This locally defined element is of type of AccountPayable. It indicates the party to whom, and the means by which, payment is to be made. To
allow for the rare cases where this is discovered from context, this element is left optional.

6.1.10.5 AccountPayable

AccountPayable is used to identify a party to whom one can transfer a sum of money, along with an identification of the means by which such a
transfer is to take place. While there are undoubtedly many ways this can be done, two ways are explicitly defined. The type AccountPayable is
defined as a choice between three options. The first, a paymentService, identifies the party to whom the payment is made. The second option,
aba, identifies a bank in the US banking system. As a provision to support other forms of banking mechanisms, an option is made for
specifying other banking means as well. This is realized by the any element.

Schema representation of AccountPayable
-<xsd:complexType name="AccountPayable">
-<xsd:choice>
-<xsd:element name="paymentService" type="r:ServiceReference">
</xsd:element>

-<xsd:element name="aba">
-<xsd:complexType>
-<xsd:sequence>
-<xsd:element name="institution">
-<xsd:simpleType>
-<xsd:restriction base="xsd:integer">

<xsd:totalDigits value="9"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

-<xsd:element name="account" type="xsd:integer">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
-<xsd:any namespace="##other" processContents="lax">
</xsd:any>

</xsd:choice>
</xsd:complexType>

6.1.10.5.1 AccountPayable/paymentService

The locally defined element ServiceReference. This identifies the party to whom the payment is to be made, and the interface to the service
indicates the necessary payment mechanism.

6.1.10.5.2 AccountPayable/aba

The locally defined element identifies an account within a US banking institution by means of conventions established by the American Banking
Association. It defines two child elements, institution and account. The banking institution is identified by its nine-digit banking routing number
using the institution. The account within that institution is identified with account.

Using the fee condition

A grant can predicate that a fee be paid before a right can be exercised. Typically fees involve a payment, and a designation of the party the
payment is made to. Options about what form the payment should take (such as periodic or one-time or usage-based or metered) are reflected
by the paymentAbstract element.

The fee element is of type Fee, which is an extension of Condition. A child element to of type AccountPayable is used to characterize both the
payment and the payee.

There are two other optional elements. The optional min price specification indicates the minimum price to be paid if the right is exercised at all.
The optional max price specification refers to the maximum price to be paid if the right is exercised at all. When both a maximum and minimum
price specifications are given, the maximum price specification dominates.

Suppose that the fees in payment, min and max independently amount to p, min and max respectively due for the exercise of the associated right
as defined by the respective payment extension. Then, x is min if p <= min < max; x is p if min < p< max; x is max if min < max < p. Then the
fee condition is satisfied if and only if the amount x is paid to the entity identified by to

Not all forms of payment extensions are directly comparable. For the fee condition to be sensibly evaluated, it is necessary that the payment
extensions of the paymentAbstract elements in payment, min and max are comparable. In the standard extension, the payment extensions
either contain state references or they do not. Stateful payment extensions are not comparable with stateless ones. So it is required that the
payment extensions in payment, min and max are either all stateful or all stateless. The corresponding fee conditions are respectively termed as
stateful and stateless.

6.1.11 The Territory Condition

Indicates a geographic or virtual space within which the associated right may be exercised.

Schema representation of Territory
-<xsd:complexType name="Territory">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">

-<xsd:choice minOccurs="0" maxOccurs="unbounded">
-<xsd:element name="location">
-<xsd:complexType>
-<xsd:sequence>
-<xsd:element name="region" type="sx:RegionCode" minOccurs="0">
</xsd:element>

-<xsd:element name="country" type="sx:CountryCode" minOccurs="0">
</xsd:element>

-<xsd:element name="state" type="xsd:string" minOccurs="0">
</xsd:element>

-<xsd:element name="city" type="xsd:string" minOccurs="0">
</xsd:element>

-<xsd:element name="postalCode" type="xsd:string" minOccurs="0">
</xsd:element>

-<xsd:element name="street" type="xsd:string" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
-<xsd:element name="domain">
-<xsd:complexType>
-<xsd:sequence>
-<xsd:element name="url" type="xsd:anyURI">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:choice>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Schema representation of territory
-<xsd:element name="territory" type="sx:Territory" substitutionGroup="r:condition">
</xsd:element>

6.1.11.1 Territory/location

The locally defined element location defines inline the optional elements region, country, state, city, postalCode and street that designate a
physical location.

6.1.11.1.1 Territory/location/region

The locally defined element region, as defined by its type RegionCode, is a three-letter ISO 3166 region code.

6.1.11.1.2 Territory/location/country

The locally defined element country, as defined by its type CountryCode, is a two-letter ISO 3166 country code.

6.1.11.1.3 Territory/location/state

The locally defined element state is a two-letter code for US states.

6.1.11.1.4 Territory/location/city

The locally defined element is of type string and designates a city.

6.1.11.1.5 Territory/location/postalCode

The locally defined element postalCode is of type string and designates a postal code (e.g. a zip code).

6.1.11.1.6 Territory/location/street

The locally defined element street is of type string and designates a street.

6.1.11.2 Territory/domain

The locally defined element defines inline an element url to designate a digital location.

6.1.11.2.1 Territory/domain/url

The locally defined element url, has type anyUri and can be any uri.

Using the territory condition

Grants may sometimes predicate rights to be exercisable only in certain locations. These locations may correspond to physical or geographical
regions, or they may correspond to virtual or digital locations. The element territory is used to specify such conditions. territory has type
Territory, which is an extension of Condition. The child element location is used to indicate physical locations, and the child element domain
ndicates the digital locations. Since the right may be exercisable in more than one location, physical or digital, the content model for territory
allows for an unbounded number of children.

The territory condition is satisfied if the exercise can be shown to be occurring in at least one of the locations or domains.

n the following example, Alice may print the book only if she is in the USA or from a device in the www.xrml.org domain.

Example of the territory condition
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:territory>
-<sx:location>

<sx:country>US</sx:country>
</sx:location>

-<sx:domain>
<sx:url> www.xrml.org </sx:url>

</sx:domain>
</sx:territory>

</grant>

6.1.12 State Interaction Elements

The following elements are used by various elements of type StatefulCondition (or derivations thereof) to describe their interaction with the
state. Specifically, the state exchanges data using these elements.

6.1.12.1 approval

This element of type boolean is used by seekApproval.

6.1.12.2 count

This element of type integer is used by ExerciseLimit, trackQuery and paymentPerUse.

6.1.12.3 paid

This element of type boolean is used by paymentFlat.

6.1.12.4 validFor

This element of type duration is used by validityIntervalFloating and validityTimeMetered.

6.1.12.5 validUntil

This element of type dateTime is used by validityIntervalFloating and paymentPerInterval.

6.2 Payment and its Extensions

6.2.1 paymentAbstract

The head of a substitution group chain for the PaymentAbstract type.

The notion of payment is left abstract in XRML2.0. The element paymentAbstract has type PaymentAbstract. The type PaymentAbstract does
not define any specific sub-elements.

n its place more concrete forms of payment such as paymentFlat, bestPriceUnder, callForPrice, markup etc. are to be used. The standard
extension defines seven different kinds of payments. Each of these defines its own notion of when a payment has been made that work toward the
fee condition being satisfied. Since payment extensions themselves are not conditions, we introduce a notion of fulfillment. For a fee condition to
be satisfied, the payment extension must be fulfilled. Each payment extension describes the semantic of its fulfillment.

Payment Extensions

Schema representation of PaymentAbstract
-<xsd:complexType name="PaymentAbstract" abstract="true">
</xsd:complexType>

Schema representation of paymentAbstract

-<xsd:element name="paymentAbstract" type="sx:PaymentAbstract">
</xsd:element>

6.2.2 Cash

A fixed amount of money in a designated currency.

Schema representation of Cash
-<xsd:complexType name="Cash">
-<xsd:simpleContent>
-<xsd:extension base="xsd:decimal">

<xsd:attribute name="currency" type="sx:CurrencyCode" default="USD"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

6.2.3 PaymentFlat

Specifies a payment due upon exercising a right when the value in paymentRecord is False. When this fee is paid, the payment record should be
updated to True.

Schema representation of PaymentFlat
-<xsd:complexType name="PaymentFlat">
-<xsd:complexContent>
-<xsd:extension base="sx:PaymentAbstract">
-<xsd:sequence>
-<xsd:element name="rate" type="sx:Cash">
</xsd:element>

-<xsd:element name="paymentRecord">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="sx:stateReference"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of paymentFlat
-<xsd:element name="paymentFlat" type="sx:PaymentFlat" substitutionGroup="sx:paymentAbstract">
</xsd:element>

6.2.3.1 PaymentFlat/rate

This locally defined element of type Cash indicates the amount to be paid to exercise the right.

6.2.3.2 PaymentFlat/paymentRecord

This locally defined element contains a stateReference that holds a value. This value is true if payment has been made, and false otherwise.

Using the paymentFlat element

Some rights may be exercised upon the payment of a one-time fee. For example, purchasing a song. The paymentFlat element of type
PaymentFlat is used to describe such payments. A local element rate is used to indicate the amount to be paid and another element
paymentRecord is used to designate a state which holds the information whether the payment has been made.

Interaction with the state

When a right conditioned upon a paymentFlat fee is exercised, the state designated by PaymentFlat/ paymentRecord/stateReference is
queried for its value. The state returns paid holding a boolean value b. When a payment of amount as designated by rate is made, the state is
updated to return paid set to true.

The paymentFlat payment is fulfilled if b is true.

n the following example, Alice may listen to "La Bamba" provided she makes a one-time payment of $5.

Example of paymentFlat
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="LaBamba"/>

-<sx:fee>
-<sx:paymentFlat>

<sx:rate> 5 </sx:rate>
-<sx:paymentRecord>
-<sx:stateReference licensePartId="stateReferenceAlias">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>

</serviceKey>
</uddi>

</sx:stateReference>
</sx:paymentRecord>

</sx:paymentFlat>
-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

6.2.4 PaymentMetered

Specifies a payment due for each time interval during which the right is actually exercised.

Schema representation of PaymentMetered
-<xsd:complexType name="PaymentMetered">
-<xsd:complexContent>
-<xsd:extension base="sx:PaymentAbstract">
-<xsd:sequence>
-<xsd:element name="rate" type="sx:Cash">
</xsd:element>

-<xsd:element name="per" type="xsd:duration">
</xsd:element>

-<xsd:element name="by" type="xsd:duration">
</xsd:element>

-<xsd:element name="phase" type="xsd:duration">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of paymentMetered
-<xsd:element name="paymentMetered" type="sx:PaymentMetered" substitutionGroup="sx:paymentAbstract">
</xsd:element>

6.2.4.1 PaymentMetered/rate

This locally defined element of type Cash, together with the element per, indicates the charge per period.

6.2.4.2 PaymentMetered/per

This locally defined element of type duration indicates the period available for the payment of the rate.

6.2.4.3 PaymentMetered/by

This locally defined element of type duration indicates the quantum by which time is measured for the computation of the amount.

6.2.4.4 PaymentMetered/phase

This locally defined element of type duration is used for rounding purposes. It indicates what portion of time may elapse before someone is billed
for the whole duration defined with by.

Using the paymentMetered element

Some rights may be exercised upon the payment of a fee that is prorated according to the duration of usage. For example, one may have the right
to play a game and pay a fee according dictated by the length of time one plays the game. The paymentMetered element of type
PaymentMetered is used to describe such payments. A local element rate, with another element per, is used to designate the basic cost. Another
element by is used to describe the granularity with which time is measured. Finally, the element phase is used for rounding the units of time that
are smaller than the duration described by the by element; a value of zero would have the effect of rounding up, and a value of the duration
described in the by element would have the effect of rounding down.

Formally, after normalizing all of the duration values to seconds, suppose the rate is r, per in seconds is p, by in seconds is b, and phase in
seconds is h. Then, if the interval of exercise of the right is t seconds, then the payment due is given by the expression r*[b/p]*[floor(t/b) +
round] where roundt%b is greater than h and is zero otherwise.

n the following example, Alice may play a game but is charged a daily rate of 24$/day. This rate is computed on an hourly basis. Furthermore, any
usage of over thirty minutes is docked as an hour. So if Alice spends two hours and twenty-nine minutes playing, then she would end up paying $2
n all ($1 after 30 minutes and another dollar after 90 minutes). However, if she spends two hours and thirty-one minutes playing she would end up
paying $3 in all (yet another dollar after 150 minutes).

Example of PaymentMetered
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="AlicesGame"/>

-<sx:fee>
-<sx:paymentMetered>

<sx:rate> 24 </sx:rate>

<sx:per> P1D </sx:per>
<sx:by> PT1H </sx:by>
<sx:phase> PT30M </sx:phase>

</sx:paymentMetered>
-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

6.2.5 PaymentPerInterval

Specifies a payment due for each time interval during which the ability to exercise the right is desired.

Schema representation of PaymentPerInterval
-<xsd:complexType name="PaymentPerInterval">
-<xsd:complexContent>
-<xsd:extension base="sx:PaymentAbstract">
-<xsd:sequence>
-<xsd:element name="rate" type="sx:Cash">
</xsd:element>

-<xsd:element name="per" type="xsd:duration">
</xsd:element>

-<xsd:element name="paidThrough">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="sx:stateReference"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of paymentPerInterval
-<xsd:element name="paymentPerInterval" type="sx:PaymentPerInterval" substitutionGroup="sx:paymentAbstract">
</xsd:element>

6.2.5.1 PaymentPerInterval/rate

This locally defined element of type Cash, indicates the amount to paid for the allocation of an interval of time defined by per.

6.2.5.2 PaymentPerInterval/per

This locally defined element of type duration, indicates the quantum of time allocated with the payment of the amount in rate.

6.2.5.3 PaymentPerInterval/paidThrough

This locally defined element contains a stateReference whose value is the time through which the amount is paid.

Using the paymentPerInterval element

Some rights may be exercised for a period of time that they are paid for. For example, one may buy up some time to play a game and may keep
playing the game until it is paid for. The paymentPerInterval element of type PaymentPerInterval is used to describe such payments. A local
element rate, with another element per, is used to indicate the cost for a certain duration of time. Another element paidThrough is used to record
the time until when the right may be exercisable.

Interaction with the state

When a right conditioned upon a paymentPerInterval fee is exercised, the state designated by paymentPerInterval/ paidThrough/
stateReference is queried for its value. The state returns validUntil that contains a dateTime value t. This marks the time until when the right
may be exercised. For every payment currently made in the amount in rate, if t is in the future then it is increased by the duration designated in
the per element. Otherwise, the value is set to a time that is per duration from the global official time (colloquially, the present time). The state is
then updated to return validUntil containing the new value of t.

The paymentPerInterval payment is fulfilled if the interval of exercise of the associated right is bounded by t.

n the following example, Alice may play her game and is charged a rate of $5/day.

Example of paymentPerInterval
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="AlicesGame"/>

-<sx:fee>
-<sx:paymentPerInterval>

<sx:rate> 5 </sx:rate>
<sx:per> P1D </sx:per>

-<sx:paidThrough>

-<sx:stateReference licensePartId="stateReferenceAlias">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>

</sx:paidThrough>
</sx:paymentPerInterval>

-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

6.2.6 PaymentPerUse

Specifies a payment due each time a right is exercised.

Schema representation of PaymentPerUse
-<xsd:complexType name="PaymentPerUse">
-<xsd:complexContent>
-<xsd:extension base="sx:PaymentAbstract">
-<xsd:sequence>
-<xsd:element name="rate" type="sx:Cash">
</xsd:element>

-<xsd:element name="allowPrePay" minOccurs="0">
-<xsd:complexType>
-<xsd:sequence>
-<xsd:element name="initialNumberOfUses" type="xsd:integer" minOccurs="0">
</xsd:element>

-<xsd:element name="prePaidUsesRemaining">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="sx:stateReference"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Schema representation of paymentPerUse
-<xsd:element name="paymentPerUse" type="sx:PaymentPerUse" substitutionGroup="sx:paymentAbstract">
</xsd:element>

6.2.6.1 paymentPerUse/rate

This locally defined element of type Cash indicates the amount to be paid for a certain number of uses, if specified by the element
initialNumberOfUses, otherwise it defines the amount to be paid for each use.

6.2.6.2 paymentPerUse/allowPrePay

This locally defined optional element is used to allow for prepayments.

6.2.6.2.1 paymentPerUse/allowPrePay/initialNumberOfUses

This optional element of type integer indicates the number of uses each rate payment buys. If absent, the number of uses is one.

6.2.6.2.2 paymentPerUse/allowPrePay/prepaidUsesRemaining

This locally defined element contains a stateReference that indicates the remaining number of uses.

Using the paymentPerUse

Some rights may be exercised upon payment of a fee for each use. For example, one may have the right to listen to a piece of music provided a
payment is made for each listening. The element paymentPerUse of type PaymentPerUse is used to describe such payments.

Interaction with the state

When a right conditioned upon a paymentPerUse fee is exercised, the state designated by
paymentPerUse/allowPrePay/prepaidUsesRemaining is queried for its value. The state returns count containing an integer value c. Upon
exercise of the right, the value of the state is updated to return count containing c - 1 hereon. When payment in the amount defined in the rate
element is made, then state is updated to increment count by the initialNumberOfUses value.

The paymentPerUse payment is fulfilled if the value of c is greater than zero and the state is updated as described above.

n the following example Alice may print the book five times provided she pays $5.

Example of paymentPerUse
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:fee>
-<sx:paymentPerUse>

<sx:rate> 5 </sx:rate>
-<sx:allowPrePay>

<sx:initialNumberOfUses> 5 </sx:initialNumberOfUses>
-<sx:prePaidUsesRemaining>
-<sx:stateReference licensePartId="stateReferenceAlias">
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>

</sx:prePaidUsesRemaining>
</sx:allowPrePay>

</sx:paymentPerUse>
-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

6.2.7 BestPriceUnder

Specifies the maximum fee that ultimately must be paid without specifying the ultimate fee exactly. The ultimate fee is determined through a later,
unspecified settlement mechanism. While Max overrides Min if Max is less than Min, Min overrides BestPriceUnder if BestPriceUnder is less than
Min.

Schema representation of BestPriceUnder
-<xsd:complexType name="BestPriceUnder">
-<xsd:complexContent>
-<xsd:extension base="sx:PaymentAbstract">
-<xsd:sequence>

<xsd:element ref="sx:paymentAbstract"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Schema representation of bestPriceUnder
-<xsd:element name="bestPriceUnder" type="sx:BestPriceUnder" substitutionGroup="sx:paymentAbstract">
</xsd:element>

Using the bestPriceUnder element

bestPriceUnder is a kind of payment that can be dynamic and is determined when the account is settled. It is used to accommodate special
deals, rebates, and pricing that depends on information that is not available to the trusted repository at the time the usage right is exercised, but
without communicating with a dealer before the purchase is authorized. A bestPriceUnder specification limits the risk to the user by naming a
maximum amount that the exercising of the right will cost. This is the amount that is tentatively charged to the account. However, when the
transaction is ultimately reconciled, any excess amount charged will be returned to the user/copy-owner in a separate transaction.

The bestPriceUnder element has type BestPriceUnder, which is an extension of PaymentAbstract. It has a child element fee which is used
to indicate the charge. The bestPriceUnder element is defined to be in payment's substitution group, and can be used wherever payment is
expected.

In the following example, Alice may print the book and will be charged at most $5 to do it.

Example of bestPriceUnder
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:fee>
-<sx:bestPriceUnder>
-<sx:paymentFlat>

<sx:rate> 5 </sx:rate>
-<sx:paymentRecord>
-<sx:stateReference>
-<uddi>
-<serviceKey>

<uuid>D04951E4-332C-4693-B7DB-D3D1D1C20844</uuid>
</serviceKey>

</uddi>
</sx:stateReference>

</sx:paymentRecord>
</sx:paymentFlat>

</sx:bestPriceUnder>

-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

6.2.8 CallForPrice

dentifies an entity with whom a price must be negotiated before exercising the right.

Schema representation of CallForPrice
-<xsd:complexType name="CallForPrice">
-<xsd:complexContent>
-<xsd:extension base="sx:PaymentAbstract">
-<xsd:sequence minOccurs="0">
-<xsd:element name="location" type="r:ServiceReference" maxOccurs="unbounded">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of callForPrice
-<xsd:element name="callForPrice" type="sx:CallForPrice" substitutionGroup="sx:paymentAbstract">
</xsd:element>

6.2.8.1 CallForPrice/location

This optional element of type ServiceReference indicates the location where the negotiation may be supported. This may simply be a matter of
ocating a dealer.

Using the callForPrice element

callForPrice is similar to bestPriceUnder in that it is intended to accommodate cases where prices are dynamic. However, unlike
bestPriceUnder, communication with a dealer to determine the price is required before the purchase is authorized; the transaction cannot be
completed if the trusted repository is unable to communicate with the dealer.

callForPriceis of type CallForPrice, which is an extension of PaymentAbstract. It can contain possibly several location child elements. The
ocation elements are used to communicate with the dealers.

Example of callForPrice
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:print/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:fee>
-<sx:callForPrice>
-<sx:location licensePartId="LocationOne">
-<uddi>
-<serviceKey>

<uuid>EE4A90A5-8AC9-4f31-85F7-6619AA573449</uuid>
</serviceKey>

</uddi>
</sx:location>

-<sx:location licensePartId="LocationTwo">
-<uddi>
-<serviceKey>

<uuid>EE4A90A5-8AC9-4f31-85F7-6619AA5734BA</uuid>
</serviceKey>

</uddi>
</sx:location>

</sx:callForPrice>
</sx:fee>

</grant>

6.2.9 Markup

Specifies a fee due each time some other fees are due.

Schema representation of Markup
-<xsd:complexType name="Markup">
-<xsd:complexContent>
-<xsd:extension base="sx:PaymentAbstract">
-<xsd:sequence>
-<xsd:element name="rate" type="xsd:float">
</xsd:element>

-<xsd:choice maxOccurs="unbounded">
<xsd:element ref="sx:fee"/>

-<xsd:element name="feeForResource">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="r:resource"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Schema representation of markup
-<xsd:element name="markup" type="sx:Markup" substitutionGroup="sx:paymentAbstract">
</xsd:element>

6.2.9.1 rate

This locally defined element is of type float. It indicates the fractional rate at which markup is calculated.

6.2.9.2 feeForResource

mplies a context in which multiple resources are being used simultaneously. The total price for using the specified resource is calculated, and the
amount is paid as defined by any license agreements for that resource. The price is then marked up by the rate specified in this markup element,
and the markup is paid as specified by the containing fee element. If the specified resource is not used in conjunction with exercising this grant,
this markup is not fulfilled and the containing fee is not satisfied.

Using the markup element

Markup fees are fees that are computed as a percentage of other fees. For example, a distributor may want to add a flat ten percent overhead for
selling copies of a digital work, or a government may want to tax sales of a digital works.

The following example shows a license granted to Alice (by some distributor) that allows Alice to issue a grant conditioned upon the payment
of a marked-up fee. This allows Alice the flexibility of setting her own fee when issuing the grant. The distributor pockets the markup of 10%.

Example of markup
-<grant>
-<forAll varName="preMarkupFee">
</forAll>

-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<issue/>

-<grant>
-<keyHolder licensePartIdRef="bookClubMember">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="Book"/>

-<sx:fee>
-<sx:markup>

<sx:rate>.1</sx:rate>
<sx:fee varRef="preMarkupFee"/>

</sx:markup>
-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

</grant>

The following example shows two licenses that may be exercised by a streaming media consumer. The first one is a grant to actually play the
content for some fee, and the second is a grant to download the content from some repository for a markup of the fee indicated in the first.

Example of markup with feeForResource
-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:play/>
<cx:digitalWork licensePartIdRef="AClockworkOrange"/>

-<sx:fee>
-<sx:paymentPerUse>

<sx:rate>5</sx:rate>
</sx:paymentPerUse>

-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

-<grant>
-<keyHolder licensePartIdRef="Alice">
</keyHolder>
<cx:read/>
<cx:digitalWork licensePartIdRef="AClockworkOrange"/>

-<sx:fee>
-<sx:markup>

<sx:rate>0.1</sx:rate>
-<sx:feeForResource>

<cx:digitalWork licensePartIdRef="AClockworkOrange"/>
</sx:feeForResource>

</sx:markup>
-<sx:to>
-<sx:aba>

<sx:institution>123456789</sx:institution>
<sx:account>987654321</sx:account>

</sx:aba>
</sx:to>

</sx:fee>
</grant>

6.3 Name Extensions

Together with the possessProperty, the resource Name and its extensions allow licenses to straightforwardly express authorized association of
names with principals. This is useful for modeling the X.509 certificate like binding of names to principals. The standard extension defines four
extensions of the type Name.

6.3.1 Name

Name Extensions

A resource indicating a name from some name space.

Schema representation of Name
-<xsd:complexType name="Name" abstract="false">
-<xsd:complexContent>

<xsd:extension base="r:Resource"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of name
-<xsd:element name="name" type="sx:Name" substitutionGroup="r:resource">
</xsd:element>

Using the name element and its substitutions

The name element is of type Name. This is an extension of the abstract type Resource. Along with the possessProperty right, the name element
being a resource can be used in licenses to associate a name with one or more principals. Such licenses allow other licenses to be issued
to, colloquially speaking, principals identified by their name.

The name element is conceptually abstract and should not appear in an XrML document except in the form of a variable reference.

The following example shows a license which allows anyone who has the name Alice, as authorized by the grant in the prerequisite right, can
watch "A Clockwork Orange". This example illustrates how an extension of name is used; note the use of commonName to identify the authorized
principal.

Example of name extension
-<grant>
-<forAll varName="personX">
</forAll>
<principal varRef="personX"/>
<cx:play/>
<cx:digitalWork licensePartIdRef="AClockworkOrange"/>

-<prerequisiteRight>
<principal varRef="personX"/>
<possessProperty/>
<sx:commonName>Alice</sx:commonName>

-<trustedIssuer>
+<keyHolder licensePartId="trustedIssuer">
</trustedIssuer>

</prerequisiteRight>
</grant>

6.3.2 EmailName

An Internet email address (per rfc822/rfc2822) associated with the entity.

Schema representation of EmailName
-<xsd:complexType name="EmailName" mixed="true">
-<xsd:complexContent mixed="true">

<xsd:extension base="sx:Name"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of emailName
-<xsd:element name="emailName" type="sx:EmailName" substitutionGroup="sx:name">
</xsd:element>

Using the emailName element

The emailName element is of type EmailName. This is an extension of the type Name. Typically it contains a string that designates an internet email
address (per rfc822/2822). Like with name, licenses can associate the element emailName with principals by using the right possessProperty.

6.3.3 DnsName

A name in the DNS name space, with trailing period omitted. For example, "xyz.com"

Schema representation of DnsName
-<xsd:complexType name="DnsName" mixed="true">
-<xsd:complexContent mixed="true">

<xsd:extension base="sx:Name"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of dnsName
-<xsd:element name="dnsName" type="sx:DnsName" substitutionGroup="sx:name">
</xsd:element>

Using the dnsName element

The dnsName element is of type DnsName. This is an extension of the type Name. Typically it contains a string that designates a domain name. Like
with name, licenses can associate the element dnsName with principals by using the right possessProperty.

6.3.4 CommonName

A name by which an entity is colloquially known. Intended to be used as the CN name part from X400.

Schema representation of CommonName
-<xsd:complexType name="CommonName" mixed="true">
-<xsd:complexContent mixed="true">

<xsd:extension base="sx:Name"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of commonName
-<xsd:element name="commonName" type="sx:CommonName" substitutionGroup="sx:name">
</xsd:element>

Using the commonName element

The commonName element is of type CommonName . This is an extension of the type Name. Typically it contains a string that designates a colloquial
name. Like with name, licenses can associate the element commonName with principals by using the right possessProperty.

6.3.5 X509SubjectName

The subject name of some X509 certificate associated with the entity. Intended to address legacy interoperability issues involving X509
certificates.

Schema representation of X509SubjectName
-<xsd:complexType name="X509SubjectName" mixed="true">
-<xsd:complexContent mixed="true">

<xsd:extension base="sx:Name"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of x509SubjectName
-<xsd:element name="x509SubjectName" type="sx:X509SubjectName" substitutionGroup="sx:name">
</xsd:element>

Using the x509SubjectName element

The x509SubjectName element is of type X509SubjectName. This is an extension of the type Name. Typically it contains a string that designates
a subject name from some X509 certificate. Like with name, licenses can associate the element x509SubjectName with principals by using
the right possessProperty.

6.3.6 X509SubjectNamePattern

Schema representation of X509SubjectNamePattern
-<xsd:complexType name="X509SubjectNamePattern">
-<xsd:complexContent>

<xsd:extension base="r:ResourcePatternAbstract"/>
</xsd:complexContent>

</xsd:complexType>

Schema representation of x509SubjectNamePattern
-<xsd:element name="x509SubjectNamePattern" type="sx:X509SubjectNamePattern" substitutionGroup="r:resourcePatternAbstract">
</xsd:element>

Using the x509SubjectNamePattern

The x509SubjectNamePattern is of type X509SubjectNamePattern. This is an extension of the type ResourcePattern. The
x509SubjectNamePattern is pattern that matches an x509SubjectName. Specifically it matches the root of the x509SubjectName tree. This
element can be used to enforce constraints similar to the X.509 specification.

6.4 Revocation Extensions

6.4.1 Revocable

Identifies a signature that can be revoked. The signature can be identified literally or by reference. In the latter case, the result of dereferencing
the reference must be of type dsig:SignatureType; the signature value being revoked is the one signature therein.

Schema representation of Revocable
-<xsd:complexType name="Revocable">
-<xsd:complexContent>
-<xsd:extension base="r:Resource">
-<xsd:choice minOccurs="0">

<xsd:element ref="dsig:SignatureValue"/>
<xsd:element ref="dsig:Reference"/>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Schema representation of revocable
-<xsd:element name="revocable" type="sx:Revocable" substitutionGroup="r:resource">
</xsd:element>

Using the revocable element

The revocable element of type Revocable, based on Resource, is used with the revoke right. Typically, to revoke a signature, a license is
issued which identifies the principal that has the right to revoke the signature specified by the revocable element. The revocable element
identifies the signature either by its literal value or by indirect means such as its cryptographic hash value.

The following example illustrates how Alice has the right to revoke a specific signature. Note that the signature is referred to by its cryptographic
hash value.

Example of revocable
-<grant>
-<keyHolder licensePartId="Alice">
</keyHolder>
<revoke/>

-<sx:revocable>
-<dsig:Reference>

<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<dsig:DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</dsig:DigestValue>

</dsig:Reference>
</sx:revocable>

-<validityInterval>
<notBefore>2001-05-25T00:00:00</notBefore>
<notAfter>2003-05-25T00:00:00</notAfter>

</validityInterval>
</grant>

Go to Part IV: Content Extension Schema

