®,

o
CONTENTGUARD™

eXtensible rights Markup Language (XrML) 2.0 Specification
Part Ill: Standard Extension Schema

20 November 2001

Available formats: HTML and PDF. In case of a discrepancy, the HTML is considered definitive.

NOTE: To enable interactive browsing of the XrML schemas and examples, the XrML Specification and its companion Example Use Cases
document use an HTML version that leverages the XML access functionality provided by the W3C Xpath recommendation. For this reason, you
need to view these HTML documents with a browser that supports that recommendation (for example, Internet Explorer Version 6.0). If your
browser does not support this functionality, please view the PDF versions of those documents.

Copyright © 2001 ContentGuard Holdings, Inc. All rights reserved. "ContentGuard” is a registered trademark and "XrML", "eXtensible rights Markup Language”, the XrML logo, and the ContentGuard logo are trademarks of
ContentGuard Holdings, Inc. All other trademarks are properties of their respective owners.

Quick Table of Contents
Part 1: Primer

1 About XrML

2 XrML Concepts
3 Extensibility of the XrML Core

4 Conformance

Part Il: XrML Core Schema

5 Technical Reference

Part lll: Standard Extension Schema

6 Standard Extension

Part IV: Content Extension Schema

7_About the Content Extension
8 Content Extension Data Model
9. Content Extension Elements

Part V: Appendices

A XrML Schema

B Glossary

C Index of Types and Attributes
D References

E Acknowledgements

Full Table of Contents for Part Ill: Standard Extension Schema

6 Standard Extension

6.1 Condition Extensions

6.1.1 StatefulCondition

6.1.1.1 StatefulCondition/stateReference

6.1.2 StateReferenceValuePattern
6.1.3 The ExerciseLimit Condition
6.1.4 The SeekApproval Condition
6.1.5 The TrackReport Condition

6.1.5.1 TrackReport/communicationFailurePolicy

6.1.6 The TrackQuery Condition

6.1.6.1 TrackQuery/notMoreThan
6.1.6.2 TrackQuery/notLessThan

6.1.7 The ValidityIntervalFloating Condition
6.1.8 The ValidityTimeMetered Condition

6.1.8.1 ValidityTimeMetered/quantum

6.1.9 The ValidityTimePeriodic Condition

6.1.9.1 ValidityTimePeriodic/start
6.1.9.2 ValidityTimePeriodic/period
6.1.9.3 ValidityTimePeriodic/phase
6.1.9.4 ValidityTimePeriodic/duration
6.1.9.5 ValidityTimePeriodic/periodCount

6.1.10 The Fee Condition

6.1.10.1 Fee/paymentAbstract
6.1.10.2 Fee/min

6.1.10.3 Fee/max

6.1.10.4 Feelto

6.1.10.5 AccountPayable

6.1.10.5.1 AccountPayable/paymentService
6.1.10.5.2 AccountPayable/aba

6.1.11 The Territory Condition

6.1.11.1 Territory/location

6.1.11.1.1 Territory/location/region
6.1.11.1.2 Territory/location/country
6.1.11.1.3 Territory/location/state
6.1.11.1.4 Territory/location/city
6.1.11.1.5 Territory/location/postalCode
6.1.11.1.6 Territory/location/street

6.1.11.2 Territory/domain

6.1.11.2.1 Territory/domain/url

6.1.12 State Interaction Elements

6.1.12.1 approval
6.1.12.2 count

6.1.12.3 paid
6.1.12.4 validFor
6.1.12.5 validUntil

6.2 Payment and its Extensions

6.2.1 PaymentAbstract
6.2.2 Cash

6.2.3 PaymentFlat

6.2.3.1 PaymentFlat/rate
6.2.3.2 PaymentFlat/paymentRecord

6.2.4 PaymentMetered

6.2.4.1 PaymentMetered/rate
6.2.4.2 PaymentMetered/per
6.2.4.3 PaymentMetered/by
6.2.4.4 PaymentMetered/phase

6.2.5 PaymentPerinterval

6.2.5.1 PaymentPerInterval/rate
6.2.5.2 PaymentPerInterval/per
6.2.5.3 PaymentPerInterval/paidThrough

6.2.6 PaymentPerUse

6.2.6.1 PaymentPerUse/rate
6.2.6.2 PaymentPerUse/allowPrePay

6.2.6.2.1 PaymentPerUse/allowPrePay/initialNumberOfUses
6.2.6.2.2 PaymentPerUse/allowPrePay/prepaidUsesRemaining

6.2.7 BestPriceUnder
6.2.8 CallForPrice

6.2.8.1 CallForPrice/location

6.2.9 Markup

6.2.9.1 Markup/rate
6.2.9.2 Markup/feeForResource

6.3 Name Extensions

6.3.1 Name

6.3.2 EmailName

6.3.3 DnsName

6.3.4 CommonName

6.3.5 X509SubjectName

6.3.6 X509SubjectNamePattern

6.4 Revocation Extensions

6.4.1 Revocable

6 Standard Extension

Some concepts arise commonly in many XrML usage scenarios, but the elements and types that are used to capture them do not really belong in
the core. The extensions defined in the Standard Extension are classified according to the purpose that they serve. They are broadly classified
into conditions, payment notions, name, and revocation extensions.

6.1 Condition Extensions

Condition Extensions

condition
exerciseLimit ?

fee

seekApproval

territory ?

trackQuery ?
trackReport ?
validitylntervalFloating ?
validityTimeMetered ?
validityTimePeriodic ?

The standard extension schema defines nine extensions of the type Condi t i on. Of these, six extensions require a notion of communication with
an external authoritative value. To facilitate the definition of these extensions, a type St at ef ul Condi ti on is defined as well. Condition
extensions are constructed either by extending St at ef ul Condi ti on type or by directly extending the Condi ti on type. Naturally, what it means
for a condition extension to be satisfied is left to its description.

6.1.1 StatefulCondition

Some conditions may be tied to an external authoritative piece of data. These arise when the exercise of a right is predicated upon querying or
manipulating the value of this external piece of data. For example, the number of times some content may be rendered can be bounded by some
value. To cover such usages, XrML2.0 standard extension defines a type called St at ef ul Condi ti on. The type is an extension of the type

Condi ti on defined in the core. It includes a child element st at eRef er ence, which indicates the means with which communication is made with
the state or service. The state holds the piece of data and returns it in the form of one or more XML nodes when queried for its value. The
schema that describes the XML nodes returned by the state is left to the specific Condi ti on that extends St at ef ul Condi ti on. Manipulations of
the state value must also be permitted. Elements of type St at ef ul Condi ti on (or a derivation thereof) must define specifically their interaction
with the state.

Schema representation of StatefulCondition

- <xsd: conpl exType nane="St at ef ul Condi ti on">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="r: Condition">
- <xsd: sequence m nCccurs="0">
<xsd: el ement ref="sx:stateReference" m nCccurs="0"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

6.1.1.1 StatefulCondition/stateReference

The element st at eRef er ence indicates the means by which the state is to be queried or manipulated. It has type Ser vi ceRef er ence as defined
in the core.

6.1.2 StateReferenceValuePattern

A pattern that identifies a set of state reference values using pattern matching.

H Schema representation of St at eRef er enceVal uePatt ern ”

- <xsd: conpi exType nanme="St at eRef er encevai uePattern”>
- <xsd: conpl exCont ent >
- <xsd: extensi on base="r: Xm PatternAbstract">
- <xsd: sequence>
<xsd: any namespace="##any" processContents="|ax" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of st at eRef er enceVal uePatt ern

-<xsd: el enent name="st at eRef erenceVal uePattern" type="sx: StateRef erenceVal uePattern" substitutionG oup="r:xmnl PatternAbstract">
</ xsd: el enent >

I'he element st at eRef er enceVal uePat t er n specifies an unbounded number of XML element nodes. This element matches a st at eRef er ence if
and only if for every XML element node that is a sub element of the st at eRef er enceVal uePat t er n element, there exists an identical XML
2lement node in the set of XML element nodes returned by the state designated by the st at eRef er ence, when queried for its value.

Jsing the stateReferenceValuePattern element

The element st at eRef er enceVal uePat t er n is typically used with the obt ai n element. When the right to obt ai n a gr ant with a stateful condition
s issued, then to specify the initial values the state value happen to take, a st at eRef er enceVal uePat t er n is created containing the XML nodes
hat correspond to the desired state value. This ensures that only st at eRef er ences whose designated states have the requisite state values
appear in the obtained gr ant .

The following example illustrates a gr ant issued to Alice that allows her to obtain another gr ant to play "A Clockwork Orange" up to twenty
imes. The obtained gr ant uses the stateful condition Exer ci seLini t.

Example use of stateReferenceValuePattern

-<grant>
-<forAl'l varNane="stateX">
- <patternFromnLi censePart >
- <sx: st at eRef erence>
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</ patternFronLi censePart >
- <sx: st at eRef erenceVal uePat t er n>
<sx: count >20</ sx: count >
</ sx: st at eRef erenceVal uePat t er n>
</forAl>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<obt ai n/ >
-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart!| dRef="AC ockwor kOrange"/ >
-<sx:exerciseLinmt>
<sx: st at eReference varRef="stateX"/>
</ sx: exerciseLimt>
</ grant>
</ grant >

5.1.3 The ExerciseLimit Condition

ndicates a maximum number of times that the right may be exercised.

Schema representation of Exerci seLimi t

- <xsd: conpl exType nanme="ExerciseLimt">
- <xsd: conpl exCont ent >
<xsd: ext ensi on base="sx: Stateful Condition"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of exerci seLim t

-<xsd: el enent name="exerciseLimt" type="sx:ExerciseLimt" substitutionG oup="r:condition">
</ xsd: el enent >

Jsing the exerciseLimit element

Sometimes gr ant s have an upper bound on the number of times the associated rights may be exercised. This can be a certain number of times a
jocument may be printed or the number of times a piece of music may be played. The element exer ci seLi ni t captures these cases. The
slement has type Exer ci seLi ni t, which is based on St at ef ul Condi ti on. Typically, all of the information needed to evaluate an exer ci seLi ni t
sondition is obtained by querying the state designated by st at eRef er ence, including the initial value of the limit associated with the gr ant .

nteraction with the State

When a right conditioned by exer ci seLi nit is exercised, the state designated by the st at eRef er ence in exer ci seLi ni t is queried for its
value. The state returns count containing an i nt eger value c. Upon exercise of the right, the value of the state is updated to return count
containing ¢ - 1 hereon.

The exer ci seLi ni t condition is satisfied if and only if c is greater than zero and the value of the state is updated as described above.

In the following example, Alice may pri nt the book, but only for a certain number of times.

Example use of exerci selLim t

-<grant>
-<keyHol der |icensePart|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef ="Book"/>
-<sx:exerciseLinmt>
- <sx: st at eRef erence>
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</ sx: exerciseLimt>
</ grant>

6.1.4 The SeekApproval Condition

Indicates that the specified service must be contacted and its approval gained before exercising the associated right.

Schema representation of SeekAppr oval

- <xsd: conpl exType nane="SeekApproval ">
- <xsd: conpl exCont ent >
<xsd: extensi on base="sx: Stateful Condition"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of seekAppr oval

-<xsd: el enent nanme="seekApproval " type="sx: SeekApproval " substitutionG oup="r:condition">
</ xsd: el enent >

Using the seekApproval element

A grant may have rights that may be exercised only upon specific approval from a service. The element seekAppr oval of type SeekApproval is
used to model these cases. seekAppr oval is based on the type St at ef ul Condi ti on. The exercise of such a right typically involves querying the
appropriate state for approval. The means to connect to the state is made available with the child element st at eRef er ence.

Interaction with the State

When a right conditioned by seekAppr oval is exercised, the state designated by the st at eRef er ence in seekAppr oval is queried for its value.
The state returns appr oval containing a bool ean value b.

The seekAppr oval condition is satisfied if and only if b is true.

In the following example, Alice may pri nt the book, but only upon prior approval from the designated state reference.

Example use of seekAppr oval

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef ="Book"/>
- <sx: seekApproval >
- <sx: st at eRef erence>
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</ sx: seekApproval >
</ grant >

6.1.5 The TrackReport Condition

Indicates that exercising a right must be reported to a designated tracking service.

Schema representation of Tr ackRepor t

- <xsd: conpl exType nanme="TrackReport">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Stat eful Condi tion">
- <xsd: sequence m nCccurs="0">

-<xsd: el enent name="communi cati onFail urePolicy" defaul t="required" m nCccurs="0">
- <xsd: si npl eType>
-<xsd:restriction base="xsd: NMTOKEN" >
<xsd: pattern val ue="lax"/>
<xsd: pattern val ue="required"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of trackReport

-<xsd: el enent name="trackReport" type="sx: TrackReport" substitutionG oup="r:condition">
</ xsd: el enent >

5.1.5.1 TrackReport/communicationFailurePolicy

This locally defined element is used to indicate what should happen if communication with the designated state should fail. With a setting of "lax"
sommunication failures may be ignored and the right may be exercised, whereas a setting of "required" would prevent exercises. The default is
'required”.

Jsing the trackReport element

The trackReport condition requires that the exercise of the associated right is reported to a designated state. The tr ackReport elementis
rased on the TrackReport type, which is an extension of St at ef ul Condi ti on. The means to connect to the state is made available with the
shild element st at eRef er ence. A child element, comuni cati onFai | ur ePol i cy, allows the setting of policy regarding the exercise should the
sommunication with the state fail.

nteraction with the State

Nhen a right conditioned by t r ackReport is exercised, the state designated by the st at eRef er ence is notified of the exercise. The state
‘esponds in some fashion to confirm the notification.

=xcept when the conmuni cat i onFai | urePol i cy is set to | ax, the t r ackRepor t condition is satisfied if and only if the state is successfully notified
Of the exercise of the right. Note that t r ackRepor t does not define how the state records the report. This may be done with a bool ean value or ar
nt eger value.

n the following example, Alice has the right to pri nt a book, but the exercise of that right must be reported.

Example use of trackReport

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef="Book"/>
- <sx:trackReport>
-<sx:stateReference |icensePart|d="stateReferenceAlias">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
<sx: communi cati onFai | urePol i cy>requi r ed</ sx: communi cati onFai | urePol i cy>
</ sx:trackReport>
</ grant >

5.1.6 The TrackQuery Condition

Represents a condition on the tracking state updated by TrackReport. For example, this condition can be used to predicate the granting of one
ight on the successful exercise of another.

Schema representation of TrackQuery

- <xsd: conpl exType nane="TrackQuery">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: St at eful Condi tion">
- <xsd: sequence mi nCccurs="0">
-<xsd: el enent name="not LessThan" type="xsd:integer" m nCccurs="0">
</ xsd: el enent >
-<xsd: el enent nanme="not MoreThan" type="xsd:integer" m nCccurs="0">
</ xsd: el ement >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of trackQuery

-<xsd: el enent name="trackQuery" type="sx: TrackQuery" substitutionG oup="r:condition">
</ xsd: el enent >

Using the trackQuery element

The trackQuery condition represents a condition on a specific value that a state holds. The tr ackQuery element is based on the Tr ackQuery
type, which is an extension of St at ef ul Condi ti on. The means to connect to the state is made available with the child element

st at eRef erence. For the trackQuery condition to be satisfied the state must have a value within the range is specified by two child elements
not Mor eThan and not LessThan.

Interaction with the State

When a gr ant conditioned by t r ackQuer y is exercised, the state designated by the st at eRef er ence is queried for its value. The state returns
count containing ani nt eger v.

The trackQuery condition is satisfied if and only if v lies between the values contained in not Mor eThan and not LessThan.

In the following example, Alice can pri nt the book only when the designated state value is between five and ten.

Example use of trackQuery

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef="Book"/>
-<sx:trackQuery>
-<sx:stateReference |icensePart|d="stateReferenceAlias">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
<sx: not LessThan>10</ sx: not LessThan>
<sx: not Mor eThan>5</ sx: not Mor eThan>
</ sx:trackQuery>
</ grant >

TrackQuery is commonly used together with t r ackRepor t , to model exercise of rights predicated on the exercise of other rights. The following
example demonstrates one such usage. The idea is that Alice may listen to a piece of music as many times as she pleases provided she has
listened to some commercial. The grant related to the commercial has a t r ackRepor t condition. When Alice attempts to listen to the piece of
music, the t rackQuery condition herein allows exercise of the right only when the state value tracked by the t r ackReport condition has a value
greater than zero.

Example use of trackQuery with trackReport

-<license>
-<i nventory>
-<keyHol der |icensePart!|d="Alice">
- <i nf o>
- <dsi g: KeyVal ue>
- <dsi g: RSAKeyVal ue>
<dsi g: Modul us>n5gznvv4/ ... </ dsi g: Modul us>
<dsi g: Exponent >AQABAA==</ dsi g: Exponent >
</ dsi g: RSAKeyVal ue>
</ dsi g: KeyVal ue>
</info>
</ keyHol der >
-<di gi tal Resource |icensePart|d="Commercial ">
- <cx: net adat a>

-<xnl >
-<cx: si npl eDi gi tal Wor kMet adat a>
<cx:title>Toyota Ad</cx:title>
</ cx: si npl eDi gi t al Wor kMet adat a>
</ xm >

</ cx: et adat a>
</ di gi t al Resour ce>
-<di gi tal Resource |icensePart!|d="nusic">
-<dsi g: Reference URI="http://ww.server.conl downl oads/ anl nt er esti ngSong. np3" >
<dsi g: Di gest Met hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
<dsi g: Di gest Val ue>qzZk+NkcGgWy6Pi VxeFDChJz@QJ0=</dsi g: Di gest Val ue>
</ dsi g: Ref erence>
</ di gi t al Resour ce>
</inventory>
-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart!|dRef="Conmercial "/>
-<sx:trackReport>
-<sx:stateReference |icensePart|d="AdState">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef er ence>
<sx: communi cat i onFai | urePol i cy>l ax</ sx: communi cat i onFai | ur ePol i cy>
</ sx: trackReport>
</ grant>
- <grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart|dRef="Misic"/>

-<sx:trackQuery>
-<sx:stateReference |icensePart|d="AdState">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
<sx: not LessThan>1</ sx: not LessThan>
</ sx:trackQuery>
</ grant>
- <i ssuer >
- <dsi g: Si gnat ur e>
- <dsi g: Si gnedl! nf o>
<dsi g: Canoni cal i zati onMet hod Al gorithne"http://ww.w3. org/ TR/ 2001/ REC- xml - ¢14n- 20010315"/ >
<dsi g: Si gnat ureMet hod Al gorithne"http://ww. w3. org/ 2000/ 09/ xnl dsi g#r sa- shal"/>
- <dsi g: Ref erence>
- <dsi g: Tr ansf or ns>
<dsi g: Transform Al gorithnm="http://ww. xrm . org/ schema/ 2001/ 11/ xr ml 2cor e#l i cense"/ >
</ dsi g: Tr ansf or ns>
<dsi g: Di gest Met hod Al gorithme"http://waw. w3. or g/ 2000/ 09/ xml dsi g#shal"/ >
<dsi g: Di gest Val ue>PB4QbKOQC0941t TExbj 1/ Q==</ dsi g: Di gest Val ue>
</ dsi g: Ref erence>
</ dsi g: Si gnedl! nf o>
<dsi g: Si gnat ur eVal ue>zl RYaxl 5E. . . </ dsi g: Si gnat ur eVal ue>
- <dsi g: Keyl nf o>
- <dsi g: KeyVal ue>
- <dsi g: RSAKeyVal ue>
<dsi g: Modul us>g8NRYMS30. . . </ dsi g: Modul us>
<dsi g: Exponent >AQABAA==</ dsi g: Exponent >
</ dsi g: RSAKeyVal ue>
</ dsi g: KeyVal ue>
</ dsi g: Keyl nf o>
</ dsi g: Si gnat ure>
-<detail s>
<ti ne(f | ssue>2001- 01-27T15: 30: 00</ ti neCf | ssue>
-<validitylnterval >
<not Bef or e>2000- 02- 03T17: 26: 00</ not Bef or e>
<not Af t er >3000- 02- 03T17: 26: 00</ not Af t er >
</validitylnterval >
</ detail s>
</issuer>
</license>

5.1.7 The ValidityIntervalFloating Condition

Represents an interval of time that begins with the first exercise of a right.

Schema representation of Val i di tyl nterval Fl oati ng

- <xsd: conpl exType nanme="Validitylnterval Fl oati ng">
- <xsd: conpl exCont ent >
<xsd: ext ensi on base="sx: Stateful Condition"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of Val i di tyl nterval Fl oati ng

-<xsd: el enent name="validitylnterval Fl oati ng" type="sx:Validitylnterval Fl oating" substitutionG oup="r:condition">
</ xsd: el enent >

Jsing the validityIntervalFloating element

/alidityl nterval Fl oating is a temporal condition that is used to indicate for what length of time a right may be exercised. For example, we
nay speak of a gr ant that provides a right that can be exercised for one week. The element val i di tyl nt er val Fl oati ng is based on the type
/al i di tyl nterval Fl oating, which is based on St at ef ul Condi ti on. The semantic of the condition expressed is that the interval of exercise of
he right to which a val i di tyl nt erval Fl oati ng is applied must lie wholly within some contiguous duration of time.

nteraction with the state

Nhen a right conditioned by val i di tyl nt er val Fl oati ngis exercised, the state designated by the st at eRef er ence is queried for its value. The
state returns EITHER a) val i dunti | holding a dat eTi e value v OR b) val i dFor holding a dur ati on value d. It the state returns d, and the
ight is currently to be exercised, then it is updated to return validUntil from hereon with a value equal to ¢ + d, where c is the current time.

The val i di tyl nterval Fl oati ng condition is satisfied if and only if the interval of exercise of the right lies wholly within the interval {from c,
o: v} orwithin the interval {from c, to: c+ d}

n the following example, Alice can exercise the right to pri nt the book only when time has not run out of the state clock.

Example use of val i di tyl nterval Fl oati ng

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef ="Book"/>
-<sx:validitylnterval Fl oati ng>
-<sx:stateReference |icensePartl|d="stateReferenceAlias">
- <uddi >
- <servi ceKey>

<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</sx:validitylnterval Fl oati ng>
</ grant >

5.1.8 The ValidityTimeMetered Condition

Represents an accumulative period of time. A user can start and stop exercising a right, and the metering clock runs only when the right is being
2xercised. The right can be exercised as long as the total remaining time has not been used.

Schema representation of Val i di tyTi neMet er ed

- <xsd: conpl exType nane="Val i dityTi meMet ered" >
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Stat eful Condition">
- <xsd: sequence m nCccurs="0">
-<xsd: el enent name="quantunt type="xsd:duration" m nCccurs="0">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of val i di tyTi neMet ered

-<xsd: el enent name="validityTi neMetered" type="sx:ValidityTi meMetered" substituti onG oup="r:condition">
</ xsd: el enent >

5.1.8.1 validityTimeMetered/quantum

A locally defined element of type i nt eger . It serves to indicate the period with which the metered time is measured. For example, a quantum of
»ne hour would meter every usage to the closest hour.

Jsing the validityTimeMetered element

The val i di t yTi meMet ered condition that is used to indicate for what non-contiguous length of time a right may be exercised. Unlike the

ral i dityl nterval Fl oati ng condition, the length in question only takes into account the periods of time of actual exercise. For example, a user
nay be granted the right to play music clips from a catalog for a cumulative period of one hour; the user may exercise this right by playing, say,
welve five-minute clips over a week, or over a month. The element val i di t yTi meMet er ed has type Val i di t yTi neMet er ed , which is an
axtension of StatefulCondition. The means to connect to the state is made with the child element st at eRef er ence.

nteraction with the state

Jpon exercise of a right conditioned by val i di t yTi neMet er ed, beginning with the moment of exercise, at regular intervals of quantum q units of
ime, the state designated by the st at eRef er ence is queried for its value. Suppose at interval i the state returns validFor containing a duration
/alue d; . Then, the state is updated to return d; - q hereon. This continues until the value of d; is lesser than g, or when the interval of exercise

©f the right is complete.

The val i di tyTi meMet er ed condition is said to be satisfied at interval i if and only if d; is greater than q.

n the following example, Alice can exercise the right to read the book only when time has not run out on the designated state clock.

Example use of val i di t yTi meMet er ed

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef ="Book"/>
-<sx:validityTi neMet ered>
-<sx:stateReference |icensePartl|d="stateReferenceAlias">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
<sx: quant un>P1D</ sx: quant un»
</ sx:validityTi neMet ered>
</ grant >

5.1.9 The ValidityTimePeriodic Condition

ndicates a validity time window that recurs periodically. For example, this condition can be used to express time windows such as "every
veekend" or "the second week of every month".

Schema representation of Val i di t yTi mePeri odi ¢

- <xsd: conpl exType name="Val i di tyTi mePeri odi c">
- <xsd: conpl exCont ent >
- <xsd: extensi on base="r: Condition">
- <xsd: sequence m nCccurs="0">
-<xsd: el enent name="start" type="xsd: dateTi ne">
</ xsd: el enent >

-<xsd: el enent name="period" type="xsd:duration">
</ xsd: el enent >

-<xsd: el enent name="phase" type="xsd:duration" m nQccurs="0">
</ xsd: el enent >

-<xsd: el enent name="duration" type="xsd:duration">
</ xsd: el enent >

-<xsd: el enent name="periodCount" type="xsd: nonNegativel nteger" m nCccurs="0">
</ xsd: el enent >

</ xsd: sequence>

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of val i di t yTi mePeri odi ¢

-<xsd: el enent name="validityTi nePeriodic" type="sx:ValidityTi mePeriodic" substitutionG oup="r:condition">
</ xsd: el enent >

5.1.9.1 ValidityTimePeriodic/start

A locally defined element of type dat eTi ne. Indicates the start of the time, typically date, from which the periods designated in this right become
neaningful.

5.1.9.2 ValidityTimePeriodic/period

A locally defined element of type dur at i on. This indicates the frequency with which the exercise time window recurs.

5.1.9.3 ValidityTimePeriodic/phase

A locally defined element of type dur ati on. This is used to indicate a period of latency before beginning each time window. When this value is
Yositive then it directly specifies the duration of latency. When this value is negative, then the duration of latency is equal to the length of period
ninus the absolute value specified herein.

5.1.9.4 ValidityTimePeriodic/duration

A locally defined element of type dur at i on. This indicates the actual length of the time window.

5.1.9.5 ValidityTimePeriodic/periodCount

A locally defined element of type i nt eger . Indicates a bound on the number of time windows. This element is optional.

Jsing the validityTimePeriodic element

Sometimes gr ant s may predicate rights to be exercisable on a periodic basis, such as "every weekend after Jan 1 2001 for a total of ten times".
That is following some starting date, a time window of exercise periodically recurs. Such conditions are expressed using the

ral i di tyTi mePeri odi c element. The element val i di t yTi mePeri odi ¢ has type Val i di t yTi mePeri odi ¢, which is an extension of Condition.
The child element start marks the starting date for this condition to become relevant. The child element period indicates how often this time

vindow should recur. The length of the duration is indicated by the element duration. An optional element phase is used to mark latency from the
yeginning of the period.

=ormally, let s be the start time, p the period, h the phase, d the duration and c the count. Then the interval of exercise of the right must fall in one
Of the intervals described by the expression {froms + i*p + h, to: s + i*p + h + d} where the value of i rangesfromOtoc - 1lifhis
Jositive and ranges from 1 to c if h is negative. If ¢ is unspecified then i is unbounded.

n the following example, starting January 1st 2001, Alice may pri nt the book only on the first two days of the second week of every month.
“urthermore, this right lapses after twelve months.

Example of val i di t yTi mePeri odi c

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef ="Book"/>
-<sx:validityTi nePeri odi c>
<sx:start>2001-01-01T00: 00: 00</ sx: start>
<sx: peri od>P1M/ sx: peri od>
<sx: phase>P7D</ sx: phase>
<sx:duration>P2D</ sx: durati on>
<sx: peri odCount >12</ sx: peri odCount >
</sx:validityTi mePeri odi c>
</ grant >

T'he negative phase can be used to capture certain interesting periods. For example, on Memorial day, people who are veterans may watch the
novie "Pearl Harbor" for free. Memorial day is the last Monday of May. So we combine three val i di t yTi mePer i odi ¢ conditions. The first one
saptures the last week of every month, the second one captures the month of May and the final one captures all Mondays beginning Jan 1 2001.

Example of val i di t yTi mePer i odi c

- <grant>
-<keyHol der licensePart|dRef="VeteransG oup">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart| dRef="Pear| Harbor"/>
-<al | Condi tions>
-<sx:validityTi nePeri odi c>

<sx:start>2001-01-01T00: 00: 00</ sx: start>
<sx: peri od>P1M/ sx: peri od>
<sx: phase>- P7D</ sx: phase>
<sx: duration>P7D</ sx: durati on>
</ sx:validityTi mePeriodi c>
-<sx:validityTi mePeriodi c>
<sx:start>2001- 05- 01T0O0: 00: 00</ sx: start>
<sx: peri od>P1Y</ sx: peri od>
<sx: duration>P1M/ sx: duration>
</ sx:validityTi mePeriodi c>
-<sx:validityTi mePeriodi c>
<sx:start>2001-01- 01T0O: 00: 00</ sx: start>
<sx: peri od>P7D</ sx: peri od>
<sx: duration>P1D</ sx: durati on>
</sx:validityTi mePeriodi c>
</ al | Condi tions>
</ grant >

Astute readers will note that Memorial Day can actually be characterized without the usage of phase.

Example of val i di t yTi mePeri odi c

-<grant>
- <keyHol der |icensePart | dRef="VeteransG oup">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart| dRef="Pear| Harbor"/>
-<al | Condi tions>
-<sx:validityTi mePeri odi c>
<sx:start>2001- 05- 25T00: 00: 00</ sx: start>
<sx: peri od>P1Y</ sx: peri od>
<sx: dur ati on>P7D</ sx: dur ati on>
</ sx:validityTi mePeriodi c>
-<sx:validityTi mePeri odi c>
<sx:start>2001-01- 01T0O: 00: 00</ sx: start>
<sx: peri od>P7D</ sx: peri od>
<sx: dur ati on>P1D</ sx: dur ati on>
</ sx:validityTi mePeriodi c>
</ al | Condi ti ons>
</ grant >

5.1.10 The Fee Condition

ndicates that a fee must be paid before a right is exercised.

Schema representation of Fee

- <xsd: conpl exType nane="Fee">
- <xsd: conpl exCont ent >
- <xsd: extensi on base="r: Condition">
- <xsd: sequence m nCccurs="0">
<xsd: el enent ref="sx: paynent Abstract"/>
-<xsd: el enent nanme="m n" mnQccurs="0">
- <xsd: conpl exType>
- <xsd: sequence>
<xsd: el enent ref="sx: paynent Abstract"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
-<xsd: el enent name="nax" m nCccurs="0">
- <xsd: conpl exType>
- <xsd: sequence>
<xsd: el enent ref="sx: paynent Abstract"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
-<xsd: el enent name="to" type="sx: Account Payabl e" m nCccurs="0">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of f ee

-<xsd: el enent name="fee" type="sx:Fee" substitutionG oup="r:condition">
</ xsd: el ement >

5.1.10.3 Fee/paymentAbstract

This element of type paynent Abst r act is abstract. It is meant to be substi t ut abl e. For more details and examples of extensions see
yaynment Abst r act .

5.1.10.2 Fee/min

This locally defined optional element contains a payment Abst r act element. It specifies the minimum amount due the f ee recipient. If the total
amount paid is less than the value of this element, a new payment in the amount of the difference is due.

5.1.10.3 Fee/max

This locally defined optional element contains a paynent Abst r act element. It specifies the maximum amount due the f ee recipient. If the total
amount paid is greater than the value of this element, a new credit in the amount of the difference is due. If the total amount paid is equal to the
value of this element all other payments resulting from this f ee are void until the value of max increases.

6.1.10.4 Feelto

This locally defined element is of type of Account Payabl e. It indicates the party to whom, and the means by which, payment is to be made. To
allow for the rare cases where this is discovered from context, this element is left optional.

6.1.10.5 AccountPayable

Account Payabl e is used to identify a party to whom one can transfer a sum of money, along with an identification of the means by which such a
transfer is to take place. While there are undoubtedly many ways this can be done, two ways are explicitly defined. The type Account Payabl e is
defined as a choice between three options. The first, a payment Ser vi ce, identifies the party to whom the payment is made. The second option,
aba, identifies a bank in the US banking system. As a provision to support other forms of banking mechanisms, an option is made for
specifying other banking means as well. This is realized by the any element.

Schema representation of Account Payabl e

- <xsd: conpl exType nane="Account Payabl e">
- <xsd: choi ce>
-<xsd: el enent name="paynent Servi ce" type="r: Servi ceReference">
</ xsd: el enent >
-<xsd: el enent nanme="aba">
- <xsd: conpl exType>
- <xsd: sequence>
-<xsd: el enent name="institution">
- <xsd: si npl eType>
-<xsd:restriction base="xsd:integer">
<xsd:total Digits value="9"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el enent >
-<xsd: el enent name="account" type="xsd:integer">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
- <xsd: any namespace="##ot her" processContents="|ax">
</ xsd: any>
</ xsd: choi ce>
</ xsd: conpl exType>

6.1.10.5.1 AccountPayable/paymentService

The locally defined element Ser vi ceRef er ence. This identifies the party to whom the payment is to be made, and the interface to the service
indicates the necessary payment mechanism.

6.1.10.5.2 AccountPayable/aba

The locally defined element identifies an account within a US banking institution by means of conventions established by the American Banking
Association. It defines two child elements, institution and account. The banking institution is identified by its nine-digit banking routing number
using the institution. The account within that institution is identified with account.

Using the fee condition

A grant can predicate that a f ee be paid before a right can be exercised. Typically f ees involve a payment, and a designation of the party the
payment is made to. Options about what form the payment should take (such as periodic or one-time or usage-based or metered) are reflected
by the paynent Abst ract element.

The f ee element is of type Fee, which is an extension of Condition. A child element t o of type Account Payabl e is used to characterize both the
payment and the payee.

There are two other optional elements. The optional ni n price specification indicates the minimum price to be paid if the right is exercised at all.
The optional max price specification refers to the maximum price to be paid if the right is exercised at all. When both a maximum and minimum
price specifications are given, the maximum price specification dominates.

Suppose that the f ees in payment, ni n and nax independently amount to p, mi n and max respectively due for the exercise of the associated right
as defined by the respective payment extension. Then, x isnin ifp <= min < max;xispifnin < p< nax;xisnmax if M n < max < p. Then the
f ee condition is satisfied if and only if the amount x is paid to the entity identified by t o

Not all forms of payment extensions are directly comparable. For the f ee condition to be sensibly evaluated, it is necessary that the payment
extensions of the paynment Abst ract elements in payment, min and max are comparable. In the standard extension, the payment extensions
either contain state references or they do not. Stateful payment extensions are not comparable with stateless ones. So it is required that the
payment extensions in payment, min and max are either all stateful or all stateless. The corresponding f ee conditions are respectively termed as
stateful and stateless.

6.1.11 The Territory Condition

Indicates a geographic or virtual space within which the associated right may be exercised.

Schema representation of Territory

- <xsd: conpl exType nane="Territory">
- <xsd: conpl exCont ent >
- <xsd: extensi on base="r: Condition">

-<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
-<xsd: el enent nane="|ocation">
- <xsd: conpl exType>
- <xsd: sequence>
-<xsd: el enent name="regi on" type="sx: Regi onCode" mi nCccurs="0">
</ xsd: el enent >
-<xsd: el enent name="country" type="sx: CountryCode" m nCccurs="0">
</ xsd: el enent >
-<xsd: el enent name="state" type="xsd:string" m nCccurs="0">
</ xsd: el enent >
-<xsd: el enent name="city" type="xsd:string" m nCccurs="0">
</ xsd: el enent >
-<xsd: el enent name="postal Code" type="xsd:string" m nCccurs="0">
</ xsd: el enent >
-<xsd: el enent name="street" type="xsd:string" mnCccurs="0">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
-<xsd: el enent nane="domai n">
- <xsd: conpl exType>
- <xsd: sequence>
-<xsd: el ement nanme="url" type="xsd:anyURl ">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: choi ce>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of territory

-<xsd: el enent name="territory" type="sx:Territory" substitutionG oup="r:condition">
</ xsd: el enent >

5.1.11.1 Territory/location

The locally defined element location defines inline the optional elements r egi on, country, state, ci ty, post al Code and street that designate a
shysical location.

5.1.11.1.1 Territory/location/region

The locally defined element region, as defined by its type Regi onCode, is a three-letter ISO 3166 region code.
5.1.11.1.2 Territory/location/country

The locally defined element country, as defined by its type Count r yCode, is a two-letter ISO 3166 country code.
5.1.11.1.3 Territory/location/state

The locally defined element state is a two-letter code for US states.

5.1.11.1.4 Territory/location/city

The locally defined element is of type st ri ng and designates a city.

5.1.11.1.5 Territory/location/postalCode

The locally defined element post al Code is of type st ri ng and designates a postal code (e.g. a zip code).
5.1.11.1.6 Territory/location/street

The locally defined element street is of type st ri ng and designates a street.

5.1.11.2 Territory/domain

The locally defined element defines inline an element ur| to designate a digital location.

5.1.11.2.1 Territory/domain/url

The locally defined element ur |, has type anyUri and can be any uri.

Jsing the territory condition

Srants may sometimes predicate rights to be exercisable only in certain locations. These locations may correspond to physical or geographical
‘egions, or they may correspond to virtual or digital locations. The element territory is used to specify such conditions. territory has type
lerritory, which is an extension of Condi ti on. The child element location is used to indicate physical locations, and the child element domain
ndicates the digital locations. Since the right may be exercisable in more than one location, physical or digital, the content model for territory
allows for an unbounded number of children.

The territory condition is satisfied if the exercise can be shown to be occurring in at least one of the locations or domains.

n the following example, Alice may pri nt the book only if she is in the USA or from a device in the www.xrml.org domain.

Example of the territory condition

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef ="Book"/>
-<sx:territory>
-<sx: | ocation>
<sx:country>US</sx: count ry>
</ sx: | ocation>
- <sx: domai n>
<sx:url> ww. xrm.org </sx:url>
</ sx: domai n>
</sx:territory>
</ grant>

5.1.12 State Interaction Elements

The following elements are used by various elements of type St at ef ul Condi ti on (or derivations thereof) to describe their interaction with the
state. Specifically, the state exchanges data using these elements.

5.1.12.1 approval
This element of type bool ean is used by seekAppr oval .

5.1.12.2 count

This element of type i nt eger is used by Exerci seLinit,trackQuery and paynent Per Use.
5.1.12.3 paid

This element of type bool ean is used by paynent Fl at .

5.1.12.4 validFor

This element of type dur ati on is used by val i di tyl nterval Fl oati ng and val i di tyTi meMet er ed.

5.1.12.5 validUntil

This element of type dat eTi ne is used by val i di tyl nt erval Fl oati ng and paynent Per | nterval .

5.2 Payment and its Extensions
5.2.1 paymentAbstract
T'he head of a substitution group chain for the PaymentAbstract type.

T'he notion of payment is left abstract in XRML2.0. The element paynent Abst ract has type Payment Abst r act . The type Paynent Abst ract does
10t define any specific sub-elements.

n its place more concrete forms of payment such as paynent Fl at , best Pri ceUnder, cal | For Pri ce, mar kup etc. are to be used. The standard
axtension defines seven different kinds of payments. Each of these defines its own notion of when a payment has been made that work toward the
_ee condition being satisfied. Since payment extensions themselves are not conditions, we introduce a notion of fulfilment. For a f ee condition to
Je satisfied, the payment extension must be fulfilled. Each payment extension describes the semantic of its fulfillment.

Payment Extensions

paymentAbstract

bestPriceUnder ?

callForPrice

markup ?
paymentFlat
paymentMetered ?
paymentPerinterval ?
paymentPerUse ?

Schema representation of Paynent Abst r act

- <xsd: conpl exType nane="Paynment Abstract" abstract="true">
</ xsd: conpl exType>

Schema representation of paynment Abst r act

- <xsd: ei ement name="paynent Abstract” type="sx: Payment Abstract”>
</ xsd: el enent >

5.2.2 Cash

A fixed amount of money in a designated currency.

Schema representation of Cash

- <xsd: conpl exType nane="Cash">
- <xsd: si npl eCont ent >
-<xsd: ext ensi on base="xsd: deci mal ">
<xsd:attribute name="currency" type="sx: CurrencyCode" default="USD"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

5.2.3 PaymentFlat

Specifies a payment due upon exercising a right when the value in paymentRecord is False. When this fee is paid, the payment record should be
Jpdated to True.

Schema representation of Paynent Fl at

- <xsd: conpl exType nanme="Paynent Fl at ">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Paynment Abstract">
- <xsd: sequence>
-<xsd: el enent name="rate" type="sx: Cash">
</ xsd: el ement >
-<xsd: el enent nanme="paynent Record">
- <xsd: conpl exType>
- <xsd: sequence>
<xsd: el ement ref="sx:stateReference"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of paynent Fl at

-<xsd: el enent name="paynment Fl at" type="sx: Paynment Fl at" substituti onG oup="sx: paynent Abstract">
</ xsd: el enent >

5.2.3.1 PaymentFlat/rate

This locally defined element of type Cash indicates the amount to be paid to exercise the right.

5.2.3.2 PaymentFlat/paymentRecord

This locally defined element contains a st at eRef er ence that holds a value. This value is true if payment has been made, and false otherwise.
Jsing the paymentFlat element

Some rights may be exercised upon the payment of a one-time f ee. For example, purchasing a song. The paynent Fl at element of type
2aynent Fl at is used to describe such payments. A local element rate is used to indicate the amount to be paid and another element

»aynent Recor d is used to designate a state which holds the information whether the payment has been made.

nteraction with the state

Nhen a right conditioned upon a paynent Fl at f ee is exercised, the state designated by Paynment Fl at / paynent Recor d/st at eRef er ence is

jueried for its value. The state returns pai d holding a bool ean value b. When a payment of amount as designated by r at e is made, the state is
Jpdated to return pai d set to true.

The paynent Fl at payment is fulfilled if b is true.

n the following example, Alice may listen to "La Bamba" provided she makes a one-time payment of $5.

Example of payment Fl at

-<grant>
-<keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart| dRef="LaBanba"/>
-<sx:fee>
- <sx: paynent Fl at >
<sx:rate> 5 </sx:rate>
- <sx: paynent Recor d>
-<sx:stateReference |licensePart|d="stateReferenceAlias">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>

</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</ sx: paynent Recor d>
</ sx: paynent Fl at >
-<sx:to>
- <sx: aba>
<sx:institution>123456789</sx:institution>
<sx:account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx: fee>
</ grant>

5.2.4 PaymentMetered

Specifies a payment due for each time interval during which the right is actually exercised.

Schema representation of Paynent Met er ed

- <xsd: conpl exType nane="Paynent Met er ed" >
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Paynment Abstract">
- <xsd: sequence>
-<xsd: el enent name="rate" type="sx: Cash">
</ xsd: el enent >
-<xsd: el enent name="per" type="xsd: duration">
</ xsd: el enent >
-<xsd: el enent name="by" type="xsd: duration">
</ xsd: el enent >
-<xsd: el enent nanme="phase" type="xsd: duration">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of paynent Met er ed

-<xsd: el enent name="paynent Met ered" type="sx: Paynent Met ered" substituti onG oup="sx: paynent Abstract">
</ xsd: el enent >

5.2.4.1 PaymentMetered/rate

This locally defined element of type Cash, together with the element per , indicates the charge per period.

5.2.4.2 PaymentMetered/per

This locally defined element of type dur at i on indicates the period available for the payment of the r at e.

5.2.4.3 PaymentMetered/by

This locally defined element of type dur at i on indicates the quantum by which time is measured for the computation of the amount.
5.2.4.4 PaymentMetered/phase

This locally defined element of type dur at i on is used for rounding purposes. It indicates what portion of time may elapse before someone is billed
or the whole duration defined with by.

Jsing the paymentMetered element

Some rights may be exercised upon the payment of a f ee that is prorated according to the duration of usage. For example, one may have the righ
o play a game and pay a f ee according dictated by the length of time one plays the game. The paynent Met er ed element of type

Paynent Met er ed is used to describe such payments. A local element r at e, with another element per , is used to designate the basic cost. Another
2lement by is used to describe the granularity with which time is measured. Finally, the element phase is used for rounding the units of time that
are smaller than the duration described by the by element; a value of zero would have the effect of rounding up, and a value of the duration
jescribed in the by element would have the effect of rounding down.

=ormally, after normalizing all of the duration values to seconds, suppose the rat e isr, per in seconds is p, by in seconds is b, and phase in
seconds is h. Then, if the interval of exercise of the right is t seconds, then the payment due is given by the expression r*[b/ p] *[fl oor (t/b) +
ound] where roundt%b is greater than h and is zero otherwise.

n the following example, Alice may play a game but is charged a daily rate of 24$/day. This rate is computed on an hourly basis. Furthermore, any
Isage of over thirty minutes is docked as an hour. So if Alice spends two hours and twenty-nine minutes playing, then she would end up paying $z
n all ($1 after 30 minutes and another dollar after 90 minutes). However, if she spends two hours and thirty-one minutes playing she would end up
yaying $3 in all (yet another dollar after 150 minutes).

Example of Paynent Met er ed

-<grant>

- <keyHol der |icensePart!|dRef="Alice">

</ keyHol der >

<cx: play/>

<cx:digital Wrk licensePart|dRef="AlicesGane"/>
-<sx:fee>

- <sx: paynent Met er ed>

<sx:rate> 24 </sx:rate>

<sx: per> P1D </sx: per>
<sx: by> PT1H </ sx: by>
<sx: phase> PT30M </ sx: phase>
</ sx: paynent Met er ed>
-<sx:to>
- <sx:aba>
<sx:institution>123456789</sx:institution>
<sx:account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx: fee>
</ grant>

5.2.5 PaymentPerlInterval

Specifies a payment due for each time interval during which the ability to exercise the right is desired.

Schema representation of Paynent Per | nt er val

- <xsd: conpl exType nane="Paynent Per|nterval ">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Paynment Abstract">
- <xsd: sequence>
-<xsd: el enment nane="rate" type="sx:Cash">
</ xsd: el enent >
-<xsd: el enent name="per" type="xsd: duration">
</ xsd: el enent >
-<xsd: el enent name="pai dThrough" >
- <xsd: conpl exType>
- <xsd: sequence>
<xsd: el ement ref="sx:stateReference"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of paynent Per | nt er val

-<xsd: el enent name="paynent Perlnterval " type="sx: Payment Perlnterval" substitutionG oup="sx: paynment Abstract">
</ xsd: el enent >

5.2.5.1 PaymentPerInterval/rate

This locally defined element of type Cash, indicates the amount to paid for the allocation of an interval of time defined by per .

5.2.5.2 PaymentPerlInterval/per

This locally defined element of type dur at i on, indicates the quantum of time allocated with the payment of the amountin rat e.

5.2.5.3 PaymentPerInterval/paidThrough

This locally defined element contains a st at eRef er ence whose value is the time through which the amount is paid.

Jsing the paymentPerInterval element

Some rights may be exercised for a period of time that they are paid for. For example, one may buy up some time to play a game and may keep
slaying the game until it is paid for. The paynent Per | nt er val element of type Payment Per | nt er val is used to describe such payments. A local

slement r at e, with another element per , is used to indicate the cost for a certain duration of time. Another element pai dThr ough is used to record
he time until when the right may be exercisable.

nteraction with the state

Nhen a right conditioned upon a paynment Per | nt er val f ee is exercised, the state designated by paynent Per | nt er val / pai dThr ough/

;t at eRef er ence is queried for its value. The state returns val i dunti | that contains a dat eTi ne value t. This marks the time until when the right
nay be exercised. For every payment currently made in the amountin rate, if t is in the future then it is increased by the duration designated in
he per element. Otherwise, the value is set to a time that is per duration from the global official time (colloguially, the present time). The state is
hen updated to return val i dunti | containing the new value of t .

The paynent Per | nt er val payment is fulfilled if the interval of exercise of the associated right is bounded by t .

n the following example, Alice may pl ay her game and is charged a rate of $5/day.

Example of paynment Per | nt er val

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx: play/>
<cx:digitalWrk |icensePart!|dRef="AlicesGane"/>
-<sx:fee>
- <sx: paynent Per | nterval >
<sx:rate> 5 </sx:rate>
<sx: per> P1D </sx: per>
- <sx: pai dThr ough>

-<sx:stateReference |icensePartl|d="stateReferenceAlias">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</ sx: pai dThr ough>
</ sx: paynent Per | nterval >
-<sx:to>
- <sx:aba>
<sx:institution>123456789</sx:institution>
<sx:account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx: fee>
</ grant>

5.2.6 PaymentPerUse

Specifies a payment due each time a right is exercised.

Schema representation of Paynent Per Use

- <xsd: conpl exType nanme="Paynent Per Use" >
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Paynment Abstract ">
- <xsd: sequence>
-<xsd: el enment nane="rate" type="sx:Cash">
</ xsd: el enent >
-<xsd: el enent nanme="al | owPr ePay" m nCccurs="0">
- <xsd: conpl exType>
- <xsd: sequence>
-<xsd: el enent name="ini ti al Nunmber Of Uses" type="xsd:integer" m nCccurs="0">
</ xsd: el enent >
-<xsd: el enent nanme="prePai dUsesRemai ni ng" >
- <xsd: conpl exType>
- <xsd: sequence>
<xsd: el enent ref="sx:stateReference"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of paynent Per Use

- <xsd: el enent name="payment Per Use" type="sx: Paynent Per Use" substitutionG oup="sx: payment Abstract">
</ xsd: el enent >

5.2.6.1 paymentPerUse/rate

This locally defined element of type Cash indicates the amount to be paid for a certain number of uses, if specified by the element
ni tial Nunber Of Uses, otherwise it defines the amount to be paid for each use.

5.2.6.2 paymentPerUse/allowPrePay

This locally defined optional element is used to allow for prepayments.

5.2.6.2.1 paymentPerUse/allowPrePay/initialNumberOfUses

This optional element of type i nt eger indicates the number of uses each rate payment buys. If absent, the number of uses is one.
5.2.6.2.2 paymentPerUse/allowPrePay/prepaidUsesRemaining

This locally defined element contains a st at eRef er ence that indicates the remaining number of uses.

Jsing the paymentPerUse

Some rights may be exercised upon payment of a f ee for each use. For example, one may have the right to listen to a piece of music provided a
yayment is made for each listening. The element paynment Per Use of type Payment Per Use is used to describe such payments.

nteraction with the state

Nhen a right conditioned upon a paynent Per Use f ee is exercised, the state designated by

yaynent Per Use/ al | owPr ePay/ pr epai dUsesRemai ni ng is queried for its value. The state returns count containing ani nt eger value c. Upon
axercise of the right, the value of the state is updated to return count containing ¢ - 1 hereon. When payment in the amount defined in the rat e
2lement is made, then state is updated to increment count by the ini tial Nunber Of Uses value.

The paynent Per Use payment is fulfilled if the value of c is greater than zero and the state is updated as described above.

n the following example Alice may pri nt the book five times provided she pays $5.

Example of payment Per Use

-<grant>
-<keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef ="Book"/>
-<sx:fee>
- <sx: paynent Per Use>
<sx:rate> 5 </sx:rate>
- <sx: al | owPr ePay>
<sx:initial Nunber Of Uses> 5 </sx:initial Nunber Of Uses>
- <sx: pr ePai dUsesRemai ni ng>
-<sx:stateReference |icensePartl|d="stateReferenceAlias">
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</ sx: pr ePai dUsesRemai ni ng>
</ sx: al | owPr ePay>
</ sx: paynent Per Use>
-<sx:to>
- <sx: aba>
<sx:institution>123456789</sx:institution>
<sx:account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx:fee>
</ grant>

6.2.7 BestPriceUnder

Specifies the maximum fee that ultimately must be paid without specifying the ultimate fee exactly. The ultimate fee is determined through a later,
unspecified settlement mechanism. While Max overrides Min if Max is less than Min, Min overrides BestPriceUnder if BestPriceUnder is less than
Min.

Schema representation of Best Pri ceUnder

- <xsd: conpl exType nane="Best Pri ceUnder ">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Paynment Abstract">
- <xsd: sequence>
<xsd: el enent ref="sx: paynment Abstract"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of best Pri ceUnder

-<xsd: el enent name="best PriceUnder" type="sx:BestPriceUnder" substitutionG oup="sx:paynentAbstract">
</ xsd: el enent >

Using the bestPriceUnder element

best Pri ceUnder is a kind of payment that can be dynamic and is determined when the account is settled. It is used to accommodate special
deals, rebates, and pricing that depends on information that is not available to the trusted repository at the time the usage right is exercised, but
without communicating with a dealer before the purchase is authorized. A best Pri ceUnder specification limits the risk to the user by naming a
maximum amount that the exercising of the right will cost. This is the amount that is tentatively charged to the account. However, when the
transaction is ultimately reconciled, any excess amount charged will be returned to the user/copy-owner in a separate transaction.

The best Pri ceUnder element has type Best Pri ceUnder , which is an extension of Payment Abst ract . It has a child element f ee which is used
to indicate the charge. The best Pri ceUnder element is defined to be in payment's substitution group, and can be used wherever payment is
expected.

In the following example, Alice may pri nt the book and will be charged at most $5 to do it.

Example of best Pri ceUnder

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef="Book"/>
-<sx:fee>
- <sx: best Pri ceUnder >
- <sx: paynent Fl at >
<sx:rate> 5 </sx:rate>
- <sx: paynent Recor d>
- <sx: st at eRef erence>
- <uddi >
- <servi ceKey>
<uui d>D04951E4- 332C- 4693- B7DB- D3D1D1C20844</ uui d>
</ servi ceKey>
</ uddi >
</ sx: st at eRef erence>
</ sx: paynent Recor d>
</ sx: paynent Fl at >
</ sx: best Pri ceUnder >

-<sx:to>
- <sx:aba>
<sx:institution>123456789</sx:institution>
<sx:account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx: fee>
</ grant>

5.2.8 CallForPrice

dentifies an entity with whom a price must be negotiated before exercising the right.

Schema representation of Cal | ForPri ce

- <xsd: conpl exType nane="Cal | ForPrice">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Paynment Abstract">
- <xsd: sequence m nCccurs="0">
-<xsd: el enent name="| ocation" type="r: ServiceReference" maxCccurs="unbounded">
</ xsd: el ement >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of cal | ForPrice

-<xsd: el enent name="cal | ForPrice" type="sx:Call ForPrice" substitutionG oup="sx: payment Abstract">
</ xsd: el ement >

5.2.8.1 CallForPrice/location

This optional element of type Ser vi ceRef er ence indicates the location where the negotiation may be supported. This may simply be a matter of
ocating a dealer.

Jsing the callForPrice element
sallForPrice is similar to best Pri ceUnder in that it is intended to accommodate cases where prices are dynamic. However, unlike
yest Pri ceUnder , communication with a dealer to determine the price is required before the purchase is authorized; the transaction cannot be

sompleted if the trusted repository is unable to communicate with the dealer.

;al | For Pri ceis of type Cal | For Pri ce, which is an extension of Paynent Abst ract . It can contain possibly several location child elements. The
ocation elements are used to communicate with the dealers.

Example of cal | For Price

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:print/>
<cx:digital Wrk |icensePart| dRef="Book"/>
-<sx:fee>
-<sx:cal | ForPrice>
-<sx:location |licensePartld="Locati onOne">
- <uddi >
- <servi ceKey>
<uui d>EE4A90A5- 8AC9- 4f 31- 85F7- 6619AA573449</ uui d>
</ servi ceKey>
</ uddi >
</ sx: | ocation>
-<sx:location |icensePartl|d="LocationTwo">
- <uddi >
- <servi ceKey>
<uui d>EE4A90A5- 8ACO- 4f 31- 85F7- 6619AA5734BA</ uui d>
</ servi ceKey>
</ uddi >
</ sx: | ocation>
</ sx:cal | ForPrice>
</ sx:fee>
</ grant >

5.2.9 Markup

Specifies a fee due each time some other fees are due.

Schema representation of Mar kup

- <xsd: conpl exType nanme="Mar kup" >
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="sx: Paynment Abstract">
- <xsd: sequence>
-<xsd: el enent name="rate" type="xsd:float">
</ xsd: el ement >
- <xsd: choi ce maxQccur s="unbounded" >
<xsd: el enent ref="sx:fee"/>
-<xsd: el enent nanme="f eeFor Resource">
- <xsd: conpl exType>
- <xsd: sequence>

<xsd: el ement ref="r:resource"/>
</ xsd: sequence>
</ xsd: conpl exType>

</ xsd: el enent >
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: ext ensi on>

</ xsd: conpl exCont ent >

</ xsd: conpl exType>

Schema representation of mar kup

-<xsd: el enent name="nar kup" type="sx: Markup" substituti onG oup="sx: paynent Abstract">
</ xsd: el enent >

5.2.9.1 rate

This locally defined element is of type float. It indicates the fractional rate at which nar kup is calculated.

5.2.9.2 feeForResource

mplies a context in which multiple resources are being used simultaneously. The total price for using the specified resource is calculated, and the
amount is paid as defined by any license agreements for that resource. The price is then marked up by the rate specified in this mar kup element,
and the markup is paid as specified by the containing f ee element. If the specified resource is not used in conjunction with exercising this gr ant ,
his markup is not fulfilled and the containing f ee is not satisfied.

Jsing the markup element

var kup f ees are f ees that are computed as a percentage of other f ees. For example, a distributor may want to add a flat ten percent overhead fol
selling copies of a digital work, or a government may want to tax sales of a digital works.

T'he following example shows a | i cense granted to Alice (by some distributor) that allows Alice to issue a gr ant conditioned upon the payment
>»f a marked-up f ee. This allows Alice the flexibility of setting her own f ee when issuing the gr ant . The distributor pockets the nar kup of 10%.

Example of mar kup

-<grant>
-<forAl'l varNane="preMar kupFee">
</forAll>

- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<i ssue/ >
-<grant>
- <keyHol der |icensePart | dRef ="bookC ubMenber ">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart| dRef="Book"/>
-<sx:fee>
- <sx: mar kup>
<sx:rate> l</sx:rate>
<sx: fee varRef ="preMar kupFee"/>
</ sx: mar kup>
-<sx:to>
- <sx: aba>
<sx:institution>123456789</sx:institution>
<sx:account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx:fee>
</ grant>
</ grant>

T'he following example shows two | i censes that may be exercised by a streaming media consumer. The first one is a gr ant to actually play the
sontent for some f ee, and the second is a gr ant to download the content from some repository for a markup of the f ee indicated in the first.

Example of nar kup with f eeFor Resource

-<grant>
-<keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx: play/>
<cx:digital Wrk |icensePart!| dRef="AC ockwor kOrange"/ >
-<sx:fee>
- <sx: paynent Per Use>
<sx:rate>5</sx:rate>
</ sx: paynent Per Use>
-<sx:to>
- <sx:aba>
<sx:institution>123456789</sx:institution>
<sx:account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx: fee>
</ grant>

-<grant>
- <keyHol der |icensePart!|dRef="Alice">
</ keyHol der >
<cx:read/ >
<cx:digital Wrk |icensePart!| dRef="AC ockworkOrange"/ >

-<sx: fee>
- <sx: mar kup>
<sx:rate>0.1</sx: rate>
- <sx: f eeFor Resour ce>

</ sx: f eeFor Resour ce>
</ sx: mar kup>
-<sx:to>
- <sx: aba>
<sx:institution>123456789</sx:institution>
<sx: account >987654321</ sx: account >
</ sx: aba>
</ sx:to>
</ sx: fee>
</ grant>

<cx:digital Wrk |icensePart!| dRef="AC ockwor kOrange"/ >

5.3 Name Extensions

Together with the possessPr operty, the resource Nane and its extensions allow | i censes to straightforwardly express authorized association of
1ames with principals. This is useful for modeling the X.509 certificate like binding of names to principals. The standard extension defines four

axtensions of the type Nane.

5.3.1 Name

Name Extensions

A resource indicating a name from some name space.

name

- commonHlame
~dnsHame

emaildame

= x5095ubjectame

Schema representation of Nane

- <xsd: conpl exType nane="Nane" abstract="fal se">
- <xsd: conpl exCont ent >
<xsd: extensi on base="r: Resource"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of nane

</ xsd: el enent >

-<xsd: el enent name="name" type="sx: Nane" substitutionG oup="r:resource">

Jsing the name element and its substitutions

T'he nane element is of type Nane. This is an extension of the abstract type Resour ce. Along with the possessPr oper ty right, the nane element
Jeing aresour ce can be used in | i censes to associate a name with one or more pri nci pal s. Such |i censes allow other | i censes to be issued

0, colloquially speaking, pri nci pal s identified by their name.

T'he nane element is conceptually abstract and should not appear in an XrML document except in the form of a variable reference.

The following example shows a | i cense which allows anyone who has the name Alice, as authorized by the gr ant in the prerequisite right, can
vatch "A Clockwork Orange”. This example illustrates how an extension of name is used; note the use of cormonNane to identify the authorized

yincipal.

Example of nane extension

-<grant>
-<forAl'l varNane="personX">
</forAl>

<principal varRef="personX"/>
<cx: play/>
<cx:digital Wrk |icensePart!| dRef="AC ockwor kOrange"/ >
- <prerequisiteRi ght>
<principal varRef="personX"/>
<possessProperty/>
<sx: commonNane>Al i ce</ sx: conmonName>
-<trustedl ssuer>
+<keyHol der |icensePart!|d="trustedl ssuer">
</trustedl ssuer>
</ prerequisiteRi ght>
</ grant >

5.3.2 EmailName

An Internet email address (per rfc822/rfc2822) associated with the

entity.

Schema representation of Enai | Name

- <xsd: conpl exType name="Emai | Name" mi xed="true">
-<xsd: conpl exCont ent mi xed="true">
<xsd: ext ensi on base="sx: Nane"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of enai | Name

-<xsd: el enent name="enmai | Name" type="sx: Emai | Nane" substitutionG oup="sx: nane">
</ xsd: el ement >

Jsing the emailName element

The emai | Nane element is of type Emai | Nane. This is an extension of the type Nane. Typically it contains a string that designates an internet email
address (per rfc822/2822). Like with nane, | i censes can associate the element emai | Name with pri nci pal s by using the right possessProperty.

5.3.3 DnsName

A name in the DNS name space, with trailing period omitted. For example, "xyz.com"

Schema representation of DnsNanme

- <xsd: conpl exType nanme="DnsNane" m xed="true">
- <xsd: conpl exCont ent mi xed="true">
<xsd: ext ensi on base="sx: Nane"/ >
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of dnsNanme

-<xsd: el enent name="dnsNane" type="sx: DnsNane" substitutionG oup="sx: nane">
</ xsd: el enment >

Jsing the dnsName element

T'he dnsNane element is of type DnsNane. This is an extension of the type Nane. Typically it contains a string that designates a domain name. Like
vith name, |i censes can associate the element dnsName with pri nci pal s by using the right possessProperty.

5.3.4 CommonName

A name by which an entity is colloquially known. Intended to be used as the CN name part from X400.

Schema representation of CommonNane

- <xsd: conpl exType nane="CommonNanme" m xed="true">
- <xsd: conpl exCont ent mi xed="true">
<xsd: ext ensi on base="sx: Nane"/ >
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of commonNane

-<xsd: el enent name="commonNanme" type="sx: CommonName" substitutionG oup="sx: name">
</ xsd: el ement >

Jsing the commonName element

T'he commonNane element is of type ConmonNane . This is an extension of the type Nane. Typically it contains a string that designates a colloquial
1ame. Like with nane, | i censes can associate the element commonNane with pri nci pal s by using the right possessPr operty.

5.3.5 X509SubjectName

T'he subject name of some X509 certificate associated with the entity. Intended to address legacy interoperability issues involving X509
sertificates.

Schema representation of X509Subj ect Nane

- <xsd: conpl exType nane="X509Subj ect Nane" m xed="true">
- <xsd: conpl exCont ent ni xed="true">
<xsd: ext ensi on base="sx: Nane"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of x509Subj ect Nane

-<xsd: el enent name="x509Subj ect Name" type="sx: X509Subj ect Nane" substituti onG oup="sx: nane">
</ xsd: el ement >

Jsing the x509SubjectName element

The x509Subj ect Nane element is of type X509Subj ect Nane. This is an extension of the type Nanme. Typically it contains a string that designates
a subject name from some X509 certificate. Like with nane, | i censes can associate the element x509Subj ect Nane with pri nci pal s by using

the right possessProperty.

6.3.6 X509SubjectNamePattern

Schema representation of X509Subj ect NanePat t ern

- <xsd: conpl exType nane="X509Subj ect NanePattern">
- <xsd: conpl exCont ent >
<xsd: extensi on base="r: ResourcePatternAbstract"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of x509Subj ect NanePat t ern

-<xsd: el enent name="x509Subj ect NamePattern" type="sx: X509Subj ect NanmePattern" substituti onG oup="r:resourcePatternAbstract">
</ xsd: el enent >

Using the x509SubjectNamePattern

The x509Subj ect NanePat t er n is of type X509Subj ect NanePat t er n. This is an extension of the type Resour cePat t ern. The
x509Subj ect NanePat t er n is pattern that matches an x509Subj ect Nane. Specifically it matches the root of the x509Subj ect Nane tree. This
element can be used to enforce constraints similar to the X.509 specification.

6.4 Revocation Extensions

6.4.1 Revocable

Identifies a signature that can be revoked. The signature can be identified literally or by reference. In the latter case, the result of dereferencing
the reference must be of type dsig:SignatureType; the signature value being revoked is the one signature therein.

Schema representation of Revocabl e

- <xsd: conpl exType nane="Revocabl e">
- <xsd: conpl exCont ent >
- <xsd: ext ensi on base="r: Resource">
- <xsd: choi ce m nCccurs="0">
<xsd: el enent ref="dsig: Si gnatureVal ue"/>
<xsd: el enent ref="dsig: Reference"/>
</ xsd: choi ce>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Schema representation of revocabl e

-<xsd: el enent name="revocabl e" type="sx: Revocabl e" substitutionG oup="r:resource">
</ xsd: el enent >

Using the revocable element

The revocabl e element of type Revocabl e, based on Resour ce, is used with the r evoke right. Typically, to revoke a signature, a li cense is
issued which identifies the pri nci pal that has the right to revoke the signature specified by the r evocabl e element. The r evocabl e element
identifies the signature either by its literal value or by indirect means such as its cryptographic hash value.

The following example illustrates how Alice has the right to r evoke a specific signature. Note that the signature is referred to by its cryptographic
hash value.

Example of revocabl e

-<grant>
-<keyHol der |icensePart!|d="Alice">
</ keyHol der >
<revoke/ >
-<sx:revocabl e>
- <dsi g: Ref erence>
<dsi g: Di gest Met hod Al gorithme"http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
<dsi g: Di gest Val ue>qZk+NkcGgWj6Pi VxeFDChJzQJ0=</dsi g: Di gest Val ue>
</ dsi g: Ref erence>
</ sx:revocabl e>
-<validitylnterval >
<not Bef or e>2001- 05- 25T00: 00: 00</ not Bef or e>
<not Af t er >2003- 05- 25T00: 00: 00</ not Af t er >
</validitylnterval >
</ grant>

Go to Part IV: Content Extension Schema

