

eXtensible rights Markup Language (XrML) 2.0 Specification
Part II: XrML Core Schema
20 November 2001

Available formats: HTML and PDF. In case of a discrepancy, the HTML is considered definitive.

NOTE: To enable interactive browsing of the XrML schemas and examples, the XrML Specification and its companion Example Use
Cases document use an HTML version that leverages the XML access functionality provided by the W3C Xpath recommendation.
For this reason, you need to view these HTML documents with a browser that supports that recommendation (for example, Internet
Explorer Version 6.0). If your browser does not support this functionality, please view the PDF versions of those documents.

Copyright (C) 2001 ContentGuard Holdings, Inc. All rights reserved. "ContentGuard" is a registered trademark and "XrML", "eXtensible Rights Markup Language", the XrML logo, and the ContentGuard logo are
trademarks of ContentGuard Holdings, Inc. All other trademarks are properties of their respective owners.

Quick Table of Contents

Part 1: Primer

1 About XrML

2 XrML Concepts
3 Extensibility of the XrML Core
4 Conformance

Part II: XrML Core Schema

5 Technical Reference

Part III: Standard Extension Schema

6 Standard Extensions

Part IV: Content Extension Schema

7 About the Content Extension

8 Content Extension Data Model
9. Content Extension Elements

Part V: Appendices

A XrML Schemas
B Glossary
C Index of Types and Attributes
D References
E Acknowledgements

Full Table of Contents for Part II: XrML Core Schema

5 Technical Reference

5.1 XrML2 Schema and Schema Structure
5.2 Architectural Details of the XrML2 Core

5.2.1 License

5.2.1.1 License/title
5.2.1.2 License/grant and License/grantGroup
5.2.1.3 License/issuer
5.2.1.4 License/inventory
5.2.1.5 License/(any)
5.2.1.6 License/encryptedLicense

5.2.2 License Parts
5.2.3 Equality of XML Elements
5.2.4 Patterns

5.2.4.1 XmlPatternAbstract

5.2.4.2 XmlExpression
5.2.4.3 The 'match-exact' XPath function
5.2.4.4 PrincipalPatternAbstract / RightPatternAbstract / ResourcePatternAbstract/
ConditionPatternAbstract
5.2.4.5 Everyone
5.2.4.6 PatternFromLicensePart
5.2.4.7 GrantPattern
5.2.4.8 GrantGroupPattern

5.2.5 Variable Definition and Referencing

5.2.5.1 Variable Definition
5.2.5.2 Variable Referencing

5.2.6 Grant

5.2.6.1 Grant/forAll
5.2.6.2 Grant/principal
5.2.6.3 Grant/right
5.2.6.4 Grant/resource
5.2.6.5 Grant/condition
5.2.6.6 Grant/delegationControl
5.2.6.7 Grant/encryptedGrant

5.2.7 GrantGroup

5.2.7.1 GrantGroup/forAll
5.2.7.2 GrantGroup/principal and GrantGroup/condition
5.2.7.3 GrantGroup/delegationControl
5.2.7.4 GrantGroup/encryptedGrantGroup

5.2.8 DelegationControl

5.2.8.1 Allowable Destination Principals
5.2.8.2 Compatibility of DelegationControl Elements

5.2.9 EncryptedContent

5.3 Core Principals

5.3.1 Principal
5.3.2 The AllPrincipals Principal
5.3.3 The KeyHolder Principal

5.4 Core Rights

5.4.1 Right
5.4.2 The Issue Right
5.4.3 The Revoke Right
5.4.4 The PossessProperty Right
5.4.5 The Obtain Right

5.5 Core Resources

5.5.1 Resource
5.5.2 DigitalResource

5.5.2.1 Authorization of Located Bits

5.6 Core Conditions

5.6.1 Condition
5.6.2 The AllConditions Condition
5.6.3 The ValidityInterval Condition
5.6.4 The RevocationFreshness Condition
5.6.5 The ExistsRight Condition

5.6.5.1 Some Grants Containing ExistsRight Conditions Are Not Primitive
5.6.5.2 Satisfaction of ExistsRight

5.6.6 The PrerequisiteRight Condition

5.6.6.1 Satisfaction of PrerequisteRight

5.7 Other Core Types and Elements

5.7.1 TrustedPrincipal
5.7.2 ServiceReference

5.7.2.1 WSDL
5.7.2.2 UDDI
5.7.2.3 Parameters

5.7.3 LicenseGroup

5.8 The XrML2 Authorization Algorithm

5.8.1 Input to the Authorization Algorithm
5.8.2 Output of the Authorization Algorithm
5.8.3 Execution of the Authorization Algorithm

5 Technical Reference

This section of the XrML2 specification provides normative technical details regarding the core of the XrML2 design and
architecture.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

5.1 XrML2 Schema and Schema Structure

The syntax of XrML2 is described and defined using the XML Schema technology defined by the Worldwide Web Consortium
(W3C). Significantly more powerful and expressive than DTD technology, the extensive use of XML Schema in XrML2 allows for
significant richness and flexibility in its expressiveness and extensibility.

To that end, a principal design goal for XrML2 is to allow for and support a significant amount of extensibility and customizability
without the need to make actual changes to the XrML2 standard itself. Indeed, the standard itself makes use of this extensibility
internally. XrML2 is split into several parts:

1. A core schema, containing definitions of concepts that are at the heart of the semantics of XrML2, particularly those having to
do with evaluation of a trust decision,

2. A standard extension schema, containing definitions of concepts which are generally and broadly useful and applicable to
XrML2 usage scenarios, but which aren't necessarily at the heart of XrML2 semantics, and

3. Other, domain-specific extensions, including a content management schema that defines rights-management concepts
specifically related to digital works such as books, music, and video.

Each of these XML Schemas is a normative part of the overall XrML2 specification. In particular, the core schema is a normative
part of the XrML2 core. Others parties may if they wish define their own extensions to XrML2. This is accomplished using existing,
standard XML Schema and XML Namespace mechanisms.

Readers of these schemas should notice that a certain editorial style has for ease of comprehension been uniformly adopted. The
XML Schema artifacts found therein fall into two categories: elements and types. The names of each have a different stylistic
treatment: the names of types are in mixed case, with an initial capital letter, while the names of elements are in mixed case but with
an initial lower case letter. For example, Grant is the name of a type, while grant is the name of an element. This stylistic
convention has also been used in this specification: for example, a passage herein which mentions a Grant is using the word in a
technical sense to refer to the notion of Grant as an XML Schema type.

5.2 Architectural Details of the XrML2 Core

At the heart of XrML2 is the XrML2 Core Schema. The elements and types defined therein define the core structural and validation
semantics that comprise the essential essence of the specification. It is expected that every XrML2 validation processor will be
aware of the semantics embodied in this core. That is not to say that each and every such processor need to implement and fully
support all of the functionality herein described; rather, it indicates that such processors must be conscious of all the semantics
defined therein that logically affect those core features they indeed do choose to support. This is also true for XrML2 extensions that
these processors intend to process.

5.2.1 License

The single most important concept in XrML2 is that of the License. A License is conceptually a container of Grants, each one of
which conveys to a particular Principal the sanction to exercise some identified Right against some identified Resource, possibly
subject to the need for some Condition to be first fulfilled. A License is also a container of GrantGroups, each of which is in turn
an eventual container of Grants.

Schema Representation of the License Type
-<xsd:complexType name="License">
-<xsd:choice>
-<xsd:sequence>
-<xsd:element name="title" type="r:LinguisticString" minOccurs="0" maxOccurs="unbounded">
</xsd:element>

-<xsd:element name="inventory" type="r:Inventory" minOccurs="0">
</xsd:element>

-<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="r:grant"/>
<xsd:element ref="r:grantGroup"/>

</xsd:choice>
<xsd:element ref="r:issuer" minOccurs="0" maxOccurs="unbounded"/>

-<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded">
</xsd:any>

</xsd:sequence>
-<xsd:element name="encryptedLicense" type="r:EncryptedContent">
</xsd:element>

</xsd:choice>
<xsd:attribute name="licenseId" type="xsd:anyURI" use="optional"/>

</xsd:complexType>

A License may be digitally signed by the party who issues it, signifying that the License issuer authorizes certain Grants and
GrantGroups. This semantic notion of whether or not a Grant or GrantGroup has been authorized is an important one. A Grant or
GrantGroup which has not been authorized conveys no authorization, it merely exists as an XML element. Unless otherwise
ndicated by this specification, Grants or GrantGroups which may physically appear in a License are not to be considered authorized

Syntactically, multiple issuers may sign a given License; however no additional semantic is associated with their collective signing.
The semantics are, rather, as if they had each independently signed their own copy of the License. Therefore, one can
unambiguously speak of the issuer of a given License.

5.2.1.1 License/title

Each of the zero or more title elements in a License provides a descriptive phrase about the License that is intended for human
consumption in user interfaces and the like. Automated processors MUST NOT interpret semantically the contents of such title
elements.

5.2.1.2 License/grant and License/grantGroup

The grant and grantGroup elements contained in a License are the means by which authorization policies are conveyed in the
XrML2 architecture. The presence of an issuer's signature on a license indicates that the issuer indeed authorizes the Grants
and GrantGroups which are immediate children thereof.

Each grant or grantGroup element which is an immediate child of a license exists independently within a license: no collective
semantic (having to do with their particular ordering or otherwise) is intrinsically associated with the presence of two or more of them
within a certain one license (though there may be syntactic issues; see license parts).

See below in this specification for an elaboration of the semantics of Grant and GrantGroup.

5.2.1.3 License/issuer

Each issuer element in a License contains two pieces of information:

� a set of issuer-specific details about the circumstances under which he issues the License, and
� a digital signature for the License.

The optional issuer-specific details are found in the License/issuer/details element, which is of type IssuerDetails. These
details optionally include any of the following information:

1. the specific date and time at which this issuer claims to have effected his issuance of the License.
2. an interval of time before and after which the issuer does not intend his issuance of the License to be effective.
3. an indication of the mechanism or mechanisms by which the issuer of the License will, if he later revokes it, post notice of

such revocation. When checking for revocation, XrML2 processing systems may choose to use any one of the identified
mechanisms: that is, they are all considered equally authoritative as to the revocation status of the issuance of the License.

Let g be any Grant or GrantGroup which is an immediate child of a License l, and let i be the Issuer element of l. If the element
/details exists and if i/details contains a ValidityInterval v, then let the Grant or GrantGroup g' be defined to be that Grant or
GrantGroup which is formed from a copy of g by replacing therein the (possibly absent) element g'/condition with an
AllConditions condition containing both v and (the possibly absent) g/condition. Then g' is defined to be directly authorized by the
presence of the signature of the issuer on the License l (and g itself is not authorized). If instead no such ValidityInterval v
exists, then, likewise, the Grant or GrantGroup g is defined to be directly authorized by the presence of the signature of the issuer
on the License.

The digital signature made by each issuer of a License is manifest in an XML element of name Signature as defined by the XML-
Signature Syntax and Processing standard of the W3C. However, when used within XrML2, some of the general freedoms and
flexibilities permitted within that design are profiled and constrained. Specifically, with the aim of simplifying the determination of
exactly which pieces of the License have and have not been actually signed by a given issuer, the
Signature/SignedInfo/Reference elements are restricted in how they may refer to pieces of the License. In concept, the restriction
s that of the information in a License a signature may only reference

a. the whole License less its issuer elements, together with
b. the issuance details paired with this Signature

but not any other piecemeal subparts of the License (the Signature may still, if it wishes, reference items external to the License

though such use is beyond the scope of this specification). Concretely, when an issuer wishes to reference pieces of the License,
to do so it MUST use a Signature/SignedInfo/Reference element r such that the following is true:

1. the attribute r/@URI MUST be omitted
2. the element r/Transforms MUST contain exactly one child Transform element t, where

a. t MUST be empty
b. the attribute t/@Algorithm MUST contain the value http://www.xrml.org/schema/2001/11/xrml2core#license

The transform algorithm so indicated is known as the XrML2 License Transform Algorithm.

A Transform element t indicating the use of the XrML2 License Transform Algorithm emits as output the most immediate ancestor
of t that is of type License or a derivation thereof but with any element descendants of that License which occupy (perhaps through
type derivation) the slot defined by the Issuer child of the License wholly removed, except for that Issuer that contains t, which is
kept, removing its Signature child instead.

It is RECOMMENDED that Signatures created by issuers of XrML2 Licenses indicate the use of the Exclusive XML
Canonicalization algorithm.

Moreover, as a general note of good digital signature hygiene, it is RECOMMENDED that XrML2 Licenses explicitly (re)declare no
higher up the XML element tree than at the License level any XML Namespaces that are used anywhere throughout the License.
That is, a License should be a self-contained unit with respect to XML Namespace declarations, not relying on any such
declarations to be imported from their surrounding XML context. This hygienic practice greatly facilitates the ability to manipulate
Licenses as a self-contained XML unit within XrML2 processing systems.

5.2.1.4 License/inventory

As is described later, XrML2 provides a syntactic mechanism for reducing redundancy and verbosity in Licenses. This syntactic
macro-like mechanism can be used throughout a License, so long as there is in a given License only one definition to each
LicensePart. Such definitions can lie, for example, inside of grants or other semantically important structures. However, it is
sometimes useful and convenient to be able to provide a definition of a part of a License without at the definition site necessarily
associating any particular semantic with the part. The inventory element provides a means for doing this.

The inventory element of a License is a simple container of LicenseParts. The presence of such parts in the inventory
container does not provide any semantic at all. The parts simply exist as syntactic structures within the inventory. Usefully and
usually, parts in the inventory will have LicensePart/@licensePartId attributes so that they can be referenced from elsewhere
in the License.

5.2.1.5 License/(any)

Using the wildcard construct from XML Schema, a License provides an extensibility hook within which License issuers may place
additional content as they find appropriate and convenient. This can be useful for conveying information which is peripherally related
to, for example, authentication and authorization, but is not part of the XrML2 core infrastructure. Such content will of necessity be
referenced by the Signature of the License, and so can be considered as being attested to by the License's issuer; indeed, it is
the inclusion of this data in the signature which is likely the most important reason for contemplating the use of this facility.

It should, however, be carefully understood that not all processors of XrML2 Licenses will understand the semantics intended by
any particular use of this extensibility hook. That is, there is no means by which the License issuer can force such semantics to be
adhered to by all processors that may wish to interpret this License. Rather, the issuer must content with the fact that processors
of the License may choose wholly at their own discretion to completely ignore any such content that might be present herein.

5.2.1.6 License/encryptedLicense

A mechanism is provided by which the contents of a License may be encrypted and so hidden from view from inappropriate parties.
This mechanism makes straightforward use of the XML Encryption Syntax and Processing standard.

Specifically, the XML content model of a License is a choice between a sequence containing the elements previously described in
this section and an encryptedLicense element. encryptedLicense represents the encryption of the contents (but not the
attributes) of the License element. See the type EncryptedContent for a more detailed discussion of the decryption process.

5.2.2 License Parts

Many of the types defined in XrML2 are, in the XML Schema sense, derivations of the type LicensePart, including Grants,
Resources, and Rights, just to name a few.

Schema Representation of the LicensePart Type
-<xsd:complexType name="LicensePart" abstract="true">

<xsd:attribute name="licensePartId" type="r:LicensePartId" use="optional"/>
<xsd:attribute name="licensePartIdRef" type="r:LicensePartId" use="optional"/>
<xsd:attribute name="varRef" type="r:VariableName" use="optional"/>

</xsd:complexType>

The role of LicensePart is twofold:

1. LicensePart, through its licensePartId and licensePartIdRef attributes, which are both of type licensePartId, defines a
macro-like purely syntactic mechanism by which fragments of XML which must logically be present in several places within a
License may avoid being literally written out multiple times.

2. In contrast, LicensePart, through its varRef attribute, defines a semantically important mechanism. As is later described
herein, XrML2 defines a pattern-matching mechanism which may be used, for example, to denote sets of principals that a
grant might apply to or sets of grants that might be validly issued by an authorized authority. Such patterns logically describe
sets of entities. When a pattern is applied to a concrete situation, a matching process occurs, resulting in a single entity that
matches that pattern. It is useful to be able to, elsewhere in a License, talk about the entity that might match a given pattern
when such matching process later occurs.

The matching process and its relationship to variables is somewhat involved, and a detailed discussion is provided later in this
specification.

The macro-like facility of licensePartId and licensePartIdRef, on the other hand, is quite straightforward. Use of the
licensePartId and licensePartIdRef attributes MUST adhere to the following constraints (Note: in the remainder of this section
the term 'a LicensePart' should be taken to mean 'an element whose type is LicensePart or a derivation thereof'):

1. On any given LicensePart at most one of the attributes licensePartId and licensePartIdRef may appear. That is, it is
illegal for both attributes to be present on one LicensePart.

2. For a given licensePartId value v, there may be at most one LicensePart in a given Licensewhich contains a
licensePartId attribute with the value v.

3. If a LicensePart p contains a licensePartIdRef attribute, then it MUST have empty content. As a corollary, therefore, it is
required that all types which are derivations of LicensePart SHOULD allow their content to be empty (for otherwise they
cannot usefully be used within the LicensePart infrastructure).

4. If a LicensePart p contains a licensePartIdRef attribute with a certain value v, then there must exist some (other)
LicensePart q in the same License as p which has a licensePartId attribute with value v (and, per (2), there cannot be two
such qs). It is further required that the expanded element name of p exactly match that of q. Moreover, it is required that q not
be an ancestor of p (or, per (3), a descendant of p).

If a LicensePart p contains a licensePartIdRef attribute with a certain value v, and q is the LicensePart in the same License
as p which has a licensePartId attribute with value v, then the semantics of the License containing p and q are as if:

a. p were removed from the License and replaced with a copy q' of the element q,
b. the licensePartId attribute were removed from q' and all of its descendants,
c. any "preserved" attributes that may be present on q' were removed therefrom, and
d. any "preserved" attributes that may be present on p were copied and added to q'.

where here a "preserved" attribute is any of the following:

1. any attribute of type ID
2. any attribute for which 'id' is the LocalPart of its qualified name

(It is the intent of the last of these points to allow for the useful definition of other identification systems on license parts beyond the
document-global ID-typed identifiers.)

With the exception of signature verification, licensePartId macro expansion MUST be carried out before the other License
processing steps defined by this specification. In particular, it is carried out before the evaluation of variable references is made.

5.2.3 Equality of XML Elements

XrML2 defines a formal notion by which two arbitrary XML elements can be compared and said to be "equal" or not. This notion is
used extensively and heavily in the design in such places, for example, as determining whether a Grant in a particular License
actually contains a particular Right which is attempting to be exercised. In order to determine this, the Right being exercised must
be compared in a precise and technical manner against the Right in the Grant. Perhaps surprisingly, no existing notion of equality
appears defined on XML elements. Accordingly, we define one here as follows.

Let x be a document subset (any single XML element is, in particular, a document subset). Define c(x) to be the result of:

1. removing any licensePartId attributes from x and its descendants, and then
2. applying Exclusive XML Canonicalization to x where the InclusiveNamespacePrefix parameter is a list which contains those

namespace prefixes which are visibly utilized within x but for which the XML namespace prefix declaration which is in-scope at
the point of visible usage lies outside of x (that is, lies on some ancestor of x within the XML document of which x is a part),
and then

3. removing from the output thereof any occurrences of the xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes
(as these are only hints and not authoritative, especially in security-related systems such as XrML2 processors), and then

4. removing from the output thereof any white space which is physically outside any one or more of the following:
a. an XML start-tag
b. an XML end-tag
c. an XML empty-element tag
d. an XML processing instruction
e. an XML comment
f. the content of an XML element which has (either explicitly or by implication from its schema) an xml:space attribute with

value "preserve" and whose effect has not been overridden with another instance of the xml:space attribute.
g. the content of an XML element whose type according to its schema is any simple type.
h. the non-subelement content of an XML element whose content type according to its schema is mixed

The intended effect of the last of these steps is to remove white space in situations where it is not of semantic significance to XML
schema, such as between end-tags and start-tags of element content.

Let p and q be document subsets. Then p is said to be equal to q if and only if the octet sequences c(p) and c(q) are identical.

It is important to understand that the approach by which the specification of the equality of XML elements in this section is described
and document is by no means intended to be the best or most efficient manner in which the algorithm can in fact be implemented. It
is, rather, merely the most succinct and straightforward exposition that the authors of this specification found to communicate the
essential details of the algorithm.

5.2.4 Patterns

Within XrML2, it is quite useful and important at times to be able to write in XML formal expressions that semantically denote
particular sets of XML instance elements. To give but one example, a License that provides to a Principal the authorization that is
analogous to that held by a "Certificate Authority" in X.509 parlance needs to be able to precisely specify and carefully indicate
exactly which set of Grants the principal is authorized to issue. XrML2 has a rich architecture of "patterns" designed to address this
and similar needs.

5.2.4.1 XmlPatternAbstract

All formal patterns in XrML2 have types which derive from the type XmlPatternAbstract. As such, this type forms the root of a type
hierarchy of various flavors of patterns suitable for different pattern matching requirements. The corresponding element
xmlPatternAbstract, which is of this type, usefully forms the head of a substitution group of all possible patterns.

Schema Representation of the XmlPatternAbstract Type
-<xsd:complexType name="XmlPatternAbstract">
-<xsd:complexContent>

<xsd:extension base="r:Resource"/>
</xsd:complexContent>

</xsd:complexType>

5.2.4.2 XmlExpression

XmlExpression provides a means by which patterns written in formal expression languages defined outside of XrML2 can be
straightforwardly incorporated herein. The particular expression language used is indicated by the lang attribute, which is a URI.

Schema Representation of the XmlExpression Type
-<xsd:complexType name="XmlExpression" mixed="true">
-<xsd:complexContent mixed="true">
-<xsd:extension base="r:XmlPatternAbstract">

<xsd:attribute name="lang" type="xsd:anyURI" default="http://www.w3.org/TR/1999/REC-xpath-19991116"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

The default value for the lang attribute is http://www.w3.org/TR/1999/REC-xpath-19991116, which indicates that the contents of the
XmlExpression contains a string which is an XPath expression. If the expression contained in that string is not of XPath type
boolean, then it is to be automatically converted to such as if the function boolean were applied. An element is said to match an
XmlExpression pattern if the enclosed expression evaluates to true over that element.

All XrML2 processing systems which choose to support the use of any form of XrML2 patterns at all MUST support the use of the
http://www.w3.org/TR/1999/REC-xpath-19991116 expression language in XmlExpression elements.

5.2.4.3 The 'match-exact' XPath function

All XrML2 processing systems which support the XPath expression language MUST include an additional match-exact function in
the library that is used to evaluate XPath expressions. This function, used to match regular expressions, is modeled after work
carried out in the XPath2 design effort.

The syntax of this function is

match-exact (string $srcval, string $regexp) ==> boolean

This function returns a boolean which is true if the regular expression that is the value of $regexp matches the entirety of the value
of $srcval and is false otherwise. The regular expression in the value of $regexp uses the syntax of regular expressions specified
in Appendix F of [XML Schema Part 2: Datatypes]. Comparisons of characters and character strings are performed in the context of
the collation sequence specified by the Unicode Collation Algorithm, though it should be noted that not all regular expressions are
semantically sensitive to this collation.

The XPath specification defines that the names of XPath library functions are namespace-qualified. To that end, the match-exact
function is defined to reside in the XrML2 core namespace: http://www.xrml.org/schema/2001/11/xrml2core.

5.2.4.4 PrincipalPatternAbstract / RightPatternAbstract / ResourcePatternAbstract / ConditionPatternAbstract

As an alternative to using patterns written in externally-defined expression languages, it is often useful to define new XML types and
elements that, in their intrinsic semantic, define some pattern matching algorithm. This can, of course, be done by simply deriving
from XmlPatternAbstract; but, if appropriate to a given situation, deriving one of the four types here might be more useful.

Schema Representation of the PrincipalPatternAbstract Type
-<xsd:complexType name="PrincipalPatternAbstract" abstract="true">
-<xsd:complexContent>

<xsd:extension base="r:XmlPatternAbstract"/>
</xsd:complexContent>

</xsd:complexType>

Schema Representation of the RightPatternAbstract Type
-<xsd:complexType name="RightPatternAbstract" abstract="true">
-<xsd:complexContent>

<xsd:extension base="r:XmlPatternAbstract"/>
</xsd:complexContent>

</xsd:complexType>

Schema Representation of the ResourcePatternAbstract Type
-<xsd:complexType name="ResourcePatternAbstract" abstract="true">
-<xsd:complexContent>

<xsd:extension base="r:XmlPatternAbstract"/>
</xsd:complexContent>

</xsd:complexType>

Schema Representation of the ConditionPatternAbstract Type
-<xsd:complexType name="ConditionPatternAbstract" abstract="true">
-<xsd:complexContent>

<xsd:extension base="r:XmlPatternAbstract"/>
</xsd:complexContent>

</xsd:complexType>

Patterns which are of types which derive from PrincipalPatternAbstract, RightPatternAbstract, ResourcePatternAbstract,
and ConditionPatternAbstract are always evaluated in a context of an entire XML document which (respectively) contains
exactly just one Principal, Right, Resource, or Condition. Such known contextual setting may make it possible to more
succinctly express and define the semantics of the intended pattern.

5.2.4.5 Everyone

Everyone is a type which is derived from PrincipalPatternAbstract.

Schema Representation of the Everyone Type
-<xsd:complexType name="Everyone">
-<xsd:complexContent>
-<xsd:extension base="r:PrincipalPatternAbstract">
-<xsd:sequence minOccurs="0">

<xsd:element ref="r:resource"/>
<xsd:element ref="r:trustedIssuer" minOccurs="0"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

As such, it matches documents which are elements of some subset of the universe of Principals. That subset is defined as those
Principals who posses a certain property described within the Everyone element.

More precisely, let e be an instance of Everyone, and let P be the set of Principals denoted by e. If e/resource does not exist,
then P is defined to be the entire universe of Principals. Otherwise, P is defined to be the set of those Principals p for which the
following PrerequisiteRight condition q can be shown to be fulfilled with respect to the same tuple of Authorization Algorithm
inputs within which e is being processed:

1. q/principal is equal to p
2. q/right is equal to the possesProperty element
3. q/resource is equal to e/resource
4. q/trustedIssuer is a copy of e/trustedIssuer (if such is present) or is absent (otherwise).

5.2.4.6 PatternFromLicensePart

PatternFromLicensePart is a semantically simple pattern. Each element of this type contains exactly one LicensePart. The
pattern is defined to match exactly those elements which are equal to this contained part.

Schema Representation of the PatternFromLicensePart Type
-<xsd:complexType name="PatternFromLicensePart">

-<xsd:complexContent>
-<xsd:extension base="r:XmlPatternAbstract">
-<xsd:sequence>

<xsd:element ref="r:licensePart"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

5.2.4.7 GrantPattern

A GrantPattern is a relatively complex pattern which matches XML elements of type Grant. Let G be a GrantPattern, and let g be
a target Grant against which one wishes to attempt to match G.

Schema Representation of the GrantPattern Type
-<xsd:complexType name="GrantPattern">
-<xsd:complexContent>
-<xsd:extension base="r:ResourcePatternAbstract">
-<xsd:sequence>
-<xsd:choice minOccurs="0">

<xsd:element ref="r:principal"/>
<xsd:element ref="r:principalPattern"/>

</xsd:choice>
-<xsd:choice>

<xsd:element ref="r:right"/>
<xsd:element ref="r:rightPattern"/>

</xsd:choice>
-<xsd:choice minOccurs="0">

<xsd:element ref="r:resource"/>
<xsd:element ref="r:resourcePattern"/>

</xsd:choice>
-<xsd:choice minOccurs="0">

<xsd:element ref="r:condition"/>
<xsd:element ref="r:conditionPattern"/>

</xsd:choice>
-<xsd:element name="wholeGrantExpression" type="r:XmlExpression" minOccurs="0" maxOccurs="unbounded">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

The GrantPattern G can contain four separate pieces, each of which provide sub-patterns which are matched (respectively) in the
context of the Principal, Right, Resource, and Condition of the target Grant g, along with an optional fifth piece which is matched
n the context of g as a whole. The overall GrantPattern G is considered to successfully match against the target Grant g if and only
f each of the five pieces which may be present in G successfully match against their respective context.

The first piece of a GrantPattern, which is optional, contains either a literal Principal, or several patterns for a Principal. If a
iteral Principal p is provided, then the target Grant g must contain as its principal an element that is equal to p. If patterns for a
Principal are provided, then each such pattern, when evaluated in a target context of a new XML document containing only the
Principal from the target Grant g, must successfully match.

The second piece of a GrantPattern, which for technical reasons is not optional, contains either a literal Right, or several patterns
for a Right. If a literal Right r is provided, then the target Grant g must contain as its right an element that is equal to r. If patterns
for a Right are provided, then each such pattern, when evaluated in a target context of a new XML document containing only the
Right from the target Grant g, must successfully match. Note that although this second piece of a GrantPattern is required, a
pattern of the form

<rightPattern/>

can be used to match any Right.

The third piece of a GrantPattern, which is optional, contains either a literal Resource R, or several patterns for a Resource. If a
iteral Resource is provided, then the target Grant g must contain as its resource an element that is equal to R. If patterns for a
Resource are provided, then each such pattern, when evaluated in a target context of a new XML document containing only the
Resource from the target Grant g, must successfully match.

The fourth piece of a GrantPattern, which is optional, contains either a literal Condition c, or several patterns for a Condition. If a
iteral Condition is provided, then the target Grant g must contain as its Condition an element which is equal to c. If patterns for a
Condition are provided, then each such pattern, when evaluated in a target context of a new XML document containing only the
Condition from the target Grant g, must successfully match.

The fifth piece of a GrantPattern is also optional. If present, then it is an XmlExpression that, when evaluated in a target context of
a new XML document containing the whole target Grant g, must successfully match.

5.2.4.8 GrantGroupPattern

Much as GrantPatterns provide a structured way to match against Grants, GrantGroupPatterns provide a structured way to match

against GrantGroups. Let G be a GrantGroupPattern, and let g be a target GrantGroup against which one wishes to attempt to
match G. G consists of possibly several pieces. The overall GrantGroupPattern G is considered to successfully match against the
target GrantGroup g only if each of the pieces which may be present in G successfully match against their respective context.

Schema Representation of the GrantGroupPattern Type
-<xsd:complexType name="GrantGroupPattern">
-<xsd:complexContent>
-<xsd:extension base="r:ResourcePatternAbstract">
-<xsd:sequence>
-<xsd:choice minOccurs="0">

<xsd:element ref="r:principal"/>
<xsd:element ref="r:principalPattern"/>

</xsd:choice>
-<xsd:choice minOccurs="0">

<xsd:element ref="r:condition"/>
<xsd:element ref="r:conditionPattern"/>

</xsd:choice>
-<xsd:choice maxOccurs="unbounded">
-<xsd:choice>

<xsd:element ref="r:grant"/>
<xsd:element ref="r:grantPattern"/>

</xsd:choice>
-<xsd:choice>

<xsd:element ref="r:grantGroup"/>
<xsd:element ref="r:grantGroupPattern"/>

</xsd:choice>
</xsd:choice>

-<xsd:element name="wholeGrantGroupExpression" type="r:XmlExpression" minOccurs="0" maxOccurs="unbounded">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

The first piece of a GrantGroupPattern, which is optional, contains either a literal Principal, or several patterns for a Principal.
If a literal Principal p is provided, then the target GrantGroup g must contain as its principal an element that is equal to p. If
patterns for a Principal are provided, then each such pattern, when evaluated in a target context of a new XML document
containing only the Principal from the target GrantGroup g, must successfully match.

The second piece of a GrantGroupPattern, which is optional, contains either a literal Condition c, or several patterns for a
Condition. If a literal Condition is provided, then the target GrantGroup g must contain as its condition an element that is equal
to c. If patterns for a Condition are provided, then each such pattern, when evaluated in a target context of a new XML document
containing only the Condition from the target GrantGroup g, must successfully match.

The third piece of a GrantGroupPattern consists of a sequence of sub-patterns, each of which is either a literal Grant or pattern for
a Grant, or a literal GrantGroup or a pattern for a GrantGroup. Each literal or pattern in this sequence, when evaluated in the
context of a new XML document containing only the corresponding Grant or GrantGroup from the sequence thereof at the end of
the target GrantGroup g, must successfully match. In doing so, sub-patterns which are Grants or GrantGroups are, as one would
by now expect, to match elements which are equal to themselves. Further, the sequence of Grants and GrantGroups at the end of
g can be no longer than that sequence in G.

The fourth piece of a GrantGroupPattern is also optional. If present, then it is an XmlExpression that, when evaluated in a target
context of a new XML document containing just the whole target GrantGroup g, must successfully match.

5.2.5 Variable Definition and Referencing

A particularly powerful and useful construct in Grants and GrantGroups is the definition and use of variables therein. With variables,
a single Grant or GrantGroup can be written (and thus can be issued or otherwise authorized) that allows some carefully controlled
variation and flexibility in the rights actually conveyed.

5.2.5.1 Variable Definition

Variables are defined using universal quantification as embodied in elements of type ForAll.

Schema Representation of the ForAll Type
-<xsd:complexType name="ForAll">
-<xsd:complexContent>
-<xsd:extension base="r:LicensePart">
-<xsd:sequence>

<xsd:element ref="r:xmlPatternAbstract" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="varName" type="r:VariableName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Let f be an element of type ForAll. The varName attribute of f indicates the name of the variable being defined. The elemental
contents of f are zero or more patterns which determine what the variable f/@varName binds to.

If x is any XML element, let d(x) be a new XML document containing the element x as the root. Define m(x) to be the boolean
function which is true if and only if all of the patterns in f, when evaluated in a context of d(x), successfully matches. Let B(f) be that
subset of the universe X of XML elements such that m(b) is true for every b in B(f) and is false for every b' in X - B(f) (note that this
implies that if f contains no patterns that B(f) is the entire universe X). The set of bindings of the variable f/@varName is then defined
to be the set B(f).

The element f has a scope within which the variable it defines it may be referenced. Colloquially, that scope is the rest of the parent
element in which f is contained, less the scope of any other element of type ForAll therein which happens to (re)declare the same
variable. More precisely, let N(y) be that set of XPath nodes selected by the XPath location path:

following-sibling::*/descendent-or-self::node()

when evaluated with y as the contextual XPath node. For an element z of type ForAll, let O(z) be that set of XPath nodes selected
by location path:

following-sibling::*/decendent-or-self::r:forAll[@r:varName=$fVarName]

(where the XML Namespace prefix r is bound to the XrML2 core namespace) when evaluated with z as the contextual XPath node
and $fVarName as the value of z/@varName.

Let P(f) be the union over all w in O(f) of N(w). Then the scope of f is defined to be N(f) less P(f).

The set S(f) of the eligible bindings of the variable f/@varName, then, is defined to be that subset of B(f) such that s in B(f) is in S(f) if
and only if for all elements t in the scope of f where t/@varRef equals f/@varName all of the following hold:

1. Either the expanded element name of s must exactly match that of t or s must be substitutable for t using substitution groups
(that is, t is the head of a substitution group in which s resides).

2. If t is removed from its document and replaced with a copy of s, that document is (still) valid.

5.2.5.2 Variable Referencing

Variables are referenced using the varRef attribute of LicenseParts. Let t be a LicensePart or a derivation thereof, and suppose
t/@varRef exists. Then it is required that t must be an empty element: from a conceptual perspective, the contents of t are
determined by the binding of the variable that it references, not from local elements.

Schema Representation of the LicensePart Type
-<xsd:complexType name="LicensePart" abstract="true">

<xsd:attribute name="licensePartId" type="r:LicensePartId" use="optional"/>
<xsd:attribute name="licensePartIdRef" type="r:LicensePartId" use="optional"/>
<xsd:attribute name="varRef" type="r:VariableName" use="optional"/>

</xsd:complexType>

Moreover, the value in t/@varRef MUST be the name of some variable v whose scope includes t.

5.2.6 Grant

A Grant is an XML structure that expresses an assertion that some Principal may exercise some Right against some Resource,
subject, possibly, to some Condition. This structure is at the heart of the rights-management and authorization-policy semantics
that XrML2 is designed to express.

Schema Representation of the Grant Type
-<xsd:complexType name="Grant">
-<xsd:complexContent>
-<xsd:extension base="r:Resource">
-<xsd:choice minOccurs="0">
-<xsd:sequence>

<xsd:element ref="r:forAll" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="r:delegationControl" minOccurs="0"/>
<xsd:element ref="r:principal" minOccurs="0"/>
<xsd:element ref="r:right"/>
<xsd:element ref="r:resource" minOccurs="0"/>
<xsd:element ref="r:condition" minOccurs="0"/>

</xsd:sequence>
-<xsd:element name="encryptedGrant" type="r:EncryptedContent">
</xsd:element>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Especially in situations such as content-management scenarios, it is likely to be common practice that one License contain several
Grants to the same Principal pertaining to the same Resource, but differing in the specific Right being authorized. One Grant
might authorize a Play right, while another might authorize a Print right, for example. In other situations, such as those that might
mirror the semantics of X.509 certificates, a set of Grants in a License might share a Principal and a Right (perhaps the
PossessProperty right), but differ in the Resource identified. In all such scenarios, it is expected that the syntactic mechanism of

license parts, perhaps together with the use of the inventory in the License, will be often used to reduce verbosity and to increase
the readability of the collective set of Grants.

5.2.6.1 Grant/forAll

At the start of each Grant may reside an optional sequence of elements of type ForAll. Because of the pattern matching facility
therein, this powerful mechanism allows one authorized Grant instance to in fact authorize what would otherwise have to be
authorized as a set of Grants, a task which may be cumbersome or logistically impossible to actually carry out.

Schema Representation of the ForAll Type
-<xsd:complexType name="ForAll">
-<xsd:complexContent>
-<xsd:extension base="r:LicensePart">
-<xsd:sequence>

<xsd:element ref="r:xmlPatternAbstract" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="varName" type="r:VariableName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

The effect of these ForAll elements on the semantics of a Grant is straightforward. Let g be a Grant that contains at least one
ForAll child element, and let f be the first such child in g. Let S(f) be the set of eligible bindings of the variable f/@varName. For
each s in S(f), let g'(s) be a Grant which is equal to a copy of g except

1. (the copy of) f is not present in g'(s), and
2. throughout the scope of f in g, all elements containing references to the variable f/@varName are replaced in g'(s) by s.

Then, to say that g is authorized means that for all such s, g'(s) is authorized.

Definition: a Grant which lacks any children of type ForAll (or any constructs that are equivalent thereto, such as an ExistsRight
condition with a GrantPattern) is considered primitive.

5.2.6.2 Grant/principal

The element in an instance of a Grant that validates against the principal element thereof identifies the Principal that, under the
authority of the issuer of the License, may exercise the Right identified in the Grant.

Schema Representation of the Principal Type
-<xsd:complexType name="Principal">
-<xsd:complexContent>

<xsd:extension base="r:Resource"/>
</xsd:complexContent>

</xsd:complexType>

The element principal is itself conceptually abstract; that is, the literal XML element <principal/> MUST NOT, except in the form
of a variable reference, appear literally in a Grant. Elements which are substitutable with principal will be used instead. Common
examples include the keyHolder element and the allPrincipals element, though additional useful Principals may be defined in
extensions to XrML2.

While the principal element of Grant is optional within the schema (primarily for the utility this provides to GrantGroups), it is
semantically very dangerous to in fact authorize a Grant which contains no Principal. An authorized Grant which contains no
Principal element is considered to be equivalent to an authorized Grant that contains an allPrincipals Principal with zero
children, which in turn authorizes the Grant to the entire universe of possible Principals.

5.2.6.3 Grant/right

The element in an instance of a Grant which validates against the right schema component thereof identifies what the issuer of
the containing License authorizes the indicated Principal to actually do.

Schema Representation of the Right Type
-<xsd:complexType name="Right" abstract="false">
-<xsd:complexContent>

<xsd:extension base="r:LicensePart"/>
</xsd:complexContent>

</xsd:complexType>

The element right is itself conceptually abstract; that is, the literal XML element <right/> MUST NOT, except in the form of a
variable reference, appear in a Grant. Rather, designers of particular application domains will define elements which are
substitutable with right, and these will appear in Grants in place of the right element.

5.2.6.4 Grant/resource

Many (but not all) Rights that might be issued are intended to be directed at and authorized against some particular target or
Resource. For example, a content-management-related Right which authorizes a Principal to Print must somehow identify
exactly what digital work the issuer of the License intends may be printed. In XrML2, this target can be identified as the resource
of a Grant. This is accomplished by providing in the Grant instance an element which validates against the resource schema
component thereof.

Schema Representation of the Resource Type
-<xsd:complexType name="Resource" abstract="false">
-<xsd:complexContent>

<xsd:extension base="r:LicensePart"/>
</xsd:complexContent>

</xsd:complexType>

Like right, the element resource is conceptually abstract, and so, except in the form of a variable reference, MUST NOT appear
literally in a Grant. Instead, elements which are substitutable with resource will appear in its place. Such derivations of Resource
are defined in schemas which are extensions to the XrML2 core by engineers who understand some appropriate domain-specific
Resources against which it is desirous to express authorization policy using an XrML2 License, though some generically useful
Resources have been defined, using the same mechanism as would be used by others, as part of the XrML2 core itself.

5.2.6.5 Grant/condition

Principals who authorize Grants often desire the ability to somehow limit or constrain the situations in which the Grant may
actually be used. The condition element within a Grant provides a means by which this may be accomplished. If omitted, then no
conditions are imposed: the authorized Grant may be used unconditionally. If a condition is present, then the semantic obligations
associated with the semantics of that particular condition element must be satisfied with respect to the indicated Grant indicated
by the principal therein before it may be used as the basis of an authorization decision.

Schema Representation of the Condition Type
-<xsd:complexType name="Condition" abstract="false">
-<xsd:complexContent>

<xsd:extension base="r:LicensePart"/>
</xsd:complexContent>

</xsd:complexType>

Like several other parts of the XrML2 design, the element condition is conceptually abstract, and so, except in the form of a
variable reference, MUST NOT appear literally in a Grant. Instead, elements which are substitutable with condition will appear in
its place. Such derivations of Condition are defined in schemas which are extensions to the XrML2 core by those wishing to
express domain-specific or business-specific conditions that limit in new ways the situations in which an XrML2 Grant may be used
to effect an affirmative authorization. That said, several generally useful conditions have been defined within the XrML2 core itself,
and in the Standard Extension thereto.

5.2.6.6 Grant/delegationControl

Whenever a Grant is issued, the issuer may optionally indicate in addition that the Grant may be delegated to others. This is
accomplished by including in the Grant an element of type DelegationControl; absent such a DelegationControl element, a
Grant is not (formally) delegable.

Schema Representation of the DelegationControl Type
-<xsd:complexType name="DelegationControl">
-<xsd:complexContent>
-<xsd:extension base="r:LicensePart">
-<xsd:sequence>
-<xsd:choice>
-<xsd:element name="maxDepth" type="xsd:nonNegativeInteger">
</xsd:element>

-<xsd:element name="infinite">
</xsd:element>

</xsd:choice>
-<xsd:element name="additionalConditionsProhibited" minOccurs="0">
</xsd:element>
<xsd:element ref="r:forAll" minOccurs="0" maxOccurs="unbounded"/>

-<xsd:element name="to" minOccurs="0" maxOccurs="unbounded">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="r:principal"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

To say that an authorized Grant g is delegable means that the issuer of g also authorizes every Grant g' where:

1. g'/forAll, g'/delegationControl, and g'/condition are all absent,
2. g'/principal is equal to g/principal,
3. g'/right is equal to the issue element
4. g'/resource is equal to a Grant g'' where

a. the (possibly empty) sequence of ForAll elements that begins g appear as a prefix of the sequence of ForAll elements
that begins g''

b. g''/delegationControl is compatible with g/delegationControl
c. g''/principal is one of the allowable destination principals of g/delegationControl
d. g''/right is equal to g/right
e. g''/resource is equal to g/resource
f. g''/condition is either equal to g/condition, or, if g/ delegationControl/additionalConditionsProhibited is

absent, is equal to the equivalent of an allConditions element which contains at least g/condition (if present)

Additional policies which control the circumstances under which g is legally delegable are expressed by the semantics embodied in
the DelegationControl element; these are explained in detail below. It is to be understood that g may be encrypted, and that in
such situations the constraints listed here are to be adhered to by the clear-text form of g.

5.2.6.7 Grant/encryptedGrant

A mechanism is provided by which the contents of individual Grants may be encrypted and so hidden from view from inappropriate
parties. This mechanism makes straightforward use of the XML Encryption Syntax and Processing standard.

Specifically, the XML content model of a Grant is a choice between a sequence containing the elements previously described in this
section and an encryptedGrant element. encryptedGrant is of type EncryptedContent and represents the encryption of the
contents of the Grant element.

5.2.7 GrantGroup

Within the XrML2 architecture, GrantGroups occupy much the same niche as do their more straightforward cousins, Grants. That
is, wherever a Grant may legally appear, it is (usually) the case that a GrantGroup may appear instead, where a GrantPattern
may appear, a GrantGroupPattern may take its place, and so on. Indeed, from a point of view of the set of rights actually
authorized, the semantics of a GrantGroup can be (and indeed are) specified in terms of the set of rights authorized by a particular
set of related Grants. However, from a point of view of pattern matching and inseparability under delegation, issuance, etc.,
GrantGroups provide additional expressive power not otherwise found in Grants.

Schema Representation of the GrantGroup Type
-<xsd:complexType name="GrantGroup">
-<xsd:complexContent>
-<xsd:extension base="r:Resource">
-<xsd:choice minOccurs="0">
-<xsd:sequence>

<xsd:element ref="r:forAll" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="r:delegationControl" minOccurs="0"/>
<xsd:element ref="r:principal" minOccurs="0"/>
<xsd:element ref="r:condition" minOccurs="0"/>

-<xsd:choice maxOccurs="unbounded">
<xsd:element ref="r:grant"/>
<xsd:element ref="r:grantGroup"/>

</xsd:choice>
</xsd:sequence>

-<xsd:element name="encryptedGrantGroup" type="r:EncryptedContent">
</xsd:element>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

5.2.7.1 GrantGroup/forAll

At the start of each GrantGroup may reside an optional sequence of elements of type ForAll. Because of the pattern matching
facility therein, this powerful mechanism allows one authorized GrantGroup instance to in fact authorize what would otherwise have
to be authorized as a set of GrantGroups, a task which may be cumbersome or logistically impossible to actually carry out.

The effect of these ForAll elements on the semantics of a GrantGroup is straightforward. Let g be a GrantGroup that contains at
least one ForAll child element, and let f be the first such child in g. Let S(f) be the set of eligible bindings of the variable
f/@varName. For each s in S(f), let g'(s) be a GrantGroup which is equal to a copy of g except

1. (the copy of) f is not present in g'(s), and
2. throughout the scope of f in g, all elements containing references to the variable f/@varName are replaced in g'(s) by s.

Then, to say that g is authorized means that for all such s, g'(s) is authorized.

5.2.7.2 GrantGroup/principal and GrantGroup/condition

Having indicated what it means to say that a GrantGroup containing a ForAll element has been authorized, it remains to be
specified what it means to say that a GrantGroup which lacks any ForAll element has been authorized. Let g be such a

GrantGroup lacking a ForAll element, and consider the structure of g, which, as is evident in the XrML2 core schema, can be
thought of as a sequence containing:

1. an optional DelegationControl element d,
2. an optional Principal element p,
3. an optional Condition element c,
4. one or more contained Grant or GrantGroup elements g'.

To say that g has been authorized, then, means the following:

1. Consider each such g' in g where g' is a Grant. Let p' and c' be (respectively) the (possibly absent) principal and (possibly
absent) condition contained in g'. Let g'' be a Grant which is equal to g' except that

a. within g'', p' is replaced by an element equivalent to an allPrincipals element p'' which in turn contains
i. p (if present)
ii. p' (if present)

b. within g'', c' is replaced by an element equivalent to an allConditions element c'' which in turn contains
i. c (if present)
ii. c' (if present)

Then to say that the GrantGroup g is authorized means that the Grant g' is authorized.

2. Similarly, consider each such g' in g where g' is a GrantGroup. Let p' and c' be (respectively) the (possibly absent) principal
and (possibly absent) condition contained in g'. Let g'' be a Grant Group which is equal to g' except that

a. within g'', p' is replaced by an element equivalent to an allPrincipals element p'' which in turn contains
i. p (if present)
ii. p' (if present)

b. within g'', c' is replaced by an element equivalent to an allConditions element c'' which in turn contains
i. c (if present)
ii. c' (if present)

Then to say that the GrantGroup g is authorized means that the GrantGroup g' is authorized.

The set of authorized Grants which is related to the authorized GrantGroup g by means of exhaustive recursive application of Rules
(1) and (2) is known as the set of descendent Grants of g.

A GrantGroup which is an immediate child of a License is considered authorized by the Signature of the issuer of the License.

5.2.7.3 GrantGroup/delegationControl

Whenever a GrantGroup is issued, the issuer may optionally indicate in addition that the GrantGroup may be delegated to others.
This is accomplished by including in the GrantGroup an element of type DelegationControl; absent such a DelegationControl
element, a GrantGroup is not (formally) delegable.

To say that an authorized GrantGroup g is delegable means that the issuer of g also authorizes every Grant g' where:

1. g'/forAll, g'/ delegationControl, and g'/condition are all absent,
2. g'/principal is equal to g/ principal,
3. g'/right is equal to the issue element
4. g'/resource is equal to a GrantGroup g'' where

a. the (possibly empty) sequence of ForAll elements that begins g appear as a prefix of the sequence of ForAll elements
that begins g''

b. g''/delegationControl is compatible with g/delegationControl,
c. g''/principal is one of the allowable destination principals of g/delegationControl
d. g''/condition is either equal to g/condition , or, if g/condition / additionalConditionsProhibited is absent, is

equal to the equivalent of an allConditions element which contains at least g/condition (if present)
e. the Grants and GrantGroups contained as immediate children of g'' are copies of those contained as immediate children

of g.

Additional policies which control the circumstances under which g is legally delegable are expressed by the semantics embodied in
the DelegationControl element; these are explained in detail below. It is to be understood that g may be encrypted, and in that in
such situations the constraints listed in this section are to be adhered to by the clear-text form of g.

5.2.7.4 GrantGroup/encryptedGrantGroup

A mechanism is provided by which the contents of a GrantGroup may be encrypted and so hidden from view from inappropriate
parties. This mechanism makes straightforward use of the XML Encryption Syntax and Processing standard.

Specifically, the XML content model of a GrantGroup is a choice between a sequence containing the elements previously described
in this section and an encryptedGrantGroup element. encryptedGrantGroup is of type EncryptedContent and represents the
encryption of the contents of the GrantGroup element.

5.2.8 DelegationControl

The use of elements of type DelegationControl provides the means by which policies which control and otherwise constrain the
delegation of Grants and GrantGroups can be expressed.

Schema Representation of the DelegationControl Type
-<xsd:complexType name="DelegationControl">
-<xsd:complexContent>
-<xsd:extension base="r:LicensePart">
-<xsd:sequence>
-<xsd:choice>
-<xsd:element name="maxDepth" type="xsd:nonNegativeInteger">
</xsd:element>

-<xsd:element name="infinite">
</xsd:element>

</xsd:choice>
-<xsd:element name="additionalConditionsProhibited" minOccurs="0">
</xsd:element>
<xsd:element ref="r:forAll" minOccurs="0" maxOccurs="unbounded"/>

-<xsd:element name="to" minOccurs="0" maxOccurs="unbounded">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="r:principal"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Some such policies, namely those regarding constraints on delegated-to Principals and whether additional Conditions may be
present in delegated Grants and GrantGroups, were described previously herein. Other policies may be defined in types which are
derived from the type DelegationControl.

5.2.8.1 Allowable Destination Principals

Part of the policy expressed by a DelegationControl element d is the set of allowable Principals to whom the Grant or
GrantGroup to which d is applied may be delegated.

If d/to is absent, then the set of allowable destination principals of d is the universe of all Principals.

Otherwise, at least one d/to is present.

Let z be a DelegationControl that contains at least one child element of type ForAll, and let f be the first such child in z. Let S(f)
be the set of eligible bindings of the variable f/@varName. Let D be the universe of DelegationControl elements. Let D(z) be that
subset of D where z' in D is in D(z) if and only if there exists an s in S(f) so that z' is equal to a copy of z except

1. (the copy of) f is not present in z' and
2. throughout the scope of f in z, all elements containing references to the variable f/@varName are replaced in z' by s.

Now, consider a function P defined on the domain D. For any z in D, let P(z) be defined as follows:

1. If z has at least one ForAll child element, then P(z) is the union, over all elements z' of the set D(z), of P(z').
2. If z does not have at least one ForAll child element, then P(z) is that set whose members are the Principals found in the to

elements that are found in z.

Then the set of allowable destination principals of d is that set P(d).

5.2.8.2 Compatibility of DelegationControl Elements

Let d and d' be DelegationControl elements. d' is said to be compatible with d if they are equal except for the following variations:

1. If d/infinite is present, then d'/maxDepth may be present (with any nonnegative value)
2. If d/maxDepth is present, then d'/maxDepth must be present, and must contain any nonnegative value which is less than the

value contained in d/maxDepth.
3. If d/additionalConditionsProhibited is absent, then d'/additionalConditionsProhibited may be present.
4. If d/to is absent, then any number of d'/to may be present and identify any Principals.
5. If at least n d/to's are present where n>1, then any n-1 of them may be omitted in d'.
6. If at least one d/to is present, then d'/to may contain any Principal which is equivalent to an allPrincipals Principal

containing d/to/principal and zero or more arbitrary other Principals.

Notice that "is compatible with" is an antisymmetric and transitive relationship.

5.2.9 EncryptedContent

EncryptedContent modifies the semantics of EncryptedData, its base type, by simply restricting the use of the Type attribute

therein to be the value http://www.w3.org/2001/04/xmlenc#Content, which is the type associated with encrypting XML element
content. Thus, once decrypted, the plaintext of an element of type EncryptedContent is intended to semantically replace the
EncryptedContent and thus become the content of said element's parent. In doing so, it must of course conform to the schema of
the parent as a whole.

Schema Representation of the EncryptedContent Type
-<xsd:complexType name="EncryptedContent">
-<xsd:complexContent>

<xsd:extension base="enc:EncryptedDataType"/>
</xsd:complexContent>

</xsd:complexType>

5.3 Core Principals

5.3.1 Principal

Within XrML2, instances of the type Principal (or a derivation thereof) represent the unique identification of an entity involved in
the granting or exercising of rights. In a conceptual sense, they represent the "subject" that is permitted to carry out the action
involved in exercising the Right.

Schema Representation of the Principal Type
-<xsd:complexType name="Principal">
-<xsd:complexContent>

<xsd:extension base="r:Resource"/>
</xsd:complexContent>

</xsd:complexType>

The actual type Principal is conceptually abstract. That is, it does not indicate how a particular principal is actually identified and
authenticated. Rather, this is carried out in types which are derivations of Principal. Such derived types may be defined in
extensions to XrML2 in order, for example, to provide a means by which Principals who are authenticated using some proprietary
logon mechanism may be granted certain rights using the XrML2 License mechanism. That said, two such derivations are
important enough and central enough to be defined within the XrML2 core itself.

5.3.2 The AllPrincipals Principal

Structurally, an AllPrincipals Principal is a simple container of zero or more other Principals. Semantically, an
AllPrincipals Principal a represents the logical conjunct of the Principals represented by all of its children. That is, a
represents the set of its children acting together as one holistic identified entity. For example, if a is identified in some Grant as that
Principal which must sign a certain bank loan application, then, conceptually, it is being required that each of the children of a act
together as co-signers of the loan application.

Schema Representation of the AllPrincipals Type
-<xsd:complexType name="AllPrincipals">
-<xsd:complexContent>
-<xsd:extension base="r:Principal">
-<xsd:sequence>

<xsd:element ref="r:principal" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

A corollary of this definition is that an AllPrincipals Principal which contains zero children identifies the entire universe of
possible Principals. Where permitted by the schema in which it is used, such an empty AllPrincipals Principal is equivalent
to said Principal in fact being absent.

Note that there is no requirement that a normalization of an AllPrincipals Principal be carried out. That is, it is perfectly legal for
an AllPrincipals Principal to contain other AllPrincipals Principals.

5.3.3 The KeyHolder Principal

Instances of a KeyHolder Principal represent entities which are identified by their possession of a certain cryptographic key. For
example, using a KeyHolder, a Principal which uses public-key cryptography may be conceptually identified as "that Principal
which possesses the private key that corresponds to this-here public key." (Indeed, identification of Principals in such a manner is
expected to be very common).

Schema Representation of the KeyHolder Type
-<xsd:complexType name="KeyHolder">
-<xsd:complexContent>
-<xsd:extension base="r:Principal">
-<xsd:sequence minOccurs="0">

<xsd:element name="info" type="dsig:KeyInfoType"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

This specification of XrML2 does not itself specify the means by which the key relevant to a KeyHolder is identified. Rather, the info
element (which is of type dsig:KeyInfo) within the type KeyHolder element is defined by XrML2 as the mechanism by which such
nformation is conveyed, and the XML-Signature Syntax and Processing specification then specifies the means by which such
conveyance is carried out.

5.4 Core Rights

5.4.1 Right

Within XrML2, instances of the type Right (or a derivation thereof) represent a "verb" that a Principal may be authorized to carry
out under the authority conveyed by some authorized Grant. Typically, a Right specifies an action (or activity) that a Principal may
perform on or using some associated target Resource. The semantic specification of each different particular kind of Right SHOULD
ndicate which kinds of Resource (if any) may be legally used in authorized Grants containing that Right.

Schema Representation of the Right Type
-<xsd:complexType name="Right" abstract="false">
-<xsd:complexContent>

<xsd:extension base="r:LicensePart"/>
</xsd:complexContent>

</xsd:complexType>

The actual type Right is conceptually abstract. That is, the type Right itself does not indicate any actual action or activity that may
be carried out. Rather, such actions or activities are to be defined in types which are derivations of Right. Such derived types will
commonly be defined in extensions to XrML2, particularly those rights which are germane to a particular application domain.
However, several Rights exist which are related to the domain of XrML2 itself, and so are defined within the XrML2 core.

5.4.2 The Issue Right

When an Issue element is used as the right in an authorized Grant g, it is required that g/resource against which the Right is
applied in fact be a Grant or GrantGroup g'. The Grant g then conveys the authorization for the Principal g/ principal to Issue
g'; that is, it conveys the authorization, under the authority of the issuer of the License l within which g is authorized, for
g/principal to Issue other licenses l' within which g' is authorized.

Schema Representation of the Issue Type
-<xsd:complexType name="Issue">
-<xsd:complexContent>

<xsd:extension base="r:Right"/>
</xsd:complexContent>

</xsd:complexType>

Use of the Issue Right is one of the basic mechanisms (along with delegation and trust of a License by some externally specified
means) by which the XrML2 Authorization Process chains its processing from one License to another.

Those familiar with the X.509 certificate infrastructure will recognize that, in analogy, the Principal g/principal found in an
authorized Grant g containing the Issue Right can conceptually be considered a "Certificate Authority."

At the instant a License is issued, the Issue right must be held by the issuer of the License with respect to all the Grants and
GrantGroups directly authorized therein.

5.4.3 The Revoke Right

The authorized act of exercising the Revoke Right by a Principal p effects a retraction of a Signature that was previously issued
(either by p or by some other Principal from which p received appropriate authorization to revoke) and thus accomplishes a
withdrawal of any authorization conveyed by that Signature.

Schema Representation of the Revoke Type
-<xsd:complexType name="Revoke">
-<xsd:complexContent>

<xsd:extension base="r:Right"/>
</xsd:complexContent>

</xsd:complexType>

There is, of course, commonly a latency, possibly a significant one, between the discovery of an issued Signature by some party
wishing to rely on the authorization so conveyed and the subsequent discovery by that party of a later retraction thereof. In the
nterim, the relying party can and will consider the Signature as valid and binding.

Every issuer of a License, by the act of affixing its Signature thereto, is implicitly and automatically authorized in a freely delegable

manner to subsequently Revoke that Signature, should it choose to do so. By explicit use of the Revoke Right, an issuer may
convey that authorization to other Principals of its choosing.

Although the XrML2 core requires that when the Revoke Right is used that the associated Resource explicitly identify the to-be-
revoked Signature in question, the core itself does not define a concrete XML data type by which this can be accomplished,
instead choosing to leave such definitions to extensions of the core. The XrML2 Standard Extension, though, does define the
Resource Revocable which is useful in this role.

At the instant at which a Signature is formally revoked, the Revoke right must be held by the revoking Principal with respect to
the Signature being revoked.

5.4.4 The PossessProperty Right

The use of the PossessProperty Right within authorized Grants allows the issuers thereof to straightforwardly express the fact
that they authorize the association of property-like characteristics with certain Principals. Put another way, the PossessProperty
Right represents the Right for the associated Principal to claim ownership of a particular characteristic, which is listed as the
Resource associated with this Right.

Schema Representation of the PossessProperty Type
-<xsd:complexType name="PossessProperty">
-<xsd:complexContent>

<xsd:extension base="r:Right"/>
</xsd:complexContent>

</xsd:complexType>

The PossessProperty Right imposes no restriction on the Resource with which it may be used within an authorized Grant other
than the fact that such a Resource MUST NOT be omitted. The XrML2 core does not itself define any Resources which are
particularly useful for use with the PossessProperty Right. However, several such Resources are defined within the XrML2
Standard Extension; in particular, it defines several Resources which are useful for modeling the authorized binding of names to
Principals as is done in the X.509 certificate infrastructure.

Use of the the PossessProperty Right is also very convenient in modeling notions of "group membership" found (among other
places) in security systems of traditional operating systems. In this paradigm, in an XrML2 extension one invents a Resource t
whose associated semantic is "is member of group". Then, straightforwardly, one issues Licenses with authorized Grants that
contain the Right possessProperty and the Resource t in order to indicate that the associated Principal is in fact a member of
the group.

5.4.5 The Obtain Right

When an Obtain element is used as the Right in an authorized Grant g, the Resource contained in g MUST be present and MUST
either be a Grant or a GrantGroup. Let g' be that Grant or GrantGroup. Then the semantics conveyed by the authorization of g is
that the issuer thereof promises that upon request it will in fact issue g', subject only to the limitation that g/principal must first
satisfy the (possibly absent) Condition g/ condition (the means and manner by which such request to actually issue g' is actually
carried out is outside the scope of this specification). Thus, the use of the Obtain Right can be conceptualized as an "offer" or
"advertisement" by the issuer of the Grant g to, for example, "sell" the Grant g'.

Schema Representation of the Obtain Type
-<xsd:complexType name="Obtain">
-<xsd:complexContent>

<xsd:extension base="r:Right"/>
</xsd:complexContent>

</xsd:complexType>

5.5 Core Resources

5.5.1 Resource

Continuing our grammatical analogy, an instance of type Resource (or a derivation thereof) represents the "direct object" against
which the "subject" Principal of a Grant has the Right to perform some "verb." It should be noted that not all XrML2 Rights make
use of such target Resources, just as not all verbs require direct objects.

Schema Representation of the Resource Type
-<xsd:complexType name="Resource" abstract="false">
-<xsd:complexContent>

<xsd:extension base="r:LicensePart"/>
</xsd:complexContent>

</xsd:complexType>

The actual type Resource is conceptually abstract. That is, the type Resource itself does not indicate any actual object against
which a Right may be carried out. Rather, such target objects are to be defined in types which are derivations of Resource. Such
derived types will commonly be defined in extensions to XrML2, particularly those Resources which are germane to a particular

application domain. However, several Resources exist which related to the domain of XrML2 itself and so are defined within the
XrML2 core

5.5.2 DigitalResource

Use of a DigitalResource Resource in a Grant provides a means by which an arbitrary sequence of digital bits can be identified
as being the target object of relevance within the Grant. Specifically, and importantly, such bits are not required to be character
strings which conform to the XML specification, but may be arbitrary binary data.

Schema Representation of the DigitalResource Type
-<xsd:complexType name="DigitalResource">
-<xsd:complexContent>
-<xsd:extension base="r:Resource">
-<xsd:choice minOccurs="0">
-<xsd:element name="nonSecureIndirect" type="r:NonSecureReference">
</xsd:element>

-<xsd:element name="secureIndirect" type="dsig:ReferenceType">
</xsd:element>

-<xsd:element name="binary" type="xsd:base64Binary">
</xsd:element>

-<xsd:element name="xml">
-<xsd:complexType mixed="true">
-<xsd:sequence>

<xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

-<xsd:any namespace="##other" processContents="lax">
</xsd:any>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Conceptually, an instance d of DigitalResource defines an algorithm by which a sequence of bits b in question is to be located.
The means by which this is accomplished breaks down in to several cases:

1. The bits b are are to be physically present within d. There are two sub-cases:
a. If b is a character string which is a sequence of zero or more XML elements, then b MAY be represented using the xml

element within d, which is a simple container of arbitrary XML elements.
b. Otherwise, b SHOULD be encoded in base64 and located within d by use of the binary element. Note that there is no

requirement that a b which may been legally represented using the xml element in fact be represented as such; base64
encoding may equally well be used, even for XML elements.

2. The bits are are to be physically located at some external location outside of d. Perhaps, for example, they are located
somewhere else within the XML document within which d is found, or perhaps at a location on a Web site. There are again two
sub-cases:

a. Though the bits may be external, d may still wish to indicate the exact actual sequence of bits being referred to. This is
accomplished with use of the secureIndirect element.

b. Otherwise, d wishes only to indicate the algorithm used to locate the bits, but is comfortable with the fact that differing
actual executions of the algorithm may yield different sequences of bits. This is indicated by the use of the
nonSecureIndirect element.

3. The means by which the bits are located is something else which is defined in an extension to XrML2. This is indicated within
d by the use of an element which validates against the xsd:any element therein.

The secureIndirect element straightforwardly makes use of the cryptographically-secure referencing mechanism designed as part
of the XML Signature Syntax and Processing standard, specifically the type ReferenceType defined therein. The documentation of
the semantics and processing associated with that type are not described in the present specification but rather are found in the
specification of that standard.

The nonSecureIndirect element makes use of an XrML2-defined type NonSecureReference. The structure and attendant
semantics of the NonSecureReference type are identical in every way to that of the aforementioned ReferenceType except that

1. NonSecureReference structurally lacks the DigestMethod and DigestValue elements found in ReferenceType, and
2. The processing semantics within ReferenceType that are associated with these two elements (in order to verify that the bits

retrieved during the processing of the reference were exactly those expected) are omitted.

5.5.2.1 Authorization of Located Bits

Let g be any authorized Grant containing a Resource d which is a DigitalResource. Let b be the sequence of bits which is the
result of any execution of the location algorithm of d. Then the Grant g' which is identical to g except that d is replaced by a
DigitalResource which contains a child binary element which contains a base64 encoding of b is also authorized.

5.6 Core Conditions

5.6.1 Condition

Within XrML2, instances of the type Condition (or a derivation thereof) represent a grammatical "terms & conditions" clause that a

Principal must satisfy before it may take advantage of an authorization conveyed to it in a Grant containing the Condition
instance. The semantic specification of each different particular kind of Condition MUST indicate the details of the terms,
conditions, and obligations that use of the Condition actually imposes. When these requirements are fulfilled, the Condition is
said to be satisfied.

Schema Representation of the Condition Type
-<xsd:complexType name="Condition" abstract="false">
-<xsd:complexContent>

<xsd:extension base="r:LicensePart"/>
</xsd:complexContent>

</xsd:complexType>

When a particular Condition is used within an authorized Grant, XrML2 processing systems that process the Grant MUST honor
the request implied thereby that the terms, conditions, and obligations indicated in the semantic specification of the Condition be
satisfied by the Principal indicated in the Grant before the Grant may be used as the basis of an authorization decision. A
corollary of this requirement is the observation that should an XrML2 processing system in the course of honoring such a request
encounter a Condition defined in some XrML2 extension of which it lacks semantic knowledge, the processing system MUST NOT
consider the Condition to be satisfied.

The actual type Condition is conceptually abstract. That is, the type Condition itself does not indicate the imposition of any actual
term or condition. Rather, such terms and conditions are to be defined in types which are derivations of Condition. Such derived
types will commonly be defined in extensions to XrML2, particularly those Conditions which are germane to a particular application
domain. However, several Conditions exist which are related to the domain of XrML2 itself, and so are defined within the XrML2
core.

5.6.2 The AllConditions Condition

Structurally, the AllConditions Condition is a simple container of zero or more other Conditions. Semantically, the
AllConditions Condition represents a logical conjunct of the Conditions represented by all of these children. That is, the
Conditions imposed by each and every of these children must be satisfied in order for the AllConditions Condition to be
satisfied.

Schema Representation of the AllConditions Type
-<xsd:complexType name="AllConditions">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence>

<xsd:element ref="r:condition" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

A corollary of this definition is that an AllConditions Condition which contains zero children is considered always to be satisfied.
It is thus equivalent to the empty AllConditions Condition being absent.

Note that there is no requirement that a normalization of an AllConditions Condition be carried out. That is, it is perfectly legal for
an AllConditions Condition to contain other AllConditions Conditions.

5.6.3 The ValidityInterval Condition

A ValidityInterval Condition indicates a contiguous, unbroken interval of time.

Schema Representation of the ValidityInterval Type
-<xsd:complexType name="ValidityInterval">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence>
-<xsd:element name="notBefore" type="xsd:dateTime" minOccurs="0">
</xsd:element>

-<xsd:element name="notAfter" type="xsd:dateTime" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

The semantics of the Condition expressed is that the interval of the exercise of a Right to which a ValidityInterval is applied
must lie wholly within this interval. The delineation of the interval is expressed by the presence, as children of the Condition, of up
to two specific fixed time instants:

1. the optional notBefore element, of type dateTime, indicates the inclusive instant in time at which the interval begins; if absent,
the interval is considered to begin at an instant infinitely distant in the past

2. the optional notAfter element, also of type dateTime, indicates the inclusive instant in time at which the interval ends; if

absent, the interval is considered to end at an instant infinitely distant in the future.

5.6.4 The RevocationFreshness Condition

As was discussed previously, issuers of XrML2 Licenses may in a License indicate the means by which they will, should they
later decide to revoke their Signature, post notice of such revocation. As a practical matter, many if not most of the mechanisms
used for such dissemination of revocation information involve a periodic polling on the part of XrML2 processing systems to
determine whether new revocation information is available. With such polling necessarily comes a latency of information
dissemination. Use of a RevocationFreshness Condition in a Grant or GrantGroup can place an upper bound on the size of this
polling latency whenever the Grant or GrantGroup is used as part of an authorization decision.

Schema Representation of the RevocationFreshness Type
-<xsd:complexType name="RevocationFreshness">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence minOccurs="0">
-<xsd:choice>
-<xsd:element name="maxIntervalSinceLastCheck" type="xsd:duration">
</xsd:element>

-<xsd:element name="noCheckNecessary">
</xsd:element>

</xsd:choice>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

If a RevocationFreshness Condition found in an authorized Grant or GrantGroup g contains a maxIntervalSinceLastCheck
element, and the length of the duration d indicated therein is greater than zero, then in order for the Condition to be satisfied, the
length of real, wall-clock time that has elapsed between

1. the last time that the Signature on the License l in which g was authorized was polled to check for revocation, and

2. the time at which l is passed as a relevant input License to the XrML2 Authorization Algorithm

must be less than or equal to d. If the length of such duration d is zero, then in order for the Condition to be satisfied, a poll to
check for revocation must be carried out each and every time l is passed as a relevant input License in a non-recursive call to the
XrML2 Authorization Algorithm. The length of the duration d MUST NOT be less than zero.

A RevocationFreshness Condition containing a noCheckNecessary element is defined to be semantically equivalent to what a
RevocationFreshness Condition containing a maxIntervalSinceLastCheck element with an infinite duration would signify, but
for the fact that the XML Schema duration data type cannot express such infinite durations of time. This policy is an explicit
affirmation that revocation need not ever be explicitly polled, in contrast to an omitted RevocationFreshness condition, which
leaves the tolerable polling latency to be determined by other means.

5.6.5 The ExistsRight Condition

Schema Representation of the ExistsRight Type
-<xsd:complexType name="ExistsRight">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence minOccurs="0">
-<xsd:choice>

<xsd:element ref="r:grant"/>
<xsd:element ref="r:grantPattern"/>
<xsd:element ref="r:grantGroup"/>
<xsd:element ref="r:grantGroupPattern"/>

</xsd:choice>
<xsd:element ref="r:trustedIssuer" minOccurs="0"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

5.6.5.1 Some Grants Containing ExistsRight Conditions Are Not Primitive

Let c be a Condition of type ExistsRight, and let g be a Grant containing c. Suppose c/grantPattern or c/grantGroupPattern
exists, and let e be this element.

Then, as was previously mentioned, g is not primitive.

Define the Grant g' as being a copy of g except for the transformations defined as follows:

1. an additional new forAll element f is inserted at the end of the (possibly empty) sequence of ForAll elements that begins g',
where

2. f/@varName contains a new variable name which is different from the name of any other variable defined within g', and

3. the contents of f is the element e, and
4. the element e within c is replaced with an empty (respectively) grant or grantGroup element which contains a reference to

the variable named in f/@varName.

If g is authorized, then g' is also authorized.

5.6.5.2 Satisfaction of ExistsRight

Let the functions P and Q, and the notation allPrincipals(P) be as defined in the XrML2 Authorization Algorithm. Let t0 be the present
time.

Let c be an ExistsRight condition returned from a call to the XrML2 Authorization Algorithm whose inputs were (p, r, t, v, L, R, C,
T). It follows that either c/grant or c/grantGroup exists; let h be that element. Then, in order for c to be satisfied,

1. If c/trustedIssuer exists, it must be established that there exists a time instant i prior to v and a Principal p' from those that
conform to the policy articulated within the element c/trustedIssuer such that P(p') is a subset of Q(h, i, v, L, C, t0).

2. If c/trustedIssuer does not exist, it must be established that there exists a time instant i prior to v for which the call to the
XrML2 Authorization Algorithm with inputs:

 (allPrincipals(Q(h, i, v, L, C, t0)), the issue element, h, i, L, R, C, T union {h})

either

a. returns yes, or
b. returns maybe together with a set C' of Conditions, and at least one Condition c' in C' can be shown (possibly with the

help of C) to have been satisfied during i with respect to this issuance.

5.6.6 The PrerequisiteRight Condition

The PrerequisiteRight Condition is related to the ExistsRight Condition, but they differ in many respects. While the
ExistsRight Condition deals with determining if certain Grants and GrantGroups are directly and correctly authorized by some
trustedIssuer, the PrerequisiteRight Condition deals with determining that (under the authorization of some trustedIssuer)
a given Principal has a given Right to a given Resource subject to either no Condition or a Condition that can be shown to be
satisfied.

Schema Representation of the PrerequisiteRight Type
-<xsd:complexType name="PrerequisiteRight">
-<xsd:complexContent>
-<xsd:extension base="r:Condition">
-<xsd:sequence minOccurs="0">

<xsd:element ref="r:principal" minOccurs="0"/>
<xsd:element ref="r:right"/>
<xsd:element ref="r:resource" minOccurs="0"/>
<xsd:element ref="r:trustedIssuer" minOccurs="0"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

5.6.6.1 Satisfaction of PrerequisteRight

Let the functions P and Q, and the notation allPrincipals(P) be as defined in the XrML2 Authorization Algorithm. Let t0 be the present
time.

Let c be a PrerequisiteRight Condition returned from a call to the XrML2 Authorization Algorithm whose inputs were (p, r, t, v, L,
R, C, T). Then, in order for c to be satisfied, it must be shown that there exists some Grant or GrantGroup h such that

1. If c/trustedIssuer exists, it must be established that there exists a time instant i prior to v and a Principal p' from those that
conform to the policy articulated within the element c/trustedIssuer such that P(p') is a subset of Q(h, i, v, L, C, t0).

2. If c/trustedIssuer does not exist, it must be established that there exists a time instant i prior to v for which the call to the
XrML2 Authorization Algorithm with inputs:

 (allPrincipals(Q(h, i, v, L, C, t0)), the issue element, h, i, L, R, C, T union {h})

either

a. returns yes, or
b. returns maybe together with a set C' of Conditions, and at least one Condition c' in C' can be shown (possibly with the

help of C) to have been satisfied during i with respect to this issuance.
3. There exists a primitive Grant g such that g/principal equals c/principal (or both are absent), g/right equals c/right,

g/resource equals c/resource (or both are absent), the authorization of h implies the authorization of g, and g/condition is
shown (possibly with the help of C) to have been satisfied with respect to the aforesaid algorithm inputs.

5.7 Other Core Types and Elements

5.7.1 TrustedPrincipal

Elements of type TrustedPrincipal (or a derivation thereof) indicate a policy by which Principals are identified as having the
appropriate and necessary qualifications in order to be trusted for use in certain situations (see, for example, the use of
TrustedPrincipal in the ExistsRight Condition).

Schema Representation of the TrustedPrincipal Type
-<xsd:complexType name="TrustedPrincipal">
-<xsd:complexContent>
-<xsd:extension base="r:LicensePart">
-<xsd:choice minOccurs="0">

<xsd:element ref="r:principal"/>
-<xsd:element name="any">
-<xsd:complexType>
-<xsd:sequence>

<xsd:element ref="r:principal" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Within TrustedPrincipal, this policy is indicated in one of two ways:

1. If the element TrustedPrincipal/ principal is present, then the set of identified Principals is exactly that one Principal.
2. If the element TrustedPrincipal/any is present, then the set of identified Principals is any of the Principals contained

therein.

It is often usefully the case that the Principals within a TrustedPrincipal contain references to variables which denote a set of
Principals by means of a pattern within a ForAll element.

5.7.2 ServiceReference

The term service as used in this specification refers to an active body of software, execution of which is distinguished from that of
client software which wishes to make use of it.

Schema Representation of the ServiceReference Type
-<xsd:complexType name="ServiceReference">
-<xsd:complexContent>
-<xsd:extension base="r:Resource">
-<xsd:sequence minOccurs="0">
-<xsd:choice>
-<xsd:sequence>
-<xsd:element name="wsdl" type="r:DigitalResource">
</xsd:element>

-<xsd:element name="service" type="xsd:NCName">
</xsd:element>

-<xsd:element name="portType" type="xsd:NCName" minOccurs="0">
</xsd:element>

</xsd:sequence>
-<xsd:sequence>
-<xsd:element name="kind">
-<xsd:complexType>
-<xsd:sequence>
-<xsd:element name="wsdl" type="r:DigitalResource">
</xsd:element>

-<xsd:element name="binding" type="xsd:NCName">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
-<xsd:element name="address">
-<xsd:complexType>
-<xsd:sequence>

<xsd:any namespace="##other" processContents="lax"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
-<xsd:element name="uddi" type="r:UddiServiceIdentifier">
</xsd:element>

-<xsd:any namespace="##other" processContents="lax">
</xsd:any>

</xsd:choice>
-<xsd:element name="serviceParameters" minOccurs="0">
-<xsd:complexType>
-<xsd:sequence minOccurs="0" maxOccurs="unbounded">
-<xsd:element name="datum">

-<xsd:complexType>
-<xsd:sequence>

<xsd:any namespace="##any" processContents="lax"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

-<xsd:element name="transforms" type="dsig:TransformsType" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

t is the role of an instance of ServiceReference to indicate the location and the means and manner by which a client is to interact
with a specific service. Specifically, a ServiceReference instance does the following:

1. Identifies the location or address at which the service is found.
2. Identifies a greater or lesser amount of metadata about the semantics of the service and the rules that must be adhered to by a

client that interacts with it
3. Optionally specifies a set of concrete parameters that are to be provided when a client interacts with the service by

dereferencing this particular ServiceReference. These parameters provide a means by which a service might at run time
distinguish between its uses from different XrML2 contexts.

XrML2 does not itself invent significant new infrastructure for describing services; rather, it draws on the considerable work being
done in this area by others. Specifically, there are two architected technologies by which the location and metadata information of a
ServiceReference may be provided (using an xsd:any element, ServiceReference provides for other technologies that may also
be used):

1. WSDL, the Web Services Definition Language, and
2. UDDI, the Universal Description, Discovery, and Integration directory infrastructure.

5.7.2.1 WSDL

Briefly (see the WSDL specification for details), a WSDL language expression occurs in an WSDL definitions element. This element
s a container of services. Each WSDL service is a container of ports, each of which denotes a different aspect or sub-service of the
service. Each port is associated with a particular abstract portType and also indicates a binding of that abstract portType to concrete
message formats and protocol details. Within a service, all ports that share a portType are to be considered as semantically
equivalent by clients. The linkage between ports and portTypes, ports and bindings, etc. is by name. Indeed, structurally, a definitions
element is a physical container for services, bindings, portTypes, and (perhaps considerably) other metadata.

XrML2 allows for two stylistically different approaches to using WSDL. Let r be a ServiceReference element.

n the first approach, the r/wsdl element, which is of type DigitalResource, is used to locate a WSDL definitions element d. The
r/service element then indicates the name of a particular WSDL service s that is defined in d. Optionally, the r/portType element
disambiguates which subset of the possibly many ports of s the ServiceReference r intends to refer to.

n the second approach, the r/kind/wsdl element again locates a definitions element d. The element r/kind/binding then indicates
the name of a WSDL binding which is defined within d. The binding in turn indicates the abstract portType of the service, together
with a mapping to concrete message formats and protocol details. Remaining to be specified is a concrete endpoint or address at
which the software executing the service may be found. This is indicated in the element r/address.

Which of these two approaches is appropriate depends on the operational details and logistics of the context in which a given
DigitalResource might actually be used. In some situations one will be more useful, in different situations, the other will be.

5.7.2.2 UDDI

UDDI defines (see the UDDI specification for details) the notion of a registry as a particular service replicated over a set of nodes.
Each registry is a database or directory containing possibly many businessEntities. Each businessEntity contains possibly
many businessServices. Each businessService has possibly several bindingTemplates, each of which may contain explicit
endpoint information and also other arbitrary metadata about the businessService using data in the form of what are known as
tModels. Several components of the UDDI data model have associated primary keys by which their instances are independently
retrievable. These include businessEntities, businessServices, bindingTemplates, and tModels.

To uniquely identify a service which is specified using UDDI, one need only identify the registry, then identify the primary key of the
businessService in question within that registry.

Let r be a ServiceReference. If r/uddi is present, then the service referenced by r is specified using UDDI.

f r/uddi/registry is omitted, then the registry in question is the Universal Business Registry (the UBR, which is publicly accessible
on the Internet and operated by a consortium of companies including IBM, Microsoft, and others). If r/uddi/registry is present, then
the value found therein indicates the name (note: not the location) of the registry to be used. This name is assumed to be drawn from
a list of names of non-UBR UDDI registries known to and useful within the context of usage of the License in which r is found.

r/uddi/serviceKey indicates the primary key of the businessService in question within the identified registry. Depending on which

version of UDDI is used, one of two different types of primary key is appropriate. UDDI v1 and v2 use XOpen DCE UUIDs as keys;
UDDI v3 and above allows for the use of URIs. Each is available as a choice under r/uddi/serviceKey.

5.7.2.3 Parameters

Let r be a ServiceReference. Then r may contain an ordered sequence of contextual parameters which, per the metadata
associated with the service, may be necessary in order to successfully interact with the it. Such parameters may be specified using
the sequence contained within the r/serviceParameters element.

r/serviceParameters contains a sequence of pairs of elements. Each pair contains a datum element and an optional transforms
element. Each such datum element defines a raw parameter for the service. This raw parameter may be processed to form an
actual parameter for the service by applying the sequence of transformations to the raw parameter optionally indicated in the
accompanying transforms element (if no such transformations are indicated, then the actual parameter is the same as the raw
parameter). The specification of the sequence of transformations to be carried out makes use of a mechanism designed as part of
the XML Signature Syntax and Processing standard, specifically the type TransformsType defined therein. The documentation of
the semantics and processing associated with that type are found in the specification of that standard, but the following
modifications are made thereto:

1. The input to the first Transform is a raw parameter, manifest as an XPath node-set containing the one raw parameter element
(that is, the child of the datum element) in-place in the context of its XML document (thus navigation from the parameter node
to elsewhere in the XML document containing the parameter is feasible).

2. The output of the last Transform is the corresponding actual parameter.

ServiceReference parameter transformation is defined to take place after all LicensePart and variable reference processing has
occurred. The use of the parameter transformation facility is in fact particularly convenient in order to be able to discern and
communicate to the service the result of such other processing actions.

The actual interpretation, detailed processing, and passing to the service of the sequence of actual parameters is necessarily
service-specific, and is thus not defined here.

5.7.3 LicenseGroup

Instances of the type LicenseGroup are simple and straightforward containers of Licenses. No inherent semantic is conveyed by
the presence of two particular Licenses within the same LicenseGroup. This type exists due merely to the observation that it is
often handy and convenient to be able to use such a container in XML instances and schemas. No use of it is made in the
remainder of XrML2.

Schema Representation of the LicenseGroup Type
-<xsd:complexType name="LicenseGroup">
-<xsd:sequence>

<xsd:element ref="r:license" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

5.8 The XrML2 Authorization Algorithm

At the heart of any implementation of software which makes an authorization decision using XrML2 Licenses in the decision making
process is a central algorithm (the 'Authorization Algorithm') which answers the question "Is such-and-such a Principal authorized
to exercise such-and-such a Right against such-and-such a Resource?" In order for XrML2 to be pragmatically useful, certain
details of that algorithm need to be standardized across all such implementations. It is the purpose of this section to document such
details.

It is important to understand that the Authorization Algorithm works in terms of potentialities. That is, it colloquially answers the
question "If the principal wanted to ..., could he?". A question which is quite a different one is "The principal is about to ...; can he?"
The former question addresses a potentiality that might later come to pass; the latter question carries with it the implication that the
Principal has already committed itself to try to carry out the act. This difference in perspective may be subtle, but could have
important implications as to the details of how and when the evaluation of certain kinds of Conditions are carried out.

It is also important to understand that the algorithm operates on clear-text Licenses, Grants, and GrantGroups. Encrypted forms of
these are to be treated as if they were actually their clear-text equivalent.

Finally, it is important to understand that the approach by which the specification of the Authorization Algorithm in this section is
described and document by no means intended to be the best or most efficient manner in which the algorithm can in fact be
implemented. It is, rather, merely the most succinct and straightforward exposition that the authors of this specification found to
communicate the essential details of the algorithm.

5.8.1 Input to the Authorization Algorithm

The Authorization Algorithm takes a number of pieces of information as input:

1. A Principal p, which is the identity of the entity whose authorization to perform an act is being called into question,
2. A Right r, which embodies the semantics of the action to be performed or otherwise carried out,
3. An (optional) Resource t, which is the target of the action r being carried out by p,
4. An interval v of time during which the execution of r by p is considered to take place. This may either be an instantaneous

point in time, or may be a contiguous, unbroken interval of time.
5. A set L of relevant Licenses. The algorithm will attempt to find authorized Grants and GrantGroups within these Licenses

that it can use to establish a basis for an affirmative authorization decision,
6. An additional set R of "root" Grants that are considered by the algorithm to be authorized under the authority of an omnipotent

issuer. These are authorized Grants that are to be trusted by some decision making process that is outside of the scope of
XrML2 itself.

7. A (possibly empty) set C of other appropriate contextual information. This contextual information is not processed or
manipulated directly by the core Authorization Algorithm, and the details of such information are not herein specified, but its
existence is established in order to clearly allow for the provision of additional contextual information necessary to evaluate
authorization decisions based on Principals, Rights, Resources, and Conditions that might be defined in extensions to
XrML2.

8. A set T of traversed Grants and GrantGroups. This set is used to ensure that the Authorization Algorithm terminates. The
Grants and GrantGroups in this set have already been traversed by parent recursive calls to the algorithm. As such, their
authorization should be considered not provable in child calls, and no further recursion should be carried out in an attempt to
prove their authorization.

This input can be considered as a eight-tuple:

(p, r, t, v, L, R, C, T)

5.8.2 Output of the Authorization Algorithm

The output of the Authorization Algorithm is either:

1. The result no, indicating that the Algorithm could not establish that the Principal had the indicated authorization, or
2. Either

a. the result yes, indicating that the Algorithm established that the Principal unequivocally has the indicated
authorization, or

b. the result maybe together with a non-empty set of alternative Conditions, indicating that the Principal has the
indicated authorization provided that at least one of the indicated alternative Conditions is satisfied.

It is important to notice that the core Authorization Algorithm herein described does not itself consider whether or not any particular
Condition has in fact been satisfied with respect to the input authorization request; such processing and evaluation is (from a
specification perspective at least) left to higher level algorithms of the XrML2 processing system which consumes the output of the
Authorization Algorithm. That said, in the chaining steps of the Authorization Algorithm, where recursive use of the algorithm is
made, such evaluation of Conditions output from the recursion is indeed carried out; however, it is there done with respect to rights
involved in the authority to issue XrML2 Licenses in the input set L (a Right which has been exercised), not the input Right r
being requested by the input Principal p (a Right that may only potentially be exercised).

5.8.4 Execution of the Authorization Algorithm

The execution of the Authorization Algorithm proceeds as follows. We begin with the definition of several important concepts.

Let

� P be the universe of Principals,
� C be the universe of Conditions,
� G be the universe of Grants,
� GG be the universe of GrantGroups,
� I be the universe of time instants,
� V be the universe of time intervals
� L be the universe of Licenses
� CC be the universe of Authorization Algorithm input contexts

Let H be the union of G and GG.

Consider a function P defined on the domain P union H. For any p in P, let P(p) be defined as follows:

1. If p is of type AllPrincipals, then P(p) is the union, over all children p' of p, of P(p').
2. If p is not of type AllPrincipals, then P(p) is the one-element set containing p.

Colloquially, P(p) is the set of Principals obtained by collapsing any AllPrincipals elements in p. Similarly, for any h in H, let P
(h) be defined as follows:

1. If h/principal is absent, P(h) is the empty set
2. If h/principal is not absent, P(h) is defined to be P(h/principal)

Colloquially, P(h) is the set of Principals, acting together, to whom a Grant or GrantGroup is issued.

Let S be any finite subset of P. Then, let the notation allPrincipals(S) denote an allPrincipals element which contains as children
exactly the elements of S.

Let PG be be that subset of G where g in G is in PG if and only if g is primitive. Let EPG be that subset of PG where g in PG is in
EPG if and only if:

1. P(g) is a subset of P(p),
2. g/right is equal to r,
3. either g/resource is equal to t or both are absent

EPG can be considered the set of "eligible" primitive Grants.

Let LH be that subset of H where h in H is in LH if and only if there exists a License l in L in which h is directly authorized. Let ULH
be that subset of LH where h in LH is in ULH if and only if h is not in T. ULH can be considered the set of "usable licensed Grants
and GrantGroups."

We define a notion for the set of Principals that have directly authorized a Grant or GrantGroup prior to a certain time instant. Let
Q be the function with domain H x I x V x L x CC x I and range in P which defined as follows: For any h in H, i and t in I, v in V, L a
set of Licenses, and C an authorization context, if p is in P, then p is in Q(h, i, v, L, C, t) if and only if there exists a License l in L
such that

1. h is directly authorized within l
2. l is issued by p, and such issuance is not known to have been revoked as of the minimum of times t and the end of v
3. p can be demonstrated to have issued l prior to i by means of:

a. a trusted (according to the context C) counter-signature for p's signature on l attesting to this fact,
b. i being greater than the time t
c. any other method using C

We consider the subset of the usable licensed Grants and GrantGroups which are in fact authorized. Let t0 be the time at which
the execution of the Authorization Algorithm occurs. Let AULH be that subset of ULH where h in ULH is in AULH if and only if there
exists a i in I prior to the start of v for which a recursive call to the Authorization Algorithm with inputs

(allPrincipals(Q(h, i, v, L, C, t0)), the issue element, h, i, L, R, C, T union {h})

either

1. returns yes, or
2. return maybe together with a set C' of Conditions, and at least one Condition c in C' can be shown (possibly with the help of

C) to have been satisfied during i with respect to this issuance.

Let AEPG be the set of affirmatively authorized eligible primitive Grants defined as follows: g in EPG is in AEPG if and only if there
exists an h in (AULH union R) such that the authorization of h implies the authorization of g.

If AEPG is empty, the Authorization Algorithm returns no.

If there exists a g in AEPG such that g/condition is equivalent to an AllConditions Condition that has no children, then the
Authorization Algorithm returns yes.

Otherwise, the Authorization Algorithm returns maybe together with a set C of Conditions, where C is that subset of C where c in
C is in C if and only if there exists a Grant g in AEPG with g/condition equal to c.

This concludes the specification of the Authorization Algorithm.

Go to Part III: Standard Extension

